
Vol.:(0123456789)

SN Computer Science (2021) 2:103
https://doi.org/10.1007/s42979-021-00488-w

SN Computer Science

ORIGINAL RESEARCH

Using Reinforcement Learning for Generating Polynomial Models
to Explain Complex Data

Niclas Ståhl1  · Gunnar Mathiason1  · Dellainey Alcacoas1 

Received: 31 August 2020 / Accepted: 25 January 2021 / Published online: 19 February 2021
© The Author(s) 2021

Abstract
Basic oxygen steel making is a complex chemical and physical industrial process that reduces a mix of pig iron and recycled
scrap into low-carbon steel. Good understanding of the process and the ability to predict how it will evolve requires long
operator experience, but this can be augmented with process target prediction systems. Such systems may use machine
learning to learn a model of the process based on a long process history, and have an advantage in that they can make use
of vastly more process parameters than operators can comprehend. While it has become less of a challenge to build such
prediction systems using machine learning algorithms, actual production implementations are rare. The hidden reasoning
of complex prediction model and lack of transparency prevents operator trust, even for models that show high accuracy
predictions. To express model behaviour and thereby increasing transparency we develop a reinforcement learning (RL)
based agent approach, which task is to generate short polynomials that can explain the model of the process from what it
has learnt from process data. The RL agent is rewarded on how well it generates polynomials that can predict the process
from a smaller subset of the process parameters. Agent training is done with the REINFORCE algorithm, which enables the
sampling of multiple concurrently plausible polynomials. Having multiple polynomials, process developers can evaluate
several alternative and plausible explanations, as observed in the historic process data. The presented approach gives both
a trained generative model and a set of polynomials that can explain the process. The performance of the polynomials is as
good as or better than more complex and less interpretable models. Further, the relative simplicity of the resulting polynomi-
als allows good generalisation to fit new instances of data. The best of the resulting polynomials in our evaluation achieves
a better R2 score on the test set in comparison to the other machine learning models evaluated.

Keywords  Reinforcement learning · Polynomial generation · Generalisation in machine learning · Steel making

Introduction

The basic oxygen furnace (BOF) process has multiple com-
plex highly dynamic and non-linear interactions of chemical
and physical reactions, of which all are not fully known.
The purpose of the process is to reduce the carbon content
by oxidisation which releases carbon and other chemical
elements out of the melted material (the “heat”), which
consists mainly of pig iron (“hot metal”) and scrap steel.
The end goal of this process is to reach a level lower than a
certain required threshold for some elements, such as carbon

and phosphorous, while also reaching a sufficiently high
temperature.

The intense heat and the heavy reactions quickly destroy
any sensor, so continuous direct in-process monitoring of
the heat during the process is difficult. With the lack of rich
continuous data, operators need to rely on a few available
data points, their experience, and rough heuristic for their
control of the process. Some heat data is known in advance
of the process start, such as the actual weights and tempera-
tures of the scrap and the hot metal to be used, in total some
50 parameters. Using this data in combination with visual
observations and a few other indirect data points, operators
tune the process during the process. This is done by inserting
additional key materials, or adjusting the lance height and
thereby changing the spraying area on the heat, resulting in
energy and mass balance adjustments.

 *	 Niclas Ståhl
	 niclas.stahl@his.se

1	 School of Informatics, University of Skövde, Box 408,
541 28 Skövde, Sweden

http://orcid.org/0000-0003-2128-7090
http://orcid.org/0000-0001-7106-0025
http://orcid.org/0000-0002-0127-2767
http://crossmark.crossref.org/dialog/?doi=10.1007/s42979-021-00488-w&domain=pdf

	 SN Computer Science (2021) 2:103103  Page 2 of 11

SN Computer Science

The existing heat management support system that is in
use proposes a few key process parameter settings and a tem-
perature prediction, which is based on the actual amounts of
hot metal and scrap delivered for each heat, together with
some other similar data points. These predictions are based
on partly unknown hard-coded rules that give only rough
estimates and a simplistic temperature prediction, so opera-
tors can use this information only as advice. A successful
operator needs both explicit and tacit knowledge, based on
experience gathered over a long time. It does, therefore, exist
a great need for both better prediction systems as well as
transparent models that can be understood and trusted by
operators [14]. These two goals are often orthogonal to each
other and while complex machine learning (ML) approaches
can achieve the former they often lack transparency. In this
work, we therefore aim to build complex ML models, while
still keeping their decision process interpretable and trans-
parent. Our approach base predictions on polynomials that
express the connection between proposed process settings
and the resulting target prediction. Operators and process
developers can examine these polynomials, hence the impact
of each parameter, and both judge about the accuracy of the
prediction and also understand what process parameter set-
tings cause a certain process outcome.

Using an ML approach allows for many more heat param-
eters to be used for target predictions, such as we have done
in our earlier work [1]. Utilising the information from such
high dimensionality data and for better prediction cannot
easily be done otherwise. Without it, predictions are typi-
cally based on either hard coded rules or by human raw data
analysis that uses known calculations based on few features.
For many ML approaches all available features can be used
for model training, such that there is no need to exclude
any available data that possibly could contribute to a good
prediction. From the available process data, we let the algo-
rithm reduce the dimensionality and, by itself, pick the fea-
tures that are important for good predictions. Moreover, our
approach generates polynomials and uses these as predic-
tion models. The advantage of generating polynomials and
continuously evaluating their performance is that important
features get discovered in the process. This is in contrast
to depicting the important features through evaluation of
an already trained model. Such continuous refinement of
polynomials during training allow for multiple solutions to
emerge, and thus multiple likely explanations that can be
examined by operators and process experts.

Using the presented generative model, we manage to
generate several polynomials that achieve a better R2-score
(0.72) on a test set than all other evaluated machine learning
models, and are almost as good as the best models when it
comes to predicting instances within a correct margin. The
best of the generated polynomials predict 85% of all samples
within 15 ◦ C from the measured temperature, which is the

acceptable range for when a prediction will be useful in real
world production. This is just a few percentage units lower
than what is achieved with more complicated models, such
as SVMs and ANNs. Furthermore, the presented model can
give several alternative explanations to the process, as well
as recognising important features that are always a part of
the polynomials.

Related Works

There is a body of literature on how to predict BOF process
targets. The data that are used in these studies are, however,
in most cases, kept secret, which make it difficult to replicate
the presented experiments. Furthermore, the amount of data
used in the conducted studies varies as well as the stability
of the production processes in the different production sites
where the data are collected. These factors make it problem-
atic to compare the results from previously presented works,
on more than a conceptual level.

One example where ML is used to predict the end tem-
perature is Gao et al. [4] that proposes an improved version
of a support vector machine regression using a weighted
matrix and coefficient vector, optimised by wavelet trans-
form to estimate the carbon content and the end temperature
end-point. Other approaches use novel and durable sensors
for better in-process estimate the actual process state, such
as Xu et al. [20] that uses the data from a spectrum distri-
bution of the flame at the mouth of the BOF vessel to bet-
ter estimate the current heat state, using a support vector
machine algorithm. This idea was further developed by Shao
et al. [16] using a combination of support vector classifier
and a support vector regression for process state estimation
using flame radiation at the mouth of the BOF vessel. Using
additional sensors such as these improve prediction accu-
racy, and may also extend process understanding, but still
lacks the transparency to explain influential factors of the
collected data. In our previous research, we compared the
prediction accuracy between several conventional ML algo-
rithms, trained on a full-variance data set that includes all
types of heats from years of production [1]. We found that
many earlier publications use limited data sets with a lower
variance in the training examples and the target outcomes. In
our work, a subset of the conventional ML algorithms were
able to capture the full variance and prediction accuracy
relatively well, in particular when raw data is augmented
with expert-based informed features based on that data.

Most of the existing literature support that ML models
can give useful predictions for BOF processes. However,
the selection of ML model has a significant impact on the
performance. Support vector machines (SVM) and arti-
ficial neural networks (ANN) perform well, better than
many other conventional algorithms, since they are good

SN Computer Science (2021) 2:103	 Page 3 of 11  103

SN Computer Science

at capturing the complexity of the process. Some conven-
tional ML algorithms are relatively good at explaining
model predictions, such as decision trees, k-nearest neigh-
bours. These have been used for temperature prediction
in BOF-processes, but with a less satisfactory result [1].
Further, machine learning models that are often considered
as easy to interpret, such as linear regression and decision
trees, may still be impossible for humans to interpret when
the data is high dimensional [18].

Machine learning algorithms can take advantage of data
that has many dimensions, while most humans can only
comprehend and distinguish patterns among a few dimen-
sions. Thus, for a human analysis it is necessary to aggre-
gate model prediction explanations into a few comprehen-
sible dimensions. Preferably, a good model explanation
presents only a few process parameters as being influen-
tial factors of the target prediction, with the interrelations
between them explained as well. This explanation should
further closely resemble how the trained model behaves.
Recent approaches to explaining ML models by attribu-
tion of features to predictions include SHAP and LIME [9,
15] which examine already trained models. Their advan-
tage is that they are model-agnostic and can explain the
influencing variables for any ML model. However, since
complex ML models learn high-dimensional connections
between the input variables and the target variables, the
approaches that visualise these must also be able to visual-
ise high-dimensional connection between variables, some-
thing which is a challenging problem by itself. Hence,
these high-dimensional patterns must be transferred from
a high-dimensional space into human-interpretable visu-
alisations. A good understanding of ML and visualisation
techniques for high dimensional data is therefore needed.
This is something that typically industrial operators and
process experts lack. Rather, they analyse data through
traditional calculations typically based on known proper-
ties of the process. Even extensive calculations are often
still simplifications of the actual complexity, consisting
only of just a few terms.

In summary, expressive algorithms cannot explain their
predictions well, and algorithms with explanation abilities
are not expressive enough to capture the complexity for
good predictions.

Methods

This section describes how the generative model is imple-
mented. First a short description of the data is given. This
is followed by a description of the architecture of the deep
neural network that acts as an agent in the RL setup.

Exploration to Understand the Basic Oxygen
Furnace Process

Due to the complexity of the BOF process, a fully detailed
model or simulation of the process is infeasible. In spite of
many efforts to model this complexity, there is still much
uncertainty around how input parameters determine the
result. Our approach to find this relation is based on the
exploration of the possible combinations, using an approach
that simulates informed attempts to traverse the solution
space of possible combinations. Knowledge development
for process analysis has traditionally been done by experts
by trying out combinations of experiments that has a poten-
tial of yielding explanations for process behaviours. We
mimic this approach by letting an agent generate possible
steps towards promising combinations, guided towards
reasonable explanations. The agent-based algorithm auto-
matically generates polynomials step-wise that express
how input parameters relate to process outcomes. However,
the generated polynomials are not necessarily anchored in
physics or known process calculations, but should rather be
considered a consequence of what the used data represents.
Therefore, polynomials should be used as an indicator to
both as whether useful data has been collected, and as sug-
gestions for hypothesis of how the process can be explained.
Hence, this allows process experts and engineers to continue
to work exploratory with process analysis, but now with the
support of models that are able to quantify the impact of
much more information than those grounded in the physics
of the process alone.

Production Data

The data used in this study consists of real production data
from the BOF process, run by SSAB in Sweden. The data is
collected between 2014 and 2017 and consist of 9710 heats,
where 112 different features are recorded, with one value for
each heat. The original data contains around 17,000 heats of
data for the entire time period, with corrupt or missing val-
ues. The 112 features consist of both initial heat data, sensor
measurements of the initial heat state, calculated descriptors,
and also aggregated statistics of sequential data available
during the process. The data is split into a training set of
70%, a 15% validation set for model selection, and a 15%
hold-out test set for model evaluation.

Recurrent Neural Networks

To model the agent that generates polynomials and acts in
the RL framework presented in Sect. 3.5, a recurrent neural
network (RNN) is used. A recurrent neural network is a spe-
cial case of an artificial neural network (ANN) where there
exist cyclic connections between neurons [12]. This allows

	 SN Computer Science (2021) 2:103103  Page 4 of 11

SN Computer Science

the network to keep an inner state, allowing it to make use
of information that spans several steps of a sequence. In our
approach, we make use of a special type of RNN, specifi-
cally a long short-term memory (LSTM) network. Compared
to general RNNs, LSTMs use special cell that has a variable
that holds the current state of the network. This cell enables
the network to have a memory of past steps in the sequence
and hence, the information stored in memory can be used in
how to act on new data.

A trained LSTM network can not only be used to ana-
lyse (for instance to classify) a sequence of data, but it can
also be used to generate new sequences based on the trained
knowledge. Such sequences follow the same distribution as
the training sequences used. Several examples of how to
generate text using this approach are given in Graves [5].
The sequence is first initialised by the the insertion of a spe-
cial start vector at the first step in the sequence. This vector
is then propagated trough the network, giving the conditional
probability over all possible symbols. A symbol is then sam-
pled from this distribution and appended to the sequence.
The sampled symbol is also transformed into an one-hot
encoded vector which is propagated trough the network,
resulting in that a new symbol is sampled. The process is
repeated, adding another symbol at a time to the end of the
sequence, until a special stop symbol is sampled or when the
length of the sequence reaches a predefined limit. A visual
description of this process is shown in Fig. 1.

Polynomial Generation from Recurrent Networks

In this section we describe how generated polynomials are
encoded in a way that they can be generated by an RNN. It
is described how the goodness of these polynomials are cal-
culated, so that an RL-model can learn how to generate good
polynomials. We continue with how generated polynomials
are evaluated, and how this result compares to alternative
models.

Polynomials are constructed by the algorithm to make
use of a specific subset of all the features in the original
dataset, with the intention to reduce the complexity of the
solution. There is a balance needed between complexity and

expressiveness of the polynomial, and the interpretability.
This reduction of features can be conducted using a mul-
titude of different search methods [8]. In our work we use
an RL-approach, and similar approaches have been used by
others, such as Fard et al. [3] and Piñol et al. [13]. While
these publications target the extraction of a subset of features
for any model, we try to avoid generating too many terms by
limiting the terms of our polynomials.

To generate polynomials to describe the process, we
instead use a generative RL-based approach, where each
symbol in a polynomial is generated one at a time. The RL
technique has proven useful in many different applications.
For instance, generative RL-approaches have been used for
improving hyper-parameter choices for neural network con-
figurations [2, 6, 22]. In Khurana et al. [7] RL is used to
learn transformations that can be applied to ML input data to
get a lower error rate, both for classification and regression
problems. Our generative approach also draws inspiration
from using similar generative models to find very complex
molecule structures that have certain desired properties,
such as when generating molecules for drug discovery [11].
However, to the best of our knowledge, there is no similar
work with the focus on generating simple and interpretable
machine learning models.

Encoding Polynomials

In this paper, we consider polynomials as a sequence of
coefficients and variables, separated by either addition or
multiplication. These polynomials are encoded as one-hot
representation. However, in the generation process, we only
consider the placement of variables and addition, while the
placement of the coefficients and multiplication is implicit.
Thus, as shown in Fig. 2, there is only need for tokens repre-
senting each variable and the addition. Beside these tokens,
there will also be a special token representing the start of
the polynomial and one representing the end. Hence, there
will be 114 different tokens that the agent can select from
when generating polynomials, 112 of them representing the
different variables and one representing addition and a spe-
cial token representing the end of a polynomial. In addition,

Fig. 1   Using a RNN to generate
new sequences. At every time
step t, a new output token yt is
sampled from the distribution
that is proposed by the network.
This token is then used as the
input in the following step.
The generation ends when the
special end token is sampled or
when the generation reaches the
maximum number of allowed
steps <start>

y1 y2 y3 <end>

Cellt=0 Cellt=1 Cellt=2 Cellt=3

Token

Encoding

RNN

Output

SN Computer Science (2021) 2:103	 Page 5 of 11  103

SN Computer Science

there is, also, a special start token, which the agent cannot
select, adding up to 115 different tokens in total.

Learning Generic Polynomials

To prevent the agent from exploring a tremendous amount
of states before it figures out how well formed polynomials
look we will give the agent a warm start by training it to gen-
erate polynomials in a supervised way. To this end, 100,000
polynomials are generated by a simple set of rules and the
network is trained in a supervised way so that the likeli-
hood of generating these polynomials is maximised. The
polynomials that are used in this pre-training are generated
in a step wise manner. The first step is to randomly select a
variable. The polynomial is then constructed by repeatedly
and probabilistically selecting one of the four possible con-
tinuations until the maximum length is reached or the stop
symbol is sampled. In the first out of four possible cases, the
last variable is repeated. In the second case, the variable is
followed by another randomly selected variable. In the third
case, the variable is followed by an addition and a random
variable after the addition. In the last case, a stop symbol is
added and the generative process is terminated. The prob-
abilities for each of these four cases are arbitrary selected as;
0.2, 0.1, 0.65 and, 0.05 respectively. During the generative
process, the random selection of variables is uniform and
thus, all variables are equally likely.

Evaluation of Polynomials

The aim of the presented research is to apply RL in order
to generate as good polynomials as possible. A good poly-
nomial is considered to be a polynomial that explains the
process sufficiently well and should be given a high reward
to the RL agent. Since the process is considered to be rather
stochastic and noisy, it would be infeasible to perfectly pre-
dict the outcome in all the cases. Instead, the aim is to get
as many temperature predictions as possible within a given
acceptable range from the measured temperature. Hence, the
goodness of a polynomial p is scored by;

for a given set of data (X, Y), where m is the number of sam-
ples in the dataset. In Eq. (1), H(x) is the unit step function,
which is 1 if x > 0 and 0 otherwise. Furthermore, � is the
maximum temperature ( ◦ C) that would be considered to be
an acceptable divergence from the measured value, in order
for the prediction to be useful in a real-world setup. Hence,
the usefulness of the model, is measured as the percentage
of predictions within ±� ◦ C of the measured outcome.

The reason behind the selection of this scoring function
is that errors within this, pre-defined, margin can easily be
corrected and the heat can still be delivered to the follow-
ing production step without any delay. Larger errors, on the
other hand, would require cumbersome and costly efforts to
restore. Hence, this particular evaluation metric is defined
to evaluate the usefulness of the model in a real production
line. In the conducted experiments, � is defined as 15 ◦C.

The score, given in Eq. (1) is normalised, to prevent a
quick convergence to sub-optimal configurations of the agent
during the training process, leading to the following, final,
scoring function:

where � is the expected reward from a randomly sampled
polynomial generated by the process described in the previ-
ous section.

However, before a polynomial can be evaluated, the opti-
mal coefficients for that polynomial must be inferred. This
is done by minimising the mean squared error between the
predicted outcome of the polynomial and all recorded obser-
vations in the training data;

Hence, the coefficients of the polynomials are adjusted to
minimise Eq. (3), given the training dataset. All redundant
terms, terms that occur multiple times in the polynomial,
are removed in the step, to make the training of the model
more stable. The inferred configuration of coefficients is
then evaluated, using the scoring function given in Eq. (2),
on a separate validation set.

Training with Reinforcement Learning

Consider that the generative network, described in
Sect. 3.3, is an acting agent in an environment. The whole
environment that this agent is acting in is shown in Fig. 3
and as in most RL approaches, we frame the targeted prob-
lem as a Markov decision processes. This means that the
current state contains all information that the agent may

(1)S(p |X, Y) = 1

m

m∑

i

1 − H
(
|p(xi) − yi| − �

)
,

(2)S(p |X, Y , �) = S(p |X, Y) − �,

(3)MSE(X, Y) =
1

m

m∑

i

(p(xi) − yi)
2.

x1 + x1 x2 + x3 + x4
x1 1 0 1 0 0 0 0 0
x2 0 0 0 1 0 0 0 0
x3 0 0 0 0 0 1 0 0
x4 0 0 0 0 0 0 0 1
+ 0 1 0 0 1 0 1 0

Fig. 2   A simplified depiction of the one-hot representation derived
from the polynomial x

1
+ x

1
x
2
+ x

3
+ x

4
 . A reduced vocabulary of

variables is shown in this example, and in the real implementation
there are 115 different tokens, 112 variables and 3 special characters,
that can be used in the formation of polynomials

	 SN Computer Science (2021) 2:103103  Page 6 of 11

SN Computer Science

require to decide which action to take. Hence, at each step
the agent is in a specific state s ∈ � and takes an appropri-
ate action a ∈ �(s) , which is only based on the current
state. Here � is the set of all possible states and �(s) is the
set of all possible actions that the agent may take when it
is in state s. To determine which action a the agent should
take in a given state s, the agent follows a policy �(a|s)
which maps a state to the probability of each action. The
objective of the agent is to find an optimal policy, such that
the expected total reward is maximised. To this end, we
denote the weights of the neural network, which controls
the behaviour of the agent, � . For any configuration of � ,
the expected total score can be denoted as:

where d�� is the stationary distribution of states in the
Markov chain, for an agent with the policy �

�
 . Thus, �

�
(a|s)

is the probability of taking action a when in state s. Q(a, s)
is the expected reward for taking the action a when in the
state s. The aim of the learning process is to find an optimal
configuration of � that would maximise the score in Eq. (4).
In the presented work, we use the REINFORCE algorithm
[19] to find an optimal configuration �∗ , following the same
approach as, for example, Yu et al. [21] and Silver et al.
[17]. In the proposed approach, the starting state is always
the same and the acting agent gets a reward when the gen-
erative process terminates. For such a process, the expected
total score, using a given policy, can be estimated by several
unbiased traces from the process while following that policy.
The expected total reward for a policy, parameterised by � ,
is be estimated by:

(4)J(�) =
∑

s∈�

d�� (s)
∑

a∈�

Q�(a, s)�
�
(a|s)

Here �
�
(at|st) is the probability of taking action at , which

was the action taken in the trace at time t, in the state st and
R(�) is the total accumulated reward for the whole trace. In
the polynomial generation process, which is described ear-
lier, the reward is only given in the final step of the genera-
tive process and hence, the total reward, R(�) , corresponds
to the function given in Eq. (2). The aim of the REINFORCE
algorithm would, hence, be to maximise the expression in
Eq. (6) by gradient ascent. Thus, the expected total score is
increased by changing the parameterisation of the policy
using the gradient of Eq. (6), which is:

This process would raise the probability for polynomials
with a high reward and decrease the probability for those
with a low reward.

Experiment Parameters

The LSTM network, as described in Sect. 3.3, is used to
model the action policy for selecting the next term of the
polynomial. The trained network predicts the probabilities
attributed to each of the possible next terms that are chosen.
The first layer of the trained network is a fully connected
hidden layer with 512 neurons that use the leaky relu func-
tion as the activation function. The second layer consists of
128 LSTM cells and the final layer consists of 114 neurons,

(5)J(𝜃) =
∑

𝜏∈⊤

R(𝜏)

T∏

t=0

𝜋
𝜃
(at|st).

(6)∇
𝜃
J(𝜃) =

∑

𝜏∈⊤

R(𝜏)

T∑

t=0

log𝜋
𝜃
(at|st).

Fig. 3   Framing of the presented
RL scenario. Here an agent
generates polynomials that are
fitted to the training data. The
fitted polynomials are then
applied to the validation set, and
the goodness of fit for this set
is used as the reward, which are
fed back to the agent

SN Computer Science (2021) 2:103	 Page 7 of 11  103

SN Computer Science

which is the same as the number of possible actions. This
layer has the softmax function as an activation function and
the activation can hence be considered as an approximation
of probabilities. The weights of this network are adjusted,
during the training phase, using stochastic gradient descent,
with a learning rate of 0.01. In the proposed experiment, the
agent is trained for 5000 epochs where each epoch consists
of 4096 independently sampled traces.

Experiment Evaluation

We compare the expressiveness and accuracy of the gener-
ated polynomials on how to model the BOF process, with
alternative ML approaches. Among the several ML methods
compared to, artificial neural network (ANN) and a support
vector machine (SVM) have previously been shown to be
the top performing models for endpoint temperature predic-
tion in the BOF process [1]. We also compare polynomi-
als to machine learning methods that are known to provide
some interpretability about their models. These are a random
forest (RF), decision trees (DT), and k nearest neighbour
(KNN).

More specifically, the algorithms that we use for com-
parison are: an ANN with two hidden layers consisting of
128 and 64 neurons respectively; a SVM with a radial basis
kernel; a random forest with 100 trees; a decision tree with
a maximal depth of 10; and a KNN where k is equal to 5.
These models make use of all available parameters in data
and some of them are therefore expected to outperform the
generated polynomials, when it comes to prediction accu-
racy, since the generated polynomials make use of only a

subset of all input parameters. However, these models, with
the exception of the decision tree, are known to be difficult
to interpret, especially when applied to many variables.

Results

Generated Polynomials

The agent succeeds in learning how to generate polynomi-
als that are as useful as more complex and less interpretable
models are for the steel operators. The increase in quality
of the generated polynomials during the learning process is
depicted in Fig. 4. In this figure, it is shown that the agent
manages to generate increasingly better polynomials over
time. The spread in performance of the generated polyno-
mials decreases over time and, in the last epochs, almost all
generated polynomials have a high predictive power. The
spread in performance among the polynomials shows one
of the benefits of the presented approach, namely, that this
approach creates several possible polynomials, which all
have the possibility to predict the outcome of the process.

When it comes to the usefulness of the model, it is meas-
ured as the percentage of predictions within ±15 ◦ C of the
real measured outcome, see Table 1 for this score for all
evaluated models. Here, small errors can be ignored, while
large errors would have a negative impact on the score.
Therefore, we would prefer a model with many small pre-
diction errors over one with few, but large, prediction errors.
As seen in Fig. 5, this is what the best polynomial, which
is discovered by the RL agent, achieves. This behaviour is

Table 1   Performance on the leave-one-out test set for the evaluated algorithms and the simple heuristic of always guessing the mean value

The performance is measured as the percentage of predictions within ±15 ◦ C. The rightmost column is the average performance of all generated
polynomials in the last epoch. The best polynomial is decided to be the polynomial which had the best performance on the internal validation set
during all epochs

% of predictions within ±15 ◦C

ANN SVM RF DT KNN Mean guess Best polynomial Average polynomial
86.8% 86.6% 82.1% 67.2% 72.2% 58.3% 84.9% 83.6%

Table 2   R2 score on the training- and the leave-one-out test set for the evaluated algorithms

Here, the great generalisation capability of generated polynomials, which, on average, score almost the same on the test and the training set

R
2-score on training set

ANN SVM RF DT KNN Mean guess Best polynomial Average polynomial
0.89 0.84 0.90 0.55 0.72 0.0 0.73 0.73

R
2-score on test set

ANN SVM RF DT KNN Mean guess Best polynomial Average Polynomial
0.72 0.70 0.49 0.44 0.15 0.0 0.74 0.73

	 SN Computer Science (2021) 2:103103  Page 8 of 11

SN Computer Science

inherent to simplistic models, such as the generated poly-
nomials, since they are not as prone to overfitting as more
complex models and, therefore, most often generalise well.
This strength is shown in Table 2 where R2-scores for the
training- and test sets are shown. The generated polynomials
have the highest R2-score for the test set while, by a great
margin, also have the smallest difference between the score
for the training set and the test set. Thus, generalises the best
of all models.

During the last training epoch, the agent generates 121
unique polynomials out of 4096 trials. The most common

polynomial is generated 948 times and there are 7 polyno-
mials that the model generates more than 100 times. The
polynomial with the best performance over the validation set
is one of these and that particular configuration is generated
123 times. Only 2.1% of all the generated polynomials con-
tain a second order term but none of these have a higher pre-
dictive performance on the validation data compared to the
average score of the generated polynomials in the last epoch.
Therefore, in this particular application, the capability of the
agent to generate such terms are of lesser importance.

No full investigation of the interpretability of the gener-
ated polynomials is conducted within this work. However,
the generated polynomials have been discussed with process
experts. These experts had no problems to interpret what
the polynomials did and deemed them to describe the pro-
cess reasonably well. The ability, of the proposed method,
to generate multiple polynomials is especially appreciated.

Discussion and Future Work

In recent years, reinforcement learning (RL) has brought
major advances in application areas that previously were dif-
ficult to address. We argue that we apply RL in a novel way,
where we let an agent build polynomial models for tempera-
ture prediction. The purpose of this paper is to demonstrate
this application. The hyperparameters that are used in this
study are, therefore, arbitrarily selected and most likely not
optimal. We would, therefore, suggest that future studies
investigate if there are other choices that would be more
beneficial in regards to accuracy or time consumption. The

Fig. 4   The evolution of the generated polynomials during the training
process. The average performance is shown by a blue solid line, sur-
rounded by two dashed black lines representing the 10th and the 90th
percentile. The result achieved by the heuristic approach of guessing

the mean is shown by a red dashed line (straight line at the bottom),
as well as the result from the other evaluated machine learning mod-
els

Fig. 5   Predictions for the test set made by the best polynomial that
is generated over the real observed value, where both are shifted to
a mean of 0. All predictions would land on the red diagonal line if
the model manages to perfectly predict all instances. The polynomial
model that is used for predictions has a R2 score of 0.73

SN Computer Science (2021) 2:103	 Page 9 of 11  103

SN Computer Science

presented RL application is a method that to the best of our
knowledge has not been used before on a similar problem, a
complex steel making process with high dimensional data.
RL-based model generation has a potential both in genera-
tion of more complex models such as with neural networks,
for example, as in Bello et al. [2], Zoph et al. [22], Jomaa
et al. [6], and also in generation of simpler models, such as
our case.

The successful accuracy we get in the application case
we use for this study, the BOF steel making process, can
probably be explained with that for this case, the dependency
between the input and the output is relatively smooth and
locally stable and could therefore be well approximated by a
polynomial. Furthermore, the proposed polynomials mostly
contain first order terms and only a few contain second order
terms. It would, therefore, be interesting to investigate if
the proposed method could manage to learn more complex
polynomials where the dependency between the input and
the output is even more complex. Another avenue of future
work would be to generalise the approach to other simple
models which are even easier to interpret for operators, such
as a decision tree or a rule based system. This would either
require that the generative process is redefined or that such
models can be formulated using a linear representation.

Our choice of using a policy gradient approach for train-
ing the RL-agent allows for sampling of many different mod-
els, all with a high predictive power, explaining the studied
phenomenon. This is in contrast to a common Q-learning
approach that strives for one optimal solution, such as the
method used by Khurana et al. [7]. Sampling of multiple
models makes it possible for system operators to extract
polynomials that are well based in the physical descrip-
tion of the system, since polynomial can be assesses from
their existing process knowledge. The extracted polynomial
gives transparency and can be used to further understanding
the process and how to improve process control in order to
achieve process targets.

In this work, we constrict the polynomials to only have a
few variables to improve interpretability for a process expert,
who can choose the most useful alternative probabilistically
plausible polynomials generated. Further, the relevance of
these features in the data set can be identified by analysing
the coefficients of each variable of a polynomial. The abil-
ity to explore and select the most suiting polynomial is a
major improvement over using other commonly used vari-
able selection- and regularisation techniques for polynomi-
als, such as LASSO and elastic net [10]. The possibility to
sample many different polynomials can also be used in an
ensemble approach, where many polynomials are sampled
and the average prediction of all polynomials is the final
prediction.

One drawback of the presented approach is that the train-
ing time is much longer compared to the other evaluated

models. However, the training of our model, as well as all
other models, is done offline and the time it takes is there-
fore of lesser importance. For any trained model used in an
industrial application, it is critical that the model execution
is fast and predictable. For a model based on polynomials,
the execution time is constant, since it depends only on set-
ting the values of the free variables. The implementation
of a model trained with our approach is, therefore, a mat-
ter of implementing the polynomials as a single function,
which is typically much easier to implement in any indus-
trial infrastructure or control system, than implementing a
solution using a third party machine learning package. The
implementation of function that calculates a polynomial is
also easily done in any programming language, compared
to ML solutions which may require specific programming
languages and libraries. The presented method has, however,
not been tested in production and there is a need to study the
impact of the inclusion of a new predictive system.

We see that very few of the generated polynomials con-
tain higher-order terms, and we believe that this is due to
the risk of overfitting the trained model when such terms
are used. The model becomes more true to the training data,
but there is a risk of decreasing the general predictive power
when a linear term is changed to an arbitrary second order
term. This likely discourages the agent to generate second
order terms, such that it after a few epochs removes them
and chooses to search for more linear terms. However, when
the model is applied to more complex problems, higher order
terms are most likely needed and generated, so potentially
our approach can perform as good as more complex alter-
native ML algorithms. It is therefore an interesting future
research direction to find out how the generating agent can
be refined to generate terms that even better captures higher
complexity.

Conclusions

This paper presents a novel RL-based method to gener-
ate polynomials for the prediction of the end temperature
in a BOF-process. The presented method performs feature
selection from a large set of features and includes high-order
terms of these features in the selection process. This is a
major advantage compared to most other feature selection
methods, such as LASSO, which would face an explosion
in the dimensionality of the input space when higher order
terms are added.

The polynomials that are generated by the presented
method, have a greater R2 score than the other evaluated
models, for example, an ANN, an SVM, and random for-
est. When the performance is measured as the percentage
of predictions, in the desired range of ±15◦ C, the generated
polynomials have most of their predictions within this error

	 SN Computer Science (2021) 2:103103  Page 10 of 11

SN Computer Science

margin and outperform some other evaluated models such
as, a random forest and a decision tree. However, for this
task, the polynomials perform slightly worse than the two
best performing models, an ANN and a SVM. At the same
time they are far more interpretable for operators and pro-
cess experts. In our application case, this model interpret-
ability improvement is well worth the trade-off for slightly
more predictions outside the error margin when the goal is to
understand a manufacturing process with the aim to improve
it. Another major benefit of the presented method is that it
generates multiple solutions (multiple polynomials) to the
problem. Hence, human experts could investigate and com-
pare these solutions and find the ones that align with their
prior knowledge and understanding of the process.

While the presented model is applied in the domain of
steel making, there is nothing that prevents it from being
used for any other problem where a solution can be repre-
sented by polynomials. Thus, it should be relatively easy to
generalise the method to be applicable in other domains and
problems. One of the greater advantages of the presented
approach is that the scoring function can be replaced with
any arbitrary function for the evaluation of the polynomi-
als. Hence, the presented method can be applied to other
problems where there is a way to score the goodness of the
polynomials.

Acknowledgements  We would like to thank Juhee Bae and Yurong
Li at the University of Skövde for the help with cleaning the data and
for valuable discussions. We would also like to thank Niklas Kojola,
Carl Ellström, Patrik Wikström, and Lennart Gustavsson at SSAB for
the close collaboration in the Swedish Metal project under which this
research is funded. The project is funded by the Knowledge Foundation
in Sweden, under the Grant 20170297.

Funding  Open Access funding provided by University of Skövde.

Compliance with Ethical Standards 

Conflict of interest  The authors of this article state that there are no
conflicts of interest.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creat​iveco​mmons​.org/licen​ses/by/4.0/.

References

	 1.	 Bae J, Li Y, Ståhl N, Mathiason G, Kojola N. Using machine
learning for robust target prediction in a Basic Oxygen Furnace
system. Metall Mater Trans B. 2020;51.

	 2.	 Bello I, Zoph B, Vasudevan V, Le QV. Neural optimizer search
with reinforcement learning. In: Proceedings of the 34th interna-
tional conference on machine learning, vol 70. 2017. p. 459–468.

	 3.	 Fard SMH, Hamzeh A, Hashemi S. Using reinforcement learn-
ing to find an optimal set of features. Comput Math Appl.
2013;66(10):1892–904.

	 4.	 Gao C, Shen M, Wang L. End-point prediction of BOF steel-
making based on wavelet transform based weighted TSVR. In:
2018 37th Chinese control conference (CCC). IEEE. 2018. p.
3200–3204.

	 5.	 Graves A. Generating sequences with recurrent neural networks.
2013. arXiv​:1308.0850.

	 6.	 Jomaa HS, Grabocka J, Schmidt-Thieme L. Hyp-rl: hyperpa-
rameter optimization by reinforcement learning. 2019. arXiv​
:1906.11527​.

	 7.	 Khurana U, Samulowitz H, Turaga D. Feature engineering for pre-
dictive modeling using reinforcement learning. In: Thirty-second
AAAI conference on artificial intelligence. 2018.

	 8.	 Kumar V, Minz S. Feature selection: a literature review. SmartCR.
2014;4(3):211–29.

	 9.	 Lundberg SM, Lee SI. A unified approach to interpreting model
predictions. In: Advances in neural information processing sys-
tems. 2017. p. 4765–4774.

	10.	 Ogutu JO, Schulz-Streeck T, Piepho HP. Genomic selection using
regularized linear regression models: ridge regression, lasso,
elastic net and their extensions. In: BMC proceedings. vol. 6.
Springer; 2012. p. S10.

	11.	 Olivecrona M, Blaschke T, Engkvist O, Chen H. Molecular de-
novo design through deep reinforcement learning. J Cheminform.
2017;9(1):48.

	12.	 Pineda FJ. Generalization of back-propagation to recurrent neural
networks. Phys Rev Lett. 1987;59(19):2229.

	13.	 Piñol M, Sappa AD, López A, Toledo R. Feature selection based
on reinforcement learning for object recognition. In: Adaptive
learning agent workshop. 2012. p. 4–8.

	14.	 Rehse JR, Mehdiyev N, Fettke P. Towards explainable process
predictions for industry 4.0 in the dfki-smart-lego-factory. KI-
Künstliche Intelligenz 2019;33(2):181–187.

	15.	 Ribeiro MT, Singh S, Guestrin C. “Why should i trust you?”
explaining the predictions of any classifier. In: Proceedings of
the 22nd ACM SIGKDD international conference on knowledge
discovery and data mining. 2016. p. 1135–1144.

	16.	 Shao Y, Zhou M, Chen Y, Zhao Q, Zhao S. BOF endpoint pre-
diction based on the flame radiation by hybrid SVC and SVR
modeling. Optik. 2014;125(11):2491–6.

	17.	 Silver D, Huang A, Maddison CJ, Guez A, Sifre L, Van
Den Driessche G, Schrittwieser J, Antonoglou I, Panneershelvam
V, Lanctot M, et al. Mastering the game of go with deep neural
networks and tree search. Nature 2016;529(7587):484.

	18.	 Stimson JA, Carmines EG, Zeller RA. Interpreting polynomial
regression. Sociol Methods Res. 1978;6(4):515–24.

	19.	 Williams RJ. Simple statistical gradient-following algo-
rithms for connectionist reinforcement learning. Mach Learn.
1992;8(3–4):229–56.

	20.	 Xu L, Li W, Zhang M, Xu S, Li J. A model of basic oxygen fur-
nace (BOF) end-point prediction based on spectrum information
of the furnace flame with support vector machine (SVM). Optik.
2011;122(7):594–98.

http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/1308.0850
http://arxiv.org/abs/1906.11527
http://arxiv.org/abs/1906.11527

SN Computer Science (2021) 2:103	 Page 11 of 11  103

SN Computer Science

	21.	 Yu L, Zhang W, Wang J, Yu Y. Seqgan: sequence generative
adversarial nets with policy gradient. In: Thirty-first AAAI con-
ference on artificial intelligence. 2017.

	22.	 Zoph B, Vasudevan V, Shlens J, Le QV. Learning transferable
architectures for scalable image recognition. In: Proceedings of
the IEEE conference on computer vision and pattern recognition.
2018. p. 8697–8710.

Publisher’s Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

	Using Reinforcement Learning for Generating Polynomial Models to Explain Complex Data
	Abstract
	Introduction
	Related Works
	Methods
	Exploration to Understand the Basic Oxygen Furnace Process
	Production Data
	Recurrent Neural Networks
	Polynomial Generation from Recurrent Networks
	Encoding Polynomials
	Learning Generic Polynomials
	Evaluation of Polynomials

	Training with Reinforcement Learning
	Experiment Parameters
	Experiment Evaluation

	Results
	Generated Polynomials

	Discussion and Future Work
	Conclusions
	Acknowledgements
	References

