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Abstract
Basic oxygen steel making is a complex chemical and physical industrial process that reduces a mix of pig iron and recycled 
scrap into low-carbon steel. Good understanding of the process and the ability to predict how it will evolve requires long 
operator experience, but this can be augmented with process target prediction systems. Such systems may use machine 
learning to learn a model of the process based on a long process history, and have an advantage in that they can make use 
of vastly more process parameters than operators can comprehend. While it has become less of a challenge to build such 
prediction systems using machine learning algorithms, actual production implementations are rare. The hidden reasoning 
of complex prediction model and lack of transparency prevents operator trust, even for models that show high accuracy 
predictions. To express model behaviour and thereby increasing transparency we develop a reinforcement learning (RL) 
based agent approach, which task is to generate short polynomials that can explain the model of the process from what it 
has learnt from process data. The RL agent is rewarded on how well it generates polynomials that can predict the process 
from a smaller subset of the process parameters. Agent training is done with the REINFORCE algorithm, which enables the 
sampling of multiple concurrently plausible polynomials. Having multiple polynomials, process developers can evaluate 
several alternative and plausible explanations, as observed in the historic process data. The presented approach gives both 
a trained generative model and a set of polynomials that can explain the process. The performance of the polynomials is as 
good as or better than more complex and less interpretable models. Further, the relative simplicity of the resulting polynomi-
als allows good generalisation to fit new instances of data. The best of the resulting polynomials in our evaluation achieves 
a better R2 score on the test set in comparison to the other machine learning models evaluated.

Keywords  Reinforcement learning · Polynomial generation · Generalisation in machine learning · Steel making

Introduction

The basic oxygen furnace (BOF) process has multiple com-
plex highly dynamic and non-linear interactions of chemical 
and physical reactions, of which all are not fully known. 
The purpose of the process is to reduce the carbon content 
by oxidisation which releases carbon and other chemical 
elements out of the melted material (the “heat”), which 
consists mainly of pig iron (“hot metal”) and scrap steel. 
The end goal of this process is to reach a level lower than a 
certain required threshold for some elements, such as carbon 

and phosphorous, while also reaching a sufficiently high 
temperature.

The intense heat and the heavy reactions quickly destroy 
any sensor, so continuous direct in-process monitoring of 
the heat during the process is difficult. With the lack of rich 
continuous data, operators need to rely on a few available 
data points, their experience, and rough heuristic for their 
control of the process. Some heat data is known in advance 
of the process start, such as the actual weights and tempera-
tures of the scrap and the hot metal to be used, in total some 
50 parameters. Using this data in combination with visual 
observations and a few other indirect data points, operators 
tune the process during the process. This is done by inserting 
additional key materials, or adjusting the lance height and 
thereby changing the spraying area on the heat, resulting in 
energy and mass balance adjustments.
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The existing heat management support system that is in 
use proposes a few key process parameter settings and a tem-
perature prediction, which is based on the actual amounts of 
hot metal and scrap delivered for each heat, together with 
some other similar data points. These predictions are based 
on partly unknown hard-coded rules that give only rough 
estimates and a simplistic temperature prediction, so opera-
tors can use this information only as advice. A successful 
operator needs both explicit and tacit knowledge, based on 
experience gathered over a long time. It does, therefore, exist 
a great need for both better prediction systems as well as 
transparent models that can be understood and trusted by 
operators [14]. These two goals are often orthogonal to each 
other and while complex machine learning (ML) approaches 
can achieve the former they often lack transparency. In this 
work, we therefore aim to build complex ML models, while 
still keeping their decision process interpretable and trans-
parent. Our approach base predictions on polynomials that 
express the connection between proposed process settings 
and the resulting target prediction. Operators and process 
developers can examine these polynomials, hence the impact 
of each parameter, and both judge about the accuracy of the 
prediction and also understand what process parameter set-
tings cause a certain process outcome.

Using an ML approach allows for many more heat param-
eters to be used for target predictions, such as we have done 
in our earlier work [1]. Utilising the information from such 
high dimensionality data and for better prediction cannot 
easily be done otherwise. Without it, predictions are typi-
cally based on either hard coded rules or by human raw data 
analysis that uses known calculations based on few features. 
For many ML approaches all available features can be used 
for model training, such that there is no need to exclude 
any available data that possibly could contribute to a good 
prediction. From the available process data, we let the algo-
rithm reduce the dimensionality and, by itself, pick the fea-
tures that are important for good predictions. Moreover, our 
approach generates polynomials and uses these as predic-
tion models. The advantage of generating polynomials and 
continuously evaluating their performance is that important 
features get discovered in the process. This is in contrast 
to depicting the important features through evaluation of 
an already trained model. Such continuous refinement of 
polynomials during training allow for multiple solutions to 
emerge, and thus multiple likely explanations that can be 
examined by operators and process experts.

Using the presented generative model, we manage to 
generate several polynomials that achieve a better R2-score 
(0.72) on a test set than all other evaluated machine learning 
models, and are almost as good as the best models when it 
comes to predicting instances within a correct margin. The 
best of the generated polynomials predict 85% of all samples 
within 15 ◦ C from the measured temperature, which is the 

acceptable range for when a prediction will be useful in real 
world production. This is just a few percentage units lower 
than what is achieved with more complicated models, such 
as SVMs and ANNs. Furthermore, the presented model can 
give several alternative explanations to the process, as well 
as recognising important features that are always a part of 
the polynomials.

Related Works

There is a body of literature on how to predict BOF process 
targets. The data that are used in these studies are, however, 
in most cases, kept secret, which make it difficult to replicate 
the presented experiments. Furthermore, the amount of data 
used in the conducted studies varies as well as the stability 
of the production processes in the different production sites 
where the data are collected. These factors make it problem-
atic to compare the results from previously presented works, 
on more than a conceptual level.

One example where ML is used to predict the end tem-
perature is Gao et al. [4] that proposes an improved version 
of a support vector machine regression using a weighted 
matrix and coefficient vector, optimised by wavelet trans-
form to estimate the carbon content and the end temperature 
end-point. Other approaches use novel and durable sensors 
for better in-process estimate the actual process state, such 
as Xu et al. [20] that uses the data from a spectrum distri-
bution of the flame at the mouth of the BOF vessel to bet-
ter estimate the current heat state, using a support vector 
machine algorithm. This idea was further developed by Shao 
et al. [16] using a combination of support vector classifier 
and a support vector regression for process state estimation 
using flame radiation at the mouth of the BOF vessel. Using 
additional sensors such as these improve prediction accu-
racy, and may also extend process understanding, but still 
lacks the transparency to explain influential factors of the 
collected data. In our previous research, we compared the 
prediction accuracy between several conventional ML algo-
rithms, trained on a full-variance data set that includes all 
types of heats from years of production [1]. We found that 
many earlier publications use limited data sets with a lower 
variance in the training examples and the target outcomes. In 
our work, a subset of the conventional ML algorithms were 
able to capture the full variance and prediction accuracy 
relatively well, in particular when raw data is augmented 
with expert-based informed features based on that data.

Most of the existing literature support that ML models 
can give useful predictions for BOF processes. However, 
the selection of ML model has a significant impact on the 
performance. Support vector machines (SVM) and arti-
ficial neural networks (ANN) perform well, better than 
many other conventional algorithms, since they are good 
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at capturing the complexity of the process. Some conven-
tional ML algorithms are relatively good at explaining 
model predictions, such as decision trees, k-nearest neigh-
bours. These have been used for temperature prediction 
in BOF-processes, but with a less satisfactory result [1]. 
Further, machine learning models that are often considered 
as easy to interpret, such as linear regression and decision 
trees, may still be impossible for humans to interpret when 
the data is high dimensional [18].

Machine learning algorithms can take advantage of data 
that has many dimensions, while most humans can only 
comprehend and distinguish patterns among a few dimen-
sions. Thus, for a human analysis it is necessary to aggre-
gate model prediction explanations into a few comprehen-
sible dimensions. Preferably, a good model explanation 
presents only a few process parameters as being influen-
tial factors of the target prediction, with the interrelations 
between them explained as well. This explanation should 
further closely resemble how the trained model behaves. 
Recent approaches to explaining ML models by attribu-
tion of features to predictions include SHAP and LIME [9, 
15] which examine already trained models. Their advan-
tage is that they are model-agnostic and can explain the 
influencing variables for any ML model. However, since 
complex ML models learn high-dimensional connections 
between the input variables and the target variables, the 
approaches that visualise these must also be able to visual-
ise high-dimensional connection between variables, some-
thing which is a challenging problem by itself. Hence, 
these high-dimensional patterns must be transferred from 
a high-dimensional space into human-interpretable visu-
alisations. A good understanding of ML and visualisation 
techniques for high dimensional data is therefore needed. 
This is something that typically industrial operators and 
process experts lack. Rather, they analyse data through 
traditional calculations typically based on known proper-
ties of the process. Even extensive calculations are often 
still simplifications of the actual complexity, consisting 
only of just a few terms.

In summary, expressive algorithms cannot explain their 
predictions well, and algorithms with explanation abilities 
are not expressive enough to capture the complexity for 
good predictions.

Methods

This section describes how the generative model is imple-
mented. First a short description of the data is given. This 
is followed by a description of the architecture of the deep 
neural network that acts as an agent in the RL setup.

Exploration to Understand the Basic Oxygen 
Furnace Process

Due to the complexity of the BOF process, a fully detailed 
model or simulation of the process is infeasible. In spite of 
many efforts to model this complexity, there is still much 
uncertainty around how input parameters determine the 
result. Our approach to find this relation is based on the 
exploration of the possible combinations, using an approach 
that simulates informed attempts to traverse the solution 
space of possible combinations. Knowledge development 
for process analysis has traditionally been done by experts 
by trying out combinations of experiments that has a poten-
tial of yielding explanations for process behaviours. We 
mimic this approach by letting an agent generate possible 
steps towards promising combinations, guided towards 
reasonable explanations. The agent-based algorithm auto-
matically generates polynomials step-wise that express 
how input parameters relate to process outcomes. However, 
the generated polynomials are not necessarily anchored in 
physics or known process calculations, but should rather be 
considered a consequence of what the used data represents. 
Therefore, polynomials should be used as an indicator to 
both as whether useful data has been collected, and as sug-
gestions for hypothesis of how the process can be explained. 
Hence, this allows process experts and engineers to continue 
to work exploratory with process analysis, but now with the 
support of models that are able to quantify the impact of 
much more information than those grounded in the physics 
of the process alone.

Production Data

The data used in this study consists of real production data 
from the BOF process, run by SSAB in Sweden. The data is 
collected between 2014 and 2017 and consist of 9710 heats, 
where 112 different features are recorded, with one value for 
each heat. The original data contains around 17,000 heats of 
data for the entire time period, with corrupt or missing val-
ues. The 112 features consist of both initial heat data, sensor 
measurements of the initial heat state, calculated descriptors, 
and also aggregated statistics of sequential data available 
during the process. The data is split into a training set of 
70%, a 15% validation set for model selection, and a 15% 
hold-out test set for model evaluation.

Recurrent Neural Networks

To model the agent that generates polynomials and acts in 
the RL framework presented in Sect. 3.5, a recurrent neural 
network (RNN) is used. A recurrent neural network is a spe-
cial case of an artificial neural network (ANN) where there 
exist cyclic connections between neurons [12]. This allows 
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the network to keep an inner state, allowing it to make use 
of information that spans several steps of a sequence. In our 
approach, we make use of a special type of RNN, specifi-
cally a long short-term memory (LSTM) network. Compared 
to general RNNs, LSTMs use special cell that has a variable 
that holds the current state of the network. This cell enables 
the network to have a memory of past steps in the sequence 
and hence, the information stored in memory can be used in 
how to act on new data.

A trained LSTM network can not only be used to ana-
lyse (for instance to classify) a sequence of data, but it can 
also be used to generate new sequences based on the trained 
knowledge. Such sequences follow the same distribution as 
the training sequences used. Several examples of how to 
generate text using this approach are given in Graves [5]. 
The sequence is first initialised by the the insertion of a spe-
cial start vector at the first step in the sequence. This vector 
is then propagated trough the network, giving the conditional 
probability over all possible symbols. A symbol is then sam-
pled from this distribution and appended to the sequence. 
The sampled symbol is also transformed into an one-hot 
encoded vector which is propagated trough the network, 
resulting in that a new symbol is sampled. The process is 
repeated, adding another symbol at a time to the end of the 
sequence, until a special stop symbol is sampled or when the 
length of the sequence reaches a predefined limit. A visual 
description of this process is shown in Fig. 1.

Polynomial Generation from Recurrent Networks

In this section we describe how generated polynomials are 
encoded in a way that they can be generated by an RNN. It 
is described how the goodness of these polynomials are cal-
culated, so that an RL-model can learn how to generate good 
polynomials. We continue with how generated polynomials 
are evaluated, and how this result compares to alternative 
models.

Polynomials are constructed by the algorithm to make 
use of a specific subset of all the features in the original 
dataset, with the intention to reduce the complexity of the 
solution. There is a balance needed between complexity and 

expressiveness of the polynomial, and the interpretability. 
This reduction of features can be conducted using a mul-
titude of different search methods [8]. In our work we use 
an RL-approach, and similar approaches have been used by 
others, such as Fard et al. [3] and Piñol et al. [13]. While 
these publications target the extraction of a subset of features 
for any model, we try to avoid generating too many terms by 
limiting the terms of our polynomials.

To generate polynomials to describe the process, we 
instead use a generative RL-based approach, where each 
symbol in a polynomial is generated one at a time. The RL 
technique has proven useful in many different applications. 
For instance, generative RL-approaches have been used for 
improving hyper-parameter choices for neural network con-
figurations [2, 6, 22]. In Khurana et al. [7] RL is used to 
learn transformations that can be applied to ML input data to 
get a lower error rate, both for classification and regression 
problems. Our generative approach also draws inspiration 
from using similar generative models to find very complex 
molecule structures that have certain desired properties, 
such as when generating molecules for drug discovery [11]. 
However, to the best of our knowledge, there is no similar 
work with the focus on generating simple and interpretable 
machine learning models.

Encoding Polynomials

In this paper, we consider polynomials as a sequence of 
coefficients and variables, separated by either addition or 
multiplication. These polynomials are encoded as one-hot 
representation. However, in the generation process, we only 
consider the placement of variables and addition, while the 
placement of the coefficients and multiplication is implicit. 
Thus, as shown in Fig. 2, there is only need for tokens repre-
senting each variable and the addition. Beside these tokens, 
there will also be a special token representing the start of 
the polynomial and one representing the end. Hence, there 
will be 114 different tokens that the agent can select from 
when generating polynomials, 112 of them representing the 
different variables and one representing addition and a spe-
cial token representing the end of a polynomial. In addition, 

Fig. 1   Using a RNN to generate 
new sequences. At every time 
step t, a new output token yt is 
sampled from the distribution 
that is proposed by the network. 
This token is then used as the 
input in the following step. 
The generation ends when the 
special end token is sampled or 
when the generation reaches the 
maximum number of allowed 
steps <start>

y1 y2 y3 <end>

Cellt=0 Cellt=1 Cellt=2 Cellt=3

Token

Encoding

RNN

Output
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there is, also, a special start token, which the agent cannot 
select, adding up to 115 different tokens in total.

Learning Generic Polynomials

To prevent the agent from exploring a tremendous amount 
of states before it figures out how well formed polynomials 
look we will give the agent a warm start by training it to gen-
erate polynomials in a supervised way. To this end, 100,000 
polynomials are generated by a simple set of rules and the 
network is trained in a supervised way so that the likeli-
hood of generating these polynomials is maximised. The 
polynomials that are used in this pre-training are generated 
in a step wise manner. The first step is to randomly select a 
variable. The polynomial is then constructed by repeatedly 
and probabilistically selecting one of the four possible con-
tinuations until the maximum length is reached or the stop 
symbol is sampled. In the first out of four possible cases, the 
last variable is repeated. In the second case, the variable is 
followed by another randomly selected variable. In the third 
case, the variable is followed by an addition and a random 
variable after the addition. In the last case, a stop symbol is 
added and the generative process is terminated. The prob-
abilities for each of these four cases are arbitrary selected as; 
0.2, 0.1, 0.65 and, 0.05 respectively. During the generative 
process, the random selection of variables is uniform and 
thus, all variables are equally likely.

Evaluation of Polynomials

The aim of the presented research is to apply RL in order 
to generate as good polynomials as possible. A good poly-
nomial is considered to be a polynomial that explains the 
process sufficiently well and should be given a high reward 
to the RL agent. Since the process is considered to be rather 
stochastic and noisy, it would be infeasible to perfectly pre-
dict the outcome in all the cases. Instead, the aim is to get 
as many temperature predictions as possible within a given 
acceptable range from the measured temperature. Hence, the 
goodness of a polynomial p is scored by;

for a given set of data (X, Y), where m is the number of sam-
ples in the dataset. In Eq. (1), H(x) is the unit step function, 
which is 1 if x > 0 and 0 otherwise. Furthermore, � is the 
maximum temperature ( ◦ C) that would be considered to be 
an acceptable divergence from the measured value, in order 
for the prediction to be useful in a real-world setup. Hence, 
the usefulness of the model, is measured as the percentage 
of predictions within ±� ◦ C of the measured outcome.

The reason behind the selection of this scoring function 
is that errors within this, pre-defined, margin can easily be 
corrected and the heat can still be delivered to the follow-
ing production step without any delay. Larger errors, on the 
other hand, would require cumbersome and costly efforts to 
restore. Hence, this particular evaluation metric is defined 
to evaluate the usefulness of the model in a real production 
line. In the conducted experiments, � is defined as 15 ◦C.

The score, given in Eq. (1) is normalised, to prevent a 
quick convergence to sub-optimal configurations of the agent 
during the training process, leading to the following, final, 
scoring function:

where � is the expected reward from a randomly sampled 
polynomial generated by the process described in the previ-
ous section.

However, before a polynomial can be evaluated, the opti-
mal coefficients for that polynomial must be inferred. This 
is done by minimising the mean squared error between the 
predicted outcome of the polynomial and all recorded obser-
vations in the training data;

Hence, the coefficients of the polynomials are adjusted to 
minimise Eq. (3), given the training dataset. All redundant 
terms, terms that occur multiple times in the polynomial, 
are removed in the step, to make the training of the model 
more stable. The inferred configuration of coefficients is 
then evaluated, using the scoring function given in Eq. (2), 
on a separate validation set.

Training with Reinforcement Learning

Consider that the generative network, described in 
Sect. 3.3, is an acting agent in an environment. The whole 
environment that this agent is acting in is shown in Fig. 3 
and as in most RL approaches, we frame the targeted prob-
lem as a Markov decision processes. This means that the 
current state contains all information that the agent may 

(1)S(p |X, Y) = 1

m

m∑

i

1 − H
(
|p(xi) − yi| − �

)
,

(2)S(p |X, Y , �) = S(p |X, Y) − �,

(3)MSE(X, Y) =
1

m

m∑

i

(p(xi) − yi)
2.

x1 + x1 x2 + x3 + x4
x1 1 0 1 0 0 0 0 0
x2 0 0 0 1 0 0 0 0
x3 0 0 0 0 0 1 0 0
x4 0 0 0 0 0 0 0 1
+ 0 1 0 0 1 0 1 0

Fig. 2   A simplified depiction of the one-hot representation derived 
from the polynomial x

1
+ x

1
x
2
+ x

3
+ x

4
 . A reduced vocabulary of 

variables is shown in this example, and in the real implementation 
there are 115 different tokens, 112 variables and 3 special characters, 
that can be used in the formation of polynomials
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require to decide which action to take. Hence, at each step 
the agent is in a specific state s ∈ � and takes an appropri-
ate action a ∈ �(s) , which is only based on the current 
state. Here � is the set of all possible states and �(s) is the 
set of all possible actions that the agent may take when it 
is in state s. To determine which action a the agent should 
take in a given state s, the agent follows a policy �(a|s) 
which maps a state to the probability of each action. The 
objective of the agent is to find an optimal policy, such that 
the expected total reward is maximised. To this end, we 
denote the weights of the neural network, which controls 
the behaviour of the agent, � . For any configuration of � , 
the expected total score can be denoted as:

where d�� is the stationary distribution of states in the 
Markov chain, for an agent with the policy �

�
 . Thus, �

�
(a|s) 

is the probability of taking action a when in state s. Q(a, s) 
is the expected reward for taking the action a when in the 
state s. The aim of the learning process is to find an optimal 
configuration of � that would maximise the score in Eq. (4). 
In the presented work, we use the REINFORCE algorithm 
[19] to find an optimal configuration �∗ , following the same 
approach as, for example, Yu et al. [21] and Silver et al. 
[17]. In the proposed approach, the starting state is always 
the same and the acting agent gets a reward when the gen-
erative process terminates. For such a process, the expected 
total score, using a given policy, can be estimated by several 
unbiased traces from the process while following that policy. 
The expected total reward for a policy, parameterised by � , 
is be estimated by:

(4)J(�) =
∑

s∈�

d�� (s)
∑

a∈�

Q�(a, s)�
�
(a|s)

Here �
�
(at|st) is the probability of taking action at , which 

was the action taken in the trace at time t, in the state st and 
R(�) is the total accumulated reward for the whole trace. In 
the polynomial generation process, which is described ear-
lier, the reward is only given in the final step of the genera-
tive process and hence, the total reward, R(�) , corresponds 
to the function given in Eq. (2). The aim of the REINFORCE 
algorithm would, hence, be to maximise the expression in 
Eq. (6) by gradient ascent. Thus, the expected total score is 
increased by changing the parameterisation of the policy 
using the gradient of Eq. (6), which is:

This process would raise the probability for polynomials 
with a high reward and decrease the probability for those 
with a low reward.

Experiment Parameters

The LSTM network, as described in Sect. 3.3, is used to 
model the action policy for selecting the next term of the 
polynomial. The trained network predicts the probabilities 
attributed to each of the possible next terms that are chosen. 
The first layer of the trained network is a fully connected 
hidden layer with 512 neurons that use the leaky relu func-
tion as the activation function. The second layer consists of 
128 LSTM cells and the final layer consists of 114 neurons, 

(5)J(𝜃) =
∑

𝜏∈⊤

R(𝜏)

T∏

t=0

𝜋
𝜃
(at|st).

(6)∇
𝜃
J(𝜃) =

∑

𝜏∈⊤

R(𝜏)

T∑

t=0

log𝜋
𝜃
(at|st).

Fig. 3   Framing of the presented 
RL scenario. Here an agent 
generates polynomials that are 
fitted to the training data. The 
fitted polynomials are then 
applied to the validation set, and 
the goodness of fit for this set 
is used as the reward, which are 
fed back to the agent
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which is the same as the number of possible actions. This 
layer has the softmax function as an activation function and 
the activation can hence be considered as an approximation 
of probabilities. The weights of this network are adjusted, 
during the training phase, using stochastic gradient descent, 
with a learning rate of 0.01. In the proposed experiment, the 
agent is trained for 5000 epochs where each epoch consists 
of 4096 independently sampled traces.

Experiment Evaluation

We compare the expressiveness and accuracy of the gener-
ated polynomials on how to model the BOF process, with 
alternative ML approaches. Among the several ML methods 
compared to, artificial neural network (ANN) and a support 
vector machine (SVM) have previously been shown to be 
the top performing models for endpoint temperature predic-
tion in the BOF process [1]. We also compare polynomi-
als to machine learning methods that are known to provide 
some interpretability about their models. These are a random 
forest (RF), decision trees (DT), and k nearest neighbour 
(KNN).

More specifically, the algorithms that we use for com-
parison are: an ANN with two hidden layers consisting of 
128 and 64 neurons respectively; a SVM with a radial basis 
kernel; a random forest with 100 trees; a decision tree with 
a maximal depth of 10; and a KNN where k is equal to 5. 
These models make use of all available parameters in data 
and some of them are therefore expected to outperform the 
generated polynomials, when it comes to prediction accu-
racy, since the generated polynomials make use of only a 

subset of all input parameters. However, these models, with 
the exception of the decision tree, are known to be difficult 
to interpret, especially when applied to many variables.

Results

Generated Polynomials

The agent succeeds in learning how to generate polynomi-
als that are as useful as more complex and less interpretable 
models are for the steel operators. The increase in quality 
of the generated polynomials during the learning process is 
depicted in Fig. 4. In this figure, it is shown that the agent 
manages to generate increasingly better polynomials over 
time. The spread in performance of the generated polyno-
mials decreases over time and, in the last epochs, almost all 
generated polynomials have a high predictive power. The 
spread in performance among the polynomials shows one 
of the benefits of the presented approach, namely, that this 
approach creates several possible polynomials, which all 
have the possibility to predict the outcome of the process.

When it comes to the usefulness of the model, it is meas-
ured as the percentage of predictions within ±15 ◦ C of the 
real measured outcome, see Table 1 for this score for all 
evaluated models. Here, small errors can be ignored, while 
large errors would have a negative impact on the score. 
Therefore, we would prefer a model with many small pre-
diction errors over one with few, but large, prediction errors. 
As seen in Fig. 5, this is what the best polynomial, which 
is discovered by the RL agent, achieves. This behaviour is 

Table 1   Performance on the leave-one-out test set for the evaluated algorithms and the simple heuristic of always guessing the mean value

The performance is measured as the percentage of predictions within ±15 ◦ C. The rightmost column is the average performance of all generated 
polynomials in the last epoch. The best polynomial is decided to be the polynomial which had the best performance on the internal validation set 
during all epochs

% of predictions within ±15 ◦C

ANN SVM RF DT KNN Mean guess Best polynomial Average polynomial
86.8% 86.6% 82.1% 67.2% 72.2% 58.3% 84.9% 83.6%

Table 2   R2 score on the training- and the leave-one-out test set for the evaluated algorithms

Here, the great generalisation capability of generated polynomials, which, on average, score almost the same on the test and the training set

R
2-score on training set

ANN SVM RF DT KNN Mean guess Best polynomial Average polynomial
0.89 0.84 0.90 0.55 0.72 0.0 0.73 0.73

R
2-score on test set

ANN SVM RF DT KNN Mean guess Best polynomial Average Polynomial
0.72 0.70 0.49 0.44 0.15 0.0 0.74 0.73
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inherent to simplistic models, such as the generated poly-
nomials, since they are not as prone to overfitting as more 
complex models and, therefore, most often generalise well. 
This strength is shown in Table 2 where R2-scores for the 
training- and test sets are shown. The generated polynomials 
have the highest R2-score for the test set while, by a great 
margin, also have the smallest difference between the score 
for the training set and the test set. Thus, generalises the best 
of all models.

During the last training epoch, the agent generates 121 
unique polynomials out of 4096 trials. The most common 

polynomial is generated 948 times and there are 7 polyno-
mials that the model generates more than 100 times. The 
polynomial with the best performance over the validation set 
is one of these and that particular configuration is generated 
123 times. Only 2.1% of all the generated polynomials con-
tain a second order term but none of these have a higher pre-
dictive performance on the validation data compared to the 
average score of the generated polynomials in the last epoch. 
Therefore, in this particular application, the capability of the 
agent to generate such terms are of lesser importance.

No full investigation of the interpretability of the gener-
ated polynomials is conducted within this work. However, 
the generated polynomials have been discussed with process 
experts. These experts had no problems to interpret what 
the polynomials did and deemed them to describe the pro-
cess reasonably well. The ability, of the proposed method, 
to generate multiple polynomials is especially appreciated.

Discussion and Future Work

In recent years, reinforcement learning (RL) has brought 
major advances in application areas that previously were dif-
ficult to address. We argue that we apply RL in a novel way, 
where we let an agent build polynomial models for tempera-
ture prediction. The purpose of this paper is to demonstrate 
this application. The hyperparameters that are used in this 
study are, therefore, arbitrarily selected and most likely not 
optimal. We would, therefore, suggest that future studies 
investigate if there are other choices that would be more 
beneficial in regards to accuracy or time consumption. The 

Fig. 4   The evolution of the generated polynomials during the training 
process. The average performance is shown by a blue solid line, sur-
rounded by two dashed black lines representing the 10th and the 90th 
percentile. The result achieved by the heuristic approach of guessing 

the mean is shown by a red dashed line (straight line at the bottom), 
as well as the result from the other evaluated machine learning mod-
els

Fig. 5   Predictions for the test set made by the best polynomial that 
is generated over the real observed value, where both are shifted to 
a mean of 0. All predictions would land on the red diagonal line if 
the model manages to perfectly predict all instances. The polynomial 
model that is used for predictions has a R2 score of 0.73
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presented RL application is a method that to the best of our 
knowledge has not been used before on a similar problem, a 
complex steel making process with high dimensional data. 
RL-based model generation has a potential both in genera-
tion of more complex models such as with neural networks, 
for example, as in Bello et al. [2], Zoph et al. [22], Jomaa 
et al. [6], and also in generation of simpler models, such as 
our case.

The successful accuracy we get in the application case 
we use for this study, the BOF steel making process, can 
probably be explained with that for this case, the dependency 
between the input and the output is relatively smooth and 
locally stable and could therefore be well approximated by a 
polynomial. Furthermore, the proposed polynomials mostly 
contain first order terms and only a few contain second order 
terms. It would, therefore, be interesting to investigate if 
the proposed method could manage to learn more complex 
polynomials where the dependency between the input and 
the output is even more complex. Another avenue of future 
work would be to generalise the approach to other simple 
models which are even easier to interpret for operators, such 
as a decision tree or a rule based system. This would either 
require that the generative process is redefined or that such 
models can be formulated using a linear representation.

Our choice of using a policy gradient approach for train-
ing the RL-agent allows for sampling of many different mod-
els, all with a high predictive power, explaining the studied 
phenomenon. This is in contrast to a common Q-learning 
approach that strives for one optimal solution, such as the 
method used by Khurana et al. [7]. Sampling of multiple 
models makes it possible for system operators to extract 
polynomials that are well based in the physical descrip-
tion of the system, since polynomial can be assesses from 
their existing process knowledge. The extracted polynomial 
gives transparency and can be used to further understanding 
the process and how to improve process control in order to 
achieve process targets.

In this work, we constrict the polynomials to only have a 
few variables to improve interpretability for a process expert, 
who can choose the most useful alternative probabilistically 
plausible polynomials generated. Further, the relevance of 
these features in the data set can be identified by analysing 
the coefficients of each variable of a polynomial. The abil-
ity to explore and select the most suiting polynomial is a 
major improvement over using other commonly used vari-
able selection- and regularisation techniques for polynomi-
als, such as LASSO and elastic net [10]. The possibility to 
sample many different polynomials can also be used in an 
ensemble approach, where many polynomials are sampled 
and the average prediction of all polynomials is the final 
prediction.

One drawback of the presented approach is that the train-
ing time is much longer compared to the other evaluated 

models. However, the training of our model, as well as all 
other models, is done offline and the time it takes is there-
fore of lesser importance. For any trained model used in an 
industrial application, it is critical that the model execution 
is fast and predictable. For a model based on polynomials, 
the execution time is constant, since it depends only on set-
ting the values of the free variables. The implementation 
of a model trained with our approach is, therefore, a mat-
ter of implementing the polynomials as a single function, 
which is typically much easier to implement in any indus-
trial infrastructure or control system, than implementing a 
solution using a third party machine learning package. The 
implementation of function that calculates a polynomial is 
also easily done in any programming language, compared 
to ML solutions which may require specific programming 
languages and libraries. The presented method has, however, 
not been tested in production and there is a need to study the 
impact of the inclusion of a new predictive system.

We see that very few of the generated polynomials con-
tain higher-order terms, and we believe that this is due to 
the risk of overfitting the trained model when such terms 
are used. The model becomes more true to the training data, 
but there is a risk of decreasing the general predictive power 
when a linear term is changed to an arbitrary second order 
term. This likely discourages the agent to generate second 
order terms, such that it after a few epochs removes them 
and chooses to search for more linear terms. However, when 
the model is applied to more complex problems, higher order 
terms are most likely needed and generated, so potentially 
our approach can perform as good as more complex alter-
native ML algorithms. It is therefore an interesting future 
research direction to find out how the generating agent can 
be refined to generate terms that even better captures higher 
complexity.

Conclusions

This paper presents a novel RL-based method to gener-
ate polynomials for the prediction of the end temperature 
in a BOF-process. The presented method performs feature 
selection from a large set of features and includes high-order 
terms of these features in the selection process. This is a 
major advantage compared to most other feature selection 
methods, such as LASSO, which would face an explosion 
in the dimensionality of the input space when higher order 
terms are added.

The polynomials that are generated by the presented 
method, have a greater R2 score than the other evaluated 
models, for example, an ANN, an SVM, and random for-
est. When the performance is measured as the percentage 
of predictions, in the desired range of ±15◦ C, the generated 
polynomials have most of their predictions within this error 
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margin and outperform some other evaluated models such 
as, a random forest and a decision tree. However, for this 
task, the polynomials perform slightly worse than the two 
best performing models, an ANN and a SVM. At the same 
time they are far more interpretable for operators and pro-
cess experts. In our application case, this model interpret-
ability improvement is well worth the trade-off for slightly 
more predictions outside the error margin when the goal is to 
understand a manufacturing process with the aim to improve 
it. Another major benefit of the presented method is that it 
generates multiple solutions (multiple polynomials) to the 
problem. Hence, human experts could investigate and com-
pare these solutions and find the ones that align with their 
prior knowledge and understanding of the process.

While the presented model is applied in the domain of 
steel making, there is nothing that prevents it from being 
used for any other problem where a solution can be repre-
sented by polynomials. Thus, it should be relatively easy to 
generalise the method to be applicable in other domains and 
problems. One of the greater advantages of the presented 
approach is that the scoring function can be replaced with 
any arbitrary function for the evaluation of the polynomi-
als. Hence, the presented method can be applied to other 
problems where there is a way to score the goodness of the 
polynomials.
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