Skip to main content
Log in

Private and Trustworthy Distributed Lending Model Using Hyperledger Besu

  • Original Research
  • Published:
SN Computer Science Aims and scope Submit manuscript

Abstract

Financial systems are rapidly becoming decentralized for fulfilling requirements, such as distributed transactions, security, trustworthiness and elimination of third-party authorizations. As a fast-growing decentralized platform, blockchain thrives in enterprise application development on permissioned and private environments. Unfortunately, the transparency nature on most of the blockchain platforms allows all the participants to view the transaction data unless the blockchain is a private chain. This practice has limited the potential developing blockchain-based applications, especially for public chains like Ethereum. This paper attempts to provide a technical solution to ensure the privacy and trustworthiness of transaction data on Ether-eum. To illustrate how a real-world system works, we design and implement a distributed lending model for handling private transactions between the participants of any loan agreement. Specifically, the privacy of the loan transactions is protected by customizing Hyperledger Besu and Orion transaction manager with the privacy group feature. However, current versions of Hyperledger Besu and Orion fail to provide necessary features for securing the entire Decentralized Application (DApp), including key management and intrusion detection, and the privacy group ID is unprotected by default. Therefore, we propose a multi-user level encryption scheme to securely share the privacy group ID among the privacy group members. Furthermore, we deployed a smart contract to monitor and alert the malicious activities from any external nodes with the intention to guess the privacy group ID. Our multi-user level encryption and intrusion detection methods worked seamlessly with the Hyperledger Besu and Orion on our prototype lending system. Our empirical results showed that the privacy needs of the privacy group ID are fulfilled with good system efficiency. The smart contract programs and the source code of the NodeJs application are available at https://www.github.com/ppraithe/besu_malicious_node_detector.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Remix-Solidity, IDE. http://www.remix.ethereum.org/. Accessed 20 Nov 2020.

  2. Ethereum foundation. ethereum’s white paper (2014). https://www.github.com/ethereum/wiki/wiki/White-Paper. Accessed 20 Nov 2020.

  3. Bytecoin—The untraceable cryptocurrency (2019). https://www.bytecoin.org/. Accessed 20 Nov 2020.

  4. Hyperledger Besu Documentation—Ethereum Client (2019). https://www.besu.hyperledger.org/en/stable/. Accessed 20 Nov 2020.

  5. Hyperledger Besy Binary Distributions (2019). https://www.pegasys.tech/solutions/hyperledger-besu/. Accessed 20 Nov 2020.

  6. Hyperledger Besy Binary Distributions (2019). https://www.github.com/PegaSysEng/orion. Accessed 20 Nov 2020.

  7. Kombo—Catalysing the world’s commodity trade network (2019). https://www.komgo.io/. Accessed 20 Nov 2020.

  8. Let’s Encrypt—A Nonprofit Certificate Authority (2019). https://www.letsencrypt.org/how-it-works/. Accessed 20 Nov 2020.

  9. LiquidShare—The chain of trust (2019). https://www.liquidshare.io/. Accessed 20 Nov 2020.

  10. LVMH unveils luxury industry blockchain with Microsoft, ConsenSys (2019). https://www.ledgerinsights.com/lvmh-luxury-blockchain-microsoft-consensys/. Accessed 20 Nov 2020.

  11. Orion Documentation—Private Transaction Manager (2019). https://www.docs.orion.pegasys.tech/en/latest/HowTo/Quickstart/. Accessed 20 Nov 2020.

  12. Wanchain—Open Finance, Connected (2019). https://www.wanchain.org/. Accessed 20 Nov 2020.

  13. The Ethereum block explorer (2020). https://www.etherscan.io/. Accessed 20 Nov 2020.

  14. Grafana—Open source analytics and monitoring solution for every database (2020). https://www.grafana.com/. Accessed 20 Nov 2020.

  15. Hyperledger Fabric Documentation—Private data (2020). https://www.hyperledger-fabric.readthedocs.io/en/release-2.0/private-data/private-data.html. Accessed 20 Nov 2020.

  16. The Parity technologies—Ethereum client (2020). https://www.parity.io/. Accessed 20 Nov 2020.

  17. Prometheus—Monitoring solution from metrics to insight (2020). https://www.prometheus.io/. Accessed 20 Nov 2020.

  18. web3js-eea Client Library (2020). https://www.github.com/PegaSysEng/web3js-eea. Accessed 20 Nov 2020.

  19. Aertsen M, Korczyński M, Moura GC, Tajalizadehkhoob S, van den Berg J. No domain left behind: is let’s encrypt democratizing encryption? In: Proceedings of the applied networking research workshop; 2017. p. 48–54.

  20. Aggarwal D, Maurer U. Breaking rsa generically is equivalent to factoring. IEEE Trans Inf Theory. 2016;62(11):6251–9.

    Article  MathSciNet  Google Scholar 

  21. Ahram T, Sargolzaei A, Sargolzaei S, Daniels J, Amaba B. Blockchain technology innovations. In: Proceedings of the 2017 IEEE Technology and Engineering Management Conference (TEMSCON). IEEE; 2017. p. 137–41.

  22. Alethio: Ethereum Lite Explorer (2019). https://www.github.com/Alethio/ethereum-lite-explorer. Accessed 20 Nov 2020.

  23. Atzei N, Bartoletti M, Cimoli T. A survey of attacks on ethereum smart contracts (sok). In: Proceedings of the international conference on principles of security and trust. Springer; 2017. p. 164–86.

  24. Baliga A. Understanding blockchain consensus models. Persistent. 2017;2017(4):1–14.

    Google Scholar 

  25. Baliga A, Subhod I, Kamat P, Chatterjee S. Performance evaluation of the quorum blockchain platform. arXiv preprint arXiv:1809.03421 (2018).

  26. Beck R, Avital M, Rossi M, Thatcher JB. Blockchain technology in business and information systems research. 2017. Bus. Inf. Syst. Eng. 59(6):381–384.

  27. Bernal Bernabe J, Canovas JL, Hernandez-Ramos JL, Torres Moreno R, Skarmeta A. Privacy-preserving solutions for blockchain: review and challenges. IEEE Access. 2019;7:164908–40.

    Article  Google Scholar 

  28. Brassard G, Chaum D, Crépeau C. Minimum disclosure proofs of knowledge. J Comput Syst Sci. 1988;37(2):156–89.

    Article  MathSciNet  Google Scholar 

  29. Brown RG. The corda platform: an introduction. Retrieved. 2018;27:2018.

    Google Scholar 

  30. Cai Y, Zhu D. Fraud detections for online businesses: a perspective from blockchain technology. Finan Innov. 2016;2(1):20.

    Article  Google Scholar 

  31. Chakrabarti A, Chaudhuri AK. Blockchain and its scope in retail. Int Res J Eng Technol. 2017;4(7):3053–6.

    Google Scholar 

  32. Chatterjee K, Goharshady AK, Goharshady EK. The treewidth of smart contracts. In: Proceedings of the 34th ACM/sigapp symposium on applied computing; 2019. p. 400–8.

  33. Chen T, Li X, Luo X, Zhang X. Under-optimized smart contracts devour your money. In: Proceedings of the 2017 IEEE 24th international conference on software analysis, evolution and reengineering (SANER). IEEE; 2017. p. 442–6.

  34. Collomb A, Sok K. Blockchain/distributed ledger technology (dlt): what impact on the financial sector? Digiworld Econ J. 2016;(103):93–11.

  35. Cramer R, Damgård IB, Nielsen JB. Secure multiparty computation. Cambridge: Cambridge University Press; 2015.

    Book  Google Scholar 

  36. Dannen C. Introducing Ethereum and solidity, vol. 1. Berlin: Springer; 2017.

    Book  Google Scholar 

  37. Delmolino K, Arnett M, Kosba A, Miller A, Shi E. Step by step towards creating a safe smart contract: lessons and insights from a cryptocurrency lab. In: Proceedings of the international conference on financial cryptography and data security. Springer; 2016. p. 79–94.

  38. Dinh TTA, Wang J, Chen G, Liu R, Ooi BC, Tan KL. Blockbench: a framework for analyzing private blockchains. In: Proceedings of the 2017 ACM international conference on management of data; 2017. p. 1085–100.

  39. Giri PR, Korepin VE. A review on quantum search algorithms. Quantum Inf Process. 2017;16(12):315.

    Article  MathSciNet  Google Scholar 

  40. Goldwasser S, Micali S, Rackoff C. The knowledge complexity of interactive proof systems. SIAM J Comput. 1989;18(1):186–208.

    Article  MathSciNet  Google Scholar 

  41. Gramoli V. On the danger of private blockchains. In: Proceedings of the workshop on distributed cryptocurrencies and consensus ledgers (DCCL’16) 2016.

  42. Grech N, Kong M, Jurisevic A, Brent L, Scholz B, Smaragdakis Y. Madmax: surviving out-of-gas conditions in ethereum smart contracts. In: Proceedings of the ACM on programming languages 2 (OOPSLA); 2018. p. 1–27.

  43. Guo Y, Liang C. Blockchain application and outlook in the banking industry. Finan Innov. 2016;2(1):24.

    Article  Google Scholar 

  44. Iansiti M, Lakhani KR. The truth about blockchain. Harvard Bus Rev. 2017;95(1):118–27.

    Google Scholar 

  45. Kalodner H, Goldfeder S, Chen X, Weinberg SM, Felten EW. Arbitrum: scalable, private smart contracts. In: Proceedings of the 27th USENIX security symposium (USENIX Security 18); 2018. p. 1353–70.

  46. Kamath R. Food traceability on blockchain: Walmart’s pork and mango pilots with ibm. J Br Blockchain Assoc. 2018;1(1):3712.

    MathSciNet  Google Scholar 

  47. Kosba A, Miller A, Shi E, Wen Z, Papamanthou C. Hawk: the blockchain model of cryptography and privacy-preserving smart contracts. In: Proceedings of the 2016 IEEE symposium on security and privacy (S&P). IEEE; 2016.p. 839–58.

  48. Kshetri N. 1 blockchain’s roles in meeting key supply chain management objectives. Int J Inf Manag. 2018;39:80–9.

    Article  Google Scholar 

  49. Lane A, Leiding B, Norta A. Lowering financial inclusion barriers with a blockchain-based capital transfer system. In: Proceedings of the IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS) IEEE, 2019. p. 319–324

  50. Lee WM. Beginning ethereum smart contracts programming. Springer; 1st edn. 2019.

  51. Luu L, Chu DH, Olickel H, Saxena P, Hobor A. Making smart contracts smarter. In: Proceedings of the 2016 ACM SIGSAC conference on computer and communications security (CCS); 2016. p. 254–69.

  52. Micheler E, von der Heyde L. Holding, clearing and settling securities through blockchain technology creating an efficient system by empowering asset owners. Available at SSRN. 2016;2786972.

  53. Miers I, Garman C, Green M, Rubin AD. Zerocoin: anonymous distributed e-cash from bitcoin. In: Proceedings of the 2013 IEEE symposium on security and privacy (S&P). IEEE; 2013. p. 397–411.

  54. Nakamoto S. Bitcoin: a peer-to-peer electronic cash system 2009. http://www.bitcoin.org. Accessed 20 Nov 2020.

  55. Natoli C, Gramoli V. The blockchain anomaly. In: Proceedings of the 2016 IEEE 15th international symposium on network computing and applications (NCA). IEEE; 2016. p. 310–7.

  56. Noether S. Ring signature confidential transactions for monero. IACR Cryptol ePrint Arch. 2015;2015:1098.

    Google Scholar 

  57. Nofer M, Gomber P, Hinz O, Schiereck D. Business and information systems engineering. Blockchain. 2017;59(3):183–7.

    Google Scholar 

  58. Pongnumkul S, Siripanpornchana C, Thajchayapong S. Performance analysis of private blockchain platforms in varying workloads. In: Proceedings of the 2017 26th international conference on computer communication and networks (ICCCN); 2017. p. 1–6.

  59. Praitheeshan P, Pan L, Yu J, Liu J, Doss R. Security analysis methods on ethereum smart contract vulnerabilities: a survey. arXiv preprint arXiv:1908.08605 (2019).

  60. Rose S, Borchert O, Mitchell S, Connelly S. Zero trust architecture. Technical report, National Institute of Standards and Technology; 2019.

  61. Rouhani S, Deters R. Performance analysis of ethereum transactions in private blockchain. In: Proceedings of the 2017 8th IEEE international conference on software engineering and service science (ICSESS). IEEE; 2017. p. 70–4.

  62. Samaniego M, Deters R. Zero-trust hierarchical management in iot. In: Proceedings of the 2018 IEEE international congress on Internet of Things (ICIOT). IEEE; 2018. p. 88–95.

  63. Sasson EB, Chiesa A, Garman C, Green M, Miers I, Tromer E, Virza M. Zerocash: decentralized anonymous payments from bitcoin. In: Proceedings of the 2014 IEEE symposium on security and privacy (S&P). IEEE; 2014. p. 459–74.

  64. Thakkar, P., Nathan, S., Viswanathan, B.: Performance benchmarking and optimizing hyperledger fabric blockchain platform. In: Proceedings of the 2018 IEEE 26th international symposium on modeling, analysis, and simulation of computer and telecommunication systems (MASCOTS). IEEE; 2018. p. 264–76.

  65. Tsankov P, Dan A, Drachsler-Cohen D, Gervais A, Buenzli F, Vechev M. Securify: practical security analysis of smart contracts. In: Proceedings of the 2018 ACM SIGSAC conference on computer and communications security (CCS); 2018. p. 67–82.

  66. Valenta M, Sandner P. Comparison of ethereum, hyperledger fabric and corda. [ebook] Frankfurt School, Blockchain Center 2017.

  67. Vukolić M. Rethinking permissioned blockchains. In: Proceedings of the ACM workshop on blockchain, cryptocurrencies and contracts. ACM; 2017. p. 3–7.

  68. Wang R, Lin Z, Luo H. Blockchain, bank credit and sme financing. Qual Quantity. 2019;53(3):1127–40.

    Article  Google Scholar 

  69. Wüst K, Gervais A. Do you need a blockchain? In: Proceedings of the 2018 Crypto Valley conference on blockchain technology (CVCBT). IEEE; 2018. p. 45–54.

  70. Xia Q, Sifah EB, Asamoah KO, Gao J, Du X, Guizani M. Medshare: trust-less medical data sharing among cloud service providers via blockchain. IEEE Access. 2017;5:14757–67.

    Article  Google Scholar 

  71. Yavuz E, Koç AK, Çabuk UC, Dalkılıç G. Towards secure e-voting using ethereum blockchain. In: Proceedings of the 2018 6th international symposium on digital forensic and security (ISDFS). IEEE; 2018. p. 1–7.

  72. Yoo S. Blockchain based financial case analysis and its implications. Asia Pac J Innov Entrepreneurship. 2017;11(3):312–21.

    Article  Google Scholar 

  73. Yuan R, Xia YB, Chen HB, Zang BY, Xie J. Shadoweth: private smart contract on public blockchain. J Comput Sci Technol. 2018;33(3):542–56.

    Article  Google Scholar 

  74. Zambrano R, Young A, Velhurst S. Connecting refugees to aid through blockchain-enabled id management: world food programme’s building blocks. GOVLAB. 2018;22.

  75. Praitheeshan P, Pan L, Doss R. Security evaluation of smart contract-based on-chain ethereum wallets. In: Proceedings of the international conference on network and system security. Springer; 2020. p. 22–41.

  76. Praitheeshan P, Xin YW, Pan L, Doss R. Attainable hacks on keystore files in ethereum wallets—a systematic analysis. In: Proceedings of the international conference on future network systems and security. Springer; 2019. p. 99–117.

Download references

Acknowledgements

The authors would like to thank Dr. Jihong Park at Deakin University for his valuable comments and suggestions.

Funding

This study did not receive funding supports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Pan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This study does not contain any studies with human participants performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Praitheeshan, P., Pan, L. & Doss, R. Private and Trustworthy Distributed Lending Model Using Hyperledger Besu. SN COMPUT. SCI. 2, 115 (2021). https://doi.org/10.1007/s42979-021-00500-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42979-021-00500-3

Keywords

Navigation