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Abstract
Botnets and malware continue to avoid detection by static rule engines when using domain generation algorithms (DGAs) 
for callouts to unique, dynamically generated web addresses. Common DGA detection techniques fail to reliably detect 
DGA variants that combine random dictionary words to create domain names that closely mirror legitimate domains. To 
combat this, we created a novel hybrid neural network, Bilbo the “bagging” model, that analyses domains and scores the 
likelihood they are generated by such algorithms and therefore are potentially malicious. Bilbo is the first parallel usage 
of a convolutional neural network (CNN) and a long short-term memory (LSTM) network for DGA detection. Our unique 
architecture is found to be the most consistent in performance in terms of AUC, F

1
 score, and accuracy when generalising 

across different dictionary DGA classification tasks compared to current state-of-the-art deep learning architectures. We 
validate using reverse-engineered dictionary DGA domains and detail our real-time implementation strategy for scoring 
real-world network logs within a large enterprise. In 4 h of actual network traffic, the model discovered at least five potential 
command-and-control networks that commercial vendor tools did not flag.
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Introduction

Malware continues to pose a serious threat to individuals 
and corporations alike [1]. Typical attack methods such as 
viruses, phishing emails, and worms attempt to retrieve pri-
vate user data, destroy systems, or start unwanted programs. 
The majority of these attacks may be launched through the 
network [2], posing a major threat to any Internet-facing 

device. Some malware reaches out to a command and con-
trol (C&C) centre hosted behind domains generated by an 
algorithm (DGA domains) after it infiltrates the target sys-
tem to receive further instructions. Identification of such 
domains in network traffic allows for the detection of mal-
ware-infected machines.

A single active DGA has been seen generating up to a 
few hundred domains per day [1]. At scale within a com-
pany, this is infeasible for a human analyst to triage amidst 
the thousands of benign domains occurring simultaneously. 
Automated detection systems are developing but the sight-
ings of DGAs in worms, botnets, and other malicious set-
tings is growing [3].

In addition, malware that employs DGAs intentionally 
obfuscates its network communication by utilising ran-
dom seeds when generating their domains [1–5]. Most 
known DGAs combine randomly-selected characters like 
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“myypqmvzkgnrf[.]com”, “otopshphtnhml[.]net”, and 
“uqhucsontf[.]com”1.

However, DGAs that combine random words from a dic-
tionary like “milkdustbadliterally[.]com”, “couragenearest[.]
net”, and “boredlaptopattorney[.]ru” [6] are meaningfully 
harder for humans to detect (see Table 1 for comparison). 
In this paper, we will refer to this type of DGA as a diction-
ary DGA and focus on those using dictionaries composed 
of English words.

Common defences against malicious DGA domains 
include blacklists [7, 8], random forest classifiers [9–11], 
and clustering techniques [12, 13]. When the lists are well 
maintained and the features are chosen carefully, these meth-
ods have acceptable efficacy. However, both blacklists and 
these models possess serious limitations: relying on hand-
picked features which are time-consuming to develop, lack-
ing the ability to generalise with the few manual features 
implemented, and requiring continuous expert maintenance. 
More comprehensive tactics are necessary to detect inces-
sant new DGAs stemming from network-based malware.

Recent innovations using deep learning have state-of-the-
art accuracy on DGA detection. Such models are highly flex-
ible with the proven success in complex language problems. 
They do not require hand-crafted features that are time-
intensive to make and easy to evade. Woodbridge et al. [11] 
were the first to present a long short-term memory (LSTM) 
network for DGA classification. Other architectures were 
later applied, such as further variations on an LSTM [10, 
14–17], a convolutional neural network (CNN) [18, 19], 
and a hybrid CNN-LSTM model [20]. Although success-
ful for random-character DGA domains, these classifiers 
have largely been ineffective in identifying dictionary DGA 
domains. These models also perform well on their various 

testing sets but their performance can suffer when attempt-
ing to generalise to new DGA families or new versions of 
previously seen families.

Against this background, we present a novel deep learning 
model for dictionary DGA detection. This advances the state 
of the art in the following ways. First, we present the first 
usage of parallel CNN and LSTM hybrid for DGA detec-
tion, specifically applied to dictionary DGA detection. The 
model is trained on standard large-scale datasets of reverse-
engineered dictionary DGA domains. It achieves the most 
consistent success at dictionary DGA classification amongst 
state-of-the-art deep learning architectures for classification, 
generalisability, and time-based resiliency. Second, we detail 
our insights into dictionary DGA domains’ inter-relation-
ships and their effect on generalisability of models as an 
outcome. Third, we validate our model on live network traf-
fic in a large financial institution. In 4 h of logs, it discovered 
five potential C&C networks that commercial vendor tools 
did not flag. Finally, we detail our scalable implementation 
strategy within the security context of a corporation for real-
time analysis.

Background

An ever-growing number of malware rely on communication 
with C&C channels to receive instructions and system-spe-
cific code [1]. The destination (domain or IP address) of this 
channel can be hard-coded in the malware itself, making its 
location discoverable via reverse engineering or straightfor-
ward log aggregation techniques. Once known, this domain 
or IP address can be blacklisted, rendering the malware inert. 
To avoid this single point of failure, malware authors employ 
domain fluxing, in which the destination of the C&C com-
munication changes systematically as the attacker registers 
new domains to the C&C hub.

The key to malware domain fluxing is the use of unique 
and likely unregistered domains that are known to the 
attacker but can blend in to regular traffic. To accomplish 
this, malware families employ domain generation algorithms 
(DGAs) to create pseudo-random domains for use in com-
munication. These domains are used for short periods of 
time and then phased out for newly-generated domains; this 
quick turnover means that manual techniques are not effec-
tive. Additionally, reverse engineering these algorithms may 
be slow or impossible if the malware is encrypted. For the 
vast majority of malware samples, traffic related to malicious 
activity is present in networks weeks or months before the 
malware is analysed and blacklisted [7].

To prevent DGA-based malware from exfiltrating, disa-
bling, or tampering with assets, institutions must detect 
malicious traffic as soon as possible. Throughout this paper, 
we will discuss our solution while keeping in mind that it 

Table 1   Examples of domains from our training data, comprised of 
domains from the Alexa Top 1 Million list and domains generated by 
dictionary-based DGA families (discovered through reverse engineer-
ing) from DGArchive

Legitimate Malicious

microsoft lookhurt

linkedin threetold

paypal threewear

steamcommunity pielivingbytes

dailymotion awardsbookcasio

stackoverflow blanketcontent

facebook degreeblindagent

soundcloud mistakelivegarage

1  For the rest of this paper, all domain URLs will be referred to with 
[.] to prevent automatically assigning these domains as real URLs one 
might click.
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must be practical, operating in real-time, enriching contex-
tual data within in true threat environments.

Domain Generation Algorithms (DGAs)

DGA usage spans a variety of cases, from benign resource 
generation to phishing campaigns and the management of 
botnets, groups of machines that have been infected by mal-
ware, such as Kraken [21], Conficker [22, 23], Murofet [24], 
and others [25]. The goal of all DGAs is to generate domains 
that do not already exist and, for malicious cases, will not be 
flagged by vendor security tools or analysts. To accomplish 
this, DGA authors typically use either character-based or 
dictionary-based pseudo-random assembly process to form 
domains.

Each method has benefits and downfalls. Character-based 
DGA domains are more likely to not be registered. But to a 
human security analyst, gibberish domains made from char-
acter-based DGAs stand out from human-crafted domains 
due to their phonetic implausibility and lack of known words 
within them. There is a visible unique pattern underlying 
character DGA domains, such as “lrluiologistbikerepil”, 
that dictionary DGA domains, like “recordkidneyestablish-
men”, do not follow. Dictionary DGA domains are more 
challenging to detect when scanning logs because they are 
pronounceable, contain known words, and mirror the char-
acter distribution of legitimate English domains [26]. See 
similarities between known dictionary DGA domains and 
benign domains in Table 1.

DGA detection systems have been implemented to assist 
in highlighting DGA domains for further investigation. 
These have largely been tailored towards character-based 
DGAs. Character-based DGAs are more common: of 43 
known reverse-engineered DGAs available in DGArchive 
[6], 40 of them use a seed to pseudo-randomly assemble 
characters or a word surrounded by random characters to 
form a domain name. Most methods for generic DGA analy-
sis still struggle to identify dictionary-based DGA malware 
families because they classify all DGAs rather than focusing 
on specific algorithms.

This paper will focus on classifying the largest avail-
able sets of known dictionary DGA domains: gozi [27], 
matsnu [28], and suppobox [29]. Each varies in the 
dictionary-based domain generation tactic, the length of the 
domain, and the dictionary corpus. These dictionary DGA 
families are often undetected by methods proposed in prior 
research aimed at general DGA detection because of the 
large number of families available for other types of DGAs. 
By targeting where others are weaker, our model can pro-
vide greater coverage when used in conjunction with generic 
DGA models and other contextual information for increased 
confidence in identification.

Much of prior DGA research has involved making 
lookups into historical or related domain name server 
(DNS) records. Such methods often rely on signals attained 
from Non-Existent Domain (NXDomain) responses when 
unregistered domains are queried. Since DGAs often gener-
ate hundreds of domains per day and at most only a few of 
those domains are actually registered by the attacker, large 
numbers of these requests result in NXDomains. Many 
NXDomain responses from the same computer are unlikely 
to result from expected user behaviour, and thus this pattern 
of DNS traffic can be associated with DGA activity [12, 
25, 30].

However, such queries within high-volume DNS log data 
can be prohibitively slow and unsuitable for real-time deci-
sion-making needed to reduce the risk of compromise. It is 
for this reason that our model considers limited data, only 
the domain name, rather than all of the potential fields given 
through standard network logging. We also only use open 
source datasets rather than restricted NXDomain lists for 
reproducibility and to provide an accessible starting point for 
others looking to tailor this system to their own environment.

Related Work

Defensive tactics began analysing network logs with statis-
tical or manually selected features instead of static black-
listing or rules when it became overwhelming to maintain 
them. Unsupervised probabilistic filtering [31] and random 
forest models [9, 32] were some of the leading systems for 
detecting DGAs.

Future techniques included more contextual information 
which improved the longevity of detection systems. Cluster-
ing [5, 25, 33], Hidden Markov Models (HMMs) [12], ran-
dom forests models [34–36], and sequential hypothesis test-
ing [30] used data such as WHOIS or NXDomain responses 
with the domain to identify DGAs. However, a number of 
these techniques require batches of live data to maintain 
relevancy or high volumes of data which are not typically 
feasible in real-time environments.

Deep learning first addressed DGA detection with work 
by Woodbridge et al. [11], an implementation of an LSTM 
used for nonspecific DGA analysis. Their experiments 
show that their deep learning approach, an LSTM network, 
outperforms a character-level HMM and a random forest 
model that utilise features such as the entropy of character 
distribution. Their analysis and implementation led to a large 
success for identifying most DGA families; however, their 
LSTM did not score highly on suppobox or matsnu, dic-
tionary DGA families.

Since then others have joined the field, implementing a 
variety of deep learning models. Several took the LSTM 
model from Woodbridge et al. and provided improvements. 
Tran et al. [14] took the native class imbalance of DGA data 
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into account. Others updated the training data with other 
known DGA datasets [10, 15] or added more contextual 
information to the score [37]. Another altered the original 
architecture of their LSTM to a bi-directional LSTM layer 
[17], demonstrating the potential enhancements of changing 
the model’s architecture.

When a CNN was applied to text classification [38–40] 
and showed success over an LSTM on some tasks [19, 41], 
it was eventually applied to malicious URL analysis [18]. 
Other approaches to this problem include a Generative 
Adversarial Network (GAN), showing that the arms race 
for DGA detection could advance on its own [26]. Recent 
work combining CNN convolutions and LSTM temporal 
processing into new sequential hybrid models have also 
been brought to this problem [20, 42–44]. Other compara-
tive works have been published attempting to finalise which 
model is the best for DGA detection [10, 20, 45–48]. Their 
evaluations state deep learning maintains greater success 
over random forest models trained using manually-selected 
features, but do not consider the greater context of the 
model’s deployment or implementation environment. Our 
research picks up this work, systematically evaluating deep 
learning architectures to specifically target where most DGA 
detection systems consistently underperform: dictionary 
DGAs.

Koh et al. were one of the first to train deep learning to 
specifically target dictionary DGA domains [49]. Utilising 
a pre-trained embedding for the words within the domain, 
they trained an LSTM both on single-DGA and multiple-
DGA data sets. While their results set the bar for dictionary 
DGA detection, their model had severe limitations from its 
context-sensitive word embedding on what it could learn and 
they did not use all available data during training and test-
ing. Another related work on dictionary DGA detection is 
WordGraph from Pereira et al. [13]. They take large batches 
of NXDomains and the longest common substring (LCS) of 
every pair within the set, connecting any co-occurring LCS 
within a single domain name to construct their WordGraph. 
The dictionary DGA domains are shown to cluster whereas 
benign domains have no discernible pattern and is shown to 
generalise over changes to the DGA’s dictionary. A random 
forest classifier is trained on the patterns between domains 
to identify dictionary DGA patterns. This method shows 
promise at adapting to different DGAs. However, it is too 
computationally intensive for many systems to support for 
only domain name analysis.

Real‑Time Deployment Environment

Within a large corporation with thousands of employees, 
security tools struggle to assist analysts attempting to 
monitor corporate assets. Analysts investigating anomalous 
activity use a variety of filters to limit the data they need to 

consider before finalising a verdict on any given activity. 
We assume other filters for response type, network proto-
col, NXDomain results, proxy labels, etc. are also included. 
Scores from a model for dictionary DGA detection would 
be added into the system for analysts to include whichever 
additional information they deem necessary.

Much like the work by Kumar et al. [50] and Vinayaku-
mar et al. [16], we aim to not only address this cyber security 
issue with text classification techniques, but also the greater 
system in which the model would be deployed. Prior sys-
tems consider the various model performance metrics on 
common data sets as well as the real-world generalisability, 
response time, and scalability of their chosen model when 
scoring domains in real time. We extend their work to new 
controlled tests and describe deploying detection systems 
within a corporate environment.

Bilbo the “Bagging” Hybrid Model

We present a new deep learning model to deploy for real-
time dictionary DGA classification. As mentioned before, 
deep learning architectures are capable of learning variations 
to dictionaries and DGAs, with the added benefit of training 
quickly. There have been many deep learning architectures 
published for this task for state-of-the-art comparison.

Since we can treat domains as sequences of characters, 
LSTM models are a natural fit for classifying DGA domains. 
LSTM nodes make decisions about one element in the 
sequence based on what it has seen earlier in the sequence. 
Thus, LSTM nodes learn parameters that are shared across 
the elements of sequence. This parameter sharing allows 
LSTMs to scale to handle much longer sequences than 
would be practical for traditional feedforward neural net-
works [51]. For example, an LSTM neuron might recall that 
it has seen seven vowels in a nine-character domain, making 
it unlikely that the domain is made up of natural English 
text. This sequential specialisation of LSTMs attracted us 
initially, but we found it alone could not generalise to new 
dictionary DGAs as well as other architectures.

Others have applied CNNs in various forms since used 
for URL analysis by Saxe et al. [18]. Convolutional neural 
networks (CNNs) were designed to handle information that 
is in a grid format, such as pixels in an image matrix. By 
treating text as a one-dimensional grid of letters, CNNs were 
shown to have excellent results for natural language tasks 
[39, 40]. We translate domain names to arrays of characters, 
allowing the CNN to examine local relationships between 
characters via a sliding window, thus grouping characters 
together into words. For example, the domain “facebook” 
can be broken down into four-character windows: “face”, 
“aceb”, “cebo”, “eboo”, and “book”. By dividing character 
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arrays into smaller, related parts in this manner, CNNs dem-
onstrated success on URL classification tasks [18].

When multiple models perform well on the same task, 
many practitioners have combined models or model architec-
tures to enhance the various benefits they individually pro-
vide. The most common technique is to combine pre-trained 
models to form an ensemble model, where each individual 
model produces a score and these scores are combined in 
some way to produce a new score. In this context we could 
train a general DGA classifier that combines one model 
trained to classify character DGA domains and another 
trained to classify dictionary DGA domains. The benefit of 
combining both models is dependent on how they are com-
bined and how it decides which model to “trust” for its final 
decision without the context of how they were developed.

Hybrid models are similar to ensemble models, but rather 
than taking the individual score from each component, a 
hybrid model combines the architectures before the extracted 
features are reduced to a single score. These models are 
trained as a single end-to-end model. A hybrid architecture 
allows the model to learn which combinations of features of 
the input are significant indicators for accurate classifica-
tion. Most common hybrid models combine architectures 
by stacking them in different ways. For instance, using a 
CNN’s convolutional layer to extract features and then feed 
them into an LSTM layer [20, 42–44, 52].

Our novel hybrid model, as seen in Fig. 1, processes 
domain names via an LSTM layer and a CNN layer in par-
allel. The outputs of these two architectures are then aggre-
gated or “bagged” by a single-layer ANN. This “bagging” is 
a vital opportunity for this model to discern which parts of 
the captured information from the LSTM and CNN assists 
the best when labelling dictionary DGA and benign domains. 
Inserting an ANN instead of a single function increases the 

potential optimisation of the “bagging”. Because of the 
importance of this piece in the architecture, we named our 
model Bilbo the “bagging” model. Unlike ensembles which 
optimise its components prior to conjoining, hybrids opti-
mise over all the components. As demonstrated in our results 
(“Results”), Bilbo successfully combines LSTM, CNN, and 
ANN layers for dictionary DGA detection and is the best at 
consistently classifying dictionary DGAs amongst state-of-
the-art deep learning models.

Data Analysis

To better understand the success and failures of the mod-
els used in our tests, we conducted a brief analysis of our 
data set of known dictionary DGAs. The dictionary DGA 
domains were selected from collections of related DGAs, 
called DGA families, published on DGArchive [6], a trusted 
database of domains extracted from reverse-engineered 
DGA malware. From this source, several families of DGAs 
were empirically identified as solely dictionary DGAs based 
on the structure of the domain names generated by malware 
samples. The families selected were suppobox, gozi, and 
matsnu with domains collected over 2 years (2016–17) 
by DGArchive. After removing duplicate domain names, 
the resulting selection contained 137, 745 samples of sup-
pobox, 18, 539 samples of matsnu, and 20, 313 samples 
of gozi.

The legitimate domains in the training set originate from 
the Alexa Top 1 Million domains, measured in 2016 [53]. 
The Alexa list ranks domains by the number of times each 
has been accessed. Since DGA-based malware tends to 
use domains for short periods of time, we assume that top 
Alexa domain names are human-generated and label them 

Fig. 1   High-level architecture of Bilbo; the component models 
are highlighted in blue. Raw domains are input and encoded into 
sequences before being passed to the separate LSTM and CNN archi-

tectures. The features extracted by each of these component architec-
tures are sent to a single layer ANN or a hidden layer, which is then 
flattened to produce the output, a single score
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as non-DGA. These popular domains, mostly containing 
valid English words, encourage the model to learn charac-
teristics of legitimate combinations of English words. We 
randomly sampled an equivalent number of domains from 
Alexa to match the total number of dictionary DGA samples 
available.

To further understand our data, we conducted several 
comparisons: 

1.	 By extracting the longest common substrings within 
each family, compare the lists between families for dic-
tionary similarity. See Fig. 2 for a summary of those 
results

2.	 Using the widely adapted Jaro–Winkler algorithm for 
string similarity [54], we compared every domain in our 
data set within their own families and with every other 
family. The histogram in Fig. 3 shows us how similar 
families are and how this could influence the results for 
generalisability.

Longest Common Substring (LCS)

The application of this algorithm was inspired by Pereira 
et al.’s technique for dictionary extraction [13]. We applied 
this to each individual group (alexa, suppobox, gozi, 

and matsnu) to generate a list of every LCS between 
pairs of domains. These lists contain all possible dictionary 
words used to generate the domains. By comparing the lists 
between the families, we can see how learning one family’s 
list could assist in identifying the other. Figure 2 visualises 
the overlap between sets with a chord diagram.

The circumference is partitioned into four parts and is 
labelled with the count for the number of times overlapping 
substrings were seen as the LCS for a domain pair within its 
family. For instance, look at the black vertical chord between 
gozi and alexa. The colour black means that alexa, the 
family assigned black, is the smaller portion of this relation-
ship, i.e. fewer of its LCS (approximately 10 million) are 
within the overlap with gozi (approximately 100 million).

LCS overlapping between alexa and gozi also include 
LCS from other overlaps. gozi’s large partition of the cir-
cumference while also being the smallest family means it 
overlaps frequently with other groups. Overall matsnu and 
gozi have the largest overlap, sharing 8.6% of their LCS 
and 92% of their LCS when including the number of times 
it was seen as the LCS of a pair. The longest LCS between 
them was 14 characters; the average length for LCS was 
4.238 characters. Therefore, there must be only a few very 
common substrings between the families, which deep learn-
ing models could learn.

Fig. 2   Comparing the shared 
largest common substrings from 
within each domain family con-
sidered during our classification 
(alexa, suppobox, gozi, 
and matsnu). The circumfer-
ence is grouped by colour for 
each family. The counts are for 
the number of times the over-
lapping LCS was an LCS for a 
domain pair within a given fam-
ily. Note that any overlap in the 
centre has no meaning and the 
counts contain overlap between 
LCS shared between one pair of 
families and any other
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Jaro–Winkler (JW) Score

To understand the similarity of an entire domain string 
with any other domain, we used the JW score [54]. This 
algorithm takes the ordering of the characters and the col-
lection of characters to develop a score between [0,1]. 
The closer the score is to one, the more similar the 
domains are to one another. We compared every domain 
to generate diagrams such as Fig. 3.

Most families follow the same distribution with a mean 
of about 0.5 for JW score. However, notice the slight skew 
in alexa and suppobox. Due to a large percentage of 
their domains having little to no JW similarity, the average 
score for alexa was 0.4023 and suppobox was 0.4901. 
This slight difference is amplified when considering other 
aspects of the family. Both suppobox and alexa have 
the smallest average lengths of domains at 13 and 9 char-
acters, respectively. Both groups have a standard deviation 
of approximately four characters and most frequent length 
of about eight characters. With this, the low JW scores for 
alexa and suppobox make sense with shorter domains.

The other sets, matsnu and gozi, are much longer in 
comparison with most frequent lengths of 14 and 23 char-
acters, respectively. The dictionary for their DGAs seems to 
select from shorter, 3–5-character words. Since there are less 
possible combinations of valid short words, more overlap 
between gozi and matsnu, which is also apparent in Fig. 2.

This exploratory data analysis helped us develop an intui-
tion around how different dictionary DGAs relate to each 
other and gave us hope that models would pick up on these 
relationships even though most of these families use differ-
ent dictionaries and generation algorithms. Also, this same 
analysis should prove useful when comparing and expand-
ing the model with other dictionary DGA families as they 
emerge.

Experimental Design

We frame the DGA detection problem as a binary text clas-
sification task on only the domain string. The score pro-
vided by our model can then be used independently or be 

Fig. 3   Histogram of the Jaro–
Winkler scores of each diction-
ary DGA family and Alexa. A 
distribution line was drawn over 
it to assist in tracing the trends 
of the scores
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enriched with additional security context. In this section, 
tests are designed on known labelled data to demonstrate 
the baseline performance of each model. These experiments 
reflect practitioner concerns on model deployments within 
real-world context: 

1.	 Testing the model’s ability to do binary classification 
with of benign and dictionary DGA domains

2.	 Evaluating the model’s generalisability for identifying 
unseen dictionary DGAs

3.	 Examining the model’s scores as the dictionaries and 
DGAs evolve over time, how well can the model classify 
new dictionary DGA domains from known families

We compare Bilbo to four deep learning models: a single-
layer ANN, CNN, LSTM, and MIT’s CNN-LSTM Hybrid 
[20, 52]. Each is based off of state-of-the-art models for 
DGA classification; the implementation for each is described 
below. Our results highlight the strengths and weaknesses of 
each architecture in the different scenarios.

Testing

Each experiment uses data pulled from the Alexa Top 1 Mil-
lion list [53] and DGArchive [6]. The only three available 
dictionary DGA families are considered: gozi, matsnu, 
and suppobox. For model training and validation, the data 
is always separated into three sets: training, testing, and 
holdout. Training and testing are used at every epoch to see 
if early stopping should occur, preventing overfitting. The 
results for each metric, listed in “Results”, are from applying 
the model to the holdout set.

Testing Classification

The first test evaluates how the model performs for binary 
classification between benign (negatives) and dictionary 
DGA domains (positives). With a balanced dataset, 80% was 
used for training the model. The remaining 20% (approxi-
mately 60,000 domains) was randomly sampled to use for 
testing and holdout: 50,000 domains for testing the model 
at each epoch and 10,000 domains for validating the model 
after training was completed. All training, testing, and vali-
dation data sets contained an approximately equal number 
of positives and negatives.

Testing Generalisability

This test evaluates how the model generalises to unseen 
dictionary DGAs. For this, three trials are created from the 
data sorted by dictionary DGA family. Each trial takes two 
of the families for training and splits the third over testing 
and holdout. For example, one variant uses matsnu and 

suppobox domains to train the model while evaluating the 
model’s performance using gozi domains. This paper is the 
first to test DGA detection models in this way.

Testing Time‑Based Resiliency

DGAs have been found to evolve over time, varying their 
generation algorithms slightly or using entirely new diction-
aries [50]. While our tests for generalisability highlight some 
of the deep learning models’ ability to classify alterations 
in the dictionary DGA, they are limited by our scope of 
sampling in 2016-17.

To test detection system’s resiliency on future versions of 
dictionary DGA domains, we evaluate our models trained 
on data from 2016-17 with DGA samples from November 
2019. Models trained on all three dictionary DGA families 
are applied to this dataset.

Implementation of Deep Learning Models

Deep learning models take numerical sequences as input. 
Thus, every domain string is encoded as an array of inte-
gers and then padded with zeros to ensure that all inputs are 
of the same size. Each Unicode character is mapped to an 
integer through a constructed list of 40 valid domain-name 
characters. For example, “google” would be converted to 
[7, 15, 15, 7, 12, 5] and padded with zeros at 
the beginning to get all inputs up to our maximum length 
of a domain string: 63 characters. Our final input is [0, 
0, ..., 0, 7, 15, 15, 7, 12, 5]. During 
initial iterations, we confirmed that padding the end of the 
sequence made no difference when compared with pad-
ding the beginning of the sequence. Rather than a common 
embedding for all deep learning models, the embedding is 
learned by the model during training. The outputs from each 
deep learning model is a score, a single float between zero 
and one. This value indicates the model’s confidence that the 
domain was generated by a dictionary DGA.

We compare our main model, Bilbo, against four models 
adapted from state-of-the-art architectures: a single layer 
ANN, a CNN, an LSTM, and MIT’s Hybrid [20, 52]. The 
code for each model is in listed at the end. As mentioned in 
“Related Work”, deep learning models have frequently been 
shown to outperform feature-based approaches for DGA 
detection and are capable of millisecond scoring speeds. 
Because of these ideal characteristics for a dictionary DGA 
detection system, Bilbo is only compared to other deep 
learning architectures.

All models were built in Keras [55] using the Tensor-
Flow [56] backend on a MacBook Pro to convey the ease 
for model retraining and that models can be deployed on 
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smaller cloud servers. Each model is trained three times for 
ten epochs with a batch size of 512.

Artificial Neural Network (ANN)

This fundamental model architecture underlies both the 
CNN and LSTM. As a baseline for this study, similar to Yu 
et al. [20], we include a single-layer ANN with 100 neurons 
in its hidden layer during our testing and consideration. This 
architecture is also included within Bilbo as the conjoin-
ing layer for the parallel CNN and the LSTM component 
architectures.

Long Short‑Term Memory (LSTM) Network

This architecture is a slight adaptation on the LSTM used by 
Woodbridge et al. [11]. Because it was tuned for a slightly 
different task, we re-evaluated some of its hyperparameters. 
From our automated grid search of hyperparameters, as 
shown in Fig. 4, it was clear that increasing LSTM layer 
size improved our accuracy on the testing set for generic 
binary classification. We found that an LSTM layer of 256 
nodes provided us with the highest accuracy on the testing 
dataset without loss to its performance in real-time deploy-
ments. The only alterations to the original model were the 
input parameters to match our standard across models and 
doubling the size of the LSTM layer. This is the same archi-
tecture implemented as a component within Bilbo.

Convolutional Neural Network (CNN)

We followed Saxe et al.’s parallel convolution structure [18] 
to compare with state-of-the-art with a CNN. After testing a 
variety of filter sizes individually, combinations of various 

filters were also analysed to find the best architecture for 
our task. Based LCS analysis for each family, the major-
ity of substrings within dictionary DGAs appeared to be 
within the range of two to six characters. This model’s final 
architecture includes five different sizes (2–6 characters) of 
convolutions, 60 filters of each length with a stride of one 
character, and pooling later concatenated to provide a vast 
amount of information towards the final score. This archi-
tecture balances the model complexity against the prediction 
accuracy on our training set.

Bilbo

Our initial results with the individual LSTM and CNN, as 
seen in Table 2, indicated each model was learning relevant 
but distinct characteristics for accurate identification of dic-
tionary DGAs. Bilbo’s architecture “bags” the extracted fea-
tures from the LSTM and CNN with a hidden layer of 100 
nodes, from which a final prediction is rendered. This hybrid 
model learns to balance the features extracted by both the 
LSTM and CNN. The same architectures described previ-
ously for the individual ANN, LSTM, and CNN are com-
bined to form Bilbo. This model is the first parallel usage of 
a CNN and LSTM hybrid for DGA detection.

MIT Hybrid Model

Based on the original encoder–decoder model presented 
by MIT [52], several recent publications have adapted this 
CNN-LSTM hybrid model to DGA classification [20, 44, 
47]. Unlike our model, this uses the CNN convolutions to 
feed inputs into an LSTM. The MIT hybrid architecture 
adapted by Yu et al. [20] is another benchmark during test-
ing. Comparing Bilbo’s parallel usage of a CNN and an 

Table 2   Samples of identified dictionary DGA domains with the top 
50 scores from our holdout set from each component model (LSTM 
and CNN) and our hybrid, Bilbo. Blue are domains seen initially in 
the LSTM’s top 50 samples and then in Bilbo’s top 50 samples. Same 

for the yellow domains, but seen in the CNN samples and then in 
Bilbo’s samples. Orange is a domain that appeared in different ranks 
within all three models
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LSTM to this model demonstrates the significance of our 
parallel architecture in binary classification of dictionary 
DGAs.

Their single convolutional layer consists of 128 one-
dimensional filters, each three characters long with a stride 
of one. This is fed into a Max Pooling layer before a 64-node 
LSTM. This model contains no drop out and relies on a sin-
gle sigmoid to flatten the results to a single score.

Metrics for Comparison

Considering real-world applications for DGA detection, a 
balance between incorrect domains and lack of confidence 
for true dictionary DGA domains must be found. To help 
measure each model’s performance for this, three core met-
rics are calculated to summarise common metrics used in 
machine learning research. The first is the area under the 
receiver operating characteristic (ROC) curve (AUC), which 
measures the model’s ability to detect true positives as a 
function of the false positive rate. Maximising AUC means 
improving labelling of both positive and negative samples. 
The second is accuracy; how well the model scored positive 
and negative labels our of all samples in the holdout set. 
Finally, the F

1
 score is the harmonic mean of precision and 

recall, giving insight to the context of true positive labels 
within the holdout set.

Using abbreviations for true positive (TP), true negative 
(TN), false positive (FP), false negative (FN), true-positive 
rate (TPR), and false-positive rate (FPR), these are com-
puted in the following ways:

(1)Precision =

∑

TP
∑

TP +
∑

FP

(2)Recall =

∑

TP
∑

TP +
∑

FN

(3)F
1
= 2 ∗

Precision ∗ Recall

Precision + Recall

(4)Accuracy =

∑

TP +
∑

TN
∑

TP +
∑

FP +
∑

TN +
∑

FN

(5)TPR =

∑

TP
∑

TP +
∑

FN

Fig. 4   Graph of hyperparameter 
grid search used to inform deci-
sions on the LSTM architec-
ture. The LSTM layer size and 
optimiser are compared for 
accuracy on the test set, demon-
strating improved performance 
using larger networks and 
either the adam or rmsprop 
optimiser
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Consistency of the core metrics in every setting is key to 
finding the best performer while evaluating models on 
labelled data. To quantify this, the core metrics are treated 
as assessment questions: one point of consistency is awarded 
to each of the top three models within every core metric. The 
model with the most points across testing classification and 
generalisability is deemed the most consistent performing 
model.

Results

In this section, we elaborate on the values of metrics from 
each model resulting from each test. The threshold for a 
label for every test was 0.5. Overall, the priority is to accu-
rately apply both positive and negative labels to the dataset. 
From these tests, the model with the best consistency score 
is viewed as the best for deploying into real world settings.

Results of Testing Classification

The values for the metrics from this test are provided in 
Table 3. In this test, the ANN is significantly worse than the 
specialised deep learning models in every metric, according 
to a student t-test with 95% confidence on the all collected 
results. The ANN’s FPR of 0.1953 is almost a whole mag-
nitude worse than MIT’s FPR, which was the best.

The CNN and LSTM are statistically similar in all metrics 
with the LSTM outperforming the CNN in most precision, 
TPR, and FPR. This is due to the imbalance between the 
dictionary DGA families, with suppobox comprising of 
about 78% of the malicious samples. During our substring 
analysis, we found that suppobox contained the long-
est substrings, revealing that models which learn the long 
sequence of suppobox’s dictionary words would have an 
advantage when classifying the majority of dictionary DGA 
domains. The LSTM is designed to learn sequential relation-
ships between characters rather than subsets of characters 

(6)FPR =

∑

FP
∑

FP +
∑

TN
.

like the CNN. This is why the LSTM beats the CNN and, as 
shown in Table 6, is a consistent leader in the core metrics.

Both MIT’s hybrid model and Bilbo perform the best 
across all metrics. The difference between the two is insig-
nificant in all metrics, differing less than 0.01 for the F

1
 

score, Accuracy, and AUC. This near identical performance 
is similar to the LSTM and CNN comparison earlier. There 
is also a pattern in most of the metrics that when the CNN 
is better than the LSTM, Bilbo is better than the MIT model 
and vice versa. MIT’s parameters are mostly dedicated to the 
LSTM layer, explaining the similar performance between 
the two models.

Bilbo consistently performs between or better than its 
component models in all metrics by regularising the perfor-
mance of the LSTM and CNN with an ANN, displaying the 
expected results of our parallel architecture. In the empirical 
analysis of the results, the top scoring domains from both the 
CNN and LSTM were present in the final scoring of Bilbo 
as expected.

The difference between the deep learning models, exclud-
ing the ANN, in this test is very small. Given a domain 
name, they are all successful at labelling dictionary DGA 
domains from benign domains after learning from three 
diverse dictionary DGA families. The consistency scores 
for this test place the LSTM model, the MIT model, and 
Bilbo as the best performers.

Results of Testing Generalisability

As presented in Table 4, the metrics have been limited to 
three core metrics to maximise for best overall performance. 
A model’s AUC indicates the model’s likelihood of correctly 
classifying a sample as a positive or negative. The F

1
 score 

conveys how well the model correctly labels dictionary DGA 
domains with regard to those that should be or were labelled. 
Accuracy states how well the model labelled the data within 
this particular holdout set.

The values for the core metrics were not expected to sur-
pass 0.9 due to the differences between each dictionary DGA 
family. Analysis of each family’s LCS and the JW scores 
between families not depicted in this paper stated some 
families overlap more with one family than another. This 

Table 3   (Testing classification) 
Comparing the results of 
five different deep learning 
architectures for binary 
dictionary-DGA classification

The labelled training and testing set are composed of a random selection from all three dictionary DGA 
families. The best of each column is in bold

Model Recall Precision F
1
 Score TPR FPR AUC​ Accuracy

ANN 0.9077 0.8250 0.8644 0.8250 0.1953 0.9290 0.8566
CNN 0.9730 0.9473 0.9600 0.9473 0.0545 0.9919 0.9593
LSTM 0.9675 0.9627 0.9651 0.9627 0.0370 0.9932 0.9653
MIT 0.9583 0.9710 0.9646 0.9710 0.0282 0.9946 0.9651
Bilbo 0.9766 0.9557 0.9660 0.9557 0.0454 0.9944 0.9656
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dependence influences each model’s performance by limit-
ing its ability to generalise unless certain families have been 
seen before. Hence the values across this table are lower 
than in Table 3.

The ANN outperforms the other models in this task with 
higher core metrics in two of the trials. However, it also only 
surpasses the other models when matsnu or gozi are part 
of the training set. Figure 2 depicts a large overlap in their 
LCS. This could explain what the ANN is able to learn for 
better performance on new DGAs when either matsnu or 
gozi is in the training set and the other is in the testing set.

The next most consistent performer in this test is the 
CNN. Its training on smaller character windows allows it 
to excel when applied to new dictionary DGAs. Based on 
earlier data analysis, the most frequent LCS in every family 
were three to four characters and typically overlapped. The 
large overlap in LCS between matsnu and gozi reinforce 
these short substrings, explaining why the CNN outperforms 
others when both matsnu and gozi are in the training set.

Results of Testing Time‑Based Resiliency

The final test is on a single day’s worth of recent domain 
samples from each of the dictionary DGA families already 
considered. Listed are the ratios of true positives out of the 
total number of samples for that dictionary DGA family. 
Total samples for each family are as follows: 1325 from 
gozi, 686 from matsnu, and 4257 from suppobox.

Using all of the trained models from the classification 
test, the average scores are listed. The results are close 
between all model architectures and, when averaged, are 
close to the accuracy seen during testing. As for the relative 
decrease in accuracy for matsnu and gozi, this is due to 
the class imbalance between the dictionary DGA families in 
the dataset. Regardless of which model selected for deploy-
ment, it will need to be updated frequently with new labelled 
data whenever trusted and available to increase this accuracy 
on future dictionary DGA domains (Table 5).

Throughout all of these tests, each state-of-the-art deep 
learning model achieves top metrics. To determine which is Ta
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Table 5   (Testing time-based resiliency) Ratio correct at scoring dic-
tionary DGAs from each family within the sample from November 
2019

The best of each column is in bold

Fully-trained 
model

matsnu suppobox gozi

ANN 0.8746 0.9204 0.9517
CNN 0.8732 0.9962 0.9585
LSTM 0.8936 0.9522 0.9426
MIT 0.8790 0.9976 0.9386
Bilbo 0.9023 0.9962 0.9472
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the best, we consider the application environment the model 
is to be deployed in and its need for a consistent well-per-
forming model. After aggregating the consistency points for 
the top performers from every core metric in each test and 
trial, presented in Table 6, Bilbo is found to be the most con-
sistent and capable model for deploying within real-world 
dictionary DGA detection systems.

Real‑World Deployment

Once Bilbo was trained, tested, and validated using 
open source data from the Alexa Top 1 Million [53] and 
DGArchive [6], we evaluated performance in a live system. 
We deployed the model on a cluster of servers to be queried 
by a data pipeline and applied the model to live network 
traffic from a large enterprise.

Implementation at the Corporate Level

Within corporate environments, a large security information 
and event management (SIEM) system is typically used to 
centralise and process relevant data sources. Security ana-
lysts use the SIEM for their daily work to investigate suspi-
cious activity within their environment. The data they view 
is limited by a series of filters and joins they apply on vari-
ous datasets.

To productionise Bilbo in a high-throughput environment 
generating hundreds of domains per second, we developed 
a model as a service framework. This framework promotes 
scalability, modularity, and ease of maintenance. Client sys-
tems processing domain names, such as the SIEM, make 
requests of the model servers to receive scores on new 
domains. This communication is performed using gRPC, 
Google’s library for remote procedure calls [57], which was 
selected for its speed over methods like REST (Represen-
tational State Transfer). The communication from client to 
server is language-agnostic, allowing a client written in Java 
or Scala to interface seamlessly with our Python model.

A load balancer manages traffic to the model servers and 
only the load balancer endpoint is exposed to the client. This 
allows multiple clients to reach out to a single location to 

receive scores from the model. Any number of model serv-
ers can run behind the load balancer, but these details are 
abstracted away from the clients, who only interface with 
the load balancer endpoint. This allows us to increase and 
decrease the size of the model server cluster in response to 
changing without interrupting service; such scaling can be 
configured to take place automatically in response to metrics 
like CPU utilisation.

While our model does not learn inline, its predictions, 
combined with a ground truth label provided by an analyst, 
can be used to retrain the model, allowing it to learn from 
mistakes and improve its predictive power. Thus, we need 
to be able to deploy a retrained model frequently and with 
low overhead. Since the model server cluster is behind a 
load balancer, we can make this change without shutting 
down the service. We simply put additional model servers 
(running the newest model) behind the load balancer, and, 
once they have been confirmed to run successfully, remove 
the model servers running an outdated version. The model 
update process can be seen in Fig. 5. Along with their scores, 
the model servers return the version of the model that they 
are running; this is helpful in evaluating our models over 
time and in distinguishing between models during the brief 
overlap period when two versions of the model are running 
behind the load balancer.

Several key design decisions allow us to handle requests 
to the service at very large scale. While gRPC minimises 
network latency by allowing bi-directional streaming 
between the client and server, the calls to our service are still 
time-intensive, so we built in a bloom filter caching mecha-
nism on the client side to avoid this bottleneck. This more 
intelligent client only reaches out to the server if it receives 
a domain that it has not recently seen before. Our analysis of 
domain traffic revealed that only 15% of domains are unique 
in an hour of traffic; this optimisation dramatically reduces 
the workload of our model server cluster.

We evaluated Bilbo based on its processing capacity and 
its findings, as seen below. Our initial prototype consisted 
of a single client reaching out to a load balancer with a sin-
gle server in the cloud. With an unoptimized compilation 
of Tensorflow for our back end, the fastest scoring aver-
aged to approximately 10 ms per record, increasing linearly 

Table 6   Consistency scores 
from each of the tests 
(1 = classification, 2 = 
generalisability, 3 = time-based 
resiliency) and the overall result

Calculated by counting the number of times each model was top three for a core metric. The best of each 
column is in bold

Model Test 1 + Test 2 + Test 3 = Overall

ANN 0 6 0 6
CNN 0 8 1 9
LSTM 3 3 0 6
MIT 3 4 1 8
Bilbo 3 6 1 10
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with an increasing number of requests. If we anticipate 1000 
domains per second, our model only needs to be hosted on 
10 servers. On a Cloud service such as Amazon Web Ser-
vices, we can keep a ten-node cluster running for less than 
fifty cents (USD) per hour.

Results in Enterprise Traffic

For further model performance testing, Bilbo is evaluated on 
real-world network traffic. Randomly selecting one window 
of traffic from August 14th, 2017, and another window of 
traffic from November 15th, 20172. Each network sample 
set contains domain names over a 2-h period. After parsing 
the domain names from the URLs in the logs, the August 
and November data contained 20,000 and 45,000 unique 
domains, respectively.

Since we lack ground truth for the domains in our cap-
tured samples to validate our results, we pulled in additional 
information for each domain. First, we included the action 
decision of the proxy, which denies domains that are known 
to be malicious. Second, we added scores from VirusTotal 

[58], a site that aggregates blacklists to provide reputation 
scores for domains and is commonly used by security ana-
lysts for evaluation of domains (accessed November, 2017). 
Note that both the proxy and VirusTotal are imperfect since 
they are unaware of malicious content related to a domain 
until thorough analysis has been performed, which can take 
many weeks [7]. We cross-referenced the high scores from 
our model with the results from the proxy and VirusTotal to 
perform a basic investigation.

Feeding our model only the domain names, we discovered 
a series of domains with similar naming patterns:

–	 cot.attacksspaghetti[.]com/affs
–	 kqw.rediscussedcudgels[.]com/affs
–	 psl.substratumfilter[.]com/affs
–	 dot.masticationlamest[.]com/affs

At a glance, these domains follow an algorithmic pattern of 
three characters, two words, and the “/affs” ending, mak-
ing them strong candidate dictionary-based DGA domains. 
Upon further examination, all of these domains were queried 
by the same machine, which, prior to our discovery, had 
been deactivated due to complaints of incredibly sluggish 
performance. This is highly suggestive of malware activity 
using a dictionary DGA network.

Fig. 5   Three stages of the updating process for our Model as a Ser-
vice (MAAS) Architecture for model deployments to be accessible 
to SIEM and other client systems. The first stage shows clients inter-
acting through the load balancer with old model servers. To update 
the servers, we spin up new model servers with the latest version 

and confirm production readiness before attaching them to the load 
balancer. Finally, the old model servers are deleted, leaving the new 
model servers in their place. At no point during this process will the 
clients be unable to receive scores from our models

2  These were recent dates when the model was initially developed for 
dictionary DGA detection.
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Additionally, we found four domains, each representing 
distinct suspicious networks matching the expected pattern 
for dictionary-based DGA C&C hubs:

–	 boilingbeetle
–	 silkenthreadiness
–	 mountaintail
–	 nervoussummer

Each of these networks, when visualised by ThreatCrowd, 
a crowd-sourced network analysis “system for finding and 
researching artefacts relating to cyber threats” [59], are 
shown to be comprised of domains that are made up of 
two or more unrelated words, all resolving to the same 
IP address, in the pattern of a domain-fluxing dictionary 
DGA. The “boilingbeetle” network is shown in Fig. 6. 
These domains and their related networks were not flagged 
by the online blacklists used by VirusTotal; only some 

of the domains within each network were blocked by the 
proxy.

Further investigation noted that these networks are for 
advertisement traffic, indicating that dictionary DGA tech-
niques are being used to bypass ad-blocker mechanisms. 
Although not apparently malicious, these five discoveries 
of dictionary-based DGA from potential malware, found in 
only a few hours of proxy log data, demonstrates that our 
solution is able to flag relevant results in live traffic.

Conclusions and Future Work

In this paper, we present a parallel hybrid architecture 
named Bilbo, composed of an LSTM, a CNN, and an 
ANN, for dictionary DGA detection. Dictionary DGAs 
bypass most general, manually defined DGA defences 
and are harder to detect due to their natural language 

Fig. 6   (Created December 2017) ThreatCrowd network graph of 
the domain “boilingbeetle” discovered in enterprise proxy traffic 
by the ensemble model. This domain is connected through select IP 

addresses to other domains of similar structure, in the pattern of a 
command and control network
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characteristics. Bilbo is compared to state-of-the-art deep 
learning models adapted for dictionary DGA classification 
and evaluated on consistency over AUC, Accuracy, and F

1
 

score. Overall, Bilbo is the most consistent and capable 
model available.

Bilbo was then applied to a large financial corporation’s 
SIEM, providing inline predictions within a scalable frame-
work to handle high-throughput network traffic. During 
investigations, our model’s scores were used to filter data 
and flag suspicious activity for further analysis.

When applied to several hours of live network logs, Bilbo 
successfully classified traffic matching the expected network 
pattern: a single IP address hosting several domain names 
that make no semantic sense and follow a trend of English 
words put together. Although the identified domains from 
the network logs were not botnets or worms reaching out 
to a C&C, which are very rare, Bilbo was able to identify 
dictionary DGAs used by advertisement networks and other 
applications with potential malicious intent.

Later improvements include the continued reduction of 
false positives and applying natural language processing 
(NLP) techniques. One method to reduce false positives 
would be to consider layering a generative model to deter-
mine if the input domain is similar to any data Bilbo has 
seen before. This could increase or decrease the score, or 
add another filter to alter a user’s confidence in the score. 
Applicable NLP techniques detect anomalous word combi-
nations in domains by scoring the likelihood words would 
be collocated. This could prove fruitful for DGA detection 
but heavily depends on the corpus for parsing out words and 
gathering initial collocation information to understand for a 
baseline of what is normal.
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