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Abstract
This work focuses on daily routine recognition to personalize the hearing aid (HA) configuration for each user. So far, there 
is only one public data set containing the data of two acceleration sensors taken under unconstrained real-life conditions of 
one person. Therefore, we create a realistic and extensive data set with seven subjects and a total length of 63449 min. For 
the recordings, the HA streams the acceleration and audio data to a mobile phone, where the user simultaneously annotates 
it. This builds the grounds for our comprehensive simulations, where we train a set of classifiers in an offline and online 
manner to analyze the model generalization abilities across subjects for high-level activities. To achieve this, we build a 
feature representation, which describes the recurring daily situations and environments well. For the offline classification, the 
deep neural network, multi-layer perceptron (MLP), and random forest (RF) trained in a person-dependent manner show the 
significantly best F-measure performance of 86.6%, 87.1%, and 87.3%, respectively. We confirm that for high-level activities 
the person-dependent model outperforms the independent one. In our online experiments, we personalize a model that was 
pretrained in a person-independent manner by daily updates. Thereby, multiple incremental learners and an online RF are 
tested. We demonstrate that MLP and RF improve the F-measure compared to the offline baselines.

Keywords  Machine learning · Daily routine · Activity recognition · Hearing aid · Sensor fusion

Introduction

Hearing aids (HA) adapt their configuration to the incom-
ing sounds based on a classification system. Therefore, in 
general, a class, e.g. speech in quiet, is linked to a predefined 
user-independent device setting [1]. Because this decision 
making is performed within seconds and the acoustic scene 
can rapidly change, the corresponding settings, e.g. fre-
quency amplification, can often vary as well [2]. These fre-
quent configuration modifications can be unpleasant while 
the HA wearer performs the same activity.

We aim to personalize these settings to the user’s prefer-
ences and needs since the wearer’s intention determines the 
ideal configuration in a certain situation. Assuming that the 
user does office work and the colleague besides him has a 
conversation with a visitor. Here, due to spatial proximity, 

the HA would decide that the user wants to listen to this 
conversation based on the short-term acoustic cues. How-
ever, the wearer’s intention is to focus on his work. Hence, 
the audio information can be ambiguous, and we need to 
consider the user behavior over a longer period to deduce 
this kind of situations.

The goal is to provide a stable classification with less 
prediction ambiguity and a personalized HA configuration. 
Thus, we link the common, repetitive situations of the daily 
routine to a preferred setting. The slowly changing, periodic 
daily routine is a high-level activity, which is a composition 
of many low-level activities. Supporting this new concept 
of personalized HA scene adaption, we focus on the routine 
detection part. To design such a system, we built an accelera-
tion (ACC) sensor in a HA to record over a longer period the 
motion patterns along with the acoustic features. Due to the 
resulting large data set, we develop an efficient processing 
scheme for the offline and online routine detection.

The paper is structured as follows. In Sect. 2, the related 
work on daily routine recognition (DRR), offline and online 
supervised approaches is described. In Sect. 3, the data set 
and routine annotations are introduced. In Sect. 4, the offline 
and online processing scheme of DRR is explained and 
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applied to the routine data. Finally, the results are presented 
and conclusions are drawn in Sects. 5 and 6, respectively.

Related Work

The field of human activity recognition (HAR) has been 
intensively investigated by focusing on low-level activi-
ties. These studies showed good detection rates by finding 
suitable features for orientation, locomotion, transporta-
tion modalities, and gestures [3–6]. Thereby, researchers 
often used inertial measurement units (gyroscope, mag-
neto- and accelerometer), where especially accelerometers 
were selected due to the low power consumption like in our 
case. In addition, it was demonstrated that for low-level 
activities the person-dependent model outperforms the 
independent one in various tasks [5]. Thus, in this contribu-
tion we address the question if this also holds for high-level 
activities. To assess this, we test different cross-validation 
schemes.

In audio research, lots of work was spent on good detec-
tion features for speech, own voice, and noise by their char-
acteristics [7, 8]. The fusion of the HAR and audio fields 
was done in a few studies for mostly short-term activities 
such as in a workshop [9, 10]. We build on these results by 
applying the most suitable features for our DRR use case.

Whereas on the periodic daily routine, only a limited 
number of authors worked on these composition activities 
of low-level primitives by applying a topic model or co-
occurrence statistics [11–13]. Especially the creation of data 
sets is extremely time-consuming and for accelerometers the 
TU Darmstadt set with one person exists [14]. Therefore, we 
address this gap by building a data set of multiple subjects 
with audio and ACC data for the HA preferred ear position 
and further analyze the routine data. In our previous work 
[15], we already showed the improved routine detection 
rates by combining audio and ACC features. Furthermore, 
we also applied our processing scheme on TU Darmstadt 
data set and showed a superior performance over the topic 
model [15]. For the offline recognition, lots of experiments 
with different classifiers such as decision trees or neural net-
works are performed for activity primitives mostly [5]. We 
continue these benchmark evaluations for the daily routine, 
which is expected to be more challenging due to the higher 
abstraction level that generates more variability.

Since the long-term activities might change over time and 
different routine compositions are carried out by the sub-
jects, the online model personalization is also assessed to 
follow possible non-stationary behavior. Thereby, the classi-
fiers are updated by adaptation of model parameters, ensem-
ble methods or incremental updates [16, 17]. A survey on 
incremental learners stated a good tradeoff between the com-
putational efficiency and performance by the linear support 

vector machine (SVM) with stochastic gradient descent 
updates, Gaussian Naïve Bayes and Online Random Forest 
(ORF) [18]. In addition, the popular neural networks are 
incremental learners by performing forward and backward 
passes on data chunks. Thus, we test all these algorithms 
and use as small considered multi-layer perceptron (MLP) 
network to keep the computational demands still feasible for 
a HA. The Gaussian mixture model (GMM) was often used 
in other audio or hearing aid studies for classification due to 
its computational efficiency and that is why we also apply it 
for comparison reasons [19, 20].

One study personalized the HAR model on inertial sen-
sor data without an user interruption [21]. This is achieved 
by pretraining an user-independent model and performing 
incremental online updates with the own model predictions 
on unseen data. They used the Learn++ ensemble method, 
which adapts its model based on suitable-sized data chunks 
and tested three base classifiers. However, the user-inde-
pendent model must be accurate enough that model per-
sonalization improves the recognition accuracy. Whereas in 
[22], the HAR model was personalized using an ORF. They 
updated the ensemble by adding new trees if sufficient sam-
ples have arrived and by deleting trees if their performance 
degraded in comparison to others with the new knowledge. 
These adding and forgetting mechanisms adapt to the new 
information. Both personalization studies worked on low-
level activities with small data sets. We combine these 
update strategies in our own ensemble approach and cross-
compare to existing incremental algorithms. Therefore, we 
intensively investigate the capabilities of these models to 
improve with their own predictions or true labels. After-
wards, the online evaluation assesses the performance either 
with the interleaved test-then-train, the so-called prequential, 
or holdout evaluation [23]. To compare with the offline base-
lines, we choose the holdout evaluation.

Data Set

In this paper, we propose to recognize the daily routine in 
an offline and online fashion for hearing aid personalization. 
Therefore, we consider the daily routine as a set of repeti-
tive, common situations and environments among subjects. 
For this purpose, we create a realistic and extensive data set.

As this is a preliminary study to show the feasibility of 
the approach, the seven subjects are three females and four 
males with a low mean age of 29.3 ± 8.9 years for HA users. 
Hence, they are not representative for hearing aid custom-
ers, which are mostly in retirement age over 60 years old [2, 
24]. Thus, it is expected that the younger people have a more 
active social lifestyle with more demanding hearing situa-
tions, which makes our task more challenging [25].



SN Computer Science (2021) 2:133	 Page 3 of 12  133

SN Computer Science

The goal for the subjects was to record the personal 
routine as long as possible (mean duration per day of 
610.1 ± 166.7 minutes) over a longer period of time (mean 
number of 14.9 ± 3.4 days). During the total length of 
N = 63449 minutes, the Signia Nx hearing aid is worn on 
the ear and continuously streams the data via Bluetooth ser-
vices to the mobile phone. The precomputed audio and raw 
acceleration features are ideally sampled at 2 Hz and 16 
Hz, but sometimes due to transmission problems, the rate 
can be lower. The rates are optimized to have a stable trans-
mission while keeping a good detection performance [5]. 
The variable rate of the data transmission leads to missing 
feature samples over time, which can have an influence on 
the classification performance [26]. Since our features are 
highly correlated over time from seconds up to minutes, the 
neighboring samples have similar information, i.e. the nega-
tive consequence of losing samples is reduced. Additionally, 
we design statistical features in section 4.1 that can deal with 
a variable number of feature samples. Thus, the daily routine 
detection is resilient to the missing feature problem.

Camera or raw audio recordings were considered but are 
not feasible over a long period of time and would be a pri-
vacy issue, especially in public environments. In contrast, 
our design is less obtrusive enabling the subjects to behave 
as natural as possible. Furthermore, the data timestamps 
and user annotations for the evaluation are generated in the 
mobile application. The users can report label errors, e.g. 
due to forgotten annotations or time offset, in the recording 
app for a later manual correction and shortly summarize 
their day.

The proposed routine classes have different hearing 
demands and are listed in Table 1. Starting at the top of the 
list, the transportation routine accounts for all modalities such 
as car or bus, going from A to B. While the physical activ-
ity stands for high-intensity routines like sport exercises or 
manual work, for instance. On the contrary, the basics group 
represents low-intensity activities and is inspired by the activi-
ties of daily living (ADL) concept [27], which represents the 
fundamental functions of living like eating or hygiene. Further 

activities, such as office work or reading a newspaper, are 
included as well.

The next two routine classes are influenced by the so-called 
common sound scenarios and are the most difficult situations 
for the hearing-impaired people [28]. The social (interaction) 
routine is the most crucial to participate in life during conver-
sations in various environments. Likewise, the (focused) listen-
ing routine is another fundamental function for the hearing to 
receive information from media or joy from music. These two 
hearing functions are sometimes determined by the intention 
of the wearer in the situation. That is why the user should 
select the intended dominant routine, i.e. in a conversation 
during a car ride, the dominant routine would be social. Hence, 
the classes are not mutually exclusive, which may be a possible 
source of confusion for the classifier and may result in a lower 
recognition rate. But we assume, that the situational intention 
changes the motion behavior allowing us their detection.

The introduced classes correspond to different hearing 
needs, which require specific signal processing settings. A 
few non-exhaustive examples are mentioned to gain a bet-
ter understanding of the routine class goals. In a listening or 
social situation, it is often required to focus on a target speaker, 
where directional hearing is beneficial. Whereas, in basics, 
transportation, or physical class an omni-directional setting 
helps to keep the situation awareness and monitor if someone 
approaches the HA user. In a car transport scene, a typical 
low-frequent noise is present, that creates the need for noise 
reduction measures.

A typical example day of our data set from one subject is 
shown in Fig. 1. The overall main activity routine is basics, 
which mostly consists of sitting at the desk and working on 
a computer with smaller interruptions, such as coffee breaks. 
Usually, during lunch break the nearby canteen is visited by 
foot with a loud babble background noise. Within the working 
day, some meetings plus general conversations are included in 
the listening or social routine. Furthermore, the main mode of 
transport is the bicycle or car for commuting. Typical evening 
routines are meeting friends as social class, watching TV as 
listening class, dancing or going to the fitness center as physi-
cal class. Five subjects had the described office work routine 
containing lots of repetitive situations and environments. Two 
subjects followed a less recurring schedule and had more free 
time activities.

Furthermore, the different personalities and routines 
affect the prior class distribution as shown in Fig. 2, i.e. 
some tend to be more talkative and others more a good 
listener [29]. Thus, the class imbalance varies across the 
subjects and the online personalization addresses this 
issue by adapting the classification models. Addition-
ally, the representative features for each class play an 
important role in an imbalanced classification problem 
to separate the classes well [30]. That is why, we choose 

Table 1   List of routine classes and corresponding activities

Routine Activities

Transportation Commuting, train, car, bus, plane, location 
change

Physical (Activity) Exercises, sport, manual work
Basics Hygiene, dressing, resting, eating, preparing 

food, housekeeping, office work
Social (Interaction) Family, friends, conversations, partying, play 

music, singing, call
(Focused) Listening Music, cinema, theater, concert, lecture, TV, 

media
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the recorded features in the data set to be informative and 
discriminative for these classes.

Other potential public-available data sets are the 
Opportunity or TU Darmstadt set [14, 31]. Opportunity 
concentrates on ADL with lots of primitive activities in 
a sensor-rich and constrained environment. Whereas, the 
TU Darmstadt set contains the real life of the first author 
in an open setting by two ACC sensors. They focused on 
the daily routine during working days in office character-
ized by a very repetitive structure [15]. In contrast, our set 
contains the real life of 7 subjects and is a more realistic 
with unconstrained environments and activities. Since we 
deal with hearing aids, the preferred sensor location is 
the ear position on the head, which is not the case for the 
other two data sets. In addition, these previous studies 
did not use rich audio features as we do. Hence, there was 
the need to construct this realistic data set with multiple 
subjects.

Approach

In this section, the processing scheme for DRR shown in 
Fig. 3 is explained. First, the feature representation is built. 
Subsequently, the supervised learning scheme is applied 
in an offline and online fashion using various classifiers. 
Finally, the evaluation determines their performance.

Features

In the following, details to the features and their processing 
schematic, shown in the dashed block of Fig. 3, are given.

The features are built to distinguish the classes by repre-
senting the routine behavior and environments well. Their 
space can be partitioned in two independent inputs: ACC 
and audio. The raw acceleration is measured at a rate of 16 
Hz and the precomputed audio features have a rate of 2 Hz. 
To fuse the inputs on the same time grid, the raw ACC is 
converted to features on an activity primitive level and then, 
a statistical representation is built on a routine activity level.

The rigid body model tells that the measured triaxial 
acceleration signal �mes is ideally only composed of gravi-
tational � , rotational, which splits in radial �R and tangential 
�T , and linear �lin components:

where all quantities are expressed in the sensor coordinate 
system and multiples of the earth gravity g = 9.81

m

s2
 [32]. 

The vector � is only dependent on the sensor orientation, 
which is chained to the head and body orientation. If no 
motion is present, the gravity is directly given. The orienta-
tion is a key identifier to differentiate some scenes [3]. For 
example, in our case, sitting during office work and lay-
ing down in a workout can be distinguished. But in case of 
motion, the mean is a typical estimator for gravity [33].

The radial and tangential ACC are given by the cross 
product of sensor position vector � with angular ACC � and 
velocity vectors �:

Both quantities are orthogonal to each other and that is 
why the correlation between axes gives clues about head 

(1)�mes = � + �R + �T + �lin in [g],

(2)�T = � × � and �R = � × � × �.
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rotations. This allows us to detect conversational or listening 
gestures such as head shaking or nodding [34].

Furthermore, the linear motion dominates in comparison 
to head or body rotations, since the resulting amplitude is far 
stronger. That is why periodic movements, such as walking 
or jogging, produce a high output and often a variance fea-
ture is calculated to distinguish these from being stationary 
or sitting by the motion strength [6]. In addition, the mean 
crossing rate (MCR) informs about the motion frequency by 
counting the number of times the signal crosses the mean 
value, which is especially triggered by periodic movement. 
In total the four measures - mean, axes correlation, vari-
ance, and MCR - are extracted of the 3D ACC vector, which 
gives 12 dimensions. This is done over a sliding window of 
1 second with 50 percent overlap, which demonstrated in 
other studies a good performance for the detection of activ-
ity primitives [35]. Conveniently, this choice matches the 
rate of audio features and fuse them on the same time grid.

For the audio signals, a set of 10 precomputed HA fea-
tures is selected, since they describe well various environ-
mental, music, and speech characteristics, which are helpful 
to detect the routine classes. The HA transforms the time 
signal to the frequency domain to compute these features. 
Thereby, the first band is from 0 to 125 Hz and the remain-
ing 47 channels c have a width of 250 Hz up to 12 kHz. The 
listed features are grouped by the main detection property.

–	 The own voice activation takes advantage of the acoustic 
path from the mouth to the HA microphones [36]. It can 
distinguish between social and listening situations.

–	 The auto-correlation value of the actual sample and one a 
few milliseconds ago describes the tonality of music that 
can differ social or listening from other classes [7].

–	 Whereas, the wind activity helps to detect outdoor situ-
ations, but fast head rotations or movements can also 
trigger this feature due to the resulting airflow. It uses 
the non-existing correlation between the front and rear 
microphone signals.

–	 The maximum level 

 of all bands c ∈ 1, 2,… , 48 gives clues about the loud-
ness of the environment and demonstrated a good perfor-
mance for various audio classification tasks [37].

(3)lmax = max
c

lc

–	 The spectral centroid (SC) of noise floor (NF), NF of 
low- and mid-frequency bands, 

 are good detectors for motorized modes of transporta-
tion, which produce a low-frequent noise [1].

–	 Three characteristic speech features are the average dif-
ference between level and noise floor, 4 Hertz modulation 
and onsets [1, 8].

The 22 audio and ACC low-level features are summarized 
in Table 2 and out of them we build the high-level routine 
representation. Therefore, they are segmented in non-over-
lapping one-minute frames to balance between fast audio 
(seconds) and slow activity (minutes) changes [38, 39]. This 
window length already showed a good performance in our 
previous work on TU Darmstadt and our former set [15]. 
Afterwards, the statistical quantities-mean, variance (var), 
and mean crossing rate-are computed for all features and 
frames [6]. This summarizes the information about gestures 
and low-level activities, e.g. the frequency of head rotations 
or strength of motion, and audio, e.g. changes in loudness 
levels or own voice activation, on a routine level. Thus, for 
example, the level of activity can distinguish the basics and 
physical routine. Whereas, the strength of speech properties 
or occurrence of low-frequent noise can separate the trans-
portation and social routine.

To sum up, out of 22 low-level inputs three measures 
are extracted and 66 high-level features are returned, which 
are transformed to have zero mean and unit variance. After-
wards, we apply feature selection (FS) methods for the 
finding an optimal subset of features for the DRR [40]. 
Therefore, we first preselect a subset of 30 features with 
the minimal-redundancy-maximal-relevance criteria [41]. 
Then, we use the computational demanding wrapper-based 
approach of sequential feature selection (SFS) on the subset 

(4)SCNF =

∑8

c=1
lc ⋅ c

∑8

c=1
lc

,

(5)NFLow = (log2 l1 + log2 l2)∕2 and

(6)NFMid = log2

6
∑

c=1

lc ⋅ wc

12
with� = [1 2 3 3 2 1]�

Table 2   Summary of low-level 
features

Input Methods

Acceleration (12D) Mean, variance, mean crossing rate (axis-wise), axes correlation (between two axes)
Audio (10D) Own voice activation, temporal auto-correlation, maximum level, spectral centroid, 

low- and mid-frequency noise floor, average difference, wind, 4 Hz modulation, 
onset detection
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in a feasible amount of time. After that, our final feature rep-
resentation contains 16 dimensions for routine recognition.

Classification

With the found ACC and audio features, we classify the 
routine behavior and environments in an offline and online 
manner. Therefore, a set of learners is selected for the evalu-
ation, which are computationally feasible to use in a HA. 
For the offline classification, we perform batch learning on 
the entire training data and apply the fixed model on the 
unknown test set for the evaluation. We compare the recog-
nition performance of the following classifiers:

–	 deep neural network (DNN) iteratively trains many 
parameters with three hidden layers consisting of 100 
neurons per layer to avoid overfitting within the complex 
network an early stopping criteria and L2-regularization 
are applied,

–	 random forest (RF) builds an ensemble of 20 decision 
trees using randomization by bootstrapping samples for 
each tree and a random feature selection per binary split,

–	 multi-layer perceptron (MLP) iteratively trains a non-
linear decision boundary with 100 hidden neurons,

–	 k-nearest neighbor (kNN) predicts the class of the near-
est neighbor by finding the smallest Euclidean distance 
between the training examples and test sample,

–	 Gaussian mixture model (GMM) fits a mixture model of 
2 components per class with a diagonal covariance and 
predicts using a maximum a posteriori (MAP) criteria,

–	 Naïve Bayes (NB) fits one Gaussian likelihood density 
per feature and class to decide per MAP criterion, and

–	 linear SVM parameterizes a hyperplane per class for the 
one-vs-all classification.

For the online classification, the initial model is trained on 
all known subjects and then personalized on the unknown 
test person P by daily updates. The initial training is per-
formed in a leave-one-person-out (LOPO) manner and thus, 
it is called LOPO model. Thereby, the online personalization 
updates the classifiers based on the data of the new day in 
two ways either with the true labels (“true update”) or the 
own predictions (“pred update”). For the true update, we 
assume the user annotates the new data, for example, in a 
smartphone. Whereas, for the pred update, the current model 
predicts the labels of the new day and uses these for the 
training. Hence, we analyze if the classifier can self-improve 
over time without a necessary user-feedback.

Unlike in the offline phase with batch training, all clas-
sifiers are trained in data chunks, where the first one con-
sists of all known subjects and the remaining ones are the 
daily updates of the new test person P. An one-day adapta-
tion interval is chosen, since the daily routine activities are 

conducted over a time frame of minutes to hours. Thus, we 
ensure a broader data variability of multiple present classes 
for each daily adaptation, which should ease the model gen-
eralization. In doing so, we also want to imitate the behav-
ior of a mobile system in real life, where the updates take 
place, for example, in a smartphone and only the adapted 
parameters are transferred to the HA. This is more computa-
tional- and energy-efficient than updates in shorter intervals. 
Therefore, we use the so-called partial or incremental fits of 
the MLP, NB, and SVM classifiers [18, 42], i.e. the param-
eters of the neurons, Gaussian densities, and hyperplanes 
are updated iteratively. For the GMM, the adaptation of the 
mean parameter is used since this is very efficient and chang-
ing the covariance showed only a minor improvement [43].

In our own ensemble method, we combine the Learn++ 
and ORF approach of [21, 22] by implementing an extended 
RF with an online mechanism, which adds and deletes 
ensemble trees. This adapts the model to possible instation-
ary behavior or interpersonal differences. The online RF is 
constructed as follows the initial model is trained with 10 
trees and for each daily update, we train two additional RF 
trees. This adapts to recurring daily behavior like in week-
ends. The fixed baseline ensembles train 20 trees to have 
the same total number of learners. The forgetting mecha-
nism checks the individual accuracy of all ensemble trees 
and assumes the rates are Gaussian distributed. If a tree is 
worse than minus two times the standard deviation of mean 
performance, this tree is deleted. Furthermore, the online 
algorithms are compared to four baselines:

–	 the person-independent, initially-fitted LOPO model is 
called: “fit(LOPO)”,

–	 the person-dependent model that is only trained on the 
test person’s data: “fit(P)”,

–	 the combination of both personal and LOPO data in one 
model fit: “fit(LOPO+P)” and

–	 the person-independent classifier that is fine-tuned by the 
personal data: “fit(LOPO)+adapt(P)”.

All experiments are done in MATLAB R2019b in conjunc-
tion with classifiers from the Python library scikit-learn 
0.22.2 [42]. For all methods, the made changes from the 
default parameters are explicitly mentioned. We imple-
mented the online RF, offline and online GMM classifiers 
in MATLAB with the fitting functionality of Python for the 
RF trees and GMM probability distribution.

Evaluation and Experimental Setup

Evaluating the offline classification, the data set is split up 
in k parts as shown in Fig. 4. Afterwards on k − 1 (black) 
subsets, the training is performed and on the unseen k-th 
(red) set the predictions are made. This process is repeated 
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for all combinations, which gives a cross-validation (CV) 
scheme. Finally, the metrics are computed over all subsets.

The three applied CV schemes, leave-one-person-out 
(LOPO), leave-one-fold-out (LOFO), and leave-one-day-
out (LODO), differ how they group the data set. Hence, 
LOPO splits person-wise, LOFO groups them in five random 
subsets of the same size and LODO makes one group per 
day. The LOPO scheme assesses the recognition rate of a 
person-independent model. On contrary to the LODO group-
ing, that is applied for a personalized training. As suggested 
in [44] for the LOFO scheme, there might exist a possible 
bias. Due to random split of the temporal data, neighboring 
samples can appear in different folds and are likely to be 
highly correlated. This results in over-optimistic recogni-
tion rates. We test if this bias is also present for high-level 
activities.

Evaluating the online classification, we use a combina-
tion of LOPO and LODO scheme shown in Fig. 5. First, 
the LOPO model is initially fitted on k − 1 known subjects 
and the unseen subject k is used for online personalization. 
Therefore, the daily updates are performed on the training 
days and the recognition rate is reported on the fixed test day 
for each step. To further analyze the influence of training day 
order, we randomly permutate the training sequence as seen 
in Fig. 5. For the example of three days, the two possible 

training sequences ,  and ,  are displayed with 
a fixed test day . These training days  and  are the 
personal data of P, which is used to train three baselines. Of 
course, the performance metric is always estimated on the 
fixed unseen test day  and is averaged over all repetitions. 
Again, as in the LODO scheme, all day permutations are 
simulated, and the results averaged over all combinations. 
Afterwards, the online simulation is repeated for all subjects 
and the final performance is averaged over all outcomes. As 
it is typical in activity recognition, the measures,

–	 the confusion matrix summarized by four events: true 
positive (TP), true negative (TN), false positive (FP), and 
false negative (FN),

–	 accuracy TP+TN

TP+TN+FP+FN
 , and

–	 F1-measure as harmonic mean of recall TP

TP+FN
 and preci-

sion TP

TP+FP
,

are applied [6]. We use the class-averaged F1-measure and 
not the weighted version, since the data set has a strong class 
imbalance shown in Fig. 2 and the overall weighted perfor-
mance would be dominated by the majority classes. That is 
why the reported rates are expected to be lower.

To compare the significance of two classifier results based 
on the performances of the CV folds, the Wilcoxon’s signed-
rank test is used, which as a non-parametric hypothesis test 
does not make a distribution assumption on the results [45]. 
Therefore, each result per fold is considered as a trial and the 
performance differences of the two classifiers are computed. 
The absolute values of these differences are ranked and for 
each classifier these ranks are summed, on which a classifier 
won the comparison. The lower sum is compared to a critical 
value and if it is lower, the null hypothesis is rejected at a 
confidence level of 5% that the performance of these clas-
sifiers is no different. Thus, one classifier is significantly 
better than the other.

Results and Discussion

In this section, the results of various classifiers are split up 
in an offline and online evaluation. Firstly, the offline out-
come of different cross-validation schemes is presented and 
analyzed. Secondly, the online classification performance is 
compared and the interday variability is assessed.

Offline Results

In the offline experiments, we analyze the F1 performance 
of all classifiers based on three cross-validation schemes: 
LOPO, LOFO, and LODO. Thereby, we assess the person-
dependent and -independent classification rate and look for 

Fig. 4   Offline evaluation schemes groups the data set by person, ran-
dom fold, or day

Fig. 5   Online evaluation scheme is a combination of a LOPO and 
LODO scheme
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a possible bias between the CV schemes. The comparison 
of various classifiers in the Table 3 states the very good F1 
results of the DNN and MLP network (84.3% and 84.6%) or 
the ensemble approach RF (84.1%) for the LOPO CV. The 
Wilcoxon hypothesis test shows that these three classifiers 
are significantly better than all others, but not to each other. 
The remaining learners also perform well in a close margin 
about 6% worse except the both density-based classifiers NB 
and GMM, which are more negatively affected by the class 
imbalance [46]. Further reasons for the ranking are that the 
linear decision boundary of the SVM is not complex enough 
to separate all classes. Thus, the MLP with a non-linear 
boundary distinguishes better between the classes. The lazy 
kNN classifier learns by example and does not generalize 
well over unseen data of different users [47]. The complexer 
DNN does not perform better than the MLP network, since 
the available amount of data is too less for the higher number 
of DNN parameters.

As mentioned in [44], the temporal correlation between 
consecutive samples in different folds boosts the F1 results 
of LOFO over LOPO CV in Table 3 in the interval of 0.7% 
to 6.0%. This bias is smaller for the DNN and MLP network 
(4.2%) than for the ensemble method RF (5.2%), but worse 
for instance-based classifiers like kNN (6.0%). The para-
metric density estimation of NB (0.7%) and GMM (0.9%) 
is less affected by the temporal sample correlation, since the 
parameter updates are aggregated over the whole training 
data. This is also the case for the SVM parameterization of 
linear hyperplane and further non-tested classifiers, which 
follow the same learning principle.

Furthermore, we confirm the previous literature results [5, 
22], where the person-dependent model with (LODO) CV 
scheme performs better than the independent one. This holds 
not only for low-level activities, but it is also valid for the 
high-level routine activities. The classifier ranking remains 
the similar to the LOPO case with smaller deviations.

Additionally, the detailed results of RF are presented by 
the confusion matrix in Fig. 6, where the class-wise recall 
is shown in the rows. Obviously, three of five classes are 
very well detected over 90% of recall and they contribute 
as majority to the high overall accuracy of 87.3%. The big-
gest confusion stems from the listening class with basics 
(21.7%) and social (11.1%). This makes sense due to the 
close relation between listening and social, where class tran-
sitions happen quit often. Likewise, the difference between 
listening and basics is mainly detected due to different audio 

characteristics, but for some situations they could be similar. 
For example, there is a background conversation and the 
subject does not want to follow it. Thus, a possible source 
for the classifier confusion stems from this intention-based 
scenery. Furthermore, the bigger mismatch of 14% between 
physical and social happens, since both classes could also be 
simultaneously and then the user’s intention decide. Here, 
specialized acceleration conversation or movement features 
could deduce the motion behavior and the situational inten-
tion more precisely. Additionally, we analyzed if less trans-
mitted data, i.e the missing feature problem, correlates with 
wrongly predicted samples. Therefore, a histogram with the 
number of transmitted samples per segment window given 
the correct or wrong prediction outcome states that both 
distribution are nearly identical. Thus, the daily routine rec-
ognition on our statistical features is robust to the missing 
feature problem.

Online Results

In the online simulation, we assess a possible performance 
improvement to four baselines by the daily model updates of 
the initially person-independent model. The online simula-
tion results are dependent on the training sequences. One 
example is shown in Fig. 7, where the mean hold-out per-
formance on the fixed test day is depicted over the vari-
ous daily training updates with true or predicted labels and 
a confidence interval of one standard deviation (std). The 

Table 3   Results of offline 
classifier F

1
 performance [%]

CV SVM NB MLP kNN GMM RF DNN

LOPO 77.3 70.8 84.6 78.4 68.1 84.1 84.3
LOFO 80.6 71.5 88.4 84.4 69.0 89.3 88.5
LODO 81.9 72.9 87.1 82.0 73.8 87.3 86.6

93.3%
3525

3.6%
160

0.1%
34

0.2%
46

0.3%
21

3.7%
141

73.8%
3252

0.9%
222

2.5%
562

0.8%
67

0.8%
30

7.6%
336

92.0%
22476

3.4%
764

21.7%
1819

1.8%
67

14.0%
617

2.6%
645

91.6%
20565

11.1%
935

0.4%
15

1.0%
44

4.3%
1059

2.2%
503

66.1%
5544

Transportation Physical Basics Social Listening

Output Class

Transportation

Physical

Basics

Social

Listening

T
ru

e 
C

la
ss

Fig. 6   Confusion matrix of LOPO with RF
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final performance is then taken as average over all sequences 
after the last training day. Obviously, the training updates 
improve the recognition outcomes for true and predicted 
labels. These results depend on how similar the training 
days so far and the test day are, which also contributes to 
the seen std and it slightly grows during both updates. For 
training updates with the own predictions, the results depend 
if the initial LOPO model is precise enough. Otherwise, the 
model cannot improve its performance, for that no example 
is shown. This confirms the previous study of [21].

Afterwards, the procedure is repeated for all combina-
tions of test days and the performances are averaged. Then, 
the final F1 results are obtained for all classifiers in Table 4 
by averaging over all subjects. For MLP, NB, and RF only 
the true label updates are able to improve the results over the 
initial LOPO model performance by 0.6% to 0.8%. There-
fore, the own model predictions are not on average reliable 
enough to improve the classifiers. The Wilcoxon hypothesis 
test shows that the MLP classifier is significantly better than 
all others on the true and predicted label updates. Again, the 
personalized model performs the best except for MLP, where 

the model improves more by having more data even from 
other subjects (fit(LOPO+P) and fit(LOPO)+adapt(P)). For 
the NB, the order of fitting does not matter, since it updates 
only its count statistics and densities. That is why the true 
label updates, fit(LOPO)+adapt(P) and fit(LOPO+P), have 
exactly the same performance of 66.7%. This is not the case 
for the RF, since three batch fits with personal data have a 
rounded value of 82.1%, but they have minor differences in 
the recognition rates. For the DNN, we denote the higher 
number of parameters hinders a model improvement during 
the online learning. Therefore, the simpler MLP classifier is 
in advantage and outperforms all other learning algorithms. 
The batch learning with personal data performs better than 
the online updates, since the interday variations are high 
and different activities are carried out on several days. Thus, 
learning with more present classes and activities generalizes 
better over unseen data.

Further analysis of the training sequences is depicted in 
Table 5, where the std of recognition rates over all training 
sequences is computed after the last update per person and 
is averaged over all subjects. Obviously, the GMM is stable 
with a very low std of 0.02%, since it only shifts the mean 
component. This update is independent of the order because 
the vector sum is associative. The MLP and DNN have a 
0.54% and 0.58% smaller std for its own predicted labels 
than true ones, because the model makes consistent predic-
tions, but not necessarily right ones. For the NB again, it 
updates only counts, where the order does not matter for the 
same result with the true labels. But in the case of the own 
predictions are used, the order changes the models over time. 
Thus, the predictions produce the different counts, which 
explains the slightly higher std of 0.11%. The RF std is simi-
lar to the MLP, which comes from the used model construc-
tion. Since the RF has inherent randomization by the data 
bootstrapping and random feature selection, the outputted 
trees are always different, which results in a slight std about 
3%. The SVM linear hyperplane updates are more influenced 

1 2 3 4 5 6 7 8 9
Time [day]

80

81

82

83

84

85

86

87
F 1 [%

]

true update
pred update

Fig. 7   Mean hold-out performance of multiple training sequences 
with a confidence interval of one standard deviation for the online 
MLP classifier

Table 4   Results of online 
classifiers F

1
 performance [%]

Classifier DNN GMM MLP NB RF SVM

pred update 75.3 62.9 79.4 64.3 74.9 70.7
true update 75.0 63.3 81.0 66.7 78.9 70.8
fit(LOPO+P) 79.9 63.7 82.8 66.7 82.1 74.8
fit(LOPO)+adapt(P) 78.0 63.3 82.5 66.7 82.1 77.3
fit(P) 79.7 68.5 82.0 67.7 82.1 77.8
fit(LOPO) 77.0 63.4 80.4 66.1 78.1 73.2

Table 5   Standard deviation of 
training sequences ( F

1
 [%])

Classifier DNN GMM MLP NB RF SVM

pred update 3.79 0.02 2.20 0.11 3.34 8.77
true update 4.37 0.02 2.74 0.00 2.49 7.02
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with a std over 7% by the order of training days, since the 
interday variability of different classes is also high, i.e. the 
hyperplane shifts are too sensible with a small amount of 
data and do not generalize well.

To systematically analyze the interday class variability, 
we plot the distribution of the daily class prior in Fig. 8. 
Obviously, the two majority classes basics and social have 
the highest median values of 41.8% and 34.8%, but they also 
have the highest daily variability of 22.4% and 18.6% meas-
ured by the interquartile range. Whereas, only listening has a 
variability of 14.1% and the remaining two classes fall below 
10%. These high differences in the class priors across days 
create the previously mentioned challenges for the detec-
tion algorithms and hinder an easy adaptation to this non-
stationary process. According to [16], these changes are the 
so-called concept drift, which can occur sudden, reoccurring 
or incremental. In our case, the most relevant changes hap-
pen on a recurrent basis, since a weekend of lots free time 
activities strongly differs to a workday in office. We do not 
observe any sudden nor incremental drifts.

Conclusion and Outlook

In this work, we introduced as a first contribution a new real-
life data set, which consists of 7 non-representative subjects 
for hearing aid (HA) wearers and a total length of 63449 
minutes. The recorded acceleration and audio data describe 
the daily routine characteristics well due to our feature rep-
resentation. On this basis, we perform two comprehensive 
comparisons for the offline and online routine classification. 
For the offline recognition, our second contribution confirms 
that the person-dependent model is superior to person-inde-
pendent classifier. We further showed that the deep neural 
network, multi-layer perceptron (MLP), and random forest 
(RF) yielded the significantly best F-measure performance 
of 86.6%, 87.1%, and 87.3%. The remaining misclassified 

samples require a tailored motion representation to distin-
guish the intended behavior more precisely. In our online 
simulation, MLP and RF improved their F-measure per-
formance by 0.6% and 0.8%, respectively, using the true 
labels compared to the baseline of the initially fitted model. 
Additionally, we analyzed the effect of the training sequence 
order and demonstrated a smaller influence of 2-3% at the 
F-measure rate for MLP and RF. The online analysis states 
our third contribution.

For future work, the routine detection performance is 
evaluated on a data set with HA users of a representative 
age range and over a longer period. Then, the personal 
dependency of these elderly users are assessed especially 
if their behavior patterns are different, other activities are 
performed, or a concept drift changes the routine distribu-
tion over time. However, we expect that these older subjects 
have a stronger and more repetitive routine, which should 
simplify their detection.
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