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Abstract
The bigraph theory, devised by Robin Milner, is a recent mathematical framework for concurrent processes. Its generality is 
able to subsume many existing process calculi, for example, CCS, CSP, and Petri nets. Further, it provides a uniform proof 
of bisimilarity, which is a congruence. We present the first canonical string encoding for pure and lean bigraphs by lifting 
the breadth-first canonical form of rooted unordered trees to a unique representation for bigraphs up to isomorphism (i.e., 
lean-support equivalence). The encoding’s applicability is limited to atomic alphabets. The time complexity is O(n2k d log d) , 
where n is the number of places, d the degree of the place graph and k the maximum arity of a bigraph’s signature. We provide 
proof of the correctness of our method and also conduct experimental measurements to assess the complexity.
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Introduction

Graphs are well-understood and useful mathematical 
abstractions [20, 44]. Informally speaking, ordinary graphs 
comprise nodes and edges which allow representing “binary 
relations between nodes” [13, p. 463]. Moreover, graphs 
can be equipped with any non-trivially semantic meaning 
or structural extension, e.g., to represent Boolean functions 
by propositional directed acyclic graphs [45], or to describe 
static system structures of concurrent systems [20, p. 8]. 
An extension called hypergraphs [9] allows multiple links 
between nodes via hyperedges and lifts the binary relation 
limitation. Due to their general formalism, they found to 
be useful for object representation, and in this respect, are 
commonly used for modeling complex structured data [14] 
within a variety of different domains. To give one particular 

example, they are heavily employed in the field of software 
development as underpinning for models, where different 
structures on different levels are handled as graphs [20, 
pp. 7].

With this in mind, we often need to decide if two graphs 
are equal (i.e., isomorphic), which is a fundamental question 
in graph theory [26]. Here we can distinguish between two 
strands (cf. the taxonomy of matching problems in [18]). 
Sometimes a non-exact or approximate match is sufficient 
when we only need to check if a substructure is contained 
within another target graph. Roughly, given two graphs 
G = (VG,EG) and H = (VH ,EH) , the task is to find a sub-
graph of G which is isomorphic to H. This is referred to as 
subgraph isomorphism problem, which will not be treated 
here. An application of subgraph isomorphism might be, as 
mentioned in [43], to determine whether a certain chemical 
substance is present in a given compound. In the second 
case, we might be interested in an exact match. This par-
ticular field is entitled as exact graph matching or graph 
isomorphism, which is a subclass of the subgraph isomor-
phism problem. Specifically, two graphs F = (VF,EF) and 
H = (VH ,EH) are isomorphic F ≅ H if they are structurally 
the same graph (see [44, Def. 7.1]). For example, within 
a software application, we want to avoid re-creating the 
same object model (i.e., a graph) multiple times, meaning, 
we must check if the same structure already exists. Several 
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possible matching solutions for different graph types can be 
identified in the literature, where we wish to address a few in 
“Related Work” later. For further reference, we wish to men-
tion the survey of Conte et al. [18], where a comprehensive 
overview is presented of many applications of graphs and 
graph matching algorithms.

Contribution. In this paper, our approach is devoted to 
the bigraph isomorphism problem for the pure case. Essen-
tially, a bigraph B = ⟨BP,BL⟩ is a hierarchical graph com-
prising two independent graph structures: The place graph 
BP describes the nesting of nodes in a tree-like structure, the 
connection among nodes is expressed by the link graph BL ; 
both relying on the same node-set (see Def. 6). Our contri-
bution is the computation of a unique representation of a 
bigraph up to isomorphism. The unique representation of 
a graph is also referred to as canonical form or canonical 
labeling in this paper. If we can find a canonical mapping, 
we can reduce the bigraph isomorphism problem to a string 
matching problem (i.e., checking the corresponding canoni-
cal labelings of two bigraphs on equality), without resorting 
to brute force. To do so, we must respect the (lean-) support 
equivalence property for two bigraphs (see [33, p. 16] and 
also Def. 8 and 9), which corresponds to finding a support 
translation � such that  (see Def. 8). Consequently, 
we can check for two bigraphs F and G whether their canoni-
cal forms are equal, rather than isomorphic (cf. also [38]). 
Given the computational complexity of an isomorphism 
test, “a canonization algorithm is often preferable to an 
isomorphism test” [38, p. 1]. (This is not to be confused 
with the well-defined bigraph matching in the literature, see 
“Related Work”.) As a result, the problem becomes O(n), 
where n is the length of the string encoding (precluding the 
processing time for computing the canonical form). This 
means that testing the equality of graphs is, therefore, easy, 
whereas the computation of the canonical labeling is often 
not [26]. However, it allows graphs to be treated separately 
instead of comparing graphs pairwise [38] (see also “Dis-
cussion”). Furthermore, existing software implementations 
such as nauty [30] prove that efficient isomorphism tests 
based on graph canonization are realizable. To the best of 
our knowledge, no such string encoding exists for pure and 
lean bigraphs currently.

Structure. Our paper is structured as follows. The neces-
sary background about some elementary graph structures 
and the bigraphical concepts are provided in “Graph-Theo-
retical Background”, which are useful to observe how ordi-
nary graphs relate to bigraphs. In “Bigraphical Canonical 
String Encoding”, we first provide the key ideas that are 
used in our approach, then present our implementation to 
compute the canonical string of a pure bigraph, provide suf-
ficient examples and address the time complexity. In “Dis-
cussion”, the paper continues with a discussion, reviewing 

the problem of graph isomorphism in general, canonical 
labelings, and the one of bigraph matching, and reflects the 
practical application of our work. Finally, we conclude our 
paper with “Bigraphical Canonical String Encoding” by giv-
ing some final remarks.

Graph‑Theoretical Background

In this section, we recall bigraphs and their underlying 
mathematical primitives, which are helpful for the under-
standing of the presentation of our canonical string encod-
ing algorithm presented in “Bigraphical Canonical String 
Encoding”.

Elementary Graph Structures

Definition 1 (Tree) A connected graph with no cycles of the 
form G = (VG,EG) is termed unordered undirected tree, or 
just tree. Edges and vertices of G have no labels implying no 
special ordering, and edges also have no direction, meaning, 
e = (vi, vj) implies e = (vj, vi) for each edge e ∈ EG.

Definition 2 (Rooted tree) (after [42, p. 269]) A rooted tree 
is a triplet G = (VG,EG, rG) , where (VG,EG) is a unrooted 
tree as by Def. 1, each v ∈ VG has a distinct parent and rG is 
some vertex in VG which is called the root, implicitly speci-
fying the parent-child-relationship, thus, the edge direction. 
Vertices under the same parent are called siblings, vertices 
with no children are called leaves of the tree.

Definition 3 (Hypergraph) (after [9, p. 226]) A hypergraph 
H = (V ,E) contains a finite set of vertices V and a family of 
sets E = (ei)i∈I of non-empty subsets of V called the hyper-
edges or edges of H, where I is a finite index set.

Bigraphs

Here we provide the standard definition of concrete 
bigraphs given in [33] for the pure case. Bigraphs are not 
only a formal graphical model but also provide a graph and 
term representation (see [33]). An example of a bigraph 
B ∶ ⟨2, {x1, x2}⟩ → ⟨1, {y1, y2}⟩ is depicted in Fig.  1 and 
the formal definition of its algebraic graph representation is 
given with Def. 6. As a shorthand what follows, a finite ordi-
nal n often reads n = {0, 1,… , n − 1} . Further, A ⊎ B is the 
disjoint union of sets A and B, and X  is an infinite alphabet.

Definition 4 (Bigraph interface) (after [33, Def. 2.3]) An 
interface for bigraphs is a pair I = ⟨m,X⟩ of a place graph 
interface and a link graph interface, where X ⊂ X  is a finite 
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set of names and m is called the width of I. We call I nullary, 
unary, or multiary if m is 0, 1, or > 1 , respectively.1

A concrete bigraph (see Def. 6) is always defined over a 
signature � , which specifies the syntax of the bigraph:

Definition 5 (Basic signature) (after [33, p. 7]) A basic 
signature � takes the form (K, ar) . It has a set K whose 
elements are kinds of node called controls, and a map 
ar ∶ K → ℕ assigning an arity, a natural number, to each 
control. The signature is denoted by K when the arity is 
understood. A bigraph over K assigns to each node a control, 
whose arity indexes the ports of a node, where links may be 
connected.

We use sans-serif letters (A, B, ..., Z) for controls of � 
to distinguish them easily from other symbols. For exam-
ple, the bigraph in Fig.  1 is defined over the signature 
� = {� ∶ 0,� ∶ 0,� ∶ 2,� ∶ 2, � ∶ 1,� ∶ 0,� ∶ 0,� ∶ 1,� ∶ 1}.

Definition 6 (Concrete bigraph) (after [33, Def. 2.3]) A con-
crete bigraph is a quintuplet

c o m p r i s i n g  a  c o n c r e t e  p l a c e  g r a p h 
FP = (VF, ctrlF, prntF) ∶ k → m and a concrete link graph 

F = (VF,EF, ctrlF, prntF, linkF) ∶ ⟨k,X⟩ → ⟨m, Y⟩

FL = (VF,EF, ctrlF, linkF) ∶ X → Y  . A concrete bigraph is 
also written as F = ⟨FP,FL⟩.

– v ∈ VF is a node of the node set of F that is shared among 
the place graph and the link graph.

– e ∈ EF is a hyperedge of the set of hyperedges of F.
– ctrlF ∶ VF → K is the control map. Each node is assigned 

a control from the signature K.
– prntF ∶ k ⊎ VF → VF ⊎ m is the parent map which defines 

the parent-child-relationship of the place graph’s nodes. 
Thus, expressing the locality of nodes.

– linkF ∶ X ⊎ PF → EF ⊎ Y is the link map of the link graph 
to express connectivity among the nodes. The disjoint 
union  is the set of ports of F.

In particular, the place graph of F is a forest, and the 
link graph of F is a hypergraph. Both structures are defined 
and constructed independently. This allows to model the two 
elementary aspects for global computing, namely, locality 
and interaction of processes, which are prominent for recent 
developments in this area [11].

Support of a bigraph. Now we come to the definition 
of the support equivalence of a bigraph, which declares an 
essential property for our canonical string encoding that has 
to be considered to be applied for the bigraph isomorphism 
problem.

Definition 7 (Support for bigraphs) (after [33, Def. 2.4]) To 
each place graph, link graph or bigraph F is assigned a finite 
set |F|, its support, For a place graph we define |F| = VF , and 
for a link graph or bigraph we define |F| = VF ⊎ EF.

Definition 8 (Support equivalence and support transla-
tion) (after [33, Def. 2.4]) Two bigraphs F and G in the 
same homset are said to be support equivalent, and we 
write F ≏ G , if there is a support translation of F by � that 
uniquely determines G, meaning, the support translation � is 
a bijection � ∶ |F| → |G| that respects the structure of F such 
that  . By Def. 7, the support translation consists of 
a pair of bijections �V ∶ VF → VG and �E ∶ EF → EG.

With regard to Def. 4, we write (I → J) for the same hom-
set of I and J, meaning the set of bigraphs f ∶ I → J with the 
same interfaces (cf. [33, Def. 2.8]).

Definition 9 (Lean-support equivalence) (after [33, Def. 
2.19]) A bigraph is lean if it has no idle edges. Two bigraphs 
F and G are lean-support equivalent, written F ≎ G , if they 
are support equivalent (Def. 8) ignoring their idle edges. 
Composition and tensor product preserve this equivalence.

Fig. 1  Example of a bigraph B ∶ ⟨2, {x1, x2}⟩ → ⟨1, {y1, y2}⟩ in a 
slightly different graphical display as presented in [33]

1 The concept of interfaces for graphs is not new and are also promi-
nent in gs-graphs [11] and ranked graphs [21], as they conveniently 
allow the definition of graph composition [11]. This is, however, not 
within the scope of this paper. For a detailed explanation of bigraph 
composition, the reader may refer to [33].
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Definition 10 (Bigraph isomorphism) Two bigraphs F and 
G are isomorphic if and only if they are support equivalent. 
By Def. 8, we write F ≏ G . Similarly, two lean bigraphs F 
and G are isomorphic if and only if they are lean-support 
equivalent. By Def. 9, we write F ≎ G.

Bigraphical Canonical String Encoding

In this section, we introduce the underlying key idea behind 
our approach. The authors in [15] define two unique repre-
sentation for ordered rooted trees: the breadth-first canonical 
form (BFCF) and depth-first canonical form (DFCF), where 
the former is the one we exploit. For understanding of our 
extension, we recall the bottom-up procedure of [15] that 
obtains the BFCF of a labeled rooted unordered tree, which 
relates to a place graph.

The tree is traversed level by level, starting from the bot-
tom. At each level, families of siblings are reordered from 
small to large. This step is performed until the children of 
the root are reordered. By recursion all subtrees are in the 
correct form. Then, performing a breadth-first traversal, 
all labels are recorded from left to right, where families of 
siblings are partitioned by the symbol  and the end of the 
string is denoted by #. Lemma 2.1 in [15] states that for 
each labeled rooted ordered tree there exists a corresponding 
unique breadth-first string encoding, and vice versa. Based 
on this BFCF description, the breadth-first canonical string 
(BFCS) for rooted unordered trees is defined afterwards. For 
a rooted unordered tree, many derivatives of rooted ordered 
tree exist according to the node order and, therefore, many 
corresponding canonical forms can be deduced from them. 
The minimal string encoding according to the lexicographic 
order among all these encodings is the one to use for repre-
senting that rooted unordered tree (see [15, p. 207]).

Method

We are now ready to show the core of our method, namely, 
how to obtain a breadth-first string encoding (BFSE) of a 
pure bigraph. The cornerstone of our method is the unique-
ness of the canonical form for a labeled rooted ordered tree 
which guarantees “the uniqueness of [...] the BFCF for a 
labeled rooted unordered tree” [15, p. 207]. To bring the 
BFCF in relation to bigraphs, the rooted unordered tree cor-
responds to the place graph whose nodes are by definition 
“labeled nodes” because of their controls (see Def. 6).

In the parlance of [15], we assume for the rest of the paper 
that (a) there exists a total ordering between each of the 
control labels and link names; (b) the set of controls K of the 
signature � are drawn from an atomic alphabet (i.e., single-
character labels), which additionally contains four special 
symbols not in the alphabet, namely,  and # which denote 

sibling partition and the end of the string, respectively, fur-
ther { and } to group the node’s links; (c) the group  sorts 
smaller than any other symbol, # sorts greater than  , and 
both sort greater than any other symbol in the alphabet of 
control labels and .

The procedure’s skeleton for obtaining the BFSE is pre-
sented in Algorithm 2 where we wish to give an outline in 
the following. The bigraph’s structure is sequentially trans-
lated, level by level, into a canonically ordered form using a 
breadth-first search (BFS) with a bottom–up step beginning 
with the root at index 0, instead of starting from the bottom 
compared to the BFCF procedure described in [15].

For the breadth-first traversal, we utilize parts of the 
approach explained in [7, 8]. The authors present a hybrid 
approach combining the top–down and bottom–up BFS by 
switching them based on the growing or shrinking frontier 
size of the nodes being visited. It may dramatically reduce 
the edges to be visited when traversing the place graph. 
Notably due to this necessity, the bottom–up approach is 
more preferable than the top–down one in some situations, 
particularly, when a large number of nodes is present in the 
frontier, meaning when the node degree of the place graph 
is high (see [7]). We recall the single bottom–up step in 
Algorithm 1 for our BFS to make this paper self-contained. 
Based on the bottom–up BFS, the canonical labeling proce-
dure is directly applied to the place graph, at the same time, 
we check the link graph to respect the structural dependency 
of both bigraph constituents.

Place encoding. We start with Line 11 in Algorithm 2 
which records the place encoding. The nodes are ordered 
from left to right (given by the BFS), and from small to 
large. Meaning, in each level, we first group the nodes by 
their parents, then sort the entries according to the follow-
ing precedence: their control labels (including the parent 
and its children), the number of children and the total sum 
of the port count of all children. However, we respect the 
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sorting of former parents when moving into the next level. 
Following the BFS level by level, the control label of each 
node is then appended to the string. If a node is a site, its 
index is recorded instead of the label. (We assume that the 
site indices are not contained in the alphabet before.) Fur-
thermore, we record for each node the links it is connected 
to. Therefore, its links are fenced within 

 recording only their rewritten identifiers (which we 
explain in the next paragraph). This step only records edges 
and outer names by checking linkF(vi) ≠ �, vi ∈ VF (see 
Def. 6). To partition families of siblings, we use  , and to 
denote the end of the place encoding, we add #. In addition, 
we record  in the next level for a node that had no children 
before and only if in the next level at least one parent has 
further nodes. For example, consider the left subtree B under 
A in Fig. 1. According to the above defined order, its encod-
ing is  . Because both 
D and E have no children, two  symbols are recorded first 
before GH, which are the child nodes of F.

Notice that this procedure is called iteratively inside a for 
each loop for each tree of the place graph’s forest (Line 4 
in Algorithm 2). Consequently, the place graph encoding 
for each tree is finalized by # at the end. Further note that 
the first argument of the function bottom–up-step in Algo-
rithm 1 takes not all places of the bigraph but rather B⇂m′ , 
the tree rooted at m′ (i.e., the current root) which is the set 
of nodes and sites as defined in [27, Def. 7.2.9].

Link encoding. Now we proceed on with Line 15 of Algo-
rithm 2, which treats the connections among the inner names 
and links (i.e., edges and outer names) only. The following 
explanation is just a matter of specifying a suitable ordering 
among the connections expressed by the link graph. There-
fore, we apply a complete label rewriting of all edges due 
to the new ordering of the place graph. In bigraph match-
ing the identity of these labels do not affect the rewriting 

result. Inner names and outer names remain untouched and 
preserve their natural ordering (cf. Def. 8 and Def. 9). A cor-
rect and unique re-labeling of edges is achieved by always 
traversing the place graph first, and based upon this order-
ing these link names are rewritten and recorded. We gen-
erate constant symbols with the following characteristics: 
rewritten edge identifiers sort greater than inner names, and 
inner names sort greater than outer names. Edge identifiers 
are prefixed by e, where for each character an integer is 
appended which is continuously incremented for every new 
unvisited link, e.g., e2 means that a previously unvisited 
edge ei ∈ EB was rewritten after two other (already rewrit-
ten) edges were visited.

The rest of the possible link patterns are recorded at 
the end of the string in the following order: (1) idle inner 
names,2 (2) connections from inner names to edges, (3) con-
nections from inner names to outer names, and (4) idle outer 
names. According to the above sequence, each link pair is 
separated by the symbol  , finally closing the link encoding 
with an additional #. For instance,  
constitutes a valid link encoding w.r.t. node-free link graphs. 
Here, x0 and x1 are idle inner names and y0 is an idle 
outer name. The middle part tells us that the inner name x2 
is connected to the edge e3, and x3 is linked to the outer 
name y1.

To sum up, we rewrite edge identifiers in the order as they 
are revealed when traversing the place graph. The complete 
link recording procedure is then, to first record all idle inner 
names, then inner names connected to edges, after connec-
tions from inner to outer names, lastly idle outer names. 
Recall that idle edges are not captured as we treat only lean 
bigraphs (cf. Def. 9).

Summary. The basic schema of the encoding resembles 
the following form: PE0#⋯ #PEm#LE# , where PEi denotes 
the place encoding for the ith root ( i ∈ m ) of BP such that 
the natural order is preserved,3 and LE denotes the link 
encoding.

Examples

Unary interfaces. We provide more examples to illustrate the 
algorithm. The breadth-first string encodings for each of the 
four bigraphs in Fig. 2 are: 

(a) 
  

2 When we refer to idle inner names, we actually mean closures, as 
introduced in “Examples” later.
3 While there is no node ordering in bigraphs, this is different with 
roots. The indices naturally determine the order. This concept plays 
an important role w.r.t. composition of bigraphs. See, for example, 
[33, Def. 2.5], and the end of “Examples”.
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(b) 
  
(c) 
  
(d) 
  

Imagine, we would extract the corresponding encoding of 
the link part, the result would be for bigraph (c) D{e0}
E{e0e1}F{e1}D{e2}E{e3}F{e2e3}, for (d) D{e0}
E{e0e1}F{e1}D{e2e3}E{e2}F{e3}. Note that the 
link part cannot be obtained without traversing the place 
graph since we need to respect the structural interplay 
imposed by both the place and link graph. Both (c) and (d) 
exhibit the same place graph, however, the linkings between 
the nodes are slightly different which is visible in the encod-
ing above. Also bigraphs (a) and (b) have a similar structure. 
Until the third level of the place graph, the encoding seems 
the same. Note the last appearing control F which is con-
nected to y2 in (a) and to y1 in (b). Another difference is the 

end of the encoding in (a) compared to (b). Here, we see that 
the inner name b is connected to the outer name y2 which 
is not the case in (b) (see Fig. 2).

Elementary bigraphs. Now, we consider elementary 
bigraphs, a special class of node-free bigraphs that can be 
classified as placings � and linkings � [33]. Table 1 shows 
their canonical encoding. Elementary bigraphs represent 
a set of basic bigraphs of which more complex ones can 
be built.

We see that  BFSE(merge2) and BFSE(join) i s 
equal to  which makes sense because mergen 
itself is recursively defined using only the identity 
place graph at 1 and join in the following manner: 
merge0 = 1,merge1 = ��1,merge2 = join,merge

n+1 = join◦

(��1 ⊗ merge
n
) (cf. [33]). Concerning the linkings � 

in Table  1, the symbol � is called the origin, a triv-
ial interface defined as  . A substitution 
� ∶ X → Y  is the tensor product of elementary substitu-
tions  , where Y = {y⃗} and 
X0 ⊎⋯ ⊎ Xn−1 , and a closure is the tensor product of 

(a) (b) (c) (d)

Fig. 2  Four different bigraphs. Both bigraphs a and b have roughly the same structure concerning the place graph. The place graphs of c and d 
are isomorphic. Their differences are expressed considerably through their link graphs, which is also visible in their respective BFSEs

Table 1  Overview of some important elementary bigraphs and their canonical string encodings
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elementary closures  , where 
W = {w⃗} (see Table 1 and also [33, p. 29]). Generally, a 
bijection from sites to roots is called a permutation � and 
a bijective substitution is called renaming �.

Apparently, most of their canonical forms exhibit a final-
ized, static nature, i.e., the time complexity is O(1), or at 
least follow a simple recipe on how to construct them.

Multiary interfaces. We proceed the demonstration using 
bigraphs with multiary outer faces (refer to Def. 4 and Fig. 3). 
Particularly, bigraphs that have more than one root. First, we 
give the string encoding of the five bigraphs depicted in Fig. 3: 

(a) 
(b) 
(c) 
(d) 
(e) 

The only difference between bigraph B ∶ � → ⟨2, �⟩ (b) and 
C ∶ � → ⟨2, �⟩ (c) is that only the two trees are placed under 
different root indices for each bigraph. Though, bigraph B 
and C seem structurally similar because only the root index 
for each tree is different, they are not equal. Our reason to 
keep the original order of root nodes imposed by their indi-
ces was not arbitrary (cf. Summary in Sec. 3.1). Consider 
the following example, where bigraph A ∶ ⟨2, �⟩ → ⟨1, �⟩ 
(a) from Fig. 3 is used for composition, thus, interfaces as 
in Def. 4 are required. As per definition (cf. [33, Def. 2.5]), 
A◦B is defined when the outer face of B is equal to the 
inner face of A, which is true in this case. The same applies 
to A◦C . The result of D = A◦B is depicted in bigraph 
D ∶ � → ⟨1, �⟩ (d) in Fig. 3, and for E = A◦C in bigraph 
E ∶ � → ⟨1, �⟩ (e). Due to B  C it follows D  E.

See also the discussion in “Discussion”, where we explore 
this issue in more detail concerning the primary usage of the 
proposed canonical form and other operations.

Correctness

Theorem 1 Let F and G be pure and lean bigraphs over the 
same signature � with an atomic alphabet, f̃  and g̃ their 
corresponding bigraphical canonical string encoding. Then, 
F ≎ G if and only if f̃i = g̃i, i = {1,… , n} , where n denotes 
the length of the string. According to Def. 10, we also say 
that F is isomorphic to G.

Proof outline. It is easy to verify that for two lean-support 
equivalent (i.e., isomorphic) bigraphs, both their BFSE must 
be identical. The results of the BFCF for rooted unordered 
trees presented in [15] will suffice to justify our proof out-
line, as we did not alter the fundamental algorithmic con-
cepts. Due to the orthogonality of a bigraph’s place and link 
structure, we can define a string encoding of both constitu-
ents separately but not independently, assuming that both 
encodings are uniquely derived for some bigraph and are 
not necessarily a canonical form on its own. Since the “place 
encoding” is unique, all subtrees are in the correct forms 
regardless of the encoding of the link part (cf. [15]). This is 
also true if we include the encoding of the link part of some 
BFSE into our consideration. We introduce a new symbol 
with a smaller order among all other symbols of the alphabet 
with which we encode the corresponding link names con-
nected to a node according to the lexicographic order. Then, 
merging both encodings is possible without contradiction, 
since the link part has a designated order in relation to the 
place part. In our approach, the link encoding is strongly 
connected to the place graph and depends on its ordering. 
Thus, if the encodings of two place graphs are not equal, 
both its “included” link encodings are also different with 
respect to their position in the string.

With regard to the bigraph isomorphism test, we say that 
two bigraphs A and B over the same signature are equivalent 
to each other, denoted by A ≏ B , if they represent the same 
bigraph, or A ≎ B , if both bigraphs are lean. The unique-
ness of the BFSE ensures a bijection in the sense that it 
forms a support translation, meaning, when two BFSEs ã 
and b̃ are compared character by character and for every 
ãi = b̃i, i ∈ 0,… , n , two bigraphs are said to be equal.  ◻

Experimental Evaluation on the Time Complexity

This section presents the experimental results of some 
performance benchmarks that were conducted using our 

(d) (e)

(c)(b)(a)

Fig. 3  Running example bigraphs, where b and c have more than one 
root. Bigraphs a, d and e serve for purposes of demonstrating the 
composition
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own implementation.4 Note that this evaluation considers 
lean bigraphs, for which we additionally discuss sufficient 
reasons in "Reflections on the Application”.

To evaluate the time complexity of our algorithm, we 
try to follow the “common practice” of the recent bigraph-
related literature [16, 23] concerning experimental evalu-
ation. The purpose is not to compare these works with our 
results (which is not possible nor fair due to the different 
problems treated) but rather to highlight the experimental 
setups on the time complexity analysis. In [16] the run-
ning time of the CSP resolution and construction of the 
embedding of their presented approach are individually 
measured. The performance changes are further evaluated 
by adjusting the size of the bigraphs by three parameters 
(number of “zones”, “cars” and “connectivity degree”, 
cf. [16, p. 53]). In [23], four experiments are conducted 
concerning their bigraph matching approach. The authors 
measured the running time using different sizes of the 
redexes and agents, and by increasing the depth of the 
agent. The approach is compared with another library for 
bigraphs. Due to the fact that there are no widely recog-
nized benchmarks for the bigraph matching or the bigraph 
isomorphism problem (cf. [25, 31]), the experimental set-
ups differentiate among the works.

Now proceeding with the empirical evaluation of the 
implementation, we employed the test framework called 
Java Microbenchmark Harness (JMH) to increase the 
soundness. The tests described in the following were 
performed on a 2 Core Intel Core i7-7500U processor 
(3.5 GHz) with 50 warm-up iterations and 30 measure-
ment iterations across two forks. Two different test cases 
were designed. In the first case, we only considered place 
graphs of varying size. For the second case also the link 
graph was included and the number of connections among 
the nodes were scaled. With respect to test data, we used 
the random bigraph generation algorithm as presented in 
[25]. Note that the following running times were consist-
ently measured by JMH.

For the first test, we randomly generated place graphs 
with preferential attachment (see [25]), and varied the num-
ber of nodes n = {1000,… , 10000} , further fixing the root 
size to r = 1 . In accordance with [15], we achieve the same 
complexity as the BFCF for rooted unordered trees, when 
only place graphs are considered. This can be observed in 
Fig. 4, where we normalized the measured time between 0 
and 1. The reason is that the total execution time depends on 
the implementation (i.e., the used platform and programming 

language), thus, only the curve’s behavior is of interest for 
our analysis.

Proposition 1 The time complexity of Algorithm 2 to com-
pute the BFSE of a place graph BP is O(n2 d log d) , where 
n is the number of places, and d the maximal node degree 
in BP.

Regarding the second test, we randomly synthesized 
bigraphs, where we also allowed connections between nodes. 
In [25], two strategies were proposed; here we had chosen 
the maximal degree variant with assortative behavior. This 
means that nodes with the same arity will connect to nodes 
with similar arity. For the test, we fixed the number of nodes 
to n = 5000 and used the signatures �i = {� ∶ ki} with 
k = {5, 10, 20} . More specifically, for every run i ∈ {1, 2, 3} 
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with links. The points denote our experimental data generated for 
bigraphs over three different signatures with varying arity. Every 
bigraph contained 5000 nodes. The x-axis denotes the proportion of 
nodes being selected for linking. A log scale is used for the y-axis, 
where the time is normalized between 0 and 1

4 The authors are working on a framework for the creation and simu-
lation of bigraphs, called Bigraph Framework which is implemented 
in the Java programming language. The proposed algorithm is imple-
mented in this framework. More details can be obtained from https:// 
www. bigra phs. org/.

https://www.bigraphs.org/
https://www.bigraphs.org/
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exactly n nodes with the control A were created, each with 
ki ports connected to ki distinctive links. In every run i, we 
incrementally adjusted the fraction of the n nodes being 
selected for linking using p = {0.1, 0.25, 0.5, 0.75, 1.0} . 
Thus, the number of possible links gradually increases.

The results are presented in Fig. 5, where the measured 
time was normalized in the same manner as above, addition-
ally using a logarithmic scale on the y-axis. The logarithmic 
scale allows us to compare the percentage changes of the 
running time also among the three signatures. The different 
colors in the legend represent the three different signatures 
(from �1 to �3 ). For instance, the turquoise line represents 
the measurements for bigraphs over �3 = {� ∶ 20} for all 
pj, j = 1,… , 5 , e.g., at p5 = 1.0 every node of the bigraph 
had 20 ports, which were all connected to a node via a dis-
tinct link. From Fig. 5 it can be seen that for all signatures 
there is an increase about roughly 50% w.r.t. the running 
time when more than half of the nodes ( p3 = 0.5 ) are linked 
(from the link graph’s perspective) as opposed to p1 = 0.1 , 
where only 10 % of the nodes are connected.

Regardless of the fraction of nodes being selected for 
linking, the maximal arity significantly determines the 
complexity, when comparing the data of the three differ-
ent signature experiments. That means, for example, �3 at 
p1 = 0.1 has a higher complexity than �1 at p5 = 1.0 . As 
shown in Fig 5 of this experiment, the time increases linearly 
with increasing node linkage for all three individual signa-
tures. Thus, with regard to the rate of change concerning the 
running time in Fig. 5, we can treat the maximal arity of a 
signature roughly as a constant, because the rate of change 
is constant.

As a conclusion from the above, we can summarize the 
experimental results by the following claim:

Claim The time complexity of Algorithm 2 to compute the 
BFSE of a pure, lean bigraph B over � is O(n2k d log d) , 
where n is the number of places, k the maximal arity in � , 
k > 0 , and d the maximal node degree in BP.

Discussion

Now that we have defined and analyzed the canonical form 
of pure, lean bigraphs, we want to compare our work with 
related approaches, before we reflect on particular applica-
tions and consider some limitations.

Related Work

The graph isomorphism problem is well-addressed in the 
literature for several kinds of graphs. For the sake of short-
ness, we do not intend to give a complete overview of the 

graph isomorphism problem. Because we deal with a spe-
cial graph abstraction, current approaches cannot directly be 
applied on bigraphs and are thus only superficially related 
to our work. At most, the findings may be applicable for the 
corresponding place or link graph only but not for both sub-
structures at the same time (as also concluded in [6]). For a 
better understanding, however, we wish to present selected 
approaches for each domain that treat the isomorphism prob-
lem in general, before we address canonical labelings and 
bigraph matching implementations, and compare them to 
our work.

Berge and Rado [9] gave some notes on the formal con-
struction of isomorphic hypergraphs with proofs. A quasi-
polynomial time algorithm for the graph isomorphism 
problem of general graphs was given by Babai [2, 3]. When 
restricting graphs to trees, easier and less complex solu-
tions are possible, e.g., [28, 42] both treat the subgraph iso-
morphism problem for rooted unordered trees. Further is 
[29] a serious addition in the field of graph isomorphism in 
polynomial time for graphs of bounded degree. Subforest 
isomorphism is another special case of the subgraph iso-
morphism problem. Given a tree G, the task is to find the 
forest H in G. Generally, the problem is Np-complete, how-
ever, the findings of [6] show that it is practically solvable 
when the number r of roots of the forest H is small (i.e., 
r ≤ 3 ). The exponential explosion only depends on r [6]. 
The graph isomorphism problem is rated as difficult in the 
literature. Graph isomorphism is either p or Np-complete 
[22]. We refer the reader to a recent work of Babai [2] for a 
more comprehensive elaboration on the hardness of graph 
isomorphism.

Canonization of graphs. In relation to our work, we use 
a canonical form based on the BFCF as described in [15] 
(refer to “Bigraphical Canonical String Encoding”). Moreo-
ver, Chi et al. emphasize that their additionally presented 
DFCF for labeled rooted ordered trees is equivalent to the 
depth-first traversal encodings proposed in [1, 34, 37] which 
we not review here. Many other canonization algorithms are 
proposed in the literature, where we wish to present some 
selected approaches [4, 28, 44].

Babai and Luks [4] present how to obtain a canonical 
form for graphs of bounded valence in polynomial time, and 
for general graphs in exponential time.

Valiente [44] exhibits a tree isomorphism code for rooted 
unordered trees. The code is a recursively defined integer 
sequence, each element separated by a comma symbol. 
Starting with the root node, each child is assigned a “sub-
tree code”, which itself is a concatenation of subtree codes. 
The first integer of a code sequence associated with a node 
denotes the number of nodes of that subtree. Further, the 
integer sequences of each subtree are arranged according to 
ascending lexicographic order. Thus, nodes with many chil-
dren are always moved to the right of the code. To obtain the 
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code, a postorder traversal of the tree is performed. However, 
it does not apply to labeled trees, which place graphs are.

The canonical labeling problem in linear time for sub-
tree isomorphism is expounded by [28] for rooted unor-
dered trees with different types of labels. Luccio et al. [28] 
have convincingly presented in great detail that the running 
time of the processing and search algorithm depends on the 
alphabet and increases with more complex labels. The trees 
are first transformed, according to their alphabet, to ordered 
ones before the string encoding is computed. For searching 
the subtrees of the target tree, additional data structures are 
used. Specifically, bottom–up subtree searches are covered 
as a dictionary problem to find the occurrences for each pat-
tern in the target tree. In contrast to us, the authors treat the 
subtree isomorphism problem.

Bigraph matching. Bigraph matching is the corner-
stone to practically use bigraphs for experimentation and 
simulation. Research on bigraph matching with respect to 
bigraphical reactive systems (BRS) [33] is an instance of 
the sub-bigraph isomorphism problem. In bigraphs jargon, 
reaction rules (also named rewrite rules) define the behavior 
of a BRS. The search pattern of the reaction rule, called the 
redex, is to be found in the target bigraph, called the agent. 
Then, the match is replaced with the corresponding reactum 
of the rewrite rule.

There are few solutions concerned with the bigraph 
matching problem for various kinds of bigraphs; a non-
exhaustive presentation is the following. For binding 
bigraphs (links have local scopes) by an inductive characteri-
zation of matching [10, 19, 24]; for directed bigraphs (which 
subsume pure bigraphs) [5]; for bigraphs with sharing (the 
place graph is a DAG) using a SAT-based algorithm [41]; 
for the pure case by [31] as a constraint satisfaction problem 
(CSP), and further an adapted reduction of the problem for 
directed bigraphs to a CSP [16].

Birkedal et al. proposed in [10] an inductive characteriza-
tion of matching for binding bigraphs. The approach empha-
sizes on the soundness and completeness of the approach—a 
requirement for implementing correct matching algorithms 
[10]. They have shown how binding bigraphs are decom-
posed into elementary constituents (i.e., normal form of 
binding bigraphs) first, then matching sentences and rules 
are defined upon them to infer valid matching sentences. 
Using a logical programming language such as Prolog, the 
set of matching rules can be expressed conveniently, accord-
ingly “operating by searching for inference trees” when 
applying these rules [10, p. 16].

The authors of [41] solve the matching problem for 
bigraphs with sharing by treating it as a computationally 
efficient SAT instance. The approach is implemented in 
BigraphER [40]—a tool programmed in the OCaml pro-
gramming language using MiniSAT as underlying solver 
implementation. The algorithm employed for matching 

is a special SAT encoding of the subgraph isomorphism 
problem as discussed in [39]. As further stated in [41], the 
particular bigraph matching problem is an instance of the 
Np-complete subgraph isomorphism problem and thus some 
optimizations are applied such as the Tseitin transforma-
tion or exploiting the redex symmetries’ which can occur in 
case of multiple matchings in the agent. Interestingly, when 
executing a BRS, the tool stores the canonical form of states 
of the transition graph that is being synthesized to reduce 
the number of intermediate states [41]. Therefore, a SAT 
encoding to check two bigraphs on equality was presented 
in [39]. Two additional constraints are given which ought to 
be included in the initial set of constraints as described in 
their earlier work [41]. Hence, the Boolean matrix forms the 
canonical encoding. However, the encoding is designed for 
bigraphs with sharing, whereas we treat pure bigraphs, and 
provide a string labeling as opposed to a Boolean matrix.

Computing bigraph embeddings by translating it to a 
CSP is expounded in [31]. An embedding, as defined in 
[27], is a structure preserving map which is injective from 
a source to target bigraph5 [31] (see also Def. 8). Regard-
ing the construction of the linear equation system of the 
CSP, the authors define constraints for both bigraph con-
stituents separately and also by some “gluing constraints” 
that respect the structural dependency imposed by the 
interplay of both substructures [31]. Overall, 34 constraint 
families are contained in the equation system, however, the 
problem is polynomially bounded with respect to the sup-
port of the bigraphs in question [31, p. 6]. The algorithm 
is implemented in jLibBig6—a Java library using Choco7 
as the underlying solver. In [16], the embedding problem 
for directed bigraphs is implemented in CSP. The results 
are experimentally validated by a simulation. The authors 
found “that the running time scales exponentially” [16, 
p. 54] on the one hand with respect to number of nodes and 
on the other hand with respect to the connectivity degree. To 
emphasize, [16, 31] consider the embedding problem, thus, 
the results cannot be compared easily with ours as we treat 
the bigraph isomorphism problem.

Summary. We wish to highlight that this work does not 
treat the general bigraph matching problem but the bigraph 
isomorphism problem. While the methods proposed are suit-
able for a great number of graphs, there are some special 
issues when working with bigraphs, such as considering the 
orthogonality of the two constituents in the computation 

5 Specifically, this can be regarded as a “weak” support translation 
“from nodes and edges of the redex to nodes and edges of the agent” 
[31, p. 2].
6 For more information, we refer to this URL: http:// midas. uniud. it/ 
downl oads/ libbig/.
7 Choco [36] is a open-source Java library for constraint program-
ming.

http://midas.uniud.it/downloads/libbig/
http://midas.uniud.it/downloads/libbig/
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(i.e., place graph’s sites and link graph’s hyperedges, inner 
names, and outer names). Each of the presented works is 
based on a unique combination of strategies and algorithmic 
techniques, exploiting the peculiarities of the corresponding 
structure in question.

Of course, one can take the naive approach and con-
catenate the results of the tree and hypergraph labeling, 
which must be accordingly adapted for both bigraph con-
stituents. Then, the complexity would simply be the sum 
of O = O(BP) + O(BL) . This, however, would not be a sat-
isfactory conclusion. We have a more elegant solution with 
a lower time complexity compared to the naive approach by 
doing the hypergraph BL labeling at the same time to some 
extent when traversing the place graph.

Reflections on the Application

Using our method, the bigraph isomorphism problem 
becomes O(n), where n is the length of the string encoding. 
However, we can improve the runtime of the computation 
by extending it to a parallel bottom–up BFS as discussed in 
[12]. They expound a direction-optimized BFS (i.e., a hybrid 
top–down and bottom–up step) and compare it with the 
top–down approach. A significant improvement is observed 
by the authors based on their experimental performance 
tests. Still, the parallel algorithm design could be adapted 
to conduct further tests.

The advantages of a canonical labeling over an isomor-
phism test is that the BFSE can be computed separately for 
bigraphs instead of checking two graphs pairwise at a time 
(cf. [38]). If the encodings are stored in a database, com-
putational efficient searches are possible, and if needed, 
one can collate the strings at any time. This application 
is especially useful for building a bigraph database. Fast 
access and searches would be possible. Then, benchmarking 
of bigraph-related algorithms become straightforward and 
more consistent.

Why Lean Bigraphs?

What we deliberately left out in the background (“Graph-
Theoretical Background”) was the capability of bigraphs to 
express dynamics through reactions but was recovered in 
“Related Work”. We wish to bring the focus on the topic 
BRS again, especially, using it to answer the question why 
we treated lean bigraphs (refer to Def. 9).

With reference to [33], bigraphs whose interfaces sat-
isfy certain properties are separately termed. For example, 
ground bigraphs are bigraphs that do not have sites and inner 
names. A lean bigraph on the other hand has no idle edges 
defined. Both are fine properties for the rewriting in BRSs 
(see [33]). Idle edges may occur in ∕x◦G if x is an idle name 
of G. Idle edges can be regarded invisible, meaning, they 

can be ignored (see [33, p. 29]). Whether to discard idle 
links or not depends on the context where bigraphs are used. 
For example, it makes sense to discard them in the case for 
redexes of bigraphical reaction rules because a “rule whose 
redex has an idle name leads to rather strange behavior, 
unlikely to be met in applications; we tend to regard such 
rules as unreasonable” [32, p. 37].

We wish to emphasize this fact because lean, ground, 
prime bigraphs are the agents in a BRS [33] that are recon-
figured by reaction rules (refer to Bigraph Matching in 
“Related Work”) and which our method can process.

Bigraph Isomorphism

Recall, that a reaction is a labeled transition of the form 
 where  is regarded as a reaction relation, and 

a, a′ being some agents. Such a relation allows to synthesize 
a transition system, which can be thought of as a directed 
graph with nodes and edges. Nodes are called the states 
of the system, and edges represent the transitions between 
states designated by some L.

Bigraph isomorphism checks are essential for deriving 
such a transition system from a BRS through the application 
of reaction rules on bigraphs. Sevegnani and Calder [39] 
pointed out several applications for the bigraph isomorphism 
test for which our canonical labeling can be incorporated. 
For example, during a simulation, a transition system is 
derived. Here, the detection of two isomorphic bigraphs is 
essential to avoid creating the same states multiple times. 
Only the canonical form of a state is stored in the transition 
system which reduces the number of intermediate states. 
See, for example, [35], where a breadth-first exploration of 
the state space is used as a strategy for generating a transi-
tion system while detecting cycles.

Moreover, the test is fundamental to check BiLog [17] 
predicates (see [39]). The isomorphism test can be employed 
to determine all automorphisms of a bigraph, which is 
required “to count distinct occurrences in a stochastic BRS” 
[39, p. 63].

Operations

Now, we briefly outline another application of the proposed 
encoding for pure, lean bigraphs. Specifically, operations 
such as composition.

Let G ∶ I → J  be a lean bigraph in ���(K),8 and 
g̃ = BFSE(G) its string encoded representation in ������ 
computed by the function BFSE (Algorithm 2).

8 Categorically, bigraphs and their interfaces are classified in the 
���(K) category which has arrows that are bigraphs and objects that 
are bigraph interfaces [33].
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While being compatible to the formalization used in 
[23] now, consider the faithful functor named BFSE ∶ 
���(K) → ������ on the morphisms of bigraphs such 
that controls ctrlG , nodes and hyperedges, and both struc-
tures prntG and linkG are preserved (Def. 6), and further 
BFSE is defined on the interfaces of bigraphs. Thus, we 
may say that the encoding translates the bigraph G from 
���(K) into BFSE(G) ∶ BFSE(I) → BFSE(J) . For that pur-
pose a functor BFSE is obtained in a manner that allows 
to move back and forth between the interface of some 
bigraph G and the corresponding index in its string encod-
ing g̃ . For example, BFSE(J) = j , where j constitutes a 
partially ordered set of indices of length m + |Y| , the first 
m elements of j are indices that represent the position of 
root symbols in the encoding, similarly, |Y| elements map to 
the index of outer name symbols in g̃ . Considering bigraph 
(a) in Fig. 3, A ∶ ⟨2, �⟩ → ⟨1, �⟩ with  , its 
outer face image BFSE(J) is the set {0} , and analogously, 
BFSE(I) = {6, 8}.

By looking at the method’s definition, identity and com-
position are preserved. If BFSE preserves composition, 
BFSE(G◦F) = BFSE(G)◦BFSE(F) . However, we refrain 
from giving the exact details in this descriptive presentation 
here as it is out of scope in this paper. A proof of whether 
composition is preserved for all morphisms in ���(K) is 
interesting future work.

Atomicity of the Alphabet

Recall that the signature of two bigraphs must be the same, 
so that these can be equal at all (refer to Theorem 1). Even 
so, the control labels must satisfy a certain condition. Our 
method assumes that the signature’s control labels are drawn 
from an atomic alphabet. Thus, it cannot be directly applied 
to other alphabets. Consider the following problem with 
a different, non-atomic alphabet. Let us assume we have 
the signature � = {� ∶ 0,�� ∶ 0} , a bigraph F with two 
nodes ctrl(v1) = �� and ctrl(v2) = � under the root, and G 
with three nodes ctrl(v1) = � , ctrl(v2) = � and ctrl(v3) = � 
under the root. Their corresponding BFSE is in both cases 

 , though G has more children then F. 
Fig. 6 illustrates that non-atomic alphabets violate Theo-
rem 1. Disregarding that property would result that F ≎ G , 

which is not true and can be seen without further proof in 
Fig. 6.

A solution is presented in [28], where the authors explain 
how to treat the ordering of labeled trees with non-constant 
alphabets. Notice that non-constant alphabets increase the 
string size and thus the complexity of the preprocessing and 
search. For two bigraphs F and G, the running time is then 
a function of the total length of all control labels in both 
bigraphs (cf. [28]).

Another approach to treat non-atomic alphabets is by par-
ametrization of control labels. For instance, this is accom-
plished by a suitable hash function that generates a unique 
integer for each distinguished control label. Hashes need to 
be computed only once and can be stored in a map. Hence, 
accessing the hashed value is computationally efficient and 
takes constant time. Concerning our method, in the course 
of the place graph traversal and ordering, one would then 
acquire the corresponding hashed value of the control label 
instead of using the label directly. Consequently, the com-
parison of two string encodings has to be slightly changed. 
The encoding itself is not a pure string anymore but rather 
an array. With the exception of the special symbols (e.g., 
 or #), the computed values of the hash function would 

be allocated to each cell in the array corresponding to the 
respective control at that position. Comparing the array is 
then a matter of comparing the hashed values for the array’s 
same indices.

Special attention must be paid to ensure that the hashing 
operation is computationally inexpensive and takes account 
of collision and dispersion qualities. Given the fact that 
non-atomic alphabets may increase the running time of the 
encoding in some circumstances, their use shall be carefully 
considered. So far we did not have encountered a problem 
with atomic alphabets in practice. However, it would be 
interesting future work to consider alternative approaches 
in which the encoding could handle non-atomic alphabets.

Conclusion

During the canonical encoding procedure, each bigraph is 
assigned a unique string based on its place and link graph. 
To determine whether two bigraphs are equal, i.e., isomor-
phic to each other, or (lean-) support equivalent (see Defs. 8, 
9 and 10), one only has to compare the strings with each 
other instead of traversing the bigraphs completely.

As a result, we casted the bigraph isomorphism prob-
lem to a string matching problem by testing two bigraphical 
canonical forms, whether they are equal. This was achieved 
by defining a unique string encoding, which reduces a 
bigraph’s place graph to the case of an ordered tree. The 
proposed solution was devised for pure and lean bigraphs, 

Fig. 6  Two bigraphs F,  G defined over the same signature 
� = {� ∶ 0,�� ∶ 0} . Non-atomic alphabets violate Theorem 1
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specifically, for bigraphs with unary or multiary interfaces, 
and no idle edges. The encoding guarantees lean-support 
equivalence (see Def. 9), which means that our canonical 
mapping is a structure-preserving mapping, if two lean 
bigraphs are equal in the sense that their string encodings 
are equal. Our approach assumes atomic alphabets. It seems 
that non-atomic alphabets are possible in general, however, 
they were not needed for the approach presented in this work 
and is thus left for future work.

Notice that even if the orthogonality of the bigraph allows 
separate handling of both substructures, we presented a solu-
tion that obtains the canonical form by traversing the place 
graph and the link graph at the same time to some extent. We 
showed that the complexity of our canonization algorithm is 
not significantly higher than the one of the BFCF for rooted 
unordered trees in [15]. The complexity of our method for 
a bigraph B over � is O(n2 k d log d) , where n is the number 
of nodes, k the maximal arity of a bigraph’s signature and d 
the maximal node degree of the place graph. This claim is 
supported by experiments.
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