
Vol.:(0123456789)

SN Computer Science (2021) 2:246
https://doi.org/10.1007/s42979-021-00552-5

SN Computer Science

ORIGINAL RESEARCH

A Canonical String Encoding for Pure Bigraphs

Dominik Grzelak1 · Uwe Aßmann1

Received: 19 August 2020 / Accepted: 26 February 2021 / Published online: 30 April 2021
© The Author(s) 2021

Abstract
The bigraph theory, devised by Robin Milner, is a recent mathematical framework for concurrent processes. Its generality is
able to subsume many existing process calculi, for example, CCS, CSP, and Petri nets. Further, it provides a uniform proof
of bisimilarity, which is a congruence. We present the first canonical string encoding for pure and lean bigraphs by lifting
the breadth-first canonical form of rooted unordered trees to a unique representation for bigraphs up to isomorphism (i.e.,
lean-support equivalence). The encoding’s applicability is limited to atomic alphabets. The time complexity is O(n2k d log d) ,
where n is the number of places, d the degree of the place graph and k the maximum arity of a bigraph’s signature. We provide
proof of the correctness of our method and also conduct experimental measurements to assess the complexity.

Keywords Bigraphs · Isomorphism test · Canonical labeling · String encoding · Bigraph matching

Mathematics Subject Classification 05C60 · 05C70

Introduction

Graphs are well-understood and useful mathematical
abstractions [20, 44]. Informally speaking, ordinary graphs
comprise nodes and edges which allow representing “binary
relations between nodes” [13, p. 463]. Moreover, graphs
can be equipped with any non-trivially semantic meaning
or structural extension, e.g., to represent Boolean functions
by propositional directed acyclic graphs [45], or to describe
static system structures of concurrent systems [20, p. 8].
An extension called hypergraphs [9] allows multiple links
between nodes via hyperedges and lifts the binary relation
limitation. Due to their general formalism, they found to
be useful for object representation, and in this respect, are
commonly used for modeling complex structured data [14]
within a variety of different domains. To give one particular

example, they are heavily employed in the field of software
development as underpinning for models, where different
structures on different levels are handled as graphs [20,
pp. 7].

With this in mind, we often need to decide if two graphs
are equal (i.e., isomorphic), which is a fundamental question
in graph theory [26]. Here we can distinguish between two
strands (cf. the taxonomy of matching problems in [18]).
Sometimes a non-exact or approximate match is sufficient
when we only need to check if a substructure is contained
within another target graph. Roughly, given two graphs
G = (VG,EG) and H = (VH ,EH) , the task is to find a sub-
graph of G which is isomorphic to H. This is referred to as
subgraph isomorphism problem, which will not be treated
here. An application of subgraph isomorphism might be, as
mentioned in [43], to determine whether a certain chemical
substance is present in a given compound. In the second
case, we might be interested in an exact match. This par-
ticular field is entitled as exact graph matching or graph
isomorphism, which is a subclass of the subgraph isomor-
phism problem. Specifically, two graphs F = (VF,EF) and
H = (VH ,EH) are isomorphic F ≅ H if they are structurally
the same graph (see [44, Def. 7.1]). For example, within
a software application, we want to avoid re-creating the
same object model (i.e., a graph) multiple times, meaning,
we must check if the same structure already exists. Several

D. Grzelak and U. Aßmann are also with the Centre for Tactile
Internet with Human-in-the-Loop (CeTI), Technische Universität
Dresden, 01062 Dresden, Germany.

 * Dominik Grzelak
 dominik.grzelak@tu-dresden.de

 Uwe Aßmann
 uwe.assmann@tu-dresden.de

1 Software Technology Group, Technische Universität
Dresden, Dresden, Germany

http://orcid.org/0000-0001-6334-2356
http://crossmark.crossref.org/dialog/?doi=10.1007/s42979-021-00552-5&domain=pdf

 SN Computer Science (2021) 2:246246 Page 2 of 14

SN Computer Science

possible matching solutions for different graph types can be
identified in the literature, where we wish to address a few in
“Related Work” later. For further reference, we wish to men-
tion the survey of Conte et al. [18], where a comprehensive
overview is presented of many applications of graphs and
graph matching algorithms.

Contribution. In this paper, our approach is devoted to
the bigraph isomorphism problem for the pure case. Essen-
tially, a bigraph B = ⟨BP,BL⟩ is a hierarchical graph com-
prising two independent graph structures: The place graph
BP describes the nesting of nodes in a tree-like structure, the
connection among nodes is expressed by the link graph BL ;
both relying on the same node-set (see Def. 6). Our contri-
bution is the computation of a unique representation of a
bigraph up to isomorphism. The unique representation of
a graph is also referred to as canonical form or canonical
labeling in this paper. If we can find a canonical mapping,
we can reduce the bigraph isomorphism problem to a string
matching problem (i.e., checking the corresponding canoni-
cal labelings of two bigraphs on equality), without resorting
to brute force. To do so, we must respect the (lean-) support
equivalence property for two bigraphs (see [33, p. 16] and
also Def. 8 and 9), which corresponds to finding a support
translation � such that (see Def. 8). Consequently,
we can check for two bigraphs F and G whether their canoni-
cal forms are equal, rather than isomorphic (cf. also [38]).
Given the computational complexity of an isomorphism
test, “a canonization algorithm is often preferable to an
isomorphism test” [38, p. 1]. (This is not to be confused
with the well-defined bigraph matching in the literature, see
“Related Work”.) As a result, the problem becomes O(n),
where n is the length of the string encoding (precluding the
processing time for computing the canonical form). This
means that testing the equality of graphs is, therefore, easy,
whereas the computation of the canonical labeling is often
not [26]. However, it allows graphs to be treated separately
instead of comparing graphs pairwise [38] (see also “Dis-
cussion”). Furthermore, existing software implementations
such as nauty [30] prove that efficient isomorphism tests
based on graph canonization are realizable. To the best of
our knowledge, no such string encoding exists for pure and
lean bigraphs currently.

Structure. Our paper is structured as follows. The neces-
sary background about some elementary graph structures
and the bigraphical concepts are provided in “Graph-Theo-
retical Background”, which are useful to observe how ordi-
nary graphs relate to bigraphs. In “Bigraphical Canonical
String Encoding”, we first provide the key ideas that are
used in our approach, then present our implementation to
compute the canonical string of a pure bigraph, provide suf-
ficient examples and address the time complexity. In “Dis-
cussion”, the paper continues with a discussion, reviewing

the problem of graph isomorphism in general, canonical
labelings, and the one of bigraph matching, and reflects the
practical application of our work. Finally, we conclude our
paper with “Bigraphical Canonical String Encoding” by giv-
ing some final remarks.

Graph‑Theoretical Background

In this section, we recall bigraphs and their underlying
mathematical primitives, which are helpful for the under-
standing of the presentation of our canonical string encod-
ing algorithm presented in “Bigraphical Canonical String
Encoding”.

Elementary Graph Structures

Definition 1 (Tree) A connected graph with no cycles of the
form G = (VG,EG) is termed unordered undirected tree, or
just tree. Edges and vertices of G have no labels implying no
special ordering, and edges also have no direction, meaning,
e = (vi, vj) implies e = (vj, vi) for each edge e ∈ EG.

Definition 2 (Rooted tree) (after [42, p. 269]) A rooted tree
is a triplet G = (VG,EG, rG) , where (VG,EG) is a unrooted
tree as by Def. 1, each v ∈ VG has a distinct parent and rG is
some vertex in VG which is called the root, implicitly speci-
fying the parent-child-relationship, thus, the edge direction.
Vertices under the same parent are called siblings, vertices
with no children are called leaves of the tree.

Definition 3 (Hypergraph) (after [9, p. 226]) A hypergraph
H = (V ,E) contains a finite set of vertices V and a family of
sets E = (ei)i∈I of non-empty subsets of V called the hyper-
edges or edges of H, where I is a finite index set.

Bigraphs

Here we provide the standard definition of concrete
bigraphs given in [33] for the pure case. Bigraphs are not
only a formal graphical model but also provide a graph and
term representation (see [33]). An example of a bigraph
B ∶ ⟨2, {x1, x2}⟩ → ⟨1, {y1, y2}⟩ is depicted in Fig. 1 and
the formal definition of its algebraic graph representation is
given with Def. 6. As a shorthand what follows, a finite ordi-
nal n often reads n = {0, 1,… , n − 1} . Further, A ⊎ B is the
disjoint union of sets A and B, and X is an infinite alphabet.

Definition 4 (Bigraph interface) (after [33, Def. 2.3]) An
interface for bigraphs is a pair I = ⟨m,X⟩ of a place graph
interface and a link graph interface, where X ⊂ X is a finite

SN Computer Science (2021) 2:246 Page 3 of 14 246

SN Computer Science

set of names and m is called the width of I. We call I nullary,
unary, or multiary if m is 0, 1, or > 1 , respectively.1

A concrete bigraph (see Def. 6) is always defined over a
signature � , which specifies the syntax of the bigraph:

Definition 5 (Basic signature) (after [33, p. 7]) A basic
signature � takes the form (K, ar) . It has a set K whose
elements are kinds of node called controls, and a map
ar ∶ K → ℕ assigning an arity, a natural number, to each
control. The signature is denoted by K when the arity is
understood. A bigraph over K assigns to each node a control,
whose arity indexes the ports of a node, where links may be
connected.

We use sans-serif letters (A, B, ..., Z) for controls of �
to distinguish them easily from other symbols. For exam-
ple, the bigraph in Fig. 1 is defined over the signature
� = {� ∶ 0,� ∶ 0,� ∶ 2,� ∶ 2, � ∶ 1,� ∶ 0,� ∶ 0,� ∶ 1,� ∶ 1}.

Definition 6 (Concrete bigraph) (after [33, Def. 2.3]) A con-
crete bigraph is a quintuplet

c o m p r i s i n g a c o n c r e t e p l a c e g r a p h
FP = (VF, ctrlF, prntF) ∶ k → m and a concrete link graph

F = (VF,EF, ctrlF, prntF, linkF) ∶ ⟨k,X⟩ → ⟨m, Y⟩

FL = (VF,EF, ctrlF, linkF) ∶ X → Y . A concrete bigraph is
also written as F = ⟨FP,FL⟩.

– v ∈ VF is a node of the node set of F that is shared among
the place graph and the link graph.

– e ∈ EF is a hyperedge of the set of hyperedges of F.
– ctrlF ∶ VF → K is the control map. Each node is assigned

a control from the signature K.
– prntF ∶ k ⊎ VF → VF ⊎ m is the parent map which defines

the parent-child-relationship of the place graph’s nodes.
Thus, expressing the locality of nodes.

– linkF ∶ X ⊎ PF → EF ⊎ Y is the link map of the link graph
to express connectivity among the nodes. The disjoint
union is the set of ports of F.

In particular, the place graph of F is a forest, and the
link graph of F is a hypergraph. Both structures are defined
and constructed independently. This allows to model the two
elementary aspects for global computing, namely, locality
and interaction of processes, which are prominent for recent
developments in this area [11].

Support of a bigraph. Now we come to the definition
of the support equivalence of a bigraph, which declares an
essential property for our canonical string encoding that has
to be considered to be applied for the bigraph isomorphism
problem.

Definition 7 (Support for bigraphs) (after [33, Def. 2.4]) To
each place graph, link graph or bigraph F is assigned a finite
set |F|, its support, For a place graph we define |F| = VF , and
for a link graph or bigraph we define |F| = VF ⊎ EF.

Definition 8 (Support equivalence and support transla-
tion) (after [33, Def. 2.4]) Two bigraphs F and G in the
same homset are said to be support equivalent, and we
write F ≏ G , if there is a support translation of F by � that
uniquely determines G, meaning, the support translation � is
a bijection � ∶ |F| → |G| that respects the structure of F such
that . By Def. 7, the support translation consists of
a pair of bijections �V ∶ VF → VG and �E ∶ EF → EG.

With regard to Def. 4, we write (I → J) for the same hom-
set of I and J, meaning the set of bigraphs f ∶ I → J with the
same interfaces (cf. [33, Def. 2.8]).

Definition 9 (Lean-support equivalence) (after [33, Def.
2.19]) A bigraph is lean if it has no idle edges. Two bigraphs
F and G are lean-support equivalent, written F ≎ G , if they
are support equivalent (Def. 8) ignoring their idle edges.
Composition and tensor product preserve this equivalence.

Fig. 1 Example of a bigraph B ∶ ⟨2, {x1, x2}⟩ → ⟨1, {y1, y2}⟩ in a
slightly different graphical display as presented in [33]

1 The concept of interfaces for graphs is not new and are also promi-
nent in gs-graphs [11] and ranked graphs [21], as they conveniently
allow the definition of graph composition [11]. This is, however, not
within the scope of this paper. For a detailed explanation of bigraph
composition, the reader may refer to [33].

 SN Computer Science (2021) 2:246246 Page 4 of 14

SN Computer Science

Definition 10 (Bigraph isomorphism) Two bigraphs F and
G are isomorphic if and only if they are support equivalent.
By Def. 8, we write F ≏ G . Similarly, two lean bigraphs F
and G are isomorphic if and only if they are lean-support
equivalent. By Def. 9, we write F ≎ G.

Bigraphical Canonical String Encoding

In this section, we introduce the underlying key idea behind
our approach. The authors in [15] define two unique repre-
sentation for ordered rooted trees: the breadth-first canonical
form (BFCF) and depth-first canonical form (DFCF), where
the former is the one we exploit. For understanding of our
extension, we recall the bottom-up procedure of [15] that
obtains the BFCF of a labeled rooted unordered tree, which
relates to a place graph.

The tree is traversed level by level, starting from the bot-
tom. At each level, families of siblings are reordered from
small to large. This step is performed until the children of
the root are reordered. By recursion all subtrees are in the
correct form. Then, performing a breadth-first traversal,
all labels are recorded from left to right, where families of
siblings are partitioned by the symbol and the end of the
string is denoted by #. Lemma 2.1 in [15] states that for
each labeled rooted ordered tree there exists a corresponding
unique breadth-first string encoding, and vice versa. Based
on this BFCF description, the breadth-first canonical string
(BFCS) for rooted unordered trees is defined afterwards. For
a rooted unordered tree, many derivatives of rooted ordered
tree exist according to the node order and, therefore, many
corresponding canonical forms can be deduced from them.
The minimal string encoding according to the lexicographic
order among all these encodings is the one to use for repre-
senting that rooted unordered tree (see [15, p. 207]).

Method

We are now ready to show the core of our method, namely,
how to obtain a breadth-first string encoding (BFSE) of a
pure bigraph. The cornerstone of our method is the unique-
ness of the canonical form for a labeled rooted ordered tree
which guarantees “the uniqueness of [...] the BFCF for a
labeled rooted unordered tree” [15, p. 207]. To bring the
BFCF in relation to bigraphs, the rooted unordered tree cor-
responds to the place graph whose nodes are by definition
“labeled nodes” because of their controls (see Def. 6).

In the parlance of [15], we assume for the rest of the paper
that (a) there exists a total ordering between each of the
control labels and link names; (b) the set of controls K of the
signature � are drawn from an atomic alphabet (i.e., single-
character labels), which additionally contains four special
symbols not in the alphabet, namely, and # which denote

sibling partition and the end of the string, respectively, fur-
ther { and } to group the node’s links; (c) the group sorts
smaller than any other symbol, # sorts greater than , and
both sort greater than any other symbol in the alphabet of
control labels and .

The procedure’s skeleton for obtaining the BFSE is pre-
sented in Algorithm 2 where we wish to give an outline in
the following. The bigraph’s structure is sequentially trans-
lated, level by level, into a canonically ordered form using a
breadth-first search (BFS) with a bottom–up step beginning
with the root at index 0, instead of starting from the bottom
compared to the BFCF procedure described in [15].

For the breadth-first traversal, we utilize parts of the
approach explained in [7, 8]. The authors present a hybrid
approach combining the top–down and bottom–up BFS by
switching them based on the growing or shrinking frontier
size of the nodes being visited. It may dramatically reduce
the edges to be visited when traversing the place graph.
Notably due to this necessity, the bottom–up approach is
more preferable than the top–down one in some situations,
particularly, when a large number of nodes is present in the
frontier, meaning when the node degree of the place graph
is high (see [7]). We recall the single bottom–up step in
Algorithm 1 for our BFS to make this paper self-contained.
Based on the bottom–up BFS, the canonical labeling proce-
dure is directly applied to the place graph, at the same time,
we check the link graph to respect the structural dependency
of both bigraph constituents.

Place encoding. We start with Line 11 in Algorithm 2
which records the place encoding. The nodes are ordered
from left to right (given by the BFS), and from small to
large. Meaning, in each level, we first group the nodes by
their parents, then sort the entries according to the follow-
ing precedence: their control labels (including the parent
and its children), the number of children and the total sum
of the port count of all children. However, we respect the

SN Computer Science (2021) 2:246 Page 5 of 14 246

SN Computer Science

sorting of former parents when moving into the next level.
Following the BFS level by level, the control label of each
node is then appended to the string. If a node is a site, its
index is recorded instead of the label. (We assume that the
site indices are not contained in the alphabet before.) Fur-
thermore, we record for each node the links it is connected
to. Therefore, its links are fenced within

 recording only their rewritten identifiers (which we
explain in the next paragraph). This step only records edges
and outer names by checking linkF(vi) ≠ �, vi ∈ VF (see
Def. 6). To partition families of siblings, we use , and to
denote the end of the place encoding, we add #. In addition,
we record in the next level for a node that had no children
before and only if in the next level at least one parent has
further nodes. For example, consider the left subtree B under
A in Fig. 1. According to the above defined order, its encod-
ing is . Because both
D and E have no children, two symbols are recorded first
before GH, which are the child nodes of F.

Notice that this procedure is called iteratively inside a for
each loop for each tree of the place graph’s forest (Line 4
in Algorithm 2). Consequently, the place graph encoding
for each tree is finalized by # at the end. Further note that
the first argument of the function bottom–up-step in Algo-
rithm 1 takes not all places of the bigraph but rather B⇂m′ ,
the tree rooted at m′ (i.e., the current root) which is the set
of nodes and sites as defined in [27, Def. 7.2.9].

Link encoding. Now we proceed on with Line 15 of Algo-
rithm 2, which treats the connections among the inner names
and links (i.e., edges and outer names) only. The following
explanation is just a matter of specifying a suitable ordering
among the connections expressed by the link graph. There-
fore, we apply a complete label rewriting of all edges due
to the new ordering of the place graph. In bigraph match-
ing the identity of these labels do not affect the rewriting

result. Inner names and outer names remain untouched and
preserve their natural ordering (cf. Def. 8 and Def. 9). A cor-
rect and unique re-labeling of edges is achieved by always
traversing the place graph first, and based upon this order-
ing these link names are rewritten and recorded. We gen-
erate constant symbols with the following characteristics:
rewritten edge identifiers sort greater than inner names, and
inner names sort greater than outer names. Edge identifiers
are prefixed by e, where for each character an integer is
appended which is continuously incremented for every new
unvisited link, e.g., e2 means that a previously unvisited
edge ei ∈ EB was rewritten after two other (already rewrit-
ten) edges were visited.

The rest of the possible link patterns are recorded at
the end of the string in the following order: (1) idle inner
names,2 (2) connections from inner names to edges, (3) con-
nections from inner names to outer names, and (4) idle outer
names. According to the above sequence, each link pair is
separated by the symbol , finally closing the link encoding
with an additional #. For instance,
constitutes a valid link encoding w.r.t. node-free link graphs.
Here, x0 and x1 are idle inner names and y0 is an idle
outer name. The middle part tells us that the inner name x2
is connected to the edge e3, and x3 is linked to the outer
name y1.

To sum up, we rewrite edge identifiers in the order as they
are revealed when traversing the place graph. The complete
link recording procedure is then, to first record all idle inner
names, then inner names connected to edges, after connec-
tions from inner to outer names, lastly idle outer names.
Recall that idle edges are not captured as we treat only lean
bigraphs (cf. Def. 9).

Summary. The basic schema of the encoding resembles
the following form: PE0#⋯ #PEm#LE# , where PEi denotes
the place encoding for the ith root (i ∈ m) of BP such that
the natural order is preserved,3 and LE denotes the link
encoding.

Examples

Unary interfaces. We provide more examples to illustrate the
algorithm. The breadth-first string encodings for each of the
four bigraphs in Fig. 2 are:

(a)

2 When we refer to idle inner names, we actually mean closures, as
introduced in “Examples” later.
3 While there is no node ordering in bigraphs, this is different with
roots. The indices naturally determine the order. This concept plays
an important role w.r.t. composition of bigraphs. See, for example,
[33, Def. 2.5], and the end of “Examples”.

 SN Computer Science (2021) 2:246246 Page 6 of 14

SN Computer Science

(b)

(c)

(d)

Imagine, we would extract the corresponding encoding of
the link part, the result would be for bigraph (c) D{e0}
E{e0e1}F{e1}D{e2}E{e3}F{e2e3}, for (d) D{e0}
E{e0e1}F{e1}D{e2e3}E{e2}F{e3}. Note that the
link part cannot be obtained without traversing the place
graph since we need to respect the structural interplay
imposed by both the place and link graph. Both (c) and (d)
exhibit the same place graph, however, the linkings between
the nodes are slightly different which is visible in the encod-
ing above. Also bigraphs (a) and (b) have a similar structure.
Until the third level of the place graph, the encoding seems
the same. Note the last appearing control F which is con-
nected to y2 in (a) and to y1 in (b). Another difference is the

end of the encoding in (a) compared to (b). Here, we see that
the inner name b is connected to the outer name y2 which
is not the case in (b) (see Fig. 2).

Elementary bigraphs. Now, we consider elementary
bigraphs, a special class of node-free bigraphs that can be
classified as placings � and linkings � [33]. Table 1 shows
their canonical encoding. Elementary bigraphs represent
a set of basic bigraphs of which more complex ones can
be built.

We see that BFSE(merge2) and BFSE(join) i s
equal to which makes sense because mergen
itself is recursively defined using only the identity
place graph at 1 and join in the following manner:
merge0 = 1,merge1 = ��1,merge2 = join,merge

n+1 = join◦

(��1 ⊗ merge
n
) (cf. [33]). Concerning the linkings �

in Table 1, the symbol � is called the origin, a triv-
ial interface defined as . A substitution
� ∶ X → Y is the tensor product of elementary substitu-
tions , where Y = {y⃗} and
X0 ⊎⋯ ⊎ Xn−1 , and a closure is the tensor product of

(a) (b) (c) (d)

Fig. 2 Four different bigraphs. Both bigraphs a and b have roughly the same structure concerning the place graph. The place graphs of c and d
are isomorphic. Their differences are expressed considerably through their link graphs, which is also visible in their respective BFSEs

Table 1 Overview of some important elementary bigraphs and their canonical string encodings

SN Computer Science (2021) 2:246 Page 7 of 14 246

SN Computer Science

elementary closures , where
W = {w⃗} (see Table 1 and also [33, p. 29]). Generally, a
bijection from sites to roots is called a permutation � and
a bijective substitution is called renaming �.

Apparently, most of their canonical forms exhibit a final-
ized, static nature, i.e., the time complexity is O(1), or at
least follow a simple recipe on how to construct them.

Multiary interfaces. We proceed the demonstration using
bigraphs with multiary outer faces (refer to Def. 4 and Fig. 3).
Particularly, bigraphs that have more than one root. First, we
give the string encoding of the five bigraphs depicted in Fig. 3:

(a)
(b)
(c)
(d)
(e)

The only difference between bigraph B ∶ � → ⟨2, �⟩ (b) and
C ∶ � → ⟨2, �⟩ (c) is that only the two trees are placed under
different root indices for each bigraph. Though, bigraph B
and C seem structurally similar because only the root index
for each tree is different, they are not equal. Our reason to
keep the original order of root nodes imposed by their indi-
ces was not arbitrary (cf. Summary in Sec. 3.1). Consider
the following example, where bigraph A ∶ ⟨2, �⟩ → ⟨1, �⟩
(a) from Fig. 3 is used for composition, thus, interfaces as
in Def. 4 are required. As per definition (cf. [33, Def. 2.5]),
A◦B is defined when the outer face of B is equal to the
inner face of A, which is true in this case. The same applies
to A◦C . The result of D = A◦B is depicted in bigraph
D ∶ � → ⟨1, �⟩ (d) in Fig. 3, and for E = A◦C in bigraph
E ∶ � → ⟨1, �⟩ (e). Due to B C it follows D E.

See also the discussion in “Discussion”, where we explore
this issue in more detail concerning the primary usage of the
proposed canonical form and other operations.

Correctness

Theorem 1 Let F and G be pure and lean bigraphs over the
same signature � with an atomic alphabet, f̃ and g̃ their
corresponding bigraphical canonical string encoding. Then,
F ≎ G if and only if f̃i = g̃i, i = {1,… , n} , where n denotes
the length of the string. According to Def. 10, we also say
that F is isomorphic to G.

Proof outline. It is easy to verify that for two lean-support
equivalent (i.e., isomorphic) bigraphs, both their BFSE must
be identical. The results of the BFCF for rooted unordered
trees presented in [15] will suffice to justify our proof out-
line, as we did not alter the fundamental algorithmic con-
cepts. Due to the orthogonality of a bigraph’s place and link
structure, we can define a string encoding of both constitu-
ents separately but not independently, assuming that both
encodings are uniquely derived for some bigraph and are
not necessarily a canonical form on its own. Since the “place
encoding” is unique, all subtrees are in the correct forms
regardless of the encoding of the link part (cf. [15]). This is
also true if we include the encoding of the link part of some
BFSE into our consideration. We introduce a new symbol
with a smaller order among all other symbols of the alphabet
with which we encode the corresponding link names con-
nected to a node according to the lexicographic order. Then,
merging both encodings is possible without contradiction,
since the link part has a designated order in relation to the
place part. In our approach, the link encoding is strongly
connected to the place graph and depends on its ordering.
Thus, if the encodings of two place graphs are not equal,
both its “included” link encodings are also different with
respect to their position in the string.

With regard to the bigraph isomorphism test, we say that
two bigraphs A and B over the same signature are equivalent
to each other, denoted by A ≏ B , if they represent the same
bigraph, or A ≎ B , if both bigraphs are lean. The unique-
ness of the BFSE ensures a bijection in the sense that it
forms a support translation, meaning, when two BFSEs ã
and b̃ are compared character by character and for every
ãi = b̃i, i ∈ 0,… , n , two bigraphs are said to be equal. ◻

Experimental Evaluation on the Time Complexity

This section presents the experimental results of some
performance benchmarks that were conducted using our

(d) (e)

(c)(b)(a)

Fig. 3 Running example bigraphs, where b and c have more than one
root. Bigraphs a, d and e serve for purposes of demonstrating the
composition

 SN Computer Science (2021) 2:246246 Page 8 of 14

SN Computer Science

own implementation.4 Note that this evaluation considers
lean bigraphs, for which we additionally discuss sufficient
reasons in "Reflections on the Application”.

To evaluate the time complexity of our algorithm, we
try to follow the “common practice” of the recent bigraph-
related literature [16, 23] concerning experimental evalu-
ation. The purpose is not to compare these works with our
results (which is not possible nor fair due to the different
problems treated) but rather to highlight the experimental
setups on the time complexity analysis. In [16] the run-
ning time of the CSP resolution and construction of the
embedding of their presented approach are individually
measured. The performance changes are further evaluated
by adjusting the size of the bigraphs by three parameters
(number of “zones”, “cars” and “connectivity degree”,
cf. [16, p. 53]). In [23], four experiments are conducted
concerning their bigraph matching approach. The authors
measured the running time using different sizes of the
redexes and agents, and by increasing the depth of the
agent. The approach is compared with another library for
bigraphs. Due to the fact that there are no widely recog-
nized benchmarks for the bigraph matching or the bigraph
isomorphism problem (cf. [25, 31]), the experimental set-
ups differentiate among the works.

Now proceeding with the empirical evaluation of the
implementation, we employed the test framework called
Java Microbenchmark Harness (JMH) to increase the
soundness. The tests described in the following were
performed on a 2 Core Intel Core i7-7500U processor
(3.5 GHz) with 50 warm-up iterations and 30 measure-
ment iterations across two forks. Two different test cases
were designed. In the first case, we only considered place
graphs of varying size. For the second case also the link
graph was included and the number of connections among
the nodes were scaled. With respect to test data, we used
the random bigraph generation algorithm as presented in
[25]. Note that the following running times were consist-
ently measured by JMH.

For the first test, we randomly generated place graphs
with preferential attachment (see [25]), and varied the num-
ber of nodes n = {1000,… , 10000} , further fixing the root
size to r = 1 . In accordance with [15], we achieve the same
complexity as the BFCF for rooted unordered trees, when
only place graphs are considered. This can be observed in
Fig. 4, where we normalized the measured time between 0
and 1. The reason is that the total execution time depends on
the implementation (i.e., the used platform and programming

language), thus, only the curve’s behavior is of interest for
our analysis.

Proposition 1 The time complexity of Algorithm 2 to com-
pute the BFSE of a place graph BP is O(n2 d log d) , where
n is the number of places, and d the maximal node degree
in BP.

Regarding the second test, we randomly synthesized
bigraphs, where we also allowed connections between nodes.
In [25], two strategies were proposed; here we had chosen
the maximal degree variant with assortative behavior. This
means that nodes with the same arity will connect to nodes
with similar arity. For the test, we fixed the number of nodes
to n = 5000 and used the signatures �i = {� ∶ ki} with
k = {5, 10, 20} . More specifically, for every run i ∈ {1, 2, 3}

��

�

��

�

�
��

�

�
�

��

�
��

�
�����

�

��
����

�
�

��

�
��

��

��

�
�

���

��

��

�

�
�

��

��
���

��
�

��

��

��

�
��

�

��

�
��

�

��

�

��

�

��

��

����

�
��

�

��

�

���

�
�

���

��
�

�

�

��

��

����
��

� ����

�

�
� ���������

�
��

�
�
� �

�
�

���� �������

�
�

��������������

��

����� �
�������

� �

�
�

��

�

�
��

���

�

0.25

0.50

0.75

1.00

1000 3500 6000 8500
Number of nodes

Ti
m

e
(n

or
m

al
iz

ed
)

Time complexity for place graphs only

Fig. 4 Time complexity of the canonization algorithm for place
graphs only with varying number of nodes. The black points denote
our experimental data. The blue line is the reference for O(n2 d log d) .
The time on the y-axis is normalized between 0 and 1

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

0.1

0.2

0.3
0.4
0.5
0.6
0.8
1.0

0.25 0.50 0.75 1.00
Proportion of nodes being used for linking

Ti
m

e
(n

or
m

al
iz

ed
, l

og
−s

ca
le

)

Arity
��

��

��

Σ3

Σ2

Σ1

Time complexity for bigraphs with links

Fig. 5 Time complexity of the canonization algorithm for bigraphs
with links. The points denote our experimental data generated for
bigraphs over three different signatures with varying arity. Every
bigraph contained 5000 nodes. The x-axis denotes the proportion of
nodes being selected for linking. A log scale is used for the y-axis,
where the time is normalized between 0 and 1

4 The authors are working on a framework for the creation and simu-
lation of bigraphs, called Bigraph Framework which is implemented
in the Java programming language. The proposed algorithm is imple-
mented in this framework. More details can be obtained from https://
www. bigra phs. org/.

https://www.bigraphs.org/
https://www.bigraphs.org/

SN Computer Science (2021) 2:246 Page 9 of 14 246

SN Computer Science

exactly n nodes with the control A were created, each with
ki ports connected to ki distinctive links. In every run i, we
incrementally adjusted the fraction of the n nodes being
selected for linking using p = {0.1, 0.25, 0.5, 0.75, 1.0} .
Thus, the number of possible links gradually increases.

The results are presented in Fig. 5, where the measured
time was normalized in the same manner as above, addition-
ally using a logarithmic scale on the y-axis. The logarithmic
scale allows us to compare the percentage changes of the
running time also among the three signatures. The different
colors in the legend represent the three different signatures
(from �1 to �3). For instance, the turquoise line represents
the measurements for bigraphs over �3 = {� ∶ 20} for all
pj, j = 1,… , 5 , e.g., at p5 = 1.0 every node of the bigraph
had 20 ports, which were all connected to a node via a dis-
tinct link. From Fig. 5 it can be seen that for all signatures
there is an increase about roughly 50% w.r.t. the running
time when more than half of the nodes (p3 = 0.5) are linked
(from the link graph’s perspective) as opposed to p1 = 0.1 ,
where only 10 % of the nodes are connected.

Regardless of the fraction of nodes being selected for
linking, the maximal arity significantly determines the
complexity, when comparing the data of the three differ-
ent signature experiments. That means, for example, �3 at
p1 = 0.1 has a higher complexity than �1 at p5 = 1.0 . As
shown in Fig 5 of this experiment, the time increases linearly
with increasing node linkage for all three individual signa-
tures. Thus, with regard to the rate of change concerning the
running time in Fig. 5, we can treat the maximal arity of a
signature roughly as a constant, because the rate of change
is constant.

As a conclusion from the above, we can summarize the
experimental results by the following claim:

Claim The time complexity of Algorithm 2 to compute the
BFSE of a pure, lean bigraph B over � is O(n2k d log d) ,
where n is the number of places, k the maximal arity in � ,
k > 0 , and d the maximal node degree in BP.

Discussion

Now that we have defined and analyzed the canonical form
of pure, lean bigraphs, we want to compare our work with
related approaches, before we reflect on particular applica-
tions and consider some limitations.

Related Work

The graph isomorphism problem is well-addressed in the
literature for several kinds of graphs. For the sake of short-
ness, we do not intend to give a complete overview of the

graph isomorphism problem. Because we deal with a spe-
cial graph abstraction, current approaches cannot directly be
applied on bigraphs and are thus only superficially related
to our work. At most, the findings may be applicable for the
corresponding place or link graph only but not for both sub-
structures at the same time (as also concluded in [6]). For a
better understanding, however, we wish to present selected
approaches for each domain that treat the isomorphism prob-
lem in general, before we address canonical labelings and
bigraph matching implementations, and compare them to
our work.

Berge and Rado [9] gave some notes on the formal con-
struction of isomorphic hypergraphs with proofs. A quasi-
polynomial time algorithm for the graph isomorphism
problem of general graphs was given by Babai [2, 3]. When
restricting graphs to trees, easier and less complex solu-
tions are possible, e.g., [28, 42] both treat the subgraph iso-
morphism problem for rooted unordered trees. Further is
[29] a serious addition in the field of graph isomorphism in
polynomial time for graphs of bounded degree. Subforest
isomorphism is another special case of the subgraph iso-
morphism problem. Given a tree G, the task is to find the
forest H in G. Generally, the problem is Np-complete, how-
ever, the findings of [6] show that it is practically solvable
when the number r of roots of the forest H is small (i.e.,
r ≤ 3). The exponential explosion only depends on r [6].
The graph isomorphism problem is rated as difficult in the
literature. Graph isomorphism is either p or Np-complete
[22]. We refer the reader to a recent work of Babai [2] for a
more comprehensive elaboration on the hardness of graph
isomorphism.

Canonization of graphs. In relation to our work, we use
a canonical form based on the BFCF as described in [15]
(refer to “Bigraphical Canonical String Encoding”). Moreo-
ver, Chi et al. emphasize that their additionally presented
DFCF for labeled rooted ordered trees is equivalent to the
depth-first traversal encodings proposed in [1, 34, 37] which
we not review here. Many other canonization algorithms are
proposed in the literature, where we wish to present some
selected approaches [4, 28, 44].

Babai and Luks [4] present how to obtain a canonical
form for graphs of bounded valence in polynomial time, and
for general graphs in exponential time.

Valiente [44] exhibits a tree isomorphism code for rooted
unordered trees. The code is a recursively defined integer
sequence, each element separated by a comma symbol.
Starting with the root node, each child is assigned a “sub-
tree code”, which itself is a concatenation of subtree codes.
The first integer of a code sequence associated with a node
denotes the number of nodes of that subtree. Further, the
integer sequences of each subtree are arranged according to
ascending lexicographic order. Thus, nodes with many chil-
dren are always moved to the right of the code. To obtain the

 SN Computer Science (2021) 2:246246 Page 10 of 14

SN Computer Science

code, a postorder traversal of the tree is performed. However,
it does not apply to labeled trees, which place graphs are.

The canonical labeling problem in linear time for sub-
tree isomorphism is expounded by [28] for rooted unor-
dered trees with different types of labels. Luccio et al. [28]
have convincingly presented in great detail that the running
time of the processing and search algorithm depends on the
alphabet and increases with more complex labels. The trees
are first transformed, according to their alphabet, to ordered
ones before the string encoding is computed. For searching
the subtrees of the target tree, additional data structures are
used. Specifically, bottom–up subtree searches are covered
as a dictionary problem to find the occurrences for each pat-
tern in the target tree. In contrast to us, the authors treat the
subtree isomorphism problem.

Bigraph matching. Bigraph matching is the corner-
stone to practically use bigraphs for experimentation and
simulation. Research on bigraph matching with respect to
bigraphical reactive systems (BRS) [33] is an instance of
the sub-bigraph isomorphism problem. In bigraphs jargon,
reaction rules (also named rewrite rules) define the behavior
of a BRS. The search pattern of the reaction rule, called the
redex, is to be found in the target bigraph, called the agent.
Then, the match is replaced with the corresponding reactum
of the rewrite rule.

There are few solutions concerned with the bigraph
matching problem for various kinds of bigraphs; a non-
exhaustive presentation is the following. For binding
bigraphs (links have local scopes) by an inductive characteri-
zation of matching [10, 19, 24]; for directed bigraphs (which
subsume pure bigraphs) [5]; for bigraphs with sharing (the
place graph is a DAG) using a SAT-based algorithm [41];
for the pure case by [31] as a constraint satisfaction problem
(CSP), and further an adapted reduction of the problem for
directed bigraphs to a CSP [16].

Birkedal et al. proposed in [10] an inductive characteriza-
tion of matching for binding bigraphs. The approach empha-
sizes on the soundness and completeness of the approach—a
requirement for implementing correct matching algorithms
[10]. They have shown how binding bigraphs are decom-
posed into elementary constituents (i.e., normal form of
binding bigraphs) first, then matching sentences and rules
are defined upon them to infer valid matching sentences.
Using a logical programming language such as Prolog, the
set of matching rules can be expressed conveniently, accord-
ingly “operating by searching for inference trees” when
applying these rules [10, p. 16].

The authors of [41] solve the matching problem for
bigraphs with sharing by treating it as a computationally
efficient SAT instance. The approach is implemented in
BigraphER [40]—a tool programmed in the OCaml pro-
gramming language using MiniSAT as underlying solver
implementation. The algorithm employed for matching

is a special SAT encoding of the subgraph isomorphism
problem as discussed in [39]. As further stated in [41], the
particular bigraph matching problem is an instance of the
Np-complete subgraph isomorphism problem and thus some
optimizations are applied such as the Tseitin transforma-
tion or exploiting the redex symmetries’ which can occur in
case of multiple matchings in the agent. Interestingly, when
executing a BRS, the tool stores the canonical form of states
of the transition graph that is being synthesized to reduce
the number of intermediate states [41]. Therefore, a SAT
encoding to check two bigraphs on equality was presented
in [39]. Two additional constraints are given which ought to
be included in the initial set of constraints as described in
their earlier work [41]. Hence, the Boolean matrix forms the
canonical encoding. However, the encoding is designed for
bigraphs with sharing, whereas we treat pure bigraphs, and
provide a string labeling as opposed to a Boolean matrix.

Computing bigraph embeddings by translating it to a
CSP is expounded in [31]. An embedding, as defined in
[27], is a structure preserving map which is injective from
a source to target bigraph5 [31] (see also Def. 8). Regard-
ing the construction of the linear equation system of the
CSP, the authors define constraints for both bigraph con-
stituents separately and also by some “gluing constraints”
that respect the structural dependency imposed by the
interplay of both substructures [31]. Overall, 34 constraint
families are contained in the equation system, however, the
problem is polynomially bounded with respect to the sup-
port of the bigraphs in question [31, p. 6]. The algorithm
is implemented in jLibBig6—a Java library using Choco7
as the underlying solver. In [16], the embedding problem
for directed bigraphs is implemented in CSP. The results
are experimentally validated by a simulation. The authors
found “that the running time scales exponentially” [16,
p. 54] on the one hand with respect to number of nodes and
on the other hand with respect to the connectivity degree. To
emphasize, [16, 31] consider the embedding problem, thus,
the results cannot be compared easily with ours as we treat
the bigraph isomorphism problem.

Summary. We wish to highlight that this work does not
treat the general bigraph matching problem but the bigraph
isomorphism problem. While the methods proposed are suit-
able for a great number of graphs, there are some special
issues when working with bigraphs, such as considering the
orthogonality of the two constituents in the computation

5 Specifically, this can be regarded as a “weak” support translation
“from nodes and edges of the redex to nodes and edges of the agent”
[31, p. 2].
6 For more information, we refer to this URL: http:// midas. uniud. it/
downl oads/ libbig/.
7 Choco [36] is a open-source Java library for constraint program-
ming.

http://midas.uniud.it/downloads/libbig/
http://midas.uniud.it/downloads/libbig/

SN Computer Science (2021) 2:246 Page 11 of 14 246

SN Computer Science

(i.e., place graph’s sites and link graph’s hyperedges, inner
names, and outer names). Each of the presented works is
based on a unique combination of strategies and algorithmic
techniques, exploiting the peculiarities of the corresponding
structure in question.

Of course, one can take the naive approach and con-
catenate the results of the tree and hypergraph labeling,
which must be accordingly adapted for both bigraph con-
stituents. Then, the complexity would simply be the sum
of O = O(BP) + O(BL) . This, however, would not be a sat-
isfactory conclusion. We have a more elegant solution with
a lower time complexity compared to the naive approach by
doing the hypergraph BL labeling at the same time to some
extent when traversing the place graph.

Reflections on the Application

Using our method, the bigraph isomorphism problem
becomes O(n), where n is the length of the string encoding.
However, we can improve the runtime of the computation
by extending it to a parallel bottom–up BFS as discussed in
[12]. They expound a direction-optimized BFS (i.e., a hybrid
top–down and bottom–up step) and compare it with the
top–down approach. A significant improvement is observed
by the authors based on their experimental performance
tests. Still, the parallel algorithm design could be adapted
to conduct further tests.

The advantages of a canonical labeling over an isomor-
phism test is that the BFSE can be computed separately for
bigraphs instead of checking two graphs pairwise at a time
(cf. [38]). If the encodings are stored in a database, com-
putational efficient searches are possible, and if needed,
one can collate the strings at any time. This application
is especially useful for building a bigraph database. Fast
access and searches would be possible. Then, benchmarking
of bigraph-related algorithms become straightforward and
more consistent.

Why Lean Bigraphs?

What we deliberately left out in the background (“Graph-
Theoretical Background”) was the capability of bigraphs to
express dynamics through reactions but was recovered in
“Related Work”. We wish to bring the focus on the topic
BRS again, especially, using it to answer the question why
we treated lean bigraphs (refer to Def. 9).

With reference to [33], bigraphs whose interfaces sat-
isfy certain properties are separately termed. For example,
ground bigraphs are bigraphs that do not have sites and inner
names. A lean bigraph on the other hand has no idle edges
defined. Both are fine properties for the rewriting in BRSs
(see [33]). Idle edges may occur in ∕x◦G if x is an idle name
of G. Idle edges can be regarded invisible, meaning, they

can be ignored (see [33, p. 29]). Whether to discard idle
links or not depends on the context where bigraphs are used.
For example, it makes sense to discard them in the case for
redexes of bigraphical reaction rules because a “rule whose
redex has an idle name leads to rather strange behavior,
unlikely to be met in applications; we tend to regard such
rules as unreasonable” [32, p. 37].

We wish to emphasize this fact because lean, ground,
prime bigraphs are the agents in a BRS [33] that are recon-
figured by reaction rules (refer to Bigraph Matching in
“Related Work”) and which our method can process.

Bigraph Isomorphism

Recall, that a reaction is a labeled transition of the form
 where is regarded as a reaction relation, and

a, a′ being some agents. Such a relation allows to synthesize
a transition system, which can be thought of as a directed
graph with nodes and edges. Nodes are called the states
of the system, and edges represent the transitions between
states designated by some L.

Bigraph isomorphism checks are essential for deriving
such a transition system from a BRS through the application
of reaction rules on bigraphs. Sevegnani and Calder [39]
pointed out several applications for the bigraph isomorphism
test for which our canonical labeling can be incorporated.
For example, during a simulation, a transition system is
derived. Here, the detection of two isomorphic bigraphs is
essential to avoid creating the same states multiple times.
Only the canonical form of a state is stored in the transition
system which reduces the number of intermediate states.
See, for example, [35], where a breadth-first exploration of
the state space is used as a strategy for generating a transi-
tion system while detecting cycles.

Moreover, the test is fundamental to check BiLog [17]
predicates (see [39]). The isomorphism test can be employed
to determine all automorphisms of a bigraph, which is
required “to count distinct occurrences in a stochastic BRS”
[39, p. 63].

Operations

Now, we briefly outline another application of the proposed
encoding for pure, lean bigraphs. Specifically, operations
such as composition.

Let G ∶ I → J be a lean bigraph in ���(K),8 and
g̃ = BFSE(G) its string encoded representation in ������
computed by the function BFSE (Algorithm 2).

8 Categorically, bigraphs and their interfaces are classified in the
���(K) category which has arrows that are bigraphs and objects that
are bigraph interfaces [33].

 SN Computer Science (2021) 2:246246 Page 12 of 14

SN Computer Science

While being compatible to the formalization used in
[23] now, consider the faithful functor named BFSE ∶
���(K) → ������ on the morphisms of bigraphs such
that controls ctrlG , nodes and hyperedges, and both struc-
tures prntG and linkG are preserved (Def. 6), and further
BFSE is defined on the interfaces of bigraphs. Thus, we
may say that the encoding translates the bigraph G from
���(K) into BFSE(G) ∶ BFSE(I) → BFSE(J) . For that pur-
pose a functor BFSE is obtained in a manner that allows
to move back and forth between the interface of some
bigraph G and the corresponding index in its string encod-
ing g̃ . For example, BFSE(J) = j , where j constitutes a
partially ordered set of indices of length m + |Y| , the first
m elements of j are indices that represent the position of
root symbols in the encoding, similarly, |Y| elements map to
the index of outer name symbols in g̃ . Considering bigraph
(a) in Fig. 3, A ∶ ⟨2, �⟩ → ⟨1, �⟩ with , its
outer face image BFSE(J) is the set {0} , and analogously,
BFSE(I) = {6, 8}.

By looking at the method’s definition, identity and com-
position are preserved. If BFSE preserves composition,
BFSE(G◦F) = BFSE(G)◦BFSE(F) . However, we refrain
from giving the exact details in this descriptive presentation
here as it is out of scope in this paper. A proof of whether
composition is preserved for all morphisms in ���(K) is
interesting future work.

Atomicity of the Alphabet

Recall that the signature of two bigraphs must be the same,
so that these can be equal at all (refer to Theorem 1). Even
so, the control labels must satisfy a certain condition. Our
method assumes that the signature’s control labels are drawn
from an atomic alphabet. Thus, it cannot be directly applied
to other alphabets. Consider the following problem with
a different, non-atomic alphabet. Let us assume we have
the signature � = {� ∶ 0,�� ∶ 0} , a bigraph F with two
nodes ctrl(v1) = �� and ctrl(v2) = � under the root, and G
with three nodes ctrl(v1) = � , ctrl(v2) = � and ctrl(v3) = �
under the root. Their corresponding BFSE is in both cases

 , though G has more children then F.
Fig. 6 illustrates that non-atomic alphabets violate Theo-
rem 1. Disregarding that property would result that F ≎ G ,

which is not true and can be seen without further proof in
Fig. 6.

A solution is presented in [28], where the authors explain
how to treat the ordering of labeled trees with non-constant
alphabets. Notice that non-constant alphabets increase the
string size and thus the complexity of the preprocessing and
search. For two bigraphs F and G, the running time is then
a function of the total length of all control labels in both
bigraphs (cf. [28]).

Another approach to treat non-atomic alphabets is by par-
ametrization of control labels. For instance, this is accom-
plished by a suitable hash function that generates a unique
integer for each distinguished control label. Hashes need to
be computed only once and can be stored in a map. Hence,
accessing the hashed value is computationally efficient and
takes constant time. Concerning our method, in the course
of the place graph traversal and ordering, one would then
acquire the corresponding hashed value of the control label
instead of using the label directly. Consequently, the com-
parison of two string encodings has to be slightly changed.
The encoding itself is not a pure string anymore but rather
an array. With the exception of the special symbols (e.g.,
 or #), the computed values of the hash function would

be allocated to each cell in the array corresponding to the
respective control at that position. Comparing the array is
then a matter of comparing the hashed values for the array’s
same indices.

Special attention must be paid to ensure that the hashing
operation is computationally inexpensive and takes account
of collision and dispersion qualities. Given the fact that
non-atomic alphabets may increase the running time of the
encoding in some circumstances, their use shall be carefully
considered. So far we did not have encountered a problem
with atomic alphabets in practice. However, it would be
interesting future work to consider alternative approaches
in which the encoding could handle non-atomic alphabets.

Conclusion

During the canonical encoding procedure, each bigraph is
assigned a unique string based on its place and link graph.
To determine whether two bigraphs are equal, i.e., isomor-
phic to each other, or (lean-) support equivalent (see Defs. 8,
9 and 10), one only has to compare the strings with each
other instead of traversing the bigraphs completely.

As a result, we casted the bigraph isomorphism prob-
lem to a string matching problem by testing two bigraphical
canonical forms, whether they are equal. This was achieved
by defining a unique string encoding, which reduces a
bigraph’s place graph to the case of an ordered tree. The
proposed solution was devised for pure and lean bigraphs,

Fig. 6 Two bigraphs F, G defined over the same signature
� = {� ∶ 0,�� ∶ 0} . Non-atomic alphabets violate Theorem 1

SN Computer Science (2021) 2:246 Page 13 of 14 246

SN Computer Science

specifically, for bigraphs with unary or multiary interfaces,
and no idle edges. The encoding guarantees lean-support
equivalence (see Def. 9), which means that our canonical
mapping is a structure-preserving mapping, if two lean
bigraphs are equal in the sense that their string encodings
are equal. Our approach assumes atomic alphabets. It seems
that non-atomic alphabets are possible in general, however,
they were not needed for the approach presented in this work
and is thus left for future work.

Notice that even if the orthogonality of the bigraph allows
separate handling of both substructures, we presented a solu-
tion that obtains the canonical form by traversing the place
graph and the link graph at the same time to some extent. We
showed that the complexity of our canonization algorithm is
not significantly higher than the one of the BFCF for rooted
unordered trees in [15]. The complexity of our method for
a bigraph B over � is O(n2 k d log d) , where n is the number
of nodes, k the maximal arity of a bigraph’s signature and d
the maximal node degree of the place graph. This claim is
supported by experiments.

Acknowledgements Funded by the German Research Foundation
(DFG, Deutsche Forschungsgemeinschaft) as part of Germany’s
Excellence Strategy—EXC 2050/1—Project ID 390696704—Cluster
of Excellence “Centre for Tactile Internet with Human-in-the-Loop”
(CeTI) of Technische Universität Dresden.

Funding Open Access funding enabled and organized by Projekt
DEAL. Funded by the German Research Foundation (DFG, Deutsche
Forschungsgemeinschaft) as part of Germany’s Excellence Strategy—
EXC 2050/1—Project ID 390696704—Cluster of Excellence “Centre
for Tactile Internet with Human-in-the-Loop” (CeTI) of Technische
Universität Dresden.

Availability of data and material Not applicable.

Code availability Code is available currently upon request through the
corresponding author. More details can be obtained in the future from
https:// www. bigra phs. org/.

Declarations

Conflict of interest The authors declare that they have no conflict of
interest.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

 1. Asai T, Arimura H, Uno T, Si Nakano. Discovering frequent
substructures in large unordered trees. In: Grieser G, Tanaka Y,
Yamamoto A, editors. Discovery science, lecture notes in com-
puter science. Berlin: Springer; 2003. p. 47–61. https:// doi. org/ 10.
1007/ 978-3- 540- 39644-4_6.

 2. Babai L. Graph isomorphism in quasipolynomial time. CoRR.
2015. arxiv: 1512. 03547.

 3. Babai L. Graph isomorphism in quasipolynomial time [Extended
Abstract]. In: Proceedings of the Forty-Eighth Annual ACM
Symposium on Theory of Computing, STOC ’16. ACM; 2016.
p. 684–97. https:// doi. org/ 10. 1145/ 28975 18. 28975 42.

 4. Babai L, Luks EM. Canonical labeling of graphs. In: Proceedings
of the Fifteenth Annual ACM Symposium on Theory of Comput-
ing, STOC ’83. ACM; 1983. p. 171–83. https:// doi. org/ 10. 1145/
800061. 808746.

 5. Bacci G, Grohmann D, Miculan M. DBtk: a toolkit for directed
bigraphs. In: Proceedings of the 3rd International Conference
on Algebra and Coalgebra in Computer Science, CALCO’09.
Springer-Verlag; 2009. p. 413–22. http:// dl. acm. org/ citat ion. cfm?
id= 18129 41. 18129 78.

 6. Bacci G, Miculan M, Rizzi R. Finding a forest in a tree. In: Maf-
fei M, Tuosto E, editors. Trustworthy global computing, lecture
notes in computer science. Berlin: Springer; 2014. p. 17–33.

 7. Beamer S, Asanović K, Patterson D. Direction-optimizing
breadth-first search. In: Proceedings of the International Con-
ference on High Performance Computing, Networking, Storage
and Analysis, SC ’12. IEEE Computer Society Press; 2012. p.
12:1–12:10.

 8. Beamer S, Asanović K, Patterson DA. Searching for a parent
instead of fighting over children: a fast breadth-first search
implementation for Graph500. 2011. Technical Report, UCB/
EECS-2011-117, EECS Department, University of California,
Berkeley. URL http:// www2. eecs. berke ley. edu/ Pubs/ TechR pts/
2011/ EECS- 2011- 117. html.

 9. Berge C, Rado R. Note on isomorphic hypergraphs and some
extensions of Whitney’s theorem to families of sets. J Com-
bin Theory Ser B. 1972;13(3):226–41. https:// doi. org/ 10. 1016/
0095- 8956(72) 90058-5.

 10. Birkedal L, Damgaard TC, Glenstrup AJ, Milner R. Matching of
bigraphs. Electron Notes Theor Comput Sci. 2007;175(4):3–19.
https:// doi. org/ 10. 1016/j. entcs. 2007. 04. 013.

 11. Bruni R, Montanari U, Plotkin G, Terreni D. On hierarchical
graphs: reconciling bigraphs, Gs-monoidal theories and Gs-
graphs. Fundamenta Informaticae. 2014;134:287–317. https://
doi. org/ 10. 3233/ FI- 2014- 1103.

 12. Buluc A, Beamer S, Madduri K, Asanovic K, Patterson D. Dis-
tributed-memory breadth-first search on massive graphs. CoRR.
2017. arxiv: 1705. 04590.

 13. Bunke H, Dickinson P, Kraetzl M. Theoretical and algorithmic
framework for hypergraph matching. In: Roli F, Vitulano S,
editors. Image analysis and processing–ICIAP 2005, vol. 3617.
Berlin: Springer; 2005. p. 463–70. https:// doi. org/ 10. 1007/
11553 595_ 57.

 14. Chi Y, Muntz RR, Nijssen S, Kok JN. Frequent subtree mining—
an overview. Fundamenta Informaticae. 2005;66(1–2):161–98.

 15. Chi Y, Yang Y, Muntz RR. Canonical forms for labelled
trees and their applications in frequent subtree mining.
Knowl Inf Syst. 2005;8(2):203–34. https:// doi. org/ 10. 1007/
s10115- 004- 0180-7.

 16. Chiapperini A, Miculan M, Peressotti M. Computing embed-
dings of directed bigraphs. In: Gadducci F, Kehrer T, editors.
Graph transformation, lecture notes in computer science. Springer

https://www.bigraphs.org/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/978-3-540-39644-4_6
https://doi.org/10.1007/978-3-540-39644-4_6
http://arxiv.org/abs/1512.03547
https://doi.org/10.1145/2897518.2897542
https://doi.org/10.1145/800061.808746
https://doi.org/10.1145/800061.808746
http://dl.acm.org/citation.cfm?id=1812941.1812978
http://dl.acm.org/citation.cfm?id=1812941.1812978
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2011/EECS-2011-117.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2011/EECS-2011-117.html
https://doi.org/10.1016/0095-8956(72)90058-5
https://doi.org/10.1016/0095-8956(72)90058-5
https://doi.org/10.1016/j.entcs.2007.04.013
https://doi.org/10.3233/FI-2014-1103
https://doi.org/10.3233/FI-2014-1103
http://arxiv.org/abs/1705.04590
https://doi.org/10.1007/11553595_57
https://doi.org/10.1007/11553595_57
https://doi.org/10.1007/s10115-004-0180-7
https://doi.org/10.1007/s10115-004-0180-7

 SN Computer Science (2021) 2:246246 Page 14 of 14

SN Computer Science

International Publishing: Berlin; 2020. p. 38–56. https:// doi. org/
10. 1007/ 978-3- 030- 51372-6_3.

 17. Conforti G, Macedonio D, Sassone V. Spatial logics for bigraphs.
In: Caires L, Italiano GF, Monteiro L, Palamidessi C, Yung M,
editors. Automata, languages and programming, lecture notes in
computer science. Berlin: Springer; 2005. p. 766–78.

 18. Conte D, Foggia P, Sansone C, Vento M. Thirty years of graph
matching in pattern recognition. Int J Pattern Recognit Artif Intell.
2004;18(03):265–98. https:// doi. org/ 10. 1142/ S0218 00140 40032
28.

 19. Damgaard TC, Glenstrup AJ, Birkedal L, Milner R. An induc-
tive characterization of matching in binding bigraphs. Formal
Aspects Comput. 2013;25(2):257–88. https:// doi. org/ 10. 1007/
s00165- 011- 0184-5.

 20. Ehrig H, Ehrig K, Prange U, Taentzer G. Fundamentals of alge-
braic graph transformation. In: Monographs in theoretical com-
puter science. An EATCS series. Berlin: Springer; 2006.

 21. Gadducci F, Heckel R. An inductive view of graph transformation.
In: Presicce FP, editor. Recent trends in algebraic development
techniques, lecture notes in computer science. Berlin: Springer;
1998. p. 223–37. https:// doi. org/ 10. 1007/3- 540- 64299-4_ 36.

 22. Garey MR, Johnson DS. Computers and intractability: a guide to
the theory of np-completeness. New York: W. H. Freeman & Co;
1979.

 23. Gassara A, Bouassida Rodriguez I, Jmaiel M, Drira K. Executing
bigraphical reactive systems. Discrete Appl Math. 2019;253:73–
92. https:// doi. org/ 10. 1016/j. dam. 2018. 07. 006.

 24. Glenstrup AJ, Damgaard TC, Birkedal L, Højsgaard E. An imple-
mentation of bigraph matching. 2010. Technical Report, TR-2010-
135, IT University of Copenhagen, Denmark. ISSN 1600–6100.
ISBN 978–87–7949–228–8.

 25. Grzelak D, Priwitzer B, Aßmann U. Generating random bigraphs
with preferential attachment. CoRR. 2020. arxiv: 2002. 07448.

 26. Hartke S, Radcliffe A. McKay’s canonical graph labeling algo-
rithm. Contemp Math Book Ser. 2013. https:// doi. org/ 10. 1090/
conm/ 479/ 09345.

 27. Højsgaard E. Bigraphical languages and their simulation. 2012.
PhD Dissertation. https:// core. ac. uk/ downl oad/ pdf/ 50526 631. pdf.

 28. Luccio F, Mesa Enriquez A, Olivares Rieumont P, Pagli L. Bot-
tom-up subtree isomorphism for unordered labeled trees. 2004.
Technical Report, TR-04-13, Dipartimento di Informatica, Univer-
sità di Pisa, Italy. http:// compa ss2. di. unipi. it/ TR/ files/ TR- 04- 13.
ps. gz.

 29. Luks EM. Isomorphism of graphs of bounded valence can be
tested in polynomial time. In: 21st Annual Symposium on Foun-
dations of Computer Science (Sfcs 1980). 1980. p. 42–9. https://
doi. org/ 10. 1109/ SFCS. 1980. 24.

 30. McKay BD, Piperno A. Practical graph isomorphism, II. J Symb
Computat. 2014;60:94–112. https:// doi. org/ 10. 1016/j. jsc. 2013. 09.
003.

 31. Miculan M, Peressotti M. A CSP implementation of the bigraph
embedding problem. CoRR. 2014. arxiv: 1412. 1042.

 32. Milner R. Bigraphical reactive systems: basic theory. 2001. Tech-
nical Report UCAM-CL-TR-523, University of Cambridge, Com-
puter Laboratory. ISSN 1476-2986.

 33. Milner R. The space and motion of communicating agents. 1st ed.
Cambridge: Cambridge University Press; 2009.

 34. Nijssen S, Kok JN. Efficient discovery of frequent unordered trees.
In: In First International Workshop on Mining Graphs, Trees and
Sequences. 2003. p. 55–64.

 35. Perrone G. Domain-specific modelling languages in bigraphs;
2013. PhD Dissertation, IT University of Copenhagen, Denmark.

 36. Prud’homme C, Fages JG, Lorca X. Choco solver documenta-
tion. TASC, INRIA Rennes, LINA CNRS UMR 6241, COSLING
S.A.S. 2016. http:// www. choco- solver. org.

 37. Rückert U, Kramer S. Frequent free tree discovery in graph data.
In: Proceedings of the 2004 ACM Symposium on Applied Com-
puting, SAC ’04. ACM; 2004. p. 564–70. https:// doi. org/ 10. 1145/
967900. 968018.

 38. Schweitzer P, Wiebking D. A unifying method for the design of
algorithms canonizing combinatorial objects. CoRR. 2019. arxiv:
1806. 07466.

 39. Sevegnani M, Calder M. Bigraphs with sharing. Theoret Comput
Sci. 2015;577:43–73. https:// doi. org/ 10. 1016/j. tcs. 2015. 02. 011.

 40. Sevegnani M, Calder M. BigraphER: rewriting and analysis
engine for bigraphs. In: Chaudhuri S, Farzan A, editors. 28th
International Conference on Computer Aided Verification, vol.
9780. Springer International Publishing; 2016. p. 494–501.
https:// doi. org/ 10. 1007/ 978-3- 319- 41540-6_ 27.

 41. Sevegnani M, Unsworth C, Calder M. A SAT based algorithm
for the matching problem in bigraphs with sharing. 2010. Techni-
cal Report. University of Glasgow. http:// dcs. gla. ac. uk/ ~miche le/
papers/ tech_ match. pdf.

 42. Shamir R, Tsur D. Faster subtree isomorphism. J Algorithms.
1999;33(2):267–80. https:// doi. org/ 10. 1006/ jagm. 1999. 1044.

 43. Ullmann JR. An algorithm for subgraph isomorphism. J ACM.
1976;23(1):31–42. https:// doi. org/ 10. 1145/ 321921. 321925.

 44. Valiente G. Algorithms on trees and graphs. Berlin: Springer;
2002. https:// doi. org/ 10. 1007/ 978-3- 662- 04921-1.

 45. Wachter M, Haenni R. Propositional DAGs: a new graph-based
language for representing boolean functions. In: Proceedings of
the Tenth International Conference on Principles of Knowledge
Representation and Reasoning, KR’06. AAAI Press; 2006. p.
277–85.

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1007/978-3-030-51372-6_3
https://doi.org/10.1007/978-3-030-51372-6_3
https://doi.org/10.1142/S0218001404003228
https://doi.org/10.1142/S0218001404003228
https://doi.org/10.1007/s00165-011-0184-5
https://doi.org/10.1007/s00165-011-0184-5
https://doi.org/10.1007/3-540-64299-4_36
https://doi.org/10.1016/j.dam.2018.07.006
http://arxiv.org/abs/2002.07448
https://doi.org/10.1090/conm/479/09345
https://doi.org/10.1090/conm/479/09345
https://core.ac.uk/download/pdf/50526631.pdf
http://compass2.di.unipi.it/TR/files/TR-04-13.ps.gz
http://compass2.di.unipi.it/TR/files/TR-04-13.ps.gz
https://doi.org/10.1109/SFCS.1980.24
https://doi.org/10.1109/SFCS.1980.24
https://doi.org/10.1016/j.jsc.2013.09.003
https://doi.org/10.1016/j.jsc.2013.09.003
http://arxiv.org/abs/1412.1042
http://www.choco-solver.org
https://doi.org/10.1145/967900.968018
https://doi.org/10.1145/967900.968018
http://arxiv.org/abs/1806.07466
http://arxiv.org/abs/1806.07466
https://doi.org/10.1016/j.tcs.2015.02.011
https://doi.org/10.1007/978-3-319-41540-6_27
http://dcs.gla.ac.uk/~michele/papers/tech_match.pdf
http://dcs.gla.ac.uk/~michele/papers/tech_match.pdf
https://doi.org/10.1006/jagm.1999.1044
https://doi.org/10.1145/321921.321925
https://doi.org/10.1007/978-3-662-04921-1

	A Canonical String Encoding for Pure Bigraphs
	Abstract
	Introduction
	Graph-Theoretical Background
	Elementary Graph Structures
	Bigraphs

	Bigraphical Canonical String Encoding
	Method
	Examples
	Correctness
	Experimental Evaluation on the Time Complexity

	Discussion
	Related Work
	Reflections on the Application
	Why Lean Bigraphs?
	Bigraph Isomorphism
	Operations

	Atomicity of the Alphabet

	Conclusion
	Acknowledgements
	References

