Skip to main content

Advertisement

Log in

Energy Efficiency in Software Defined Networking: A Survey

  • Review Article
  • Published:
SN Computer Science Aims and scope Submit manuscript

Abstract

Software defined networking has solved many challenging issues in the field of networking industry. It separates the control plane from the data forwarding plane. This makes SDN to be more powerful than traditional networking. However, energy cost enhances the overall network cost. Therefore, this issue needs to be addressed to improve design requirements and boost the networking performance. In this article, several energy efficiency techniques have been discussed. To represent it in more detail, a thematic taxonomy of energy efficiency techniques in SDN is given by considering several technical studies of the past research. These studies have been categorized into three sub categories of traffic aware model, end-host aware model and finally rule placement. These models are provided with detailed objective functions, parameters, constraints and detailed information. Furthermore, useful visions of each approach, its advantages and disadvantages and compressive analysis of energy efficiency techniques are also discussed. Finally, the paper is highlighted with the future directions for energy efficiency in SDN.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bannour F, Souihi S, Mellouk A. Distributed SDN control: Survey, taxonomy, and challenges. IEEE Commun Surv Tutor. 2018;20(1):333–54.

    Article  Google Scholar 

  2. Rafique W, et al. Complementing IoT services through software defined networking and edge computing: a comprehensive survey. IEEE Commun Surv Tutor. 2020;22(3):1761–804.

    Article  Google Scholar 

  3. Habibi P, et al. Fog Computing: A Comprehensive Architectural Survey. IEEE Access. 2020;8:69105–33.

    Article  Google Scholar 

  4. Javadzadeh G, Amir MR. Fog computing applications in smart cities: a systematic survey. Wirel Netw. 2020;26(2):1433–57.

    Article  Google Scholar 

  5. Markus A, Attila K. A survey and taxonomy of simulation environments modelling fog computing. Simul Model Pract Theory. 2020;1:101–2.

    Google Scholar 

  6. Welsh T, Elhadj B. On resilience in cloud computing: a survey of techniques across the cloud domain. ACM Comput Surv (CSUR). 2020;53(3):1–36.

    Article  Google Scholar 

  7. Zhu J, et al. TRUS: towards the real-time route update scheduling in SDN for data centers. IEEE Access. 2020;8:68682–94.

    Article  Google Scholar 

  8. Emani CK, Nadine C, Christophe N. Understandable big data: a survey. Comput Sci Rev. 2015;17:70–81.

    Article  MathSciNet  Google Scholar 

  9. Chahal M, et al. A survey on software-defined networking in vehicular ad hoc networks: challenges, applications and use cases. Sustain Cities Soc. 2017;35:830–40.

    Article  Google Scholar 

  10. Shoumy Nusrat J, et al. Multimodal big data affective analytics: a comprehensive survey using text, audio, visual and physiological signals. J Netw Comput Appl. 2020;149:102447.

    Article  Google Scholar 

  11. Qu K, et al. Dynamic flow migration for embedded services in SDN/NFV-enabled 5G core networks. IEEE Trans Commun. 2020;68(4):2394–408.

    Article  Google Scholar 

  12. Singh S, Rakesh KJ. A survey on software defined networking: architecture for next generation network. J Netw Syst Manag. 2017;25(2):321–74.

    Article  Google Scholar 

  13. Semong T, et al. Intelligent load balancing techniques in software defined networks: a survey. Electronics. 2020;9(7):1091.

    Article  Google Scholar 

  14. Alharbi T. Deployment of blockchain technology in software defined networks: a survey. IEEE Access. 2020;8:9146–56.

    Article  Google Scholar 

  15. Han T, et al. A comprehensive survey of security threats and their mitigation techniques for next-generation SDN controllers. Concur Comput Pract Exp. 2020;32(16):e5300.

    Article  Google Scholar 

  16. Rout S, Sudhansu SP, Bibhudatta S. Performance evaluation of the controller in software-defined networking. Comput Intell Data Min. 2017;1:543–51 ((Springer)).

    Google Scholar 

  17. Rout S, et al. Energy efficient routing in software defined networking by efficient traffic rule monitoring techniques. J Adv Res Dyn Control Syst. 2018;10(14-Special Issue):650–62.

    Google Scholar 

  18. Tayyaba SK, et al. Software-defined networks (SDNs) and Internet of Things (IoTs): a qualitative prediction for 2020. Network. 2016;7(11):1.

    Google Scholar 

  19. Shaghaghi A, et al. Software-Defined Network (SDN) data plane security: issues, solutions, and future directions. In: Handbook of computer networks and cyber security. Cham: Springer; 2020. p. 341–87.

    Chapter  Google Scholar 

  20. Rout S, et al. Energy minimization technique in SDN using efficient routing policy. J Xi’an Univ Archit Technol (Scopus). 2020;12(4):3512–9.

    MathSciNet  Google Scholar 

  21. Shirmarz A, Ali G. Performance issues and solutions in SDN-based data center: a survey. J Supercomput. 2020;1:1–49.

    Google Scholar 

  22. Rout, S et al. Load balancing in SDN using effective traffic engineering method. 2017 International conference on signal processing and communication (ICSPC). IEEE, Coimbatore, Tamil Nadu, India 2017. pp 452–456.

  23. Qu K, et al. Traffic engineering for service-oriented 5G networks with SDN-NFV integration. IEEE Netw. 2020;34(4):234–41.

    Article  Google Scholar 

  24. Liu Y, et al. A novel load balancing and low response delay framework for edge-cloud network based on SDN. IEEE Internet Things J. 2019;7(7):5922–33.

    Article  Google Scholar 

  25. Chakravarthy VD, Amutha B. Path based load balancing for data center networks using SDN. Int J Electr Comput Eng. 2019;9(4):2088–8708.

    Google Scholar 

  26. Kang B, Choo H. An SDN-enhanced load-balancing technique in the cloud system. J Supercomput. 2018;74(11):5706–29.

    Article  Google Scholar 

  27. Sahoo, KS et al. A comprehensive tutorial on software defined network: the driving force for the future internet technology. Proceedings of the international conference on advances in information communication technology and computing. Bikaner, India, 2016; pp 1–8

  28. Bista BB, et al. Reducing energy consumption in wired OpenFlow-based networks. Int J Control Autom. 2014;7(6):401–12.

    Article  Google Scholar 

  29. Modieginyane KM, et al. Software defined wireless sensor networks application opportunities for efficient network management: a survey. Comput Electr Eng. 2018;66:274–87.

    Article  Google Scholar 

  30. Assefa BG, Öznur Ö. A survey of energy efficiency in SDN: software-based methods and optimization models. J Netw Comput Appl. 2019;137:127–43.

    Article  Google Scholar 

  31. Farhady H, Hyun YL, Akihiro N. Software-defined networking: a survey. Comput Netw. 2015;81:79–95.

    Article  Google Scholar 

  32. Rawat DB, Reddy SR. Software defined networking architecture, security and energy efficiency: a survey. IEEE Commun Surv Tutor. 2016;19(1):325–46.

    Article  Google Scholar 

  33. Tuysuz MF, Zekiye KA, Didem G. A survey on energy efficiency in software defined networks. Comput Netw. 2017;113:188–204.

    Article  Google Scholar 

  34. Xie J, et al. A survey of machine learning techniques applied to software defined networking (SDN): research issues and challenges. IEEE Commun Surv Tutor. 2018;21(1):393–430.

    Article  Google Scholar 

  35. Sultana N, et al. Survey on SDN based network intrusion detection system using machine learning approaches. Peer-to-Peer Netw Appl. 2019;12(2):493–501.

    Article  Google Scholar 

  36. Yazdinejad A, et al. An energy-efficient SDN controller architecture for IoT networks with blockchain-based security. IEEE Trans Serv Comput. 2020;13(4):625–38.

    Article  Google Scholar 

  37. Darade SA, Akkalakshmi M. Extensive literature survey on load balancing in software-defined networking. Int J Bus Data Commun Netw (IJBDCN). 2020;16(2):1–19.

    Article  Google Scholar 

  38. Aujla GS, et al. BlockSDN: blockchain-as-a-service for software defined networking in smart city applications. IEEE Netw. 2020;34(2):83–91.

    Article  MathSciNet  Google Scholar 

  39. Barakabitze AA, et al. 5G network slicing using SDN and NFV: a survey of taxonomy, architectures and future challenges. Comput Netw. 2020;167:106984.

    Article  Google Scholar 

  40. Voellmy A, et al. Maple: simplifying SDN programming using algorithmic policies. ACM SIGCOMM Comput Commun Rev. 2013;43(4):87–98.

    Article  Google Scholar 

  41. Sahoo KS, Bibhudatta S. CAMD: a switch migration based load balancing framework for software defined networks. IET Netw. 2019;8(4):264–71.

    Article  Google Scholar 

  42. Thubert P, Maria RP, Thomas E. 6TiSCH centralized scheduling: When SDN meet IoT. 2015 IEEE conference on standards for communications and networking (CSCN). Tokyo, Japan, IEEE, 2015

  43. Zhu S, et al. Centralized QoS routing using network calculus for SDN-based streaming media networks. IEEE Access. 2019;7:146566–76.

    Article  Google Scholar 

  44. Kim W, et al. Automated and scalable QoS control for network convergence. INM/WREN. 2010;10(1):1–6.

    Google Scholar 

  45. Cai Z, Alan LC, TS Ng. Maestro: A system for scalable openflow control. 2010.

  46. Voellmy A, Hyojoon K, Nick F. Procera: a language for high-level reactive network control. Proceedings of the first workshop on Hot topics in software defined networks. 2012

  47. Tootoonchian A, Yashar G. Hyperflow: a distributed control plane for openflow. Proceedings of the 2010 internet network management conference on research on enterprise networking. Vol. 3. Helsinki, Finland, 2010.

  48. Koponen T, et al. Onix: a distributed control platform for large-scale production networks. OSDI. 2010;10:1–6.

    Google Scholar 

  49. Tam AS-W, Kang X, Jonathan Chao H (2011) Use of devolved controllers in data center networks. 2011 IEEE conference on computer communications workshops (INFOCOM WKSHPS). IEEE, Shanghai, China, 2011.

  50. Hassas YS, Yashar G."Kandoo: a framework for efficient and scalable offloading of control applications. Proceedings of the first workshop on Hot topics in software defined networks. 2012

  51. Sinha Y, Haribabu K. A survey: hybrid sdn. J Netw Comput Appl. 2017;100:35–55.

    Article  Google Scholar 

  52. Jain R, Paul S. Network virtualization and software defined networking for cloud computing: a survey. IEEE Commun Mag. 2013;51(11):24–31.

    Article  Google Scholar 

  53. Berde, P et al. ONOS: towards an open, distributed SDN OS. Proceedings of the third workshop on Hot topics in software defined networking. 2014, pp 1–6

  54. Fielding RT, Taylor RN. Architectural styles and the design of network-based software architectures, vol. 7. Irvine: University of California; 2000.

    Google Scholar 

  55. Ndlovu S, Pragasen M, Olukayode AO. Evaluating the energy efficiency of software defined networking controllers for different topologies. 2020 International conference on artificial intelligence, big data, computing and data communication systems (icABCD). IEEE, Durban, KwaZulu Natal, South Africa, 2020.

  56. Enns R et al. Network configuration protocol (NETCONF). (2011)

  57. Yu J, Imad Al A. An empirical study of the NETCONF protocol. 2010 Sixth international conference on networking and services. IEEE, Cancun, Mexico, 2010.

  58. Hu F, Hao Qi, Bao Ke. A survey on software-defined network and openflow: from concept to implementation. IEEE Commun Surv Tutor. 2014;16(4):2181–206.

    Article  Google Scholar 

  59. Sahoo KS, et al. ESMLB: efficient switch migration-based load balancing for multi-controller SDN in IoT. IEEE Internet Things J. 2019;7(7):5852–60.

    Article  Google Scholar 

  60. Tiwary M, et al. Response time optimization for cloudlets in mobile edge computing. J Parallel Distrib Comput. 2018;119(2018):81–91.

    Article  Google Scholar 

  61. Koné B, Ahmed DK, Adama N. A software-defined networking solution for rural connectivity. 2020 43rd international conference on telecommunications and signal processing (TSP). IEEE, Milan, Italy, 2020 pp 162–165.

  62. Cui L, Richard YF, Qiao Y. When big data meets software-defined networking: SDN for big data and big data for SDN. IEEE Netw. 2016;30(1):58–65.

    Article  Google Scholar 

  63. Alexander DS, et al. The SwitchWare active network architecture. IEEE Netw. 1998;12(3):29–36.

    Article  Google Scholar 

  64. Gartner EICT. Industry accounts for 2 percent of global co2 emissions, 2007. URL: http://www.gartner.com/newsroom/id/503867.[10] IPCC-Intergovernmental Panel on Climate Change (2012)

  65. Pickavet M et al. Worldwide energy needs for ICT: the rise of power-aware networking. 2008 2nd international symposium on advanced networks and telecommunication systems. IEEE, Mumbai, India, 2008

  66. Van Heddeghem W, et al. Trends in worldwide ICT electricity consumption from 2007 to 2012. Comput Commun. 2014;50:64–76.

    Article  Google Scholar 

  67. Sun G, et al. Energy-efficient provisioning for service function chains to support delay-sensitive applications in network function virtualization. IEEE Internet Things J. 2020;7(7):6116–31.

    Article  Google Scholar 

  68. Nam TM et al. Energy-aware routing based on power profile of devices in data center networks using SDN. 2015 12th international conference on electrical engineering/electronics, computer, telecommunications and information technology (ECTI-CON). IEEE, Hua Hin, Thailand, 2015.

  69. Gelenbe E, Yves C. The impact of information technology on energy consumption and carbon emissions. Ubiquity. 2015;1:1–15.

    Article  Google Scholar 

  70. Qureshi, A et al. Cutting the electric bill for internet-scale systems. Proceedings of the ACM SIGCOMM 2009 conference on data communication. Barcelona, Spain, 2009.

  71. Li D, Shang Y, Chen C (2014) Software defined green data center network with exclusive routing. In: IEEE INFOCOM 2014-IEEE conference on computer communications. IEEE, Toronto, Canada, pp. 1743–1751.

  72. Molina E, Eduardo J. Software-defined networking in cyber-physical systems: a survey. Comput Electr Eng. 2018;66:407–19.

    Article  Google Scholar 

  73. Uddin M, Azizah AR, Jamshed M. Carbon sustainability framework to reduce CO2 emissions in data centres. Int J Green Econ. 2011;5(4):353–69.

    Article  Google Scholar 

  74. Bolla R, et al. Energy efficiency in the future internet: a survey of existing approaches and trends in energy-aware fixed network infrastructures. IEEE Commun Surv Tutor. 2010;13(2):223–44.

    Article  Google Scholar 

  75. Xu S, et al. Routing optimization for cloud services in SDN-based Internet of Things with TCAM capacity constraint. J Commun Netw. 2020;22(2):145–58.

    Article  Google Scholar 

  76. Wen X et al. RuleTris: Minimizing rule update latency for TCAM-based SDN switches. 2016 IEEE 36th international conference on distributed computing systems (ICDCS). IEEE, Nara, Japan, 2016.

  77. Banerjee S, Kalapriya K. Tag-in-tag: efficient flow table management in sdn switches. 10th international conference on network and service management (CNSM) and workshop. IEEE, Rio de Janeiro, Brazil, 2014.

  78. Huang H, et al. Green datapath for TCAM-based software-defined networks. IEEE Commun Mag. 2016;54(11):194–201.

    Article  Google Scholar 

  79. Kitindi EJ, et al. Wireless network virtualization with SDN and C-RAN for 5G networks: requirements, opportunities, and challenges. IEEE Access. 2017;5:19099–115.

    Article  Google Scholar 

  80. Bizanis N, Kuipers FA. SDN and virtualization solutions for the Internet of Things: a survey. IEEE Access. 2016;4:5591–606.

    Article  Google Scholar 

  81. Kaur K et al. An energy-driven network function virtualization for multi-domain software defined networks. IEEE INFOCOM 2019-IEEE conference on computer communications workshops (INFOCOM WKSHPS). IEEE, Paris, France, 2019.

  82. Choi Y, Muhammad RKA, Deokjai C. Latency minimization for energy internet communications with SDN virtualization infrastructure. 2019 IEEE international conference on communications, control, and computing technologies for smart grids (SmartGridComm). IEEE, Beijing, China, 2019.

  83. Son J, et al. SLA-aware and energy-efficient dynamic overbooking in SDN-based cloud data centers. IEEE Trans Sustain Comput. 2017;2(2):76–89.

    Article  Google Scholar 

  84. Soldani D, Manzalini A. Horizon 2020 and beyond: on the 5G operating system for a true digital society. IEEE Veh Technol Mag. 2015;10(1):32–42.

    Article  Google Scholar 

  85. Alam I, et al. A survey of network virtualization techniques for internet of things using SDN and NFV. ACM Comput Surv (CSUR). 2020;53(2):1–40.

    Article  MathSciNet  Google Scholar 

  86. Naudts B et al. Techno-economic analysis of software defined networking as architecture for the virtualization of a mobile network. 2012 European workshop on software defined networking. IEEE, Darmstadt, Germany Germany, 2012.

  87. Wei Y, et al. Energy-aware traffic engineering in hybrid SDN/IP backbone networks. J Commun Netw. 2016;18(4):559–66.

    Article  Google Scholar 

  88. Abbasi MR, Ajay G, Mandalika SD. Traffic engineering in software defined networks: a survey. J Telecommun Inf Technol. 2016

  89. Agarwal S, Murali K, Lakshman TV. Traffic engineering in software defined networks. 2013 Proceedings IEEE INFOCOM. IEEE, Turin, Italy, 2013.

  90. Guo Y et al. Traffic engineering in SDN/OSPF hybrid network. 2014 IEEE 22nd international conference on network protocols. IEEE, Raleigh, NC, USA, 2014.

  91. Minlan Yu, et al. Scalable flow-based networking with DIFANE. ACM SIGCOMM Comput Commun Rev. 2010;40(4):351–62.

    Article  Google Scholar 

  92. Hu Y et al. Balanceflow: controller load balancing for openflow networks. 2012 IEEE 2nd international conference on cloud computing and intelligence systems. Vol. 2. IEEE, 2012

  93. Andrews M, et al. Routing and scheduling for energy and delay minimization in the powerdown model. Networks. 2013;61(3):226–37.

    Article  MathSciNet  MATH  Google Scholar 

  94. Nedevschi S, et al. Reducing network energy consumption via sleeping and rate-adaptation. NsDI. 2008;8:1.

    Google Scholar 

  95. Wang L et al. Energy-efficient network routing with discrete cost functions. International conference on theory and applications of models of computation. Springer, Berlin, Beijing, China, 2012.

  96. Christensen K, Nordman B, Brown R. Power management in networked devices. Computer. 2004;37(8):91–3.

    Article  Google Scholar 

  97. Rout S, Sudhansu SP, Bibhudatta S. Saving energy and improving performance in SDN using rate adaptation technique. Int J Eng Technol. 2018;7:77.

    Article  Google Scholar 

  98. Heller B, et al. Elastictree: saving energy in data center networks. Nsdi. 2010;10:1.

    Google Scholar 

  99. Shang Y, Dan L, Mingwei X. Energy-aware routing in data center network. Proceedings of the first ACM SIGCOMM workshop on Green networking. New Delhi, India, 2010.

  100. Kannan K, Subhasis B. Compact TCAM: Flow entry compaction in TCAM for power aware SDN. International conference on distributed computing and networking. Springer, Berlin, Heidelberg, Mumbai, India, 2013.

  101. Mogul JC et al. Devoflow: cost-effective flow management for high performance enterprise networks. Proceedings of the 9th ACM SIGCOMM workshop on hot topics in networks. Monterey, California, 2010.

  102. Congdon PT, et al. Simultaneously reducing latency and power consumption in openflow switches. IEEE/ACM Trans Netw. 2013;22(3):1007–20.

    Article  Google Scholar 

  103. Bolla R, et al. The green abstraction layer: a standard power-management interface for next-generation network devices. IEEE Internet Comput. 2013;17(2):82–6.

    Article  Google Scholar 

  104. Oda, S et al. Flow-based routing schemes for minimizing network energy consumption using OpenFlow. The fourth international conference on smart grids, green communications and IT energy-aware technologies. Chamonix, France, 2014.

  105. Sahoo KS, et al. DSSDN: demand-supply based load balancing in software-defined wide-area networks. Int J Network Manag. 2018;28(4):e2022.

    Article  Google Scholar 

  106. Sahoo KS, et al. Software defined network: the next generation internet technology. Modern Education and Computer Science Press, 2017.

Download references

Funding

This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suchismita Rout.

Ethics declarations

Conflict of Interest

There is no conflicts of interest to report regarding the present study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rout, S., Sahoo, K.S., Patra, S.S. et al. Energy Efficiency in Software Defined Networking: A Survey. SN COMPUT. SCI. 2, 308 (2021). https://doi.org/10.1007/s42979-021-00659-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42979-021-00659-9

Keywords

Navigation