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Abstract
Lexical Semantics is concerned with how words encode mental representations of the world, i.e., concepts. We call this type 
of concepts, classification concepts. In this paper, we focus on Visual Semantics, namely, on how humans build concepts rep-
resenting what they perceive visually. We call this second type of concepts, substance concepts. As shown in the paper, these 
two types of concepts are different and, furthermore, the mapping between them is many-to-many. In this paper we provide a 
theory and an algorithm for how to build substance concepts which are in a one-to-one correspondence with classifications 
concepts, thus paving the way to the seamless integration between natural language descriptions and visual perception. This 
work builds upon three main intuitions: (i) substance concepts are modeled as visual objects, namely, sequences of similar 
frames, as perceived in multiple encounters; (ii) substance concepts are organized into a visual subsumption hierarchy 
based on the notions of Genus and Differentia; (iii) the human feedback is exploited not to name objects, but, rather, 
to align the hierarchy of substance concepts with that of classification concepts. The learning algorithm is implemented for 
the base case of a hierarchy of depth two. The experiments, though preliminary, show that the algorithm manages to acquire 
the notions of Genus and Differentia with reasonable accuracy, this despite seeing a small number of examples and 
receiving supervision on a fraction of them.

Introduction

The Oxford Research Encyclopedia defines Lexical Seman-
tics as the study of word meanings, i.e., concepts [25], where 
concepts are assumed to be constructed by humans through 
language. In the same line of thinking, this research focuses 
on Visual Semantics, namely, on how humans build concepts 
when using vision to perceive the world. The key assump-
tion is that these two types of concepts are different and 
that, furthermore, they stand in a many-to-many relation 
(see Section “Objects as Classification Concepts” for the 
details).1 Following the terminology from [18], we call the 
first type of concepts, classification concepts, and the latter 
type, substance concepts.2 Our goal in this paper is to pro-
vide a theory and an algorithm for how to build substance 
concepts which are in a one-to-one correspondence with 

classifications concepts, thus paving the way to the seamless 
integration between natural language descriptions and visual 
perception. Among other things, the solution we propose 
allows to deal with the so-called Semantic Gap Problem 
(SGP) [50]. The SGP, originally identified in 2010 ans still 
largely unsolved, arises from the fact that, in general, there is 
a misalignment between what Computer Vision systems per-
ceive from media and the words that humans use to describe 
the same sources. We articulate the problem we deal with 
is as follows.

Suppose that a person and a machine, e.g., a pair of smart 
glasses, are such that they see the same parts of the world 
under the same visual conditions. Suppose that the person 
has a full repertoire of words which allow her to describe 
what she sees according to her current point of view. Sup-
pose, furthermore, that the machine starts from scratch 
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1  This assumption is consistent with the fact that the two activities of 
speaking and seeing involve different parts of the human brain [28].
2  This terminology is motivated by the fundamentally different func-
tion that these concepts have. In fact, while the substance concepts 
are used to represent substances as they are perceived, the latter are 
used to describe what is perceived, i.e., substance concepts. This idea 
of seeing concepts as (biological) functions is based on the work in 
the field of Teleosemantics, sometimes called Biosemantics [27], and 
in particular on the work by the philosopher R. Millikan [30, 32, 33, 
35].
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without any prior knowledge of the world and of how to 
name whatever it perceives. How can we build an algorithm 
which, by suitably asking the human, will learn how to rec-
ognize and name whatever it sees in the same way as its 
reference user?

A meaningful metaphor for this problem is that of a 
mother who is teaching her baby child how to name things 
using her own words in her own spoken language. The work 
in [18] provides an extensive description of the complica-
cies related to this problem, mainly related to the many-to-
many relation existing between substance and classification 
concepts. Further complications come from the fact that, 
based on the definition above, the learning algorithm needs 
to satisfy the following further requirements:

•	 it must be generic, in that it should make no assumptions 
about the input objects;

•	 it must learn new objects never seen before as well as 
novel features, never seen before, of previously seen 
objects;

•	 it must learn from a small number of examples, starting 
from no examples.

The proposed Knowledge Representation (KR) solution is 
articulated in terms of a set of novel definitions of some 
basic notions, most importantly that of object. The theory 
proceeds as follows.

–	 We model objects as substance concepts, that we model 
as sets of visual objects, i.e., sequences of similar frames, 
as perceived in multiple events called encounters. Visual 
objects are stored in a cumulative memory M of all the 
times they were previously perceived.

–	 Substance concepts are organized into a (visual) sub-
sumption hierarchy which is learned based on the notions 
of Genus and Differentia. These two notions muta-
tis mutandis, replicate the notions with the same name 
that, in Lexical Semantics, are used to build subsumption 
hierarchies of word meanings [17, 29].

–	 The visual hierarchy is learned autonomously by the 
algorithm; the user feedback makes sure that the hier-
archy built by the machine matches her own linguistic 
organization of objects. In other words, the user feed-
back is the means by which the hierarchy of substance 
concepts is transformed into a hierarchy of classifica-
tion concepts. The key observation here is that the user 
feedback is provided not in terms of object names, as it 
is usually the case, but in terms of the two properties of 
Genus and Differentia.

The paper is organized as follows. First, we introduce 
objects as classification concepts, as they are used in natu-
ral language and organized in Lexical Semantics hierarchies 

(Section “Objects as Classification Concepts”). This section 
provides also an analysis of why the very definition of clas-
sification concepts makes them unsuitable for visual object 
recognition. Then we define substance concepts as sets of 
visual objects (Section “Objects as Substance Concepts”). 
Then, in Section “Building Substance Concepts”, we pro-
vide the main algorithm by which substance concepts are 
built, while, in Section “Object Subsumption and Identity”, 
we describe how a hierarchy of substance concepts is built 
which is aligned with that of classification concepts. In this 
section we also provide the two basic notions of Genus and 
Differentia which are used to build the hierarchy. The 
algorithm for object learning is described in Section “The 
Learning Algorithm”. This algorithm has been developed for 
the base case of hierarchies of depth two. The extension to 
hierarchies of any level is left to the future work. The algo-
rithm in evaluated in Section “Experiments”. Finally, the 
paper ends with the related work (Section “Related Work”) 
and the conclusions (Section “conclusions”).

Objects as Classification Concepts

Objects are usually named using nouns. In Lexical Seman-
tics the meaning of nouns is provided via intensional defini-
tions articulated in terms of Genus and Differentia [29], 
following an approach first introduced by Aristotle [39]. Let 
us consider for instance the following two definitions:

–	 a triangle is a plane figure with three straight bounding 
sides;

–	 a quadrilateral is a plane figure with four straight bound-
ing sides.

In these two definitions we can identify three main 
components:

–	 Genus: some previously defined set of properties which 
is shared across distinct objects, e.g., the property of 
being a plane figure;

–	 genusObj (also called genusObj object): a certain 
representative object which satisfies the Genus property, 
e.g., the object plane figure. The set of objects satisfying 
the Genus properties are said to have that (same) genu-
sObj;

–	 Differentia: A selected novel set of properties, dif-
ferent from the Genus properties, which are used to dif-
ferentiate among objects with the same genusObj, e.g., 
the properties having three straight bounding sides and 
having fours straight bounding sides. These two proper-
ties define, respectively, triangles and quadrilaterals as 
distinct objects with the same genusObj.
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Genus and Differentia satisfy the following four 
constraints:

–	 Role 1 of Genus: if two objects have different genu-
sObj, then they are (said to be) different. For instance, 
a pyramid is not a plane figure and, therefore, is different 
from a triangle.

–	 Role 2 of Genus: The viceversa of Role 1 is not true, 
namely, we may have different objects with the same 
genusObj. For instance, a quadrilateral and a triangle 
are both plane figures but they are not the same object.

–	 Role 1 of Differentia: Two objects with the same 
genusObj, but different from the genusObj, are 
(said to be) the same object if and only if the Differen-
tia properties do not hold of the two objects. Thus, for 
instance, two objects with the same genusObj and with 
a different Differentia, e.g., a triangle and a quadri-
lateral, are different despite being both a plane figure. 
Dually, two objects with the same genusObj and the 
same Differentia, e.g., two triangles, are the same 
object (relatively to the current selection of Genus and 
Differentia).

–	 Role 2 of Differentia: a genusObj and an object 
with that genusObj are different when the latter is 
characterized by a set of properties, i.e., its Differ-
entia, that the genusObj does not have. Thus for 
instance a triangle is not the same as a plane figure, as it 
is just one of the many possible plane figures, e.g., trian-
gles, quadrilaterals which share the same genusObj.

A first observation about the definitions above is that, when 
we say that two objects are the same object, we only mean 
that they satisfy the same Genus and the same Differen-
tia. It does not necessarily mean that they are two occur-
rences of the same object. Thus, for instance, a right triangle 
and a equilateral triangle are considered as being the same 
object, when compared with quadrilaterals, in that they have 
the same number of sides. At the same time they are consid-
ered as different objects when the Differentia is taken to 
be the size of their angles. This observation has two imme-
diate consequences. The first is that the process above can 
be iterated at any level of detail, thus creating hierarchies of 
any level of depth. It is a fact that, in lexical semantics, the 
meaning of nouns is organized as a hierarchy of increasing 
specificity, each layer being characterized by a new Genus 
and a new Differentia. In this hierarchy, an object with 
a certain Genus is a child of its genusObj. As a conse-
quence, a hierarchy of depth n can be seen as the recursive 
juxtaposition of (n − 1) hierarchies of depth 2, where the 
genusObj of the depth 2 hierarchy one level down is one 
of the children of the genusObj one level above. The root 
of this hierarchy is usually called thing [17, 29]. The sec-
ond is that this process of progressive differentiation allows 

to split the set of objects under consideration into progres-
sively smaller and smaller sets, based on the selected set of 
properties.

A second observation is that the above definitions are 
given in natural language and are meant to make precise the 
meaning of words. These linguistic definitions are designed 
to generate what we call classification concepts, namely, 
concepts which are amenable for classification [13]. In addi-
tion, in fact, the very existence of lexical semantics hierar-
chies provides evidence of their suitability for this task. This 
type of definitions is well grounded in the everyday practice, 
in particular when used to name and describe things, for 
instance during interactions among humans. However, they 
do not work as well while one is in the middle of the rec-
ognition process, namely, while she is trying to identify the 
object she is looking at. How many times were you able to 
recognize someone or something based only on a natural 
language description, without the help of a photo or anything 
which could point to specific spatial properties?

Let us clarify this observation with an example. Assume 
you see at a certain distance two things moving towards you. 
Initially you will not recognize what these things are but, 
when they are close enough, you will be able to recognize 
two persons, seen from the back. The day after, you see 
again two persons, which may or may not be those recog-
nized the day before: hard to say, they did not come close 
enough. In any case, this second time these two persons get 
close enough for you to finally recognize your friends Karl 
and Frank. What allowed you to distinguish Karl from Frank 
is that the former has white hair while the latter has black 
air and mustaches. Later on, walking towards you, you will 
recognize a woman. You will have been able to recognize 
her as a person different from the two previous men because 
she has long hair and a skirt. Of course you will know the 
terms you have used to describe what you will have seen, 
i.e., person, man, woman, Karl and Frank, as someone will 
have taught them to you, for instance during your childhood. 
In KR, the simple scene described above can be formalized 
by saying that Karl and Frank are instances, while person, 
man and woman are (classification) concepts and by stating 
the following facts: man(Karl) (to be read as Karl is a man), 
man(Frank), man ⊑ person (to be read as man is subsumed 
by person) and woman ⊑ person, the latter two facts stat-
ing that all men and all women are persons. The resulting 
hierarchy, as formally defined via the logical subsumption 
symbol ⊑ , is provided in Fig. 1 (first left) where the classifi-
cation concepts there represented are defined, for instance, 
as (partial quote from [29])

–	 person: individual, someone, somebody;
–	 woman: an adult female person, as opposed to man;
–	 man: an adult male person, as opposed to woman;
–	 Karl: an instance of a man;
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–	 Franz: an instance of a man.

Notice how the above definitions and the properties they 
involve (e.g., being adult, male or female, being an instance) 
are completely unrelated to the process by which recognition 
was carried out, which was in terms of a continual analysis 
of visual information, at increasing levels of precision.

The previous example is representative of the situation 
where the observer has complete knowledge of the objects 
being perceived and the partiality of information is caused 
by some contextual factors. Consider now the hierarchy of 
classification concepts in the center of Fig. 1, which names 
and classifies daisies, whose images are in the correspond-
ing place in the hierarchy in the right of Fig. 1. A possible 
lexical semantics definition of these daisies is as follows:

–	 asterales: an order of flowering plants containing eleven 
families, the most notable being asteraceae (known for 
composite flowers made of florets);

–	 leucanthenum vulgare: flower native to Europe and the 
temperate regions of Asia, commonly referred as mar-
guerite;

–	 astereae: a tribe of plants, commonly found in temperate 
regions of the world, also called daisy or sunflower fam-
ily;

–	 bellis sylvestris: Southern daisy, perennial plant native to 
central and northern Europe;

–	 aster alpinus: blue alpine daisy, plant commonly found 
in the mountains in Europe.

Most readers, in particular those who are not florists, even 
if coming to know about the hierarchy above, e.g., because 
being described it, will be unable to recognize the various 
types of daisy. As a consequence they will not be able to 
build it starting from images (e.g., the ones on the right in 
Fig. 1), simply because they will not be able to recognize 
the features which allow to distinguish among the various 
types of daisy. Most likely, in many cases, the hierarchy 
will be collapsed to a single node while, in others, the light 
purple daisy will be separated from the others, just because 
of its colour.

In general, classification concepts do not seem well suited 
for the process of object recognition. This despite the fact 
that it is common practice to use them in supervised machine 
learning, where the user feedback is, often if not always, 

provided in terms of words whose meaning is defined via 
lexical semantics hierarchies. Evidence of this difficulty is 
provided by the SGP, whose original formulation describes 
it as (quote from [50]) “... the lack of coincidence between 
the information that one can extract from the visual data 
and the interpretation that the same data have for a user in 
a given situation.”. The main motivation for the SGP seems 
to be that classification concepts model objects as endurants, 
i.e., as being always wholly present, at any given moment 
in time, with their proper parts being present in a certain 
spatial configuration and satisfying certain properties (e.g., 
color, shape, position, activity) [14]. Typical examples of 
endurants are all the physical objects, e.g., those mentioned 
above. Of course, the spatial configuration may change, or 
the object might not be accessible visually (as in the first 
example above), or the observer might not be able to dis-
criminate some of its relevant properties (as in the daisies 
example above), but this has no impact on how classification 
concepts are defined.

Classification concepts, while serving well the purpose of 
describing what was previously perceived, are largely unre-
lated to the process by which the objects are perceived and, 
in particular, to the fact that their perception is constructed 
incrementally, via a set of partial views which progressively 
enrich what is visually known. To this extent, notice how 
person, man, and Karl are correctly represented in Fig. 1 as 
three different classification concepts. However, in the lit-
tle story above, these three classification concepts actually 
describe the same piece of reality, seen at different times, at 
different levels of detail and from different points of view.

Objects as Substance Concepts

The key intuition underlying the work described here is to 
model objects are perdurants, where, quoting from [14] ... 
perdurants ... just extend in time by accumulating different 
temporal parts, so that, at any time they are present, they are 
only partially present, in the sense that some of their proper 
temporal parts (e.g., their previous or future phases) may be 
not present. Typical examples of perdurants are events and 
activities. Taking an object as a perdurant amounts to saying 
that we never have a full (visual) picture of the object but 
that its visual representation is built progressively, in time. 
Notice how this is exactly what happens in our everyday life. 

Fig. 1   (Left): a classification 
concept hierarchy; (Center): a 
classification concept hierarchy 
for daisies; (Right:) the center 
hierarchy where words are sub-
stituted with images represent-
ing the corresponding daisies
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We call substance concepts the representation of objects as 
perdurants.

The starting point in the definition of substance concepts 
is the crucial distinction between what we perceive as being 
in the real world, that we call substances and their corre-
sponding mental representations, i.e., their substance con-
cepts. Following R. Millikan, we take substances as those 
things (quote from [33]), “... about which you can learn 
from one encounter something of what to expect on other 
encounters, where this is no accident but the result of a real 
connection ...”. [18] provides a detailed discussion of what 
substances are and of how they generate substance concepts 
in the mind of observers, based on the work on Teleoseman-
tics [27], and in particular on the work by Ruth Millikan 
[29–34]. In the following, substances should be intuitively 
thought as those things which, when perceived in the most 
detail, will generate the perception of individuals, e.g., Karl, 
my cat, but that, under different conditions, will generate 
more generic or even very different substance concepts, e.g., 
a moving object, an animal. The key observation is that, 
while substances are crucial in our informal understanding 
of perception in that they allow us to focus on the process 
of how objects are perceived, they play no role in the formal 
model that we define below. With this in mind in the fol-
lowing: (i) we avoid defining what a substance is (no such 
definition could be meaningfully grounded in human experi-
ence); and (ii) we consider substances only in their causal 
role on the generation of a concept, a role that is constrained 
within the events during which a substance is perceived. We 
call such events, encounters and (iii) we qualify this causal 
role in terms of two properties that substances have, as intro-
duced below, and that we call Space Persistency and Time 
Persistency. Notice, however, that both Space Persistency 
and Time Persistency, as all the definitions provided in this 
paper, are given as properties of substance concepts.

We assume that encounters are represented as spatio-tem-
poral worms, i.e., temporal sequences of frames, where f i

S
 

is a frame for a substance S, each frame being encoded via a 
set of low-level visual features.3 We represent encounters, by 
exploiting the Space Persistency of substances, namely, the 
fact that, in time, substances change very slowly their spatial 
position. Because of space persistency, during an encounter, 
any two adjacent frames will be very similar, while this will 
not necessarily be the case with two non adjacent frames. 
We model Space Persistency in terms of Frame Similarity 
(Dissimilarity), written fS1 ≃ fS2 ( fS1 ≄ fS2 ). Given Frame 
Similarity, we define visual objects, where vS is a visual 
object for a substance S, as sequences of adjacent frames 
where the last frame is similar to the first, and encounters 
ES as sets of visual objects, i.e.,:

Figure 2 reports an example of an encounter consisting of 
eight frames organized in three visual objects. Notice how 
having multiple similar frames in the same visual object 
makes it quite robust to local contextual variations. The first 
time a substance S is perceived as a new object, that object 
will consist of a single encounter; but this object will be 
enriched by subsequent encounters. We model this situa-
tion by taking objects to be the set of all the different visual 
objects collected by the different encounters. Let E1

S
,… ,Em

S
 

be a set of encounters. Then we have:

(1)ES = {v1
S
,… , vn

S
}.

Fig. 2   Example of an encounter. 
For better visualization, each 
visual object is represented, 
here and later, as its first frame

3  Notationally, we use superscripts to mean elements of a sequence, 
and (optionally) the subscript S, to mean elements obtained from one 
or more encounters ES with the substance S, as in f i

S
 , vi

S
 , and Oi

S
 . Dif-

ferent subscripts mean elements generated in possibly different sets 
of encounters. We omit the subscript whenever the substance we are 
referring to is clear from the context.
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This situation is well represented in Figure 3 where each row 
is a different encounter.

Building Substance Concepts

Objects as substance concepts get cumulatively built in time. 
Let E1

S
,… ,Em

S
 be a sequence of encounters. Let OS be an 

object defined as in Eq. (2). Then OS is incrementally con-
structed as follows:

where:

–	 AddObject creates a new object O1
S
 in the cumulative 

memory M of the objects perceived so far;
–	 Oi

S
 is an object as perceived after any given number i of 

encounters; and
–	 Oi−1

S
∪ Ei

S
∈ M is the cumulative memory of Oi

S
;

–	 updateObject updates the current memory Oi−1
S

 of an 
object with the visual objects coming from Ei

S
 , thus con-

structing Oi
S
;

–	 The construct is in Item 3 is the formal statement assess-
ing that we take objects as the cumulative memory of 
what has been perceived so far.

A first observation is that item 3 implicitly states that sub-
stance concepts evolve in time, i.e., that they are perdurants. 
In this perspective, Oi−1

S
 , Oi

S
 , Ei

S
 and also OS , are all partial 

views of S, all contributing to the construction of OS . This 
process of object construction may eventually terminate if 

(2)OS = ∪i E
i
S
= {v1

S
,… , vn

S
} = {vi

S
}.

(3)
1. ADDOBJECT(M,E1

S
)

2. UPDATEOBJECT(M,Oi
S
,Oi−1

S
∪ Ei

S
), i = 2, ...

3. OS IS Oi
S
, i = 1, ...

the appearance of an object does not change. However, an 
object may also keep evolving. Thus, for instance, the cur-
rent encounter with Frank may contain visual objects which 
are quite dissimilar from the ones encountered earlier on, for 
instance because of the different age (e.g., 15 vs. 35).

A second observation is that the process described in Eq. 
(3), and in particular the decision of which between step 1 
and step 2 must be applied, depends on the ability to rec-
ognize whether the current encounter is a partial view of 
an object already recognized. However, how to decide? Let 
us write OS1

= OS2
 to mean Object Identity, namely, that 

the two substance concepts are two (partial) views of the 
same object, rather than two views of two different objects. 
This may, in fact, be the result of two different sequences of 
encounters with the same object. Let us also write OS1

≠ OS2
 

to mean Object Diversity. Then, Item 2 will be applied only 
for that object OS such that Oi−1

S
= Ei

S
 , while Item 1 will be 

applied whenever Oi−1
S

≠ Ei
S
 for all objects in M.

The complications arising in the decision on Object 
Identity depend on two main factors. The first is that the 
correlation between substances and substance concepts is 
many-to-many.4 To reiterate an example from the previous 
section, the same substance can be perceived as Karl, as a 
man or as a person while, vice versa, the same substance 
concept, e.g., man can be recognized from multiple individu-
als. In other words, we need to decide at which level, in the 
visual subsumption hierarchy, the current encounter for the 
same substance should be assigned. The second issue is that, 
independently of the level of the subsumption hierarchy, the 
decision on Object Identity must made taking objects to be 
endurants, as represented by classification concepts, being 
classification concepts what is used by humans in their eve-
ryday interaction and classification activities. Object Identity 
is a much richer notion than visual similarity as it involves 
considerations, such as language, culture, function of the 
objects, and much more, see, e.g., [20, 22, 36]. Among other 
things notice how we have OS = Oi

S
, i = 1, ... , this meaning 

that Object Identity is invariant in time. As a consequence, 
there is a many-to-many correspondence between substance 
concepts and classification concepts, as also extensively 
exemplified in [18].

The double many-to-many mapping from substances 
to substance concepts and then from substance concepts 
to classification concepts is the main cause of the inher-
ent ambiguity which appears in the identification of objects. 
This phenomenon is well known in Computational Linguis-
tics and it is the cause of the so-called lexical gaps, namely, 
concepts which are lexicalized in one language but not in 
other languages [16]. Things are made even worse when, 

Fig. 3   Single object consisting of two encounters. The green line con-
nects two similar visual objects

4  This corrects the wrong statement, made in [18], that there is one-
to-one mapping between substances and substance concepts
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even within the same language, one considers the subjective 
behaviour of individuals; see the two examples in Section 
“Objects as Classification Concepts”. Notice that the prob-
lem is not that of constructing a hierarchy of meanings; in 
Section “Object Subsumption and Identity” we show how 
this can be done based on the visual similarity of objects as 
defined as in Eq. (2). The problem is that such a hierarchy 
will almost inevitably suffer from the SGP and, therefore, 
will not achieve the goal of aligning classification concepts 
and substance concepts. The solution we propose is articu-
lated in the following main assumptions: 

1.	 We assume that the fact that two objects are visually 
similar is a necessary condition for object identity. This 
assumption is well grounded in our everyday experi-
ence and also made in the mainstream Computer Vision 
research. To this extent, we introduce the notions of Vis-
ual Object Similarity (Dissimilarity), written vS1 ≃ vS2 
( vS1 ≄ vS2 ) and of Object Similarity (Dissimilarity), writ-
ten OS1

≃ OS2
 ( OS1

≄ OS2
 ). Notice that we need to define 

what visual similarity is, given that, as discussed above, 
the same object can appear in many different ways; this 
will be discussed in Section “The Learning Algorithm”.

2.	 We assume, as also implicit in Millikan’s quote, that 
substances have a property of Time Persistency, namely, 
some form of time invariance in how they appear across 
encounters. This assumption allows us to compare, up 
to a point, visual objects coming from different encoun-
ters. Notice that how space and time persistency operate 
is specific to the objects being considered, no matter 
whether instances or concepts. Thus, for instance, Karl 
will keep having white hair while Frank will keep hav-
ing black hair and mustaches. Analogously, humans, 
such as all animal species, are characterized by a homeo-
static mechanism which causes them to possess a certain 
set of common traits (e.g., their shape, how they move) 
that often, but not always, make them look similar [18]. 
The key consideration here is that, once an observer has 
subjectively decided what is the object that she is trying 
to recognize from a substance S, the criteria for object 
identity do not change. In other words, time persistency 
applies not only to the perceived object but also to the 
perceiving subject.

3.	 We organize objects in a visual subsumption hierarchy, 
exactly like the one used in lexical semantics, but with 
the key difference that Genus and Differentia are 
computed in terms of the substance concepts’ visual 
properties, as represented by the visual objects. This 
allows to deal with the problem of the many-to-many 
mapping between substances and substance concepts.

4.	 Last, but not least, we deal with the many-to-many 
mapping between substance concepts and classification 
concepts by relying on the key role of the user supervi-

sion. This transformation is crucial to the integration of 
human vision, where objects keep evolving in time (i.e., 
they are perdurants), and language-based reasoning, 
which thinks of objects as being completely described 
in any moment in time (i.e., they are endurants). Genus 
and Differentia can be computed in a completely 
unsupervised manner, via object similarity. However, 
the user feedback, which is given only on Genus and 
Differentia, guarantees that the machine-built hier-
archies largely coincide, modulo recognition mistakes, 
with the hierarchies that a user would build. Notice how 
this supervision is unavoidable, that it is exactly the 
same type of supervision that a mother would give to 
her child, and that it is subjective, evidence being also 
that different languages conceptualize different objects 
[16].

As a last remark, notice that in the visual hierarchy men-
tioned in item 3, all nodes are labeled only by substance 
concepts. Instead, in lexical semantics hierarchies, nodes are 
labeled by (classification) concepts, e.g., man, and instances, 
e.g., Frank. In other words, as correctly pointed out by R. 
Millikan [33], but see also [18], from a perception point of 
view, the usual KR distinction between concepts (usually 
modelled as sets of instances) and instances does not apply.

Object Subsumption and Identity

As from Eq. (2), objects, represented as substance concepts, 
are sets of visual objects. The idea is to exploit this fact to 
build a hierarchy of objects based on visual similarity. As 
from the discussion at the end of the previous section, this 
hierarchy gives us only the necessary conditions for object 
identity. In the following we assume that the two hierar-
chies of substance concepts and classification concepts 
coincide assuming that the user feedback is used to validate 
the choices made. The algorithm in Section “The Learning 
Algorithm” will show how this is done in practice by suit-
ably asking feedback to the user.

As from Section “Objects as Classification Concepts”, 
a lexical semantics hierarchy can be seen as the iteration 
of many depth 2 hierarchies, each with its own Genus and 
Differentia. Therefore, without lack of generality, in 
the following we focus on hierarchies of depth 2. The main 
goal below is to restate the conditions for Genus and Dif-
ferentia, informally stated in Section “Objects as Clas-
sification Concepts” for classification concepts, in terms of 
formally defined conditions on substance concepts. Let us 
assume that we are given a genus object genusObj. In 
the general case the construction of genusObj will hap-
pen recursively from the top node, i.e., thing. Then, let us 
define ���������(OS1

,OS2
) and ���������(OS1

,OS2
) as two 
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binary boolean functions which discriminate over objects, 
based on their visual objects. We enforce the four roles in 
Section “Objects as Classification Concepts” by enforcing 
the following three constraints:

where OSG
 is the genusObj of OS1

 , OS2
 . Notice how the 

specifics of Genus and Differentia are left open, we 
only require that they are both computed out of the visual 
objects in input, i.e., OS1

 , OS2
 and that they satisfy the three 

constraints above. This is on purpose as it gives us freedom 
in many dimensions, e.g., of the specifics of the learning 
algorithms used, of how visual similarity and/or object iden-
tity are defined, and also of how sameGenus and Differ-
ent are defined in any different layer of the hierarchy under 
construction. The algorithm in Section “The Learning Algo-
rithm” will instantiate the missing information selecting, for 
each decision point, one among the many possible options.

Let us concentrate on the constraints. They satisfy the 
following intuitions. First, they satisfy the four criteria 
defined in Section “Objects as Classification Concepts”. 
Equation (4) formalizes Role 1 and Role 2 of Genus while 
Equation (5) formalizes Role 1 of Differentia. Equation 
(6) formalizes Role 2 of Differentia; in fact from Eq. (6) 
we have OSG

⊆ OS1
 . To have OSG

≠ OS1
 , OS1

 must have at least 
a visual object vi

S1
∉ OSG

 . Then there are two cases, either vi
S
 

is such that Different holds, in which case we are done 
(from Eq. (5)), or this is not the case, in which case 
OSG

= OS1
 , namely, that visual object is irrelevant to the 

identity of OS1
 . Notice how this latter case does not rise if we 

take genusObj to be exactly the intersection. Equation (6) 
captures the intuition that the visual objects which are not 
considered belong to both objects by chance. Thus for 
instance, Karl and Frank might happen to have had, when 
observed, a red sweater. However, red sweaters are not a 
characteristic of men. Second, Eq. (4) captures the fact that 
sameGenus provides necessary but not sufficient condi-
tions for object identity. Third, Eq. (5) provides necessary 
and sufficient conditions for two objects to be different, but 
under the assumption that sameGenus holds. Namely, 
Different can be applied only after having discarded all 
the objects which do no satisfy sameGenus.

The three constraints above allow us to build the desired 
subsumption hierarchy. Let us write OSj

⊑ OSi
 ( OSi

⊒ OSj
 ) 

and say that OSj
 is subsumed by OSi

 ( OSi
 subsumes OSj

 ) to 
mean that the visual objects of OSj

 are a subset of those vis-

(4)¬𝚜𝚊𝚖𝚎𝙶𝚎𝚗𝚞𝚜(OS1
,OS2

) ⟶ OS1
≠ OS2

,

(5)
𝚜𝚊𝚖𝚎𝙶𝚎𝚗𝚞𝚜(OS1

,OS2
) ⟶

(OS1
= OS2

⟷ ¬𝙳𝚒𝚏𝚏𝚎𝚛𝚎𝚗𝚝(OS1
,OS2

)),

(6)OSG
⊆ OS1

∩ OS2
.

ual objects of OSi
 which are relevant for the computation of 

Different (see discussion above on Eq. (6)). We also write 
OSj

⊏ OSi
 and talk of strict subset and subsumption to mean 

OSj
⊑ OSi

 and OSj
≠ OSi

 , and similarly for OSi
⊐ OSj

.
Let us assume that OS2

 and OS2
 have the same genusObj, 

OSG
 , namely, that ���������(OS1

,OS2
) and, therefore, 

���������(OSG
,OS2

) , ���������(OSG
,OS1

) hold. Clearly, 
OSG

⊑ OS1
 and OSG

⊑ OS2
 . This makes the premise and, there-

fore, the consequence of Eq. (5) hold of all three objects. We 
have the following cases (for compactness, below we write 
� to mean Different): 

1.	 �(OS1
 , OS2

) , �(OS1
,OSG

) and �(OS2
 , OSG

) : we have 
OSG

⊏ OS1
 and OSG

⊏ OS2
 , namely, the situation where 

all three objects are different;
2.	 �(OS1

 , OS2
) , ¬�(OS1

,OSG
) and �(OS2

 , OSG
 ): we have 

OSG
= OS1

 and OSG
⊏ OS2

;
3.	 �(OS1

 , OS2
) , �(OS1

,OSG
) and ¬�(OS2

 , OSG
) : we have 

OSG
= OS2

 and OSG
⊏ OS1

;
4.	 ¬�(OS1

,OS2
) , �(OS1

,OSG
) : we have OSG

⊏ OS1
 with 

OS1
= OS2

;
5.	 ¬�(OS1

OS2
) , ¬�(OS1

,OSG
) : we have OS1

= OS2
= OSG

.

Two observations. The first is that, under the assumption that 
OS1

 and OS2
 have the same genusObj OSG

 , sameGenus 
and Different provide us with necessary and sufficient 
conditions for both object identity and object subsumption, 
and therefore, they provide us with the means for building 
the depth 2 sub-hierarchy under consideration. In fact as 
from the (only if) directions of clauses 2, 3, 4, 5, two objects 
are the same if they have the same Genus and Different 
does not hold of them. Thus, taking into account the neces-
sary conditions provided by Eq. (4) we have:

Furthermore, as from clauses 1, 2, 3, 4, we have that genu-
sObj is the parent node of the objects of which it is the 
genusObj, namely:

The concluding remark is that, so far, we have only dealt 
with hierarchies of depth two, but the reasoning above can 
be replicated to build hierarchies of any depth. Let us assume 
that we have a new object OS3

 with ¬���������(OS3
,OS1

) 
and, thus, OS1

≠ OS3
 , OS2

≠ OS3
 , and OSG

≠ OS3
 . At the same 

time, OS3
 can share some visual objects with OS1

 or OS2
 which 

make Different false. Thus, for instance, a plane is not a 
bird, but they both fly. Given, any two objects there is always 
a genusObj, also when these objects are very different, 
and this is the key fact which allows for the construction 

(7)
OS1

= OS2
⟷ 𝚜𝚊𝚖𝚎𝙶𝚎𝚗𝚞𝚜(OS1

,OS2
) ∧

¬𝙳𝚒𝚏𝚏𝚎𝚛𝚎𝚗𝚝(OS1
,OS2

)

(8)OS1
⊏ OSG

⟷ 𝙳𝚒𝚏𝚏𝚎𝚛𝚎𝚗𝚝(OS1
,OSG

)
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of subsumption hierarchies of any depth. Notice how we 
may end up with a genusObj which is the empty set, this 
being the limit case where the genusObj is thing: a generic 
object is something which has been perceived but with no 
associated visual objects.

The Learning Algorithm

We first provide a computational interpretation of the defini-
tions introduced above and then we introduce the algorithm, 
which should be seen as a first prototype and representative 
of a wide class of algorithms. Any algorithm will do as long 
as it satisfies the constraints for Genus, Differentia and 
the genusObj. Let us analyze the definitions one by one.

Frames. We encode frames using an unsupervised deep 
neural network [5], trained to perform a combination of self-
supervised and clustering tasks. Using an unsupervised net-
work allows to produce embeddings which are not explicitly 
biased towards classes of objects, while, at the same time, 
complying to the assumption that machines extract features 
from what they perceive, autonomously, as humans do. We 
define frame similarity as the Euclidean distance between 
frame encodings.

Visual objects. We define them as contiguous sequences 
of frames, and we represent them as the average between 
the frame encodings. We assume for robustness that visual 
objects are of a fixed limited length. Visual object are per-
ceived by a procedure, named perceive, which returns an 
encounter as a set of visual objects, as from Eq. (1). We 
model visual object similarity as a diversity threshold on the 
distance between visual objects:

Objects. We define objects as from Eq. (2), i.e., as sets of 
visual objects extracted from sets of encounters. We define 
object similarity, analogously to visual object similarity, as 
a diversity threshold on the distance between objects:

where the distance between objects is defined as the minimal 
distance between their respective visual objects:

By keeping the same threshold as for visual object similarity, 
we have that object similarity holds when two objects have 
at least two similar visual objects:

(9)vi ≃ vj
def
=d(vi, vj) < 𝜃

(10)OS1
≃ OS2

def
=d(OS1

,OS2
) < 𝜃

(11)d(OS1
,OS2

) = min
vi∈OS1

min
vj∈OS2

d(vi, vj)

(12)OS1
≃ OS2

⟺ ∃vi ∈ OS1
,∃vj ∈ OS2

∶ vi ≃ vj.

Genus. We implement sameGenus as a Boolean function 
which computes object similarity:

In other words, we take object similarity to be a sufficient 
condition for sameGenus to hold. This is appropriate for 
the base case of hierarchies of depth two, with the implicit 
assumption that objects with different genus are all instances 
of a generic thing object. We leave the generalization to 
deeper hierarchies to future work. A hint on how to perform 
such generalization can be found in the Conclusion Section.

Differentia. We implement Different as a boolean 
function which holds for two objects with the same genu-
sObj if there is no visual object, aside the ones in their 
genusObj, which makes the two objects similar, namely:

where genusOf is a function which computes the genu-
sObj, as:

where the function SG(OS1
,OS2

) returns true if the user in 
the past gave supervision (see below), telling the algorithm 
that OS1

 and OS2
 share a genusObj while being different. 

Figure 4 shows two objects with the same sameGenus 
(green lines) but for which also Different holds (the two 
red visual objects are different).

User feedback. We use two functions ASKSAMEGENUS 
and ASKDIFFERENT which ask the user, when available, 
about sameGenus and Different between an encounter 

(13)���������(OS1
,OS2

)
def
=OS1

≃ OS2

(14)
���������(OS1

,OS2
)
def
=∄vi ∈ OS1

⧵ �������(OS1
).

∄vj ∈ OS2
⧵ �������(OS2

) ∶

vi ≃ vj

(15)
�������(OS1

)
def
= {vi ∈ OS1

|∃OS2
,∃vj ∈ OS2

∶ SG(OS1
,OS2

) ∧ vi ≃ vj}

Fig. 4   Two distinct objects which share the same genusObj. The 
green lines connect similar visual objects, while the visual objects 
representing the Differentia are highlighted in red
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E and an object O stored in memory. If the user is not avail-
able, they return ���������(O,E) and ���������(O,E) , 
respectively. Notice how the user intervention is exploited 
exactly and only in the computation of sameGenus and 
Different, to consolidate object similarity into object 
identity, as from the previous section. The user feedback, 
collected by ASKSAMEGENUS and ASKDIFFERENT , is 
exploited by a function UPDATESIMILARITY(M) whose goal 
is to adjust the diversity threshold � , see Eq. (9), based on 
the knowledge available so far. The threshold is computed 
using the strategy, proposed in [11], each time a new super-
vision is provided by the user. These supervisions are stored 
as a set:

where �i = d(Oi,Ei) is the distance between object-
encounter pairs, coupled with a boolean value 
yi = ASKSAMEGENUS(Oi,Ei) containing the supervision of 
the user. The value of � is computed solving the following 
problem:

where 1 is the indicator function mapping True to 1 and 
False to 0, and ⊕ is the exclusive OR. [11] provides a strat-
egy for how to efficiently solve this problem by performing 
a number of evaluations equal to |K| .

The algorithm building the subsumption hierarchy is 
implemented as the infinite loop shown in Algorithm 1. 
This algorithm is a direct implementation of the recursive 
construction of objects given in Eq. (3) via the test for object 
equality and subsumption as from Eqs. (7), (8). We use a 
function getMostSimilarObject which, given an object 
and a cumulative memory M of all the objects perceived 
so far, returns the object which is most similar. The imple-
mentation of this function is based on the consideration that 
there are two possible cases. In the first, that same object 

K = {⟨𝛿i, yi⟩ ∣ 1 < i < �K�}

(16)𝜃 = argmax
𝜆

|K|∑

i=1

1((𝛿i < 𝜆)⊕ ¬yi)

was previously seen, and therefore, this is the object to be 
selected. In the second, the object was not previously seen, 
in which case there may be no objects sharing visual objects 
(no objects with the same genusObj) or there may be one 
or more similar objects, possibly including the genusObj, 
which share the genusObj with the new object. Based on 
this intuition getMostSimilarObject returns the nearest 
already seen instance that satisfies the similarity constraint 
of Eq. (12), if existing, otherwise it returns the most similar 
genusObj, computed as described above. Notice that we 
make the further simplifying assumption to ask the user, via 
ASKSAMEGENUS , only for the most similar element. Thus 
the model is not guaranteed to keep a hierarchy always in 
line with the desires of the user. Ideally one should ask for 
supervision for every similar object. This choice was made 
to limit the effort required to the user. We will deal with this 
problem in further research following the line of thought 
already started in [11].

For what concerns lines 6–12 of the algorithm, we have 
the following: (i) in Line 8, it creates a new object because 
Different holds for an object with the same Genus (as 
from Eq. (8), this is the case when subsumption holds); (ii) 
in Line 10, it extends an already existing object for which 
sameGenus holds but Different does not (as from Eq. 
(7), this is the case when we have object identity); in Line 
12, it creates a new object corresponding to an instance of a 
new genusObj (as from Eq. (4)). It is easy to see how the 
hierarchy satisfies, for any given sequence of encounters, the 
five conditions provided in the previous section.

Each iteration of the algorithm requires a forward step 
in the embedding network followed by a nearest-neighbour 
search in the memory of stored encounters. A simple linear 
search is sufficient for real-time interaction for reasonable 
sized data sets, compatible with the need for supervision by 
a single person. On the other hand, the approach can easily 
scale to arbitrary data sets by leveraging techniques, such as 
tree-decomposition [6] or locality-sensitive-hashingh [56, 
57] for efficient exact and approximate nearest-neighbor 
search. These approaches can be complemented with pro-
totype selection strategies [3, 15, 63] to combine time and 
memory efficiency.

As a concluding remark, notice how the algorithm sat-
isfies the requirements listed in the introduction: (i) the 
hierarchy is built autonomously and it becomes a hierar-
chy of classification concepts thanks to the user feedback, 
(ii) no assumption is made about the input objects, (iii) the 
algorithm learns objects never seen before and (iv) it incre-
mentally learns how to recognize objects starting from no 
objects.
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Experiments

The algorithm was implemented in PyTorch and the imple-
mentation can be freely downloaded at https://​github.​com/​
lucae​rculi​ani/​towar​ds-​visual-​seman​tics. In all experiments 
we have used a moving average of size fifty and stride fif-
teen to create the visual objects. The embedding network is 
a standard VGG-16 architecture [49] which was pre-trained 
on the YFCC100M data set [53] in an unsupervised fashion 
with the DeeperCluster algorithm (see [5] for the details of 
how the network was pre-trained).

Data set

The main difficulty in setting up the experiments was that 
no existing data set matches the conditions we needed to 
properly evaluate our framework. This setting requires a col-
lections of objects that can be grouped on the basis of their 
visual appearance. Inside each group, all objects must have 
some partial views that make them indistinguishable from 
the other elements of the group (the Genus), while at the 
same time having other views that enable the discrimination 
of single objects (the Differentia). No public data set 
enforces this constraint. As a consequence we have created 
our own data set, which consists of a collection of video 
sequences of various objects, recorded while rotating or 
being deformed against a blank background, making sure 
that each video contained only a partial view of the object. 
We have made the simplifying assumptions of a blank back-
ground, which is clearly limiting for a real world application. 
This assumption is motivated by the focus on the recognition 
of Genus and Differentia, rather then on the distinction 
between objects and background.

The resulting data set5 contains videos for five different 
types of objects: a coffee pod, a multiplug, a pencil case, a 

smartphone and a wallet. For each object type we recorded 
videos for two different instances, that were different only 
for a certain view (as in Fig. 4). For each object instance 
we recorded five videos that contain the discriminative 
view, and five that do not. Videos were recorded at 60 fps 
and lasted between 1 and 5 s. Figure 5 shows some sam-
ple frames for wallets. The left and right columns represent 
two distinct wallets (that should be recognized as having 
the same Genus), that only differ by the card the contain. 
The top row shows (excerpts of) videos that do not contain 
the discriminative view (and should thus be predicted as not 
having Differentia), while the bottom row shows videos 
of the same objects where the differentia is visible (the red 
frame in each sequence).

Experimental Results

In the following we report first qualitative and then quanti-
tative results in terms of capacity of the learning algorithm 
to recover the notions of Genus and Differentia of the 
user. Below, we say that the answer is correct when this is 
the case, incorrect otherwise.

Qualitative Results

Figure 6 shows two cases of encounters that were correctly 
processed by the algorithm with no user intervention. Each 
column represents the sequence of steps made to process a 
new encounter (the visual objects in the purple box), namely, 
perception, recognition and memorization, and the two col-
umns represent cases giving rise to different choices made 
by the algorithm. The encounters already present in memory 
are represented by gray dashed boxes, and the correspond-
ing objects by black boxes. A box covering visual objects 
from multiple objects represents the genus of that group of 
objects. The linked couples of blue visual objects represent 
items that were recognized as similar by the machine. In 
the left column, a new encounter is correctly recognized 
as having the same Genus of two objects already stored in 
memory. The genusObj is updated by incorporating the 
visual objects of the encounter. This is all the algorithm can 

Fig. 5   Sample frames from 
the data set. The left and right 
columns represent two wallets 
that only differ by the card they 
contain. The discriminative 
view is only present in the bot-
tom row (highlighted in red)

5  The data set is freeely available at https://​figsh​are.​com/​artic​les/​
datas​et/​small_​re-​ident​ifica​tion_​datas​et_​with_​class​es/​14706​003, 
where both raw data and precomputed embeddings can be down-
loaded.

https://github.com/lucaerculiani/towards-visual-semantics
https://github.com/lucaerculiani/towards-visual-semantics
https://figshare.com/articles/dataset/small_re-identification_dataset_with_classes/14706003
https://figshare.com/articles/dataset/small_re-identification_dataset_with_classes/14706003
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do, as the encounter does not have enough visual informa-
tion to allow for an instance-level recognition. In the right 
column, a new encounter is correctly recognized as being 
the same as an object stored in memory. The visual objects 
of the encounter are added to the retrieved object, while 
its genusObj is updated with the visual objects that are 
found similar to it. Note how updating the object enriches 

its representation by including a viewpoint that was never 
observed before (the one showing the sockets).

Figure 7 shows two cases of encounters in which the algo-
rithm made choices which are not aligned with the user per-
spective. In the left column, the algorithm manages to rec-
ognise the Genus of the new encounter, but fails to realize 
that the encounter is actually the same as one of the objects it 

Fig. 6   Examples of two correct 
choices made by the algorithm. 
The left column depicts a case 
in which the machine correctly 
identified the Genus of the new 
encounter (the encounter does 
not contain enough information 
for instance-level recognition). 
The second column represents a 
case in which the new encounter 
was correctly identified as an 
already seen object. The new 
visual objects were added to 
the matched object. In addition, 
the genusObj was updated 
with the subset of visual objects 
matching it
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has seen before. In so doing it wrongly creates a new object 
in memory. This error can be avoided if user feedback is 
available to answer an ASKDIFFERENT query (line 7 of Algo-
rithm 1). The right column represents a case in which the 
new encounter was mistakenly identified as a completely dif-
ferent object. In this case, the availability of user supervision 
can prevent the algorithm from performing the wrong match 

(and spoiling the representation in memory of the retrieved 
object). The algorithm would in this case create a new object 
initialized with the encounter. Note, however, that in case 
the encounter was indeed an instance of an already stored 
object (but different from the one retrieved by the machine), 
or shared a Genus with it, asking feedback for the most 
similar object only as done in Algorithm 1 would not suffice 

Fig. 7   Examples of two incor-
rect choices made by the algo-
rithm. The left column depicts 
a case in which the machine rec-
ognized the correct genusObj 
for the new encounter but not 
the correct instance. This led to 
the creation of a new separate 
object with that genusObj. 
The second column represents a 
case in which the new encounter 
(containing a wallet) was mis-
takenly assigned to a completely 
different object (a smartphone)
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to discover it (see discussion in Section “The Learning Algo-
rithm” on the limitations of this choice). Indeed, the algo-
rithm should progressively ask for feedback on a sequence 
of objects (of decreasing similarity) until the user confirms 
the match, which could end up being too demanding for the 
user. A possible solution is that asking the user to provide 
names for objects and genuses, thus making the mapping 
between substance and classification concepts explicit. This, 
however, does not solve the problem entirely, as without 
full supervision the memory would contain objects without 
names. Note also that a purely name-driven supervision can-
not work, for the very reasons that have been discussed when 
contrasting substance concepts with classification concepts 
(e.g., the user could provide the name of a genus when the 
new encounter also has a differentia). We plan to investigate 
in future work a hybrid similarity-driven and name-driven 
retrieval strategy in conjunction with the extension of the 
method to hierarchies of arbitrary depth.

Quantitative Results

What described above provides a qualitative view of the 
behaviour of the algorithm, which largely depends on the 
availability of user feedback. We have also ran a quantitative 
evaluation showing how recognition performance over time 
is affected by the amount of supervision. The experiment is 
organized as follows. Sequences are showed one after the 
other and at each iteration the user provides supervision with 
probability � . We have run experiments for different values 
of � with � ∈ {1.0, 0.3, 0.2, 0.1} and where � = 1.0 is the 
setting where supervision is always available. In all settings 
the model is provided with a supervision for each of the first 
five sequences to bootstrap the estimation of the diversity 
threshold � . We ask the model to predict sameGenus and 
Different at each iteration before receiving feedback from 
the user (if available, otherwise the algorithm prediction is 
used to update the memory). The results of the experiment 
are depicted in Fig. 8.

Figure 8a presents the accuracy computed for the predic-
tion of Genus. A prediction is correct if the new encounter 

shares a Genus with an object in memory and the algorithm 
retrieves the correct genusObj, or the algorithm correctly 
identifies the encounter as a completely novel object. The 
plotted results are computed as the mean accuracy of the 
prediction over two thousand different runs, each with a dif-
ferent order of the sequences, smoothing the curves using a 
moving average of length five. Surprisingly enough, in the 
first half of the experiment the smaller the supervision the 
better the accuracy. This is due to the fact that at the begin-
ning, most sequences contain new objects, thus the more 
the supervision the higher the bias of the model to predict 
a new sequence as unseen. This bias progressively fades 
away proceeding with the experiment, and all models end up 
achieving similar results on average. These results suggest 
that even a very limited amount of supervision is sufficient 
to learn a reasonable value for the diversity threshold, which 
is what the algorithm needs to retrieve objects with the same 
genus if stored in memory (see Eqs. 9 and 12).

Figure 8b shows the accuracy of the prediction of Dif-
ferent, over the subset of sequences for which the Genus 
is predicted correctly. The task here is more complex, as the 
algorithm needs to gather enough supervision to characterize 
the genus object (genusObj) so as to identify the Dif-
ferentia (see Eqs. 14 and 15 ). Indeed, in this case the 
greater the amount of supervision, the better the model is 
capable of recognizing whether the new sequence contains 
enough information to identify the correct instance. Apart 
for the setting with least supervision ( � = 0.1 ), for which 
the performance gap with respect to the fully supervised 
case stays rather large, the different models end up achieving 
comparable performance.

Overall, these preliminary results indicate that the algo-
rithm is capable of progressively acquiring the notions 
of Genus and Differentia with reasonable accuracy 
despite seeing a small number of examples and receiving 
supervision on a fraction of them. These results are a proof-
of-concept of the feasibility of the approach. The main limi-
tation of this work is the fact that we are restricting ourselves 
to hierarchies of depth 2. Extending the learning algorithm 
to deeper hierarchies is indeed our main target for future 

Fig. 8   Accuracy of prediction 
for Genus (a) and Differ-
entia (b), respectively, for 
increasing number of itera-
tions and different amounts of 
supervision (curves for different 
values of �)
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research, as discussed in the conclusion of the paper. This 
will also require building a much bigger data set, having 
as main reference the Imagenet data set [44]. Building this 
data set and the corresponding hierarchy of classification 
concepts is a research task in itself.

Related Work

As already hinted in the introduction, this work is grounded 
in the work done in Teleosemantics. At the same time, the 
distinction between substance concepts and classification 
concepts resembles the two types of concepts proposed by 
Millikan and Fodor, see also their debate on Recognitional 
Concepts [12, 32]. In fact, substance concepts map quite 
naturally to Millikan’s recognitional concepts while clas-
sification concepts seem to be a good conceptualization of 
Fodor’s work on the structure of semantic theories [23]. 
The work provided here suggests that we need both types of 
concepts, which functionally serve different problems, the 
crucial issue being how to keep them aligned.

This work constitutes a major shift from mainstream KR 
and Computer Vision in four dimensions. First, it treats 
objects as perdurants, where classification concepts are, 
instead, endurants. In other words, we assume that we have 
two (very different) representations for anything we per-
ceive, e.g., a person. Objects are assumed to be represented 
only partially and to evolve in time building (modulo forget-
ting) richer and richer but never complete visual representa-
tions. Second, it uniformly models instances and classifica-
tion concepts as substance concepts, and, therefore, as sets 
of visual properties. Thus, substance concepts, i.e., objects, 
are visual representations of both classification concepts 
and instances. Third, object visual similarity is not taken 
to be the same as object identity, this latter notion apply-
ing only to classification concepts. Fourth the user is never 
asked about the name of an object but only about Genus 
and Differentia.

The work proposed in this paper is a (first step towards 
the) solution of the SGP. The previous work so far has been 
on how to integrate feature-level information with seman-
tic level information. Thus, some early work has proposed 
to encode semantic information via ontologies [21], others 
propose to use tags or similar high-level features [10, 26], 
others propose to involve users using active learning [52], 
most recently it has been proposed that the semantic gap 
should be handled in DNNs when aggregating multi-level 
features [37]. The common denominator is that this work 
exploits classification concepts, rather than substance con-
cepts, and that it does not build the subsumption hierarchy. 
All these proposals do not provide a general solution to the 
SGP. A fair amount of work has also been done trying to 
model objects in a way which is compliant to how humans 

think about objects. Most of this work, motivated by Robotic 
applications has concentrated on identifying the function of 
objects see, e.g., [4, 8, 40, 51, 58]. But because of its very 
purpose, this work models objects as classification concepts.

The visual hierarchy proposed in this work naturally 
reminds of the work on hierarchies done in Computer vision 
and, in particular the work on ImageNet [7]. The introduc-
tion of the ImageNet data set and its associated challenge 
[44] has boosted image classification towards (and even 
beyond) human-level performance. While most research has 
focused on fine-grained classification of (subsets of) leaf 
classes, hierarchical classification has also been directly 
addressed [59]. However, this work assumes a predefined 
hierarchy given in advance, as well as a fixed set of exam-
ples to learn from. Furthermore, our focus is on the clas-
sification of videos of objects rather than static images. It is 
part of out future work to collect a data set of object videos 
that resembles the ImageNet data set in terms of size and 
depth of the hierarchy. A promising direction consists in 
leveraging the recent developments in terms of Embodied 
AI simulators [9], that, however, need to be adapted in terms 
of quantity, diversity and granulatity of the concepts that can 
be represented.

In recent years, there has been a growing interest towards 
open world [1, 43], continual and lifelong learning [38]. 
Most approaches focus on the sequential learning of novel 
classes via class-specific training sessions, trying to avoid 
catastrophic forgetting [19] by, e.g., parameter regularization 
[24, 61], model capacity expansion [45, 60] or task rehearsal 
[48, 54]. Alternatives accounting for unsupervised [41] or 
task agnostic [62] settings have also been recently explored. 
However, the underlying assumption is always the pres-
ence of a predefined (possibly not explicit) set of classes, 
that are progressively presented to the algorithm. Even the 
open-world classification setting [1, 43], where the learner 
should be able to tell if an entity does not belong to the set 
of known classes (the so-called open-set classification [2, 
47]), requires a specific training session to incorporate novel 
classes. On the other hand, few-shot learning methods [42, 
46, 55], that address the scarcity of data using similarity-
based or meta learning approaches, are typically closed-
world and offline, with well-separated training and testing 
phases. A fully online incremental and agnostic setting 
where the hierarchy of objects emerges from the combina-
tion of encounters and feedback from the user is beyond the 
scope of these approaches.

Conclusion

In this paper we have provided the first steps towards a 
general theory of visual semantics. The ultimate goal is to 
understand the general mechanisms by which it is possible 
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to align the meaning of words with the perception of the 
objects named by those words. The main foundational con-
tribution of this paper is the distinction between substance 
concepts and classification concepts, the first being modeled 
as perdurants the latter as endurants, and the mechanism by 
which these two different types of concepts must be aligned. 
This latter result has highlighted the crucial role of humans, 
not so much to tell machines what objects are, machine can 
learn this by themselves, but to make sure that what they 
learn is coherent with how humans perceive the world.

The future work will proceed in many directions. The first 
will be the extension of this work to hierarchies of any depth. 
For what concerns the algorithm, the main requirement is 
the addition of a system to build a new genusObj on top of 
an existing genusObj. The general idea we foresee is that 
of ditching the global threshold mechanism in favor of a dif-
ferent similarity threshold (or metric) for each genusObj. 
The second extension is that of combining similarity-based 
retrieval with name-based retrieval, to quickly but reliably 
identify the position(s) in the memorized hierarchy where 
to put the new encounter. We also plan to reduce the burden 
of the user by introducing online active learning strategies 
(see [11] for an initial solution in a flat instance-level rec-
ognition task).

Finally, the algorithm should be adapted to deal with 
tougher visual contexts including variable background, 
occlusions, noisy feedback etc.
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