Skip to main content
Log in

Discrete Linear Geometry on Grid System

  • Original Research
  • Published:
SN Computer Science Aims and scope Submit manuscript

Abstract

We define the algebraic discrete geometry to a hexagonal grid system on a plane. Since a hexagon is an element for tiling on a plane, hexagons are suitable as elements of discrete objects. For the description of linear objects in a discrete space, algebraic discrete geometry provides a unified treatment employing double Diophantus equations. Furthermore, we develop an algorithm for the polygonalisation of discrete objects on the hexagonal grid system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Her I. Geometric transformations on the hexagonal grid. IEEE Trans Image Process. 1995;4(9):1213–22. https://doi.org/10.1109/83.413166.

    Article  Google Scholar 

  2. Liu Y-K. The generation of circle arcs on hexagonal grids. Comput Graphic Forum. 1993;12(1):21–6. https://doi.org/10.1111/1467-8659.1210021.

    Article  Google Scholar 

  3. Liu Y-K. The generation of straight lines on hexagonal grids. Comput Graphic Forum. 1994;12(1):27–31. https://doi.org/10.1111/1467-8659.1210027.

    Article  Google Scholar 

  4. Stauton RC. An analysis on hexagonal thinning algorithms and skeletal shape representation. Pattern Recognit. 1996;29(7):1131–46. https://doi.org/10.1016/0031-3203(94)00155-3.

    Article  Google Scholar 

  5. Middleton L, Sivaswamy J. Edge detection in a hexagonal-image processing framework. Image Vis Comput. 2001;19(7):1071–81. https://doi.org/10.1016/S0262-8856(01)00067-1.

    Article  Google Scholar 

  6. Middleton L, Sivaswamy J. Hexagonal image processing—a practical approach. London: Springer-Verlag; 2005. https://doi.org/10.1007/1-84628-203-9.

    Book  MATH  Google Scholar 

  7. Linh T-K, Imiya A, Strand R, Borgefors G. Supercover of non-square and non-cubic grids. In: Klette R, Žunić J, editors. Combinatorial image analysis. IWCIA 2004. Lecture Notes in Computer Science, vol. 3322. Berlin: Springer; 2004. p. 88–97. https://doi.org/10.1007/978-3-540-30503-3_7 (IWCIA 2004).

    Chapter  Google Scholar 

  8. McAndrew A, Osborn C. The Euler characteristic on the face-centered cubic lattice. Pattern Recognit Lett. 1997;18(3):229–37. https://doi.org/10.1016/S0167-8655(97)00014-7.

    Article  Google Scholar 

  9. Saha PK, Rosenfeld A. Strongly normal set of convex polygons or polyhedra. Pattern Recognit Lett. 1998;19(12):1119–24. https://doi.org/10.1016/S0167-8655(98)00088-9.

    Article  MATH  Google Scholar 

  10. Linh T-K, Imiya A. Nonlinear optimization for polygonalization. In: Nyström I, Sanniti di Baja G, Svensson S, editors. Discrete geometry for computer imagery. DGCI 2003. Lecture Notes in Computer Science, vol. 2886. Berlin: Springer; 2003. p. 444–53. https://doi.org/10.1007/978-3-540-39966-7_42.

    Chapter  Google Scholar 

  11. Schramm JM. Coplanar tricubes. In: Ahronovitz E, Fiorio C, editors. Discrete geometry for computer imagery. DGCI 1997. Lecture Notes in Computer Science, vol. 1347. Berlin: Springer; 1997. p. 87–98. https://doi.org/10.1007/BFb0024832.

    Chapter  Google Scholar 

  12. Vittone J, Chassery JM. Digital naive planes understanding. Vision Geometry VIII. In: Proceedings of SPIE vol 3811. The International Society for Optics and Photonics. 1999; p. 22–32. https://doi.org/10.1117/12.364085.

  13. Reveilles JP. Combinatorial pieces in digital lines and planes. Vision Geometry IV. In: Proceedings of SPIT vol 2573. The International Society for Optics and Photonics. 1995; p. 23–34. https://doi.org/10.1117/12.216425.

  14. Coeurjolly D, Zerarga L. Supercover model, digital straight line recognition and curve reconstruction on the irregular isothetic grids. Comput Graph. 2006;30(1):46–53. https://doi.org/10.1016/j.cag.2005.10.009.

    Article  Google Scholar 

  15. Andres E, Nehlig P, Francon J. Supercover of straight lines, planes, and triangles. In: Ahronovitz E, Fiorio C, editors. Discrete geometry for computer imagery. DGCI 1997. Lecture Notes in Computer Science, vol. 1347. Berlin: Springer; 1997. p. 87–98. https://doi.org/10.1007/BFb0024832.

    Chapter  Google Scholar 

  16. Morgan F. Riemannian geometry: a beginner's guide. Burlington: Jones and Bartlett Publishers; 1993.

    MATH  Google Scholar 

  17. Barneva RP, Brimkov VE, Nehlig P. Thin discrete triangular meshes. Theoret Comput Sci. 2000;1–2(6):73–105. https://doi.org/10.1016/S0304-3975(98)00346-6.

    Article  MathSciNet  MATH  Google Scholar 

  18. Kimuro K, Nagata T. Image processing on an omni-directional view using a spherical hexagonal pyramid. J Robot Soc Jpn. 1996;14(6):809–19. https://doi.org/10.7210/jrsj.14.809.

    Article  Google Scholar 

  19. Benosman R, Kang S-B, editors. Panoramic vision, sensor, theory, and applications. New York: Springer-Verlag; 2001.

    MATH  Google Scholar 

  20. Shar K, White D, Kimerling AJ. Geodesic discrete global grid systems. Cartogr Geograph Inf Syst. 2003;30:121–34. https://doi.org/10.1559/152304003100011090.

    Article  Google Scholar 

  21. Randall DA, Ringler TD, Heikes RP, Jones P, Baumgardner J. Climate modeling with spherical geodesic grids. IEEE Comput Sci Eng. 2002;4(5):32–41. https://doi.org/10.1109/MCISE.2002.1032427.

    Article  Google Scholar 

  22. Francon J, Schramm JM, Tajine M. Recognizing arithmetic straight lines and planes. In: Miguet S, Montanvert A, Ubéda S, editors. Discrete geometry for computer imagery. DGCI 1996. Lecture Notes in Computer Science, vol. 1176. Berlin: Springer; 1996. p. 141–50. https://doi.org/10.1007/3-540-62005-2_12.

    Chapter  Google Scholar 

  23. Buzer L. A linear incremental algorithm for naive and standard digital lines and planes recognition. Graph Models. 2003;65(1–2):61–76. https://doi.org/10.1016/S1524-0703(03)00008-0.

    Article  MATH  Google Scholar 

  24. Buzer L. A simple algorithm for digital line recognition in the general case. Pattern Recognit. 2007;40(6):1675–84. https://doi.org/10.1016/j.patcog.2006.10.005.

    Article  MATH  Google Scholar 

  25. Debled-Rennesson I, Reveillès J-P. A linear algorithm for segmentation of digital curves. Int J Pattern Recognit Artif Intell. 1995;9(4):635–62. https://doi.org/10.1142/S0218001495000249.

    Article  Google Scholar 

  26. van Roojen R, editor. Graphic ornament (Agile Rabbit Editions). Amsterdam: The Pepib Press; 2001.

    Google Scholar 

Download references

Funding

No funding was received to assist with the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atsushi Imiya.

Ethics declarations

Compliance with Ethical Standards

The corresponding author declares that there is no violation of “Compliance with Ethical Standards” in this work.

Conflict of interests

The corresponding author declares that there is no “Conflict of Interest” in this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the topical collection “From Geometry to Vision: The Methods for Solving Visual Problems” guest edited by Wei Qi Yan, Harvey Ho, Minh Nguyen and Zhixun Su.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Troung, L.K., Imiya, A. Discrete Linear Geometry on Grid System. SN COMPUT. SCI. 3, 72 (2022). https://doi.org/10.1007/s42979-021-00937-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42979-021-00937-6

Keywords

Navigation