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Abstract Behavior trees are a control architecture that has gained recent attention in
AI and robotics. Previous research on the use of behavior trees in swarm robotics has
shown the necessity for the behaviors to have proper return values, instead of running
indefinitely. This work extends our previous work in which we defined AutoMoDe-
Cedrata, an automatic modular design that makes use of modules that have been
explicitly defined for behavior trees. While the search space is sufficiently large to in-
clude well-performing solutions, Cedrata had problems discovering communication-
based strategies. In this work, we extend Cedrata by introducing Cedrata-GP and
Cedrata-GE which are based on genetic programming and grammatical evolution,
respectively. We test these design methods on two missions and compare the per-
formance of the automatic design methods against the performance of solutions cre-
ated by human designers. The results show that the structure of Cedrata allows for
well-performing solutions that are reliably found by human designers. However, the
automatic design methods fail to discover the same communication strategies as the
human designers.
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IRIDIA, Université libre de Bruxelles, Brussels, Belgium
E-mail: mbiro@ulb.ac.be



2 Jonas Kuckling et al.

1 Introduction

Swarm robotics is a research area that combines robotics and swarm intelligence,
and that is recognized as a promising approach for controlling large groups of robots
[1–11]. Robot swarms are self-organizing decentralized systems, consisting of rel-
atively simple robots that cooperate to achieve a goal that would not be achievable
for each individual robot alone. The collective behavior of the robot swarm emerges
from the interactions between the robots themselves and between the robots and the
environment [12]. One challenge of swarm robotics is the difficulty of designing con-
trol software for the individual robots, so that the desired collective behavior emerges
[13].

One approach to the design of control software for robot swarms is manual de-
sign, in which a human designer creates the control software. However, only few and
limited principled approaches to manual design exist [14–22] and no general method-
ology has yet been proposed. As a result, most manual design approaches rely on trial
and error, a time-consuming, costly, and often error-prone strategy [23,24].

Other approaches rely on the use of an optimization algorithm and can be broadly
categorized into two categories: semi-automatic design and fully automatic design
(although hybrid approaches exist) [10]. In semi-automatic design, a human designer
uses an optimization algorithm as a tool to design the control software. The designer
specifies the problem and defines the parameters of the optimization algorithm. They
observe the optimization process and adjust the problem specification or the param-
eters of the optimization algorithm until the result is satisfactory. While the semi-
automatic approach alleviates some drawbacks of manual design, the involvement
of a human designer still entails similar challenges: as long as no general principled
approach exists, much of the performance depends on the experience and domain
knowledge of the human designer.

In contrast, in fully automatic design, the role of the human designer is reduced
to the problem specification. After receiving the problem specification, the fully au-
tomatic design process searches for a satisfactory solution without any further hu-
man intervention [10]. This lack of human intervention also implies that no mission-
specific domain knowledge can be incorporated into the design process. Indeed, any
fully automatic design method needs to be able to address not only a single mission,
but a class of missions [13].

Fully automatic design often produces the control software off-line, i.e., the soft-
ware is designed using simulations and only the final resulting control software is
uploaded onto the real robots for evaluation. While this approach offers many advan-
tages, like speeding up the design process through faster-than-real-time simulations
and parallelization of simulation processes and no need for hardware availability for
the design process, it suffers from one major drawback, the reality gap. The reality
gap is the inherent difference between the simulation and the real environment and
often manifests itself in the form of a performance drop [25]. Not all methods are
affected equally by the reality gap [25].

Francesca et al. proposed to look at the reality gap problem akin to the bias-
variance trade-off [26]. They hypothesized that design methods with a very large and
fine-grained action space (“low bias”) are more prone to overfit the simulation context
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Table 1: Abbreviations and symbols used in this paper.

Abbreviation Meaning
? selector node
→ sequence node
?∗ selector* node
→∗ sequence* node
GP Genetic programming
GE Grammatical evolution
Exp Exploration behavior
Stop Stop behavior
Group Grouping behavior
Isol Isolation behavior
Meet Meeting behavior
Ack Acknowledgement behavior
ESig Emit Signal behavior
Bflr Black Floor condition
Gflr Grey Floor condition
Wflr White Floor condition
Ngb Neighborhood Count condition
INgb Inverted Neighborhood Count condition
FP Fixed Probability condition
RSig Receiving Signal condition

(“high variance”). By restricting the space of possible behaviors (“introducing bias”),
it should be possible to produce software that is more robust to the reality gap. Based
on this hypothesis, they proposed AutoMoDe, a class of automatic modular design
methods. In automatic modular design, a set of pre-defined modules is assembled and
fine-tuned into more complex control software by an optimization algorithm. The first
method of this class is Vanilla, an automatic modular design approach that crosses
the reality gap satisfactorily [26]. Chocolate extends Vanilla by using Iterated F-
race [27] as the optimization algorithm to assemble a finite-state machine with up to
four states and sixteen transitions from a set of six behavioral modules (mapped to
the states of the finite-state machine) and six conditions (mapped to the transitions of
the finite-state machine) [28]. Other AutoMoDe methods vary or extend the capabili-
ties of Chocolate. Gianduja [29], TuttiFrutti [30], or Arlequin [31] introduce
new software modules, that extend the capabilities of the robotic platform, e.g., by
enabling direct communication, color detection or the use of artificial pheromones.
Waffle [32] allows the design process not only to control aspects of the control soft-
ware but also of the hardware capabilities of the robot. IcePop [33] investigates the
use of local search-based optimization algorithms. Maple [34] and Cedrata [35] are
design methods that use behavior trees [36] as the target architecture.

The work presented in this paper extends [35], which introduced Cedrata. Our
previous work showed that the modules and architecture of Cedrata allowed for
well-performing solutions, but the optimization algorithm (Iterated F-race) had prob-
lems finding these solutions. In this work, we investigate additionally the use of two
other optimization algorithms, namely genetic programming [37] and grammatical
evolution [38]. In Table 1 we list the abbreviations used in this paper.
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2 Related work

Behavior trees are a control architecture that originates from video games [39], but
which since has found applications in fields such as artificial intelligence or robotics
[40]. In this work, we follow the behavior tree definition of Marzinotto et al. [36].

In this framework, behavior trees are a control architecture whose structure can
be described as a directed acyclic graph and that operate on a tick that is created
with a fixed frequency ftick by an implicitly defined root node. Every time a tick is
generated, it traverses the tree, activating the nodes that it visits. The inner nodes of
the tree are called control-flow nodes and control the way that the tick takes through
the tree. The leaf nodes can be either an action node that executes a single time step
of a behavior or a condition node that checks a condition of the environment.

After activating, each node in a behavior tree returns the tick to its parent along
with one of three possible return values (success, failure, running) that determine the
further way that the tick takes through the tree. Condition nodes can return success or
failure, depending on whether their associated condition is met. Action nodes usually
return running, success or failure, if the action takes longer than one time step or if
the robot is in a state that can be classified as success or failure with regard to the
associated action or behavior. The control-flow nodes receive the return value of one
of their children nodes and determine if they either pass the tick to another child or
to its parent, together with a return value. In this work, we consider the following
control-flow nodes: selector (?), sequence (→), selector* (?∗), sequence* (→∗). For
a detailed and formal definition of all nodes, see [36].

Ligot et al. have proposed Maple, an automatic modular design method that as-
sembles modules into a restricted behavior tree architecture [34]. Maple utilizes the
same modules as Chocolate [28]. As these modules have originally been conceived
for finite-state machine, they do not offer any states that could be characterized as suc-
cess or failure and can therefore only return running. The authors propose a very re-
stricted architecture that can successfully incorporate these modules. Results showed
that Maple could produce solutions that performed adequately, but that the architec-
ture limited the space of possible solutions and that some well-performing solutions
found by Chocolate could not be represented within the restricted architecture of
Maple. This work highlighted the need for modules that have proper return values.
Communication-based behaviors have been used in many works in swarm robotics,
for example [41–47]. With Gianduja, Hasselmann et al. were able to show that an
automatic design process can automatically assign a semantic to messages that do not
have meaning a priori [29].

Other works that have applied behavior trees to swarm robots include the works
by Jones et al. [48,49]. In [48], Jones et al. evolved behavior trees for a swarm of
kilobots. In that work, the authors defined only atomic actions that are executed for a
single tick and then always return success. This necessitates the inclusion of a repeat
node that can repeatedly tick its children, allowing these actions to be executed more
than once consecutively. In another work, Jones et al. evolved behavior trees onboard
of a swarm of Xpucks [49]. The actions in these behavior trees are also atomic, as
they perform a singular write to the blackboard. For the onboard evolution, however,
each robot performs a design process using genetic programming to create behavior
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Table 2: The E-puck reference model RM2.2 used in Cedrata [52].

Sensors Variables
Proximity prox ∈ [1,8], ∠q ∈ [0,2π]
Ground gnd ∈ {0,0.5,1}
Range-and-bearing n ∈ N, r ∈ [0.5,20], ∠b ∈ [0,2π]

ns, rs, ∠bs, for s ∈ {1, ...,6}

Actuators Variables
Signal broadcast s ∈ {0,1, ...,6}
Wheels vl ,vr ∈ [−v,v], with v = 0.16m/s
Control cycle period: 100 ms

trees. At regular intervals, the best performing behavior tree is selected as the current
control software for the robot. Another approach to the design of control software in
the context of swarm robotics was proposed by Neupane and Goodrich [50]. They
used distributed grammatical evolution to design behavior trees for a swarm of simu-
lated robots.

GESwarm is another design approach that uses grammatical evolution [51]. In
that work, the authors proposed an automatic design method that can design a forag-
ing behavior for a swarm of footbot robots. The control software is represented as a
set of policies that map conditions and the current behavior to actions of the robot.
The behaviors that the robot can select exhibit similar properties as the behaviors of
Chocolate, namely that they are simple and can run potentially endlessly, without
any implicit success or failure states.

3 AutoMoDe-Cedrata

Originally, we presented Cedrata in [35]. For the convenience of the reader, we
describe again the method here.

3.1 Reference model

The reference model RM2.2, on which Cedrata is based, is shown in Table 2 [52].
The robot is equipped with eight proximity sensors, three ground sensors and one
range-and-bearing board for sensing and two sets of actuators: the range-and-bearing
board to send messages and two wheels with differential drive. The reference model
formalizes the way that the control software has access to these sensors and actuators.
The proximity sensors can detect obstacles up to 30 cm away, the ground sensors can
sense the floor color on a grey scale and the range-and-bearing board can transmit
messages up to 50 cm. The control software can set the speed of the two wheels of
the robot independently. It also always sends a signal value s, that can be equal to 0,
which is a special value that means no signal and that is sent by default, or an integer
in {1, ...,6}. Similar to [29], signal values do not have a particular semantic, instead,
it is the role of the design process to assign semantics to the signals. For the sensors,
the reference model provides an aggregated vector (in the form of magnitude and
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Table 3: Behavior and condition modules and their parameters used in Cedrata.

Behavior Short Parameters
Exploration Exp τ

Stop Stop
Grouping Group Nmax, Nmin, α

Isolation Isol Nmax, Nmin, α

Meeting Meet s, dmin
Acknowledgement Ack s, tmax
Emit Signal ESig s
Condition Short Parameters
Black Floor Bflr β

Grey Floor Gflr β

White Floor Wflr β

Neighborhood Count Ngb η , ξ

Inverted Neighborhood Count INgb η , ξ

Fixed probability FP β

Receiving signal RSig s

direction) over all proximity readings and a single aggregated ground reading. The
reference model also provides access to the number of neighboring robots n and a
vector to their center of mass. Similarly, it provides the number of messaging robots
and a vector to the center of mass of the messaging robots, for each signal s ∈ S. The
control cycle period is 100 ms, that is, every 100 ms the sensors are updated and the
control software is invoked, generating a new tick in the behavior tree.

3.2 Modules

Based on the reference model RM2.2, we defined fourteen modules—seven behavior
modules and seven condition modules. In the following descriptions of the signal-
based conditions and behaviors, the set of signals {1, ...,6} will be denoted S. Some
modules can use a special value any that is activated if any of the signals in S is
received. The set S∗ = S∪ {any} will denote the sets used by these modules. The
design process is free to choose several instances of the same module in an instance
of control software and can tune the parameters independently for each instance of a
module.

Behaviors are associated to action nodes and allow the robot to interact with the
environment. The action nodes can return success or failure if the behavior ends in
a state that it considers being a success or a failure. Otherwise, they return running.
The behavior modules are defined as follows:

Exploration The robot performs a random walk. It moves straight until it perceives
an obstacle in front of itself. Then the robot turns on the spot for a random number
of time steps in {0, ...,τ}, where τ ∈ {1, ...,100} is a tunable parameter. This
behavior always returns running.

Stop The robot stays still. This behavior always returns running.
Grouping The robot tries to get closer to its neighbors by moving towards the geo-

metric center of its neighbors. If the number of neighbors becomes greater than
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Nmax, the behavior returns success, where Nmax is a tunable parameter. If the num-
ber of neighbors becomes smaller than Nmin, the behavior returns failure, where
Nmin is a tunable parameter. Otherwise, it returns running. The speed of conver-
gence is controlled by the tunable parameter α ∈ [1,5]. The robot moves in the
direction w = w′− kw0, where w′ is the target component and kw0 is the obsta-
cle avoidance component. If robots are perceived, then w′ = wr&b = (α · r,∠b),
otherwise w′ = (1,∠0). kw0 is the obstacle avoidance component, with k being a
constant fixed to 5 and w0 defined as w0 = (prox,∠q).

Isolation The robot tries to move away from its neighbors by moving in the opposite
direction of the geometric center of its neighbors. If the number of neighbors
becomes smaller than Nmin, the behavior returns success, where Nmin is a tunable
parameter. If the number of neighbors becomes greater than Nmax, the behavior
returns failure, where Nmax is a tunable parameter. Otherwise, it returns running.
The speed of divergence is controlled by the tunable parameter α ∈ [1,5]. The
Isolation behavior uses the same embedded collision avoidance as in Grouping,
but with w′ defined as: w′ =−wr&b if robots are perceived, where wr&b is defined
as in the Grouping behavior. Otherwise w′ = (1,∠0).

Meeting The robot listens for a signal s ∈ S∗ emitted by other robots and moves to-
wards the geometrical centre of the emitters. The behavior returns success if the
distance between the robot and the geometrical centre is smaller than a distance
dmin, where dmin is a tunable parameter. The behavior returns failure if the robot
does not perceive any robot sending the expected signal. Otherwise, the behavior
returns running. The Meeting behavior uses the same embedded collision avoid-
ance as in Grouping, but with w′ defined as: w′ = wr&b = (α · rs,∠bs) if robots
emitting s are perceived. Otherwise w′ = (1,∠0).

Acknowledgement The robot sends a signal s ∈ S and waits for an answer in the
form of the same signal, where s is a tunable parameter. The behavior returns
success if the signal is received or running if not. After tmax ticks, the behavior
returns failure if the signal is still not received, where tmax is a tunable parameter.
This behavior also sets the velocity of both wheels to zero.

Emit Signal The robot sets its emitted signal to s ∈ S for the current tick, where s
is a tunable parameter. This behavior always returns success. This behavior also
sets the wheel velocity to zero.

Conditions are associated to condition nodes and check an aspect of the environment.
The condition nodes return success, when their condition is met, or failure, otherwise.
The condition modules are defined as follows:

Black Floor When all ground sensors detect a black floor, the condition returns suc-
cess with probability β , where β is a tunable parameter.

Grey Floor When all ground sensors detect a grey floor, the condition returns suc-
cess with probability β , where β is a tunable parameter.

White Floor When all ground sensors detect a white floor, the transition is enabled
with probability β , where β is a tunable parameter.

Neighborhood Count Returns success with probability z(n) = 1
1+eη(ξ−n) where n is

the number of robots in the neighborhood, η ∈ [0,20] and ξ ∈ {0,1, ...,10} are
tunable parameters.
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Fig. 1: The possible behavior tree structure for Cedrata. In Cedrata, the top-level
node can be any control-flow node. Underneath it the tree can have between one and
three nodes, chosen among control-flow nodes, action nodes and condition nodes. If
a control-flow node is chosen, then it can have between one and three children, which
are either action nodes or condition nodes.

Inverted Neighborhood Count Same as Neighborhood Count but with probability
1− z(n).

Fixed Probability Returns success with probability β , where β is a tunable parame-
ter.

Receiving Signal Returns success if the robot has perceived a neighbor sending s ∈
S∗ in the last 10 ticks, where s is a tunable parameter.

3.3 Architecture

In Cedrata, the optimization process can create a tree that has a maximum of three
levels and a maximum of three children per node. The top-level node must be a
control-flow node. Nodes of the second level can be control-flow nodes, action nodes
or condition nodes. If it is an action node or a condition node, then the node can have
no children itself. Not all branches are forced to have the same depth: the top-level
node could have some children that are control-flow nodes and some that are action
or condition nodes. Nodes on the third level can only be action nodes or condition
nodes. The structure of such trees is depicted in Figure 1. The optimization process
can choose any control-flow node type to be either a sequence, sequence*, selector
or selector* node. For a formal definition of these nodes, see Marzinotto et al. [36].
Prior research has shown that high complexity in automatic design methods can in-
crease the difficulties in crossing the reality gap [26,28,11]. In order to match the
complexity of other AutoMoDe methods [53], the tree may have at most four action
nodes and four condition nodes. The constraints on the depth and on the number of
children implicitly impose that the tree contains no more than four control nodes.
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Table 4: Parameters for genetic programming and grammatical evolution. Parameters
for genetic programming are those used in the work of Jones et al. [48] and parame-
ters for grammatical evolution are those used in the work of Neupane and Goodrich
[50].

Parameter Genetic Programming Grammatical Evolution
Initialization half-and-half uniform tree
Selection strategy tournament selection truncation
Tournament size 3 –
Selection proportion – 50%
Crossover one-point crossover one-point crossover
Population size 25 100
Number of elites 3 1
Crossover probability 0.8 0.9
Uniform mutation probability 0.05 –
Shrink mutation probability 0.1 –
Node replacement mutation probability 0.5 –
Ephemeral mutation probability 0.5 –
Flip per codon mutation probability – 0.01
Codon size – 1000

3.4 Optimization algorithm

The optimization algorithm of Cedrata is Iterated F-race [27]. Iterated F-race works
over several iterations, each reminiscent of a race [54]. In each iteration, Iterated F-
race samples a set of candidate solutions. The first iteration samples randomly from
all possible candidate solutions, subsequent iterations sample around the survivors
of the preceding one. In the context of Cedrata, these candidate solutions are rep-
resentations of behavior trees according to the constraints described in the previous
sections. These candidate solutions are evaluated incrementally over an increasing
number of instances. In the case of Cedrata, each instance is equivalent to different
(random) starting positions and orientations of the robots in the mission. However,
all candidate solutions that are evaluated on the same instance will be provided with
the same starting positions and orientations. If at one point a candidate solution is
statistically worse than another one (determined by a Friedman test), it is discarded.
By discarding inferior solutions, Iterated F-race frees up the design budget for more
promising solutions. The iteration ends if either the allocated budget for this iteration
is exhausted or all but a fixed number of candidate solutions are discarded. The fol-
lowing iteration then samples its set of candidate solutions around the elites of the
previous iteration and continues the race until the remaining budget is too small to
conduct another iteration.

Cedrata-GP and Cedrata-GE use the same reference model, modules and ar-
chitecture as Cedrata. They differ only in the optimization algorithm employed.
Cedrata-GP uses genetic programming [37] as the optimization algorithm. The pa-
rameters of this design method are those used in the work of Jones et al. [48] and sum-
marized in Table 4. We use the genetic programming implementation of the DEAP
library [55]. Cedrata-GE uses grammatical evolution [38] as the optimization algo-
rithm. The parameters of this design method are those used in the work of Neupane
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(a) MARKER AGGREGATION (b) STOP

Fig. 2: Layouts of the arena for the missions considered.

and Goodrich [50] and summarized in Table 4. We use the grammatical evolution
implementation of PonyGE2 [56].

3.5 Design process

In the context of fully automatic design [13,10], the design process generates control
software without any human intervention (besides the mission specification). Once
the mission and the experimental protocol are specified, the design process generates
the control software for the robots by using simulations to determine the performance
of candidate solutions. The design process is free to choose the structure, the modules
and the parameters of the modules within the constrains described in Section 3.2 and
Section 3.3.

One parameter of the experimental protocol is the design budget. The design bud-
get poses an upper limit on the number of simulations that the design process can run
before the final instance of control software is returned. It serves a similar role as lim-
iting the computation time available to the design process, while being independent
of the computational hardware.

4 Experimental setup

In this work, we test Cedrata and related design methods on a set of two missions.
The experimental setup is equivalent to the one described in [35], but we describe
it again for the convenience of the reader. All code and data is available from the
supplementary material [57].

4.1 Missions

We consider two missions: MARKER AGGREGATION and STOP. These missions
must be performed in a dodecagonal arena (see Figure 2) and last 250 s.

In the mission MARKER AGGREGATION (see Figure 2a), the robots must aggre-
gate within the dotted area. The area itself is not perceivable by the robots. Instead, a
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black spot is placed in the middle of the aggregation area that can serve as a marker.
The objective function for this mission is the cumulative time that the robots spend
within the aggregation area: FMA = ∑

2500
i=0 Ni

A, where Ni
A is the number of robots in

the aggregation area at time step i. The higher the score of the objective function, the
better the robots perform the mission.

In the mission STOP (see Figure 2b), the robots must find a white spot and then
stop as soon as possible. A robot is considered moving, if it has travelled more than
5 mm in the last time step. The objective function for this mission is reduced for each
robot that is not moving at any given time step before the white spot has been found
and for each robot that is moving after the white spot has been found and additionally
for the time that the swarm needed to discover the white spot: FStop = 100000−(
t̄N +∑

t̄
t=1 ∑

N
i=1 Īi(t)+∑

2500
t̄ ∑

N
i=1 Ii(t)

)
, where t̄ is the time step during which the

white spot was discovered, Ii(t) is an indicator that a robot i has moved in time step
t and Īi(t) is an indicator that a robot i has not moved in time step t. The higher the
score of the objective function, the better the robots perform the mission.

4.2 Design methods

We consider Cedrata, as described in Section 3. As Cedrata had problems in pro-
ducing communication-based strategies for the mission considered, we performed
experiments with additional design methods: Cedrata-GP and Cedrata-GE. We
also performed several manual designs. For the manual designs, we asked human
designers—with prior experience in swarm robotics, but not with behavior trees—
to design control software within the same constraints as Cedrata, that is, with the
same modules and architecture. The human designers had access to the AutoMoDe
Editor [58], a tool that allows the designers to visualize and manipulate the behavior
trees and to launch simulations of the designed behavior tree. The human designers
received feedback about their designed behavior tree through the objective function
and a visual representation of the arena and the behavior of the swarm.

Lastly, we include a reference design as an additional point of reference for the
reader. These reference designs are not part of the experimental protocol and have
been designed by us. They are not optimized and do not aim to be the best per-
forming solutions for each mission, but simply to provide a sensible solution. These
designs serve to highlight particular strategies that we expected to be discovered in
each mission. They were not known to the human designers prior to their manual
designs.

4.3 Reference designs

The reference design for the mission MARKER AGGREGATION is shown in Figure
3a. In this design, robots explore the arena until they find the marker. Then, using
the signal framework, they will attract their neighbors to the aggregation area. At
any given time step, the tick traverses the three subtrees from left to right. The left
subtree handles the case where the robot is on the marker. If the condition Black
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?

Exp→

MeetGflr

→

ESigBflr

(a) MARKER AGGREGATION

?

Exp→

ESigRSig

→

ESigWflr

(b) STOP

Fig. 3: The reference designs for the two missions. The conditions and actions names
have been abbreviated in the following way: Exp: Exploration; Meet: Meeting; ESig:
Emit Signal; Bflr: Black Floor; Gflr: Grey Floor; Wflr: White Floor; RSig: Receiving
Signal.

Floor evaluates true, then the tick is passed on to the action node, which invokes the
Emit Signal behavior. Since Emit Signal always returns success and the action node
is the last child of the sequence node, this subtree then returns success as well. This
will cause the selector node to also return success. If the condition Black Floor is not
met, then the tick is passed into the middle subtree, which handles the case where
the robot is on the grey floor and perceives at least one signaling neighbor. Here,
if the condition Grey Floor is met, the robot executes on time step of the Meeting
behavior. If Meeting returns success or running, then the tick will leave the tree. If
either Meeting or Grey Floor return failure, then the tick is passed to the last subtree.
This subtree only consists of an action node with the Exploration behavior.

The reference design for the mission STOP is shown in Figure 3b. In this design,
robots will send and forward signals to their neighbors to transmit the information
that the white spot has been discovered. If a robot receives a signal, it stops; if it does
not receive any signal, it explores the arena to find the white spot. At any given time
step, the tick traverses the three subtrees from left to right. The left subtree handles
the case in which the robot is on the white spot. While the condition White Floor
evaluates true, the robot executes the behavior Emit Signal to signal the other robots
the discovery of the spot. If the condition White Floor was not met, then the tick is
passed to the middle subtree that forwards received signals. If the condition Receiving
Signal is met, then the tick will be passed to the Emit Signal behavior that emits the
same signal as is checked for in the Receiving Signal condition. If the Receiving
Signal condition is not met, then the tick is passed to the right subtree, which consists
only of an action node with the Exploration behavior.

4.4 Protocol

For each mission, Cedrata is executed with different budgets: 20000, 50000, 100000
and 200000 simulation runs. The budget specifies the number of simulations that the
design process is allowed to perform before it returns the best control software pro-
duced. Additionally, Cedrata-GP and Cedrata-GE are tested on a budget of 200000
simulation runs. For each combination of method, mission and budget, 10 indepen-
dent runs of the methods are performed, leading to 10 instances of control software.
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Table 5: Design and pseudo-reality noise models

Sensor/actuator design model pseudo-reality model
Proximity 0.05 0.05
Light 0.05 0.90
Ground 0.05 0.05
Range-and-bearing 0.85 0.90
Wheels 0.05 0.15

The manual designs are done by four human designers per mission, with a maximum
design duration of 4 hours.

Simulations are performed in a realistic and physics-based simulation environ-
ment, based on the ARGoS simulator [59]. The simulated robots have a real world
counter-part, and the simulator has been used in the past with this robotic platform
and comparisons between simulated performance and real-world performance have
been made. In accordance with the consensus in the literature, a realistic noise model
is applied to the simulation (see Table 5). The generated instances of control software
of all designs methods are assessed in pseudo-reality to investigate the impact of the
reality gap. Ligot and Birattari [25] have shown that the effect of the reality gap can
be mimicked in simulation-only environments by testing the control software with a
different noise model than it was originally designed for.

5 Results

In this section, we describe the results obtained by the experimental setup described
in Section 4. In the supplementary material [57], we also include an extended study,
where we include another method that is based on another reference model which
provides us with some additional insights tangential to the work presented here.

Figure 4 shows the results for the missions STOP and MARKER AGGREGATION.
Results are shown for both the performance in simulation and pseudo-reality. Each
box in the box plot represents the performances of the final instances of control soft-
ware generated by the independent runs of the design methods.

Figure 4a shows the development of the performance of Cedrata in the mission
MARKER AGGREGATION. There is a clear trend of increasing performance with in-
creasing budget. A detailed investigation of the generated control software reveals
that Cedrata develops two general solution strategies: one strategy is based on the
communication framework, while the other is not. In the communication-less strategy
(for an example, see Figure 5a), the robots explore the arena until they discover the
black spot, at which point they usually stop. In the communication-based strategy (see
Figure 5b), however, the robots make use of the communication behaviors to quickly
aggregate within the target area. The communication-based designs are similar in that
regard to the reference design. The performance of Cedrata for each budget then
seems to primarily depend on the ratio of the two strategies. Indeed, for design bud-
gets of 20000 and 50000 simulation runs, Cedrata only produces control software
that uses the communication-less strategy. For a budget of 100000 simulation runs,
Cedrata produces a single solution that follows the communication-based strategy
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(d) Comparison

Fig. 4: Results for the mission MARKER AGGREGATION (top) and STOP (bottom).
The left plots show the development of the performance over increasing budget for
Cedrata. The right plots show the comparison of all design methods under consid-
eration for a budget of 200000 simulation runs. The thin plots present the results in
simulation, the thick plots the results in pseudo-reality.

and for a budget of 200000 simulation runs, four designs make use of that strategy. It
appears that the ratio of communication-less to communication-based strategies de-
pends on the available budget. Indeed, as the communication-based strategy requires
at least two modules to interact correctly, Iterated F-race is more likely to discover
such a combination the more often it samples new solutions, which depends on the
number of iterations and therefore the budget.

In Figure 4b, we can see the comparison of performances across all considered
design methods. All manual designers found solutions that make use of communica-
tion. Their control software performs similar well as the communication-based be-
havior trees generated by Cedrata and better than the reference design, which was
not meant to be the best performing solution, but just to highlight the general strategy.
The human designers were therefore not only able to discover the strategy but also to
find a reasonable tuning for the parameter.

Cedrata-GP and Cedrata-GE both fail to generate any solution making use of
the communication modules, even for a budget of 200000 simulation runs. Interest-
ingly, both design methods generate solutions that, under the right circumstances, per-
form nearly as good as the best instances of control software generated by Cedrata.
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(c) STOP

Fig. 5: Typical behavior trees generated by Cedrata.

However, this appears to be mostly due to the initial starting position favoring quick
aggregation within the target zone and in total both Cedrata-GP and Cedrata-GE

perform worse than Cedrata.
Figure 4c shows the development of performance over budget for Cedrata in

the mission STOP. Unlike in the mission MARKER AGGREGATION, there is no im-
provement for increasing budgets. Instead, the performance remains relatively stable.
Investigation of the generated behavior trees reveals that Cedrata fails to make use
of the communication modules for this mission. All generated behavior trees employ
a strategy, where the robots are using the Isolation behavior (for an example, see Fig-
ure 5c). As a result, the swarm expands and, with high probability, a robot passes
over the white spot. At the end of the expansion phase, the robots slow down and
move relatively little, often falling below the threshold of 5 mm per time step. Some
behavior trees also include an Exploration module for cases when no neighbors are
detected.

Figure 4d displays a comparison of the performances of all design methods in the
mission STOP. The manual designs, just like the reference design, make use of the
communication framework and show the best performance. Both Cedrata-GP and
Cedrata-GE find solutions that follow the same Isolation-based strategy as Cedrata
and achieve similar performances. For all design methods, there are some runs where
the performance is relatively close to 0. Often, in these runs, the control software fails
to find the white spot.

We made some observations that hold for all considered missions: The first ob-
servation is that all design methods show a relatively small pseudo-reality gap. That
is, they experience only a small drop in performance when assessing the control soft-
ware in pseudo-reality. We believe that this is a first indicator that Cedrata and the
design methods based on it might transfer well into reality as well. A second observa-
tion is that all behavior trees generated by Cedrata, Cedrata-GP and Cedrata-GE

contain many modules that will never be ticked by the behavior tree. We believe this
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to be because of the reduced restrictions in the architecture, which allow modules
to be easily placed in the tree in a way that ensures they will never receive a tick.
The design process has no explicit way of distinguishing necessary and superflu-
ous modules and all techniques that aim at generating new behavior trees (random
sampling around elites, cross-overs, mutations) are therefore highly likely to trans-
fer some of the superfluous modules into the newly generated behavior tree. This
poses a challenge to the automatic design process. Namely, that the design process
will spend some resources on tuning these superfluous modules, which have no in-
fluence on the behavior of the swarm, thus effectively wasting a part of the allocated
budget. Lastly, we observed that the automatic design process had difficulties gener-
ating communication-based behaviors. In both missions, MARKER AGGREGATION
and STOP, the human designers found well performing solutions that made use of
the communication framework. Only in the mission MARKER AGGREGATION was
Cedrata able to generate at least a few solutions following a similar strategy. Our
initial hypothesis was that this might have been caused by some properties of the
underlying optimization algorithm, Iterated F-race. We have therefore replaced It-
erated F-race with two different optimization algorithms, whose parametrization we
have taken from other works in the swarm robotics literature. Unfortunately, both
Cedrata-GP and Cedrata-GE appeared to have even greater difficulties generating
communication-based behaviors than Cedrata. We believe that this could be due
to the fact that communication requires two corresponding modules, a sender and a
receiver, while all other strategies can rely on a single module.

6 Conclusion

In this work, we have extended AutoMoDe-Cedrata, by implementing two variants
Cedrata-GP and Cedrata-GE, based on genetic programming and grammatical evo-
lution. We have investigated the performance of these automatic design methods over
a set of two missions and compared them to solutions found by human designers,
following the same constraints. The results generated by the human designers show
that the modules and constraints of Cedrata are sensible, as the human designers
were able to design control software that performed satisfactorily. Furthermore, as
the human designers had no prior experience with behavior trees, this seems to be
an indicator that behavior trees are an intuitive control architecture to design for.
The automatic design method Cedrata, on the other hand, was not able to generate
communication-based behaviors. We hypothesized that this might have been due to
some property of the optimization algorithm Iterated F-race, and therefore we created
Cedrata-GP and Cedrata-GE, two variants of Cedrata that are based on genetic
programming and grammatical evolution, respectively. Neither of these two variants
was able to generate communication-based strategies either.

For future work, we would like to investigate in more detail how an automatic
design process can discover meaningful communication-based strategies and why
the approach taken in this work failed. The results of this work indicate that simply
tuning the parameters of an optimization algorithm would probably not be enough.
Nevertheless it would be interesting to investigate the effects of different parameters
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on the performance of generated solutions, especially with respect to the exploration-
exploitation trade-off. Another issue for investigation could be the mapping of be-
havior trees into representations that can be manipulated by the genetic program-
ming and grammatical evolution implementations. One possible approach to create
communication-based behaviors could be to create an interleaved optimization pro-
cess. Starting from a minimal communicating solution, we alternate between fixing
the sending or the receiving part of the behavior tree and optimizing the remaining
part of the tree. Another approach to solve this problem could be cooperative co-
evolution. We could possibly create two distinct populations that are given a sending
or receiving module, respectively. This ensures the existence of communication from
the starting population. Subsequent generations could then refine the communication
protocol and integrate it with the other modules. Additionally, the results presented
here showed that Cedrata and its variants were able to perform satisfactorily also in
pseudo-reality. While this is an indicator that the design approaches might cross the
reality gap well, we would like to confirm this hypothesis by performing real robot
experiments.
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