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Abstract
Source camera identification is an important and challenging problem in digital image forensics. The clues of the device 
used to capture the digital media are very useful for Law Enforcement Agencies (LEAs), especially to help them collect 
more intelligence in digital forensics. In our work, we focus on identifying the source camera device based on digital vid-
eos using deep learning methods. In particular, we evaluate deep learning models with increasing levels of complexity for 
source camera identification and show that with such sophistication the scene-suppression techniques do not aid in model 
performance. In addition, we mention several common machine learning strategies that are counter-productive in achieving a 
high accuracy for camera identification. We conduct systematic experiments using 28 devices from the VISION data set and 
evaluate the model performance on various video scenarios—flat (i.e., homogeneous), indoor, and outdoor and evaluate the 
impact on classification accuracy when the videos are shared via social media platforms such as YouTube and WhatsApp. 
Unlike traditional PRNU-noise (Photo Response Non-Uniform)-based methods which require flat frames to estimate camera 
reference pattern noise, the proposed method has no such constraint and we achieve an accuracy of 72.75 ± 1.1% on the 
benchmark VISION data set. Furthermore, we also achieve state-of-the-art accuracy of 71.75% on the QUFVD data set in 
identifying 20 camera devices. These two results are the best ever reported on the VISION and QUFVD data sets. Finally, 
we demonstrate the runtime efficiency of the proposed approach and its advantages to LEAs.
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Introduction

With the widespread increase in the consumption of digi-
tal content, camera device identification has gained a lot of 
importance in the digital forensics community. Law Enforce-
ment Agencies (LEAs) have a special interest in the develop-
ments in this field as the knowledge of the source camera, 
extracted from the digital media, can provide additional 
intelligence in the fight against child sexual abuse content. 
Our work is part of the EU-funded 4NSEEK project1 which 
is aimed at the development of cyber-tools to assist LEAs 
in identifying the source of illicit content involving minors.

Most of the research in camera identification has been 
limited to the investigation of digital images generated by 
a camera device. In contrast, Source Camera Identification 
(SCI) based on videos has not seen much progress. An appli-
cation of video forensics can be seen by considering the 
following real-world scenario. When LEAs have a warrant 
to conduct a search in the properties of alleged offenders, for 
any device that they find with an in-built video camera, they 
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can take multiple random videos, which can then be used as 
reference/training samples to learn the proposed approach. 
Therefore, the proposed approach can be reconfigured with 
every new device that LEAs find. Subsequently, any suspi-
cious video files can be processed by the proposed method to 
determine if they were captured by one of the known devices 
or not. An additional follow-up study would be to determine 
whether two or more videos were originated from the same 
device, without having to know the specific device that was 
used. This would help LEAs to link multiple cases to the 
same offender, for instance.

Another interesting application of video forensics is to 
identify copyright infringements of digital videos. This is 
relevant in the current scenario where a lot of copyright con-
tent is freely available on online platforms like YouTube.

A major challenge in SCI is to mitigate the impact of the 
presence of scene content while extracting camera traces 
from images or videos. The presence of scene content makes 
the extraction of camera noise quite difficult as state-of-the-
art methods, such as convolutional neural networks (Con-
vNets), tend to learn the details from the scene rather than 
the camera noise. To address this problem, Bayer et al. [6] 
proposed to use a constrained convolutional layer as the first 
layer of a ConvNet. The constraints imposed on the convo-
lutional filters are aimed to increase robustness at extract-
ing the camera noise by suppressing the scene-level details. 
A limitation of their approach is based on the requirement 
of the input image to be monochrome or a single-channel 
image. As most of the digital media is generated as color 
or multi-channel, by converting them to monochrome, the 
native information that is present in each individual color 
channel is lost. To overcome this problem, an extended ver-
sion of the constrained convolutional layer that can handle 
multi-channel inputs was proposed in [52]. These methods 
demonstrate the usefulness of constrained convolutional 
layer for shallow ConvNets. In our work, we demonstrate 
that such constraints are not needed when using deep Con-
vNets such as MobileNet, and ResNet.

The key contributions of this paper are threefold. First, we 
evaluate ConvNets with increasing levels of sophistication 
to understand the relation between network complexity and 
its corresponding performance to source camera identifica-
tion. Second, we show that neither the constrained convo-
lutional layer nor the residual noise images are necessary 
when sophisticated ConvNets are employed. Additionally, 
we mention a few common algorithm choices that could be 
detrimental to camera identification from videos. Third, we 
set a benchmark on the VISION data set using 28 camera 
devices (see Table 1) that can be used to evaluate new meth-
ods for SCI on the VISION data set. The selection of these 
devices ensures that multiple instances of the same camera 
model are always included in the data set, which allows us 
to test the performance at the device level. Moreover, to the 

best of our knowledge, this is the largest subset of devices 
from the VISION data set used to conduct experiments for 
SCI using only videos and trained using a single model. 
Furthermore, we also set a new benchmark result on the 
QUFVD data set [1] using all the 20 camera devices. Finally, 
we demonstrate the runtime efficiency of our algorithm dur-
ing deployment which becomes necessary to conduct foren-
sic investigations in time critical situations.

We also share the source code2 for further dissemination 
of our approach and experiments.

The rest of the paper is organized as follows. The next 
section gives an account of the state-of-the-art on SCI using 
videos. In the subsequent section, we describe the proposed 
technique, followed by the experimental details. A brief 
discussion of the results is elucidated next, which is finally 
followed by our conclusions.

Related Works

Source camera identification has become a topic of inter-
est after the widespread popularity of digital cameras [32, 
33]. Most of the literature in this area is concerned with 
the investigation of digital images and not involving vid-
eos. With digital videos becoming increasingly accessible 
and popular due to the advances in camera technology and 
the internet, it has now become crucial to investigate SCI 
using videos. We begin by reviewing the relevant literature 
from the investigation of digital images as these methods are 
closely related to video-based SCI.

When the same scene is captured by two different digital 
cameras at the same time and under the same conditions, the 
final images that are generated are never exactly the same. 
There are always a few visually noticeable differences, such 
as in color tones, radial distortions, and image noise, among 
others. Such variations are perceptible in images generated 
from different camera models. This is due to the fact that 
every camera model has a different recipe for image genera-
tion, which is commonly referred to as the camera pipeline. 
A typical camera pipeline consists of optical lenses, anti-
aliasing filter, color filter arrays, imaging sensor, demosaic-
ing, and post-processing operations as depicted in Fig. 1. 
When the light from the scene enters the lenses, it gets pro-
cessed by a sequence of hardware and software processing 
steps before the generation of the final digital image. As 
the implementation of the camera pipeline is distinct for 
each camera model the final image generated by them is also 
unique. Even though digital images captured by the camera 
devices of the same model type, when examined closely they 

2  https://​github.​com/​bgswa​roop/​scd-​videos.
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are not exactly the same. This subtle variation is due to the 
unique sensor pattern noise generated by every camera sen-
sor, which makes it possible to identify individual camera 
devices of the same camera model. In this work, we consider 
the problem of camera device identification from videos.

Kurosawa et al. [32, 33] in their initial study on sensor 
noise, have observed the noise pattern generated by the dark 
currents and reported that such noise is unique to every cam-
era sensor. Their experiments were conducted on nine cam-
era devices using videos generated by the involved cameras 
on a flat scene. Hundred video frames were extracted from 
each video to determine the noise pattern of dark currents. 
Their study laid the foundation for further experiments con-
cerning camera identification. That approach [33], however, 
is limited as it relies on flat video frames and requires access 
to physical camera device. To overcome the restriction using 
only flat frames, Kharrazi et al. [30] proposed to extract 34 
hand-crafted features from images and showed that those 
features enabled them to identify the source camera device 
from natural images.

As shown in Fig. 2, the sensor noise can be categorized 
into shot noise and pattern noise. Shot noise is a stochastic 
random component that is present in every image and can be 
suppressed by frame averaging. The resulting noise which 
survives frame averaging is defined as the pattern noise [23], 
which can be further classified into Fixed Pattern Noise 
(FPN) and Photo-response non-uniformity Noise (PRNU). 
FPN is generated by the dark currents when the sensor is 
not exposed to any light. PRNU is generated when the sen-
sor is exposed to light and is caused due to different sensi-
tivities of pixels to incoming light intensity. Unlike earlier 
methods [32, 33] that rely on FPN, Lukas et al. [38] in their 
seminal work showed that it is possible to identify source 
camera devices by extracting PRNU noise from images. 
They determined the sensor pattern noise by averaging the 
noise obtained from multiple images using a denoising filter. 
In particular, they used a wavelet-based denoising filter to 

compute the noise residuals. The authors show that using 
such a filter before frame averaging helps in suppressing 
scene content. This idea is similar to more recent works [6, 
52] that allow the neural networks to learn constrained filters 
for scene suppression.

Other approaches have been presented that target to 
enhance the sensor pattern noise [34, 36, 41]. Such methods 
are based on the idea proposed in [38], where a handcrafted 
denoising filter was used to extract camera noise. All the 
methods mentioned thus far target the sensor noise or the 
noise generated by the imaging sensor. As shown in Fig. 1, 
a typical camera pipeline also consists of other processing 
steps. Therefore, methods to identify the source camera 
based on the artifacts resulting due to the CFA, demosaic-
ing operations [8, 13, 14, 49], and image compression [2, 15] 
were proposed. Those techniques, which target to extract the 
noise from a single processing step, undesirably miss out on 
the noise patterns generated by a combination of such steps.

In recent years, deep learning-based approaches were 
proposed for SCI that target a specific step in the camera 
pipeline. Examples include detection of forgeries involving 
image in-painting [54, 55], image resizing [12], median fil-
tering [29, 51], and identifying JPEG compression artifacts 
[3, 4], and so on. Such approaches were shown to be more 
robust than methods which rely on computing handcrafted 
features. Though the above methods are based on deep learn-
ing, they may not cater to the camera noise generated from 
the remaining processing steps. Furthermore, deep learning 
based methods were also proposed [5, 9, 10, 42] to extract 

Fig. 1   Video generation pipeline inside digital cameras. The light 
from the scene is continuously sampled by the digital camera at a pre-
determined frequency to generate digital video frames. The camera 
pipeline typically involves a series of lenses, an anti-aliasing filter, 
color filter arrays, followed by the imaging sensor. These hardware 
processing steps are succeeded by a set of software processing steps 
consisting of demosaicing, video encoding, and other post-processing 
operations to generate the output digital video

Fig. 2   Noise classification in imaging sensors. The noise generated 
by an imaging sensor (sensor noise) can be classified into a random 
component, namely shot noise, and into a deterministic component 
commonly referred to as (sensor) pattern noise. The pattern noise is 
further classified into FPN and PRNU based on the incoming light 
intensity. FPN is generated when the scene is dark and PRNU other-
wise
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camera features accounting for noise generated from each 
of the processing steps in a camera pipeline. This unified 
approach to SCI accounts for all sources of camera noise 
and is also used in our work.

Although it is not within the scope of this work, it is 
worth mentioning that the techniques used for SCI can also 
be used to address related forensic tasks such as image for-
gery detection [11, 16, 35], for identifying image manipula-
tion to help fighting against fabricated evidence and fake 
news. Image forgery detection can be performed as a first 
step before performing camera identification. Such a com-
bination can make SCI more robust in practice.

Convolutional neural networks (ConvNets) have the abil-
ity to learn high-level scene details [31], however, in SCI 
we need the ConvNets to ignore the high-level scene fea-
tures and learn to extract features from the camera noise. 
Chen et al. [14] noticed this behavior when they trained Con-
vNets for detecting median filtering forgeries. To suppress 
scene content, they used residual images of median filtering 
to train their ConvNets. This new approach of suppressing 
scene content resulted in improved accuracy, which led to 
the development of two related methods for scene suppres-
sion. Firstly, methods that use predefined high-pass filtering 
to suppress high-level scene content [45]. Secondly, methods 
that use constrained convolutions [5, 52], which consist of 
trainable filter parameters.

Most of the methods for SCI address the problem using 
images. Very few methods have been proposed that use vid-
eos for identification and one such method that is closely 
related to our work is that of Holster et al. [24]. In their work 
they trained a ConvNet by discarding the constrained convo-
lutional layer proposed by [6]. That layer was removed as it 
was not compatible to handle color images or multi-channel 
inputs. Derrick et al. [52] proposed an extended version of 
the constrained convolution layer and depict the scenarios 
in which inclusion of multi-channel constrained layer could 
be beneficial. All these works show the effectiveness of the 
constrained convolutional layer when used with shallow 
ConvNets. In our work, we show empirical evidence that 
such layers are unnecessary with deep ConvNets, such as 
MobileNet and ResNet.

Dal et al. [17] proposed a multi-modal ConvNet based 
approach for camera model identification from video 
sequences. They combine the visual and the audio signals 
from a video and show that such an approach would result 

in a more reliable identification. In our work, we focus on 
SCI based only on visual content, also because in practice 
audio content can easily be replaced or manipulated. In 
the visual content based ConvNet, Dal et al. [17] pick 50 
frames equally spaced in time, and extract 10 patches of size 
256 × 256 pixels followed by patch standardization as part of 
their pre-processing. Furthermore, a pre-trained Effecient-
Net [50] was employed for classification.

Methodology

In Fig. 3, we illustrate a high-level overview of the proposed 
methodology. The input videos are processed in three stages. 
First, the frames are extracted from a video and are then pre-
processed. Second, a frame-level classifier is used to predict 
the class for each frame. Finally, the frame predictions are 
aggregated to determine the video-level prediction for the 
given video. We describe each of these stages in detail in 
the following sections.

Frame Extraction

As the duration of each video is not fixed, we attempt to 
extract a fixed number of I-frames from each video that 
are equally spaced in time. This ensures that every video is 
equally represented in the frame-level data set irrespective 
of its duration. Our approach of frame selection is differ-
ent from that in [48], where the first N frames were used 
to represent a video. As the consecutive frames in a video 
share temporal content, the scene content and the camera 
noise will be highly correlated. Choosing the N consecu-
tive frames strategy is favorable when the scene content is 
relatively homogeneous and is disadvantageous otherwise. 
Holster et al. [24] used a frame selection strategy based on 
the frame types, and extracted an equal number of frames 
from both the categories. In our experiments, we applied and 
evaluated two different strategies for frame selection. With 
the first one, we select up to N = 50 I-frames equally spaced 
in time. I-frames are intra-coded frames and have better 
forensic traces as they do not have any temporal dependency 
with adjacent frames. It is, however, not always possible 
to extract 50 I-frames, therefore in our second strategy we 
extract N = 50 frames equally spaced in time. Furthermore, 

Fig. 3   An overview of the proposed pipeline for source camera identification from videos. It consists of three major steps, namely frame extrac-
tor, ConvNet-based classifier, and finally an aggregation step to determine video-level predictions
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we investigate the impact of using a different number of 
frames per video on camera identification during test time.

We take a center-crop of all the extracted frames and nor-
malize the resulting images to the range [0, 1] by dividing by 
255. The dimensions of the center-crop are set to 480 × 800 
and were determined based on the dimensions of the video 
with the smallest resolution in the VISION data set.

Convolutional Neural Networks

We investigate the performance of the proposed approach 
by considering two different ConvNet architectures, namely 
MobileNet-v3-small [25] and ResNet50 [21]. Both archi-
tectures are deep and are sophisticated in terms of network 
design when compared to MISLNet [6]. We use the pre-
trained versions of these ConvNets in our training where the 
pre-training was done on ImageNet. In Sect. 5.3 we show 
empirical evidence of the benefit in pre-training.

MobileNet

MobileNets [25, 26, 47] are a family of ConvNet architec-
tures that were designed to be deployed to mobile platforms 
and embedded systems. Though those networks have a low 
memory footprint and high latency, they are sophisticated 
and achieve comparable results to the state-of-the-art on the 
benchmark ImageNet data set [31].

In MobileNet-v1 [26], depth-wise separable convolutions 
were used instead of conventional convolutional filters. Such 
a combination of depth-wise and point-wise convolutions 
reduces the number of parameters while retaining the rep-
resentative power of ConvNets. Reduction in parameters, in 
general, allows the network to generalize better to unseen 
examples, as it becomes less specific.

In MobileNet-v2 [47], the depth-wise separable convolu-
tions were used in conjunction with skip connections [21] 
between the bottleneck layers along with linear expansion 
layers. The architecture design was further enhanced to 
reduce latency and improve accuracy in MobileNet-v3 [25]. 
The performance gain was achieved using squeeze and exci-
tation [27] blocks along with modified swish non-linearities 
[46]. In our work, we use the MobileNet-v3-small, as it can 
be easily deployed in systems with limited resources and 
offers a high runtime efficiency. Furthermore, we change 
the input dimensions to 480 × 800 × 3 pixels and the output 
layer to 28 units, which represent the total number of classes. 
For further architectural details, we refer the reader to [25].

ResNet

ResNets [21] are another popular deep learning architectures 
that incorporates skip-connections between convolutional 
layers. Such connections enable identity mapping and allow 

the gradients to freely propagate backwards thereby making 
the network less prone to the problem of vanishing gradients 
in a traditional deep ConvNet. These networks were further 
enhanced with a new residual unit in [22]. In our experi-
ments, we use ResNet50 based on the architecture proposed 
in [22]. We modify the dimensions of the input layer to be 
480 × 800 × 3 pixels and the output layer to 28 units rep-
resenting the total number of devices in VISION data set.

ConstrainedNet

In contrast to the sophisticated ConvNets described earlier, 
simple ConvNets with few layers are not robust enough to 
extract the camera features from natural images. The pri-
mary reason for such a lack of robustness is the presence of 
scene content, which obstructs the extraction of noise from 
images. To overcome this issue, Bayer et al. [6] proposed 
a constrained convolutional layer, which aims to suppress 
the scene content. Unlike traditional approaches [36, 38] 
that use a pre-determined denoising filter to suppress scene 
content and extract camera noise, a constrained convolu-
tional layer can be trained to suppress scene details. This 
layer was originally proposed for monochrome images and 
later extended to process color images [6]. In this work, 
we explore if an augmentation with constrained convolu-
tional layer is beneficial to sophisticated networks such as 
MobileNet and ResNet. The details of these filters are briefly 
described below.

Relationships exist between neighboring pixels which 
are independent of the scene content. Such an affinity 
is caused due to the camera noise and can be learned by 
jointly suppressing the scene details and learning the rela-
tionship between each pixel and its neighbors [6]. Thus, 
the constrained convolutional filters are restricted to learn 
the extraction of image noise and are not allowed to evolve 
freely. Essentially, these convolutional filters act as denois-
ing filters, where for each pixel the corresponding output is 
obtained by subtracting the weighted sum of its neighboring 
pixels from itself.

Formally, such errors can be determined by placing con-
straints on each of the K convolutional filters with weights 
�

(k) , as follows:

where �(k)(0, 0) corresponds to the center value of the filter. 
These constraints are enforced manually after each weight 
update step during the backpropagation.

The above formulation of constrained convolutional layer 
was proposed by Bayer at al. [6] and was designed to process 

(1)�
(k)
(0, 0) = −1

(2)
∑

m,n≠0

�
(k)
(m, n) = 1,
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only grayscale images. This was extended by Derrick et al. 
[52] to process color inputs by imposing filter constraints on 
all the three color channels j, as shown below:

where j ∈ {1, 2, 3}.

Video‑Level Predictions

The source camera device of a video is predicted as follows. 
First, a set of N frames are extracted from a given video 
as elucidated in Sect. 3.1. Second, the trained ConvNet is 
used to classify the frames which results in the source video 
device predictions for each frame. Finally, all the predictions 
belonging to a single video are compiled together by means 
of a majority vote, to determine the predicted source camera 
device. In Sect. 4, we show the efficacy of this step which 
significantly improves our results.

Experiments

Data Set—VISION

We use the publicly available VISION data set [48], which 
consists of images and videos captured from a diverse set 
of scenes and imaging conditions. The data set comprises a 
total of 35 camera devices representing 29 camera models 
and 11 camera brands. Specifically, the data set consists of 
6 camera models with multiple instances per model, which 
enables us to investigate the performance of the proposed 
approach at the device level.

The data set consists of 648 native videos, in that they 
have not been modified post their generation by the camera. 
The native videos were shared via social media platforms 
including YouTube and WhatsApp and the corresponding 
social media version of the native videos are also available 
in the data set. Of the 684 native videos, 644 videos were 
shared via YouTube and 622 in WhatsApp. While both 
social media platforms compress the native videos, vid-
eos shared via YouTube maintain their original resolutions 
whereas WhatsApp re-scales the video to 480 × 848 pixels.

Furthermore, the videos captured from each camera are 
categorized into three different scenarios—flat, indoor, and 
outdoor. The flat videos have their scene content relatively 
homogeneous, such as skies and walls. The indoor scenario 
refers to videos captured inside indoor locations, such as 

(3)�
(k)

j
(0, 0) = −1

(4)
∑

m,n≠0

�
(k)

j
(m, n) = 1,

office and home. Finally, the outdoor scenario contains vid-
eos of gardens and streets. With such diversity in the scene 
content, the VISION data set acts as a suitable benchmark 
to evaluate source camera identification.

Camera Device Selection Procedure

Among the 35 camera devices of the VISION data set, 28 
devices were selected for our experiments. This selection 
was based on the following criteria:

–	 The camera devices must contain at least 18 videos in 
their native resolution encompassing the three scenarios, 
namely flat, indoor, and outdoor.

–	 Furthermore, all the native videos should have been 
shared via both YouTube and WhatsApp.

–	 Finally, all devices that belong to a camera model with 
multiple devices are included too. If this criterium is sat-
isfied then the previous two criteria do not need to be 
satisfied.

The first two criteria ensure that devices with few videos 
are excluded. Additionally, this allows us to test the same 
performance of the device identification when the videos are 
subjected to compression. An exception is made in the final 
criterium, where multiple devices from the same make and 
model are always included. This enables us to test camera 
identification at the device level. By following these criteria, 
29 devices were shortlisted. Furthermore, as suggested [48], 
we exclude the Asus Zenphone 2 Laser camera resulting in 
28 camera devices (shown in Table 1). Having selected the 
camera devices, in the following section we describe the 
process of creating a balanced training-test set.

Data Set Balancing

The constraint on the number of videos per device for its 
selection is motivated from the view of creating balanced 
training and test sets. This is important to keep the data dis-
tribution similar for both training and test to avoid any bias 
towards majorly represented classes. First, we determined 
the lowest number of native videos present per camera 
device, which turned out to be 13. These videos were split 
between a training and a test set such that 7 videos were pre-
sent in the training and the remaining 6 in the test. This split 
further ensures that at least 2 videos from each of the three 
scenarios (flat, indoor, and outdoor) are present in both train 
and test (with the exception of D02, where only 1 native-
indoor video was available to be included in the test set). 
Thereby, ensuring that all scenarios are equally represented 
in the splits. Subsequently, the training and the test splits 
were augmented with the social media versions (WhatsApp 
and YouTube) of the corresponding native videos. Thus, the 
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three versions of the same video content occur in either of 
the sets but not in both. This ensures that the evaluation is 
not influenced by the in-advert classification of the scene 
content. This scheme resulted in a total of 588 videos for 
training and 502 for the test set.

To facilitate model selection, we created a validation set 
consisting of 350 videos which are systematically selected 
such that the videos represent all the scenarios and the com-
pression types as much as possible (subject to availability of 
videos). As the VISION data set is not sufficiently large, the 
validation set could not be fully balanced. It contains a minor 
data imbalance, which we believe is acceptable for model 
selection purposes. This resulted in a data set split of 65:35 
for (training + validation):test respectively.

Data Set—QUFVD

We also conduct experiments on the newly available Qatar 
University Forensic Video Database (QUFVD) data set [1]. 
The data set consists of 20 camera devices such that there 
are 5 brands, 2 camera models for each brand and 2 identi-
cal devices for each camera model. Although the data set 
does not have the corresponding WhatsApp and YouTube 
social media versions, this is an interesting data set to test 
our approach at the device level. The scene content of all 
the images are natural which helps to simulate real-world 
scenarios. In comparison to VISION data set, QUFVD con-
tains more recent smartphones. Furthermore, Akbari et al. 
[1] explicitly divide the data set into train, validation, and 
test sets. This allows for fair evaluation of the SCI methods 
on the QUFVD data set.

We conducted our experiments on all the extracted 
I-frames (these were already provided in the data set) with-
out performing any frame selection. Since the videos in the 
data set are only a few seconds long, most of the videos have 
about 11 to 16 I-frames. Overall, there are 192, 42, and 60 
videos for train, validation, and test sets, respectively for 
each camera device and this corresponds to a 80:20 split.

ConvNet Training

We consider multiple ConvNet architectures as described 
in Sect. 3.2, and evaluate them for camera identification. 
To perform a fair evaluation between the architectures, we 
set the same hyperparameters for the learning algorithms, 
as much as possible. A couple of differences, however, 
were required and are specified below.

The optimization problem is set up to minimize the cat-
egorical cross-entropy loss. We use the stochastic gradient 
descent (SGD) optimizer with an initial learning rate � 
(more details below) and momentum of 0.95. A global 
l2-regularization was included in the SGD optimizer with 
a decay factor of 0.0005 and a batch size of 64 and 32 for 
MobileNet and ResNet, respectively. This choice of batch 
size was based on the limitation of the GPU memory. The 
ConvNet architectures also includes batch-normalization 
and dropout layers that aid in model generalization.

Two different sets of hyperparameters were used for 
the learning of ConvNets. First, we consider the hyper-
parameters for the experiments not involving constrained 
convolutions. We set the initial learning rate � = 0.1 and 
employ cosine learning rate decay scheme [37] with three 
warm-up epochs. Overall we train the system for a total 
of 20 epochs. The learning rate updates were performed 
at the end of each batch to ensure a smooth warm-up and 
decay of the learning rate. The best model was selected 
based on the epoch which resulted in maximum video-
level validation accuracy. In case of a tie between epochs, 
we select the one with the least validation loss.

A different setting for hyperparameters was used for 
experiments involving constrained convolutions as pro-
posed by Bayer et al. [6]. We begin with a small learning 
rate � = 0.001 and train for a total of 60 epochs. A step-
wise learning rate decay scheme was employed to decay 
the learning rate by a factor of 2 after every 6 epochs.

Table 1   List of 28 camera devices considered for our experiments from a total of 35 devices from the VISION data set

Sr.no. Device name Sr.no. Device name Sr.no. Device name Sr.no. Device name

1 D01_Samsung_GalaxyS-
3Mini

8 D08_Samsung_Galaxy-
Tab3

15 D16_Huawei_P9Lite 22 D28_Huawei_P8

2 D02_Apple_iPhone4s 9 D09_Apple_iPhone4 16 D18_Apple_iPhone5c 23 D29_Apple_iPhone5
3 D03_Huawei_P9 10 D10_Apple_iPhone4s 17 D19_Apple_iPhone6Plus 24 D30_Huawei_Honor5c
4 D04_LG_D290 11 D11_Samsung_GalaxyS3 18 D24_Xiaomi_RedmiNote3 25 D31_Samsung_Galax-

yS4Mini
5 D05_Apple_iPhone5c 12 D12_Sony_XperiaZ-

1Compact
19 D25_OnePlus_A3000 26 D32_OnePlus_A3003

6 D06_Apple_iPhone6 13 D14_Apple_iPhone5c 20 D26_Samsung_GalaxyS-
3Mini

27 D33_Huawei_Ascend

7 D07_Lenovo_P70A 14 D15_Apple_iPhone6 21 D27_Samsung_GalaxyS5 28 D34_Apple_iPhone5
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The experiments were conducted on NVIDIA V100 
GPUs with 32 GB of video memory. Fig. 4 depicts the con-
vergence plots of the trained models.

ConvNet Evaluation

The ConvNets were evaluated on the test set consisting of 
504 videos from 28 camera devices. The evaluation was per-
formed in two phases. We used N = 50 I-frames per video 
to train and test the ConvNet models in the first phase. As 
described in Sect. 3, 50 frames were extracted from each 
test video resulting in a total of 25, 200 test frames. In the 
second phase, we repeated the experiments by not making a 
selection based on frame type and selecting N = 50 frames 
that are equally spaced in time.

Fifty I‑Frames per Video

The training was performed using up to 50 I-frames per 
video that are equally spaced in time. Note that, when a 

video has fewer than 50 I-frames then we considered all 
the available I-frames for training/evaluation. The trained 
ConvNets were used to determine the class of each of the 
50 I-frames per test video v. These predictions were then 
aggregated using a majority vote to predict the source cam-
era device for the video v. Having determined predictions 
for each of the 504 test videos, the overall video-level clas-
sification accuracy was determined using:

We further investigated the role of the scene suppression 
techniques as a pre-processing step for the ConvNets. To 
test this scenario, we trained the ConvNets with a multi-
channel constrained convolutional layer as proposed in [52]. 
In such experiments, the ConvNets were augmented with a 
constrained convolutional layer. Another popular technique 
for scene suppression is the extraction of PRNU noise which 
is built on wavelet based denoising filter proposed in [19, 
38]. This has achieved state-of-the-art on camera identifica-
tion based on images and is used in several research works. 
Therefore, we also experiment with residual PRNU noise to 
verify its effectiveness for videos. PRNU noise was extracted 
from each color channel of the input video frame and the 
resulting 3-channel PRNU noise inputs were used to train 
and test the ConvNets. The results of these experiments are 
reported in Table 2.

On comparing the overall accuracy of all the experiments 
with 50 I-frames per video, we notice that the unconstrained 
MobileNet achieves the best accuracy of 72.47 ± 1.1 . This 
result was obtained after running the same experiment for 
5 times and computing the overall average. The ResNet 
achieves an average accuracy of 67.81 ± 0.5 . On comparing 
the accuracy of the unconstrained networks to their con-
strained counterparts [52], we notice that the unconstrained 
networks perform better by 19.28 and 13.63 percentage 
points for MobileNet and ResNet, respectively. Moreover, we 
observe that the traditional technique of scene suppression 

(5)Accuracy =
# of correct predictions

total # of predictions

Fig. 4   Epoch-wise accuracy and loss on the validation set for the 
VISION and the QUFVD data sets. The dot markers indicate the 
epoch at which the overall best validation accuracy is achieved for the 
ConvNets

Table 2   Classification accuracy 
of the proposed methods on the 
VISION data set

The third column indicates the type of pre-processing or constraints used on the input video frames. The 
table presents the overall test accuracy along with the test accuracy for 3 scenarios (flat, indoor, and out-
door) and the 3 compression types (native (NA), WhatsApp (WA), and YouTube (YT)) for all the ConvNets. 
Furthermore, these results correspond to experiments with N I-frames per video for both training and test-
ing. Best accuracy across experiments for each scenario and compression type are boldfaced

Model N Constraint type Overall Flat Indoor Outdoor WA YT NA

ResNet50 50 None 67.81 75.96 ��.�� 64.24 67.76 66.94 68.82
ResNet50 50 Conv [52] 54.18 61.80 50.70 40.70 51.20 50.60 60.80
MobileNet 50 None 72.47 ��.�� 60.80 ��.�� ��.�� 69.96 72.66
MobileNet 50 Conv [52] 53.19 60.70 45.20 52.50 52.40 48.20 59.00
MobileNet 50 PRNU [19] 61.75 69.90 54.10 60.10 56.50 62.50 66.30
MobileNet all None ��.�� 79.98 ��.�� 74.00 74.64 ��.�� ��.��
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based on PRNU [19] outperforms the constrained counter-
parts by a significant margin. Furthermore, on examining 
the results per scenario we notice that the unconstrained 
MobileNet and ResNet consistently outperform all other var-
iants. It is interesting to see that the PRNU-based MobileNet 
comes close in terms of accuracy for native and YouTube 
scenarios while the performance degrades for WhatsApp 
videos. This shows that the traditional PRNU based denois-
ing [19] is affected by WhatsApp compression. When con-
sidering 50 I-frames per video the unconstrained ResNet 
performs slightly better than MobileNet for the indoor sce-
nario while the MobileNet performs significantly better in 
other scenarios.

Instead of limiting to only 50 I-frames per video, we also 
experimented with all I-frames per video. We considered 
it beneficial as we have more data, however, we also were 
aware that it could also cause data imbalance. In the videos 
considered for our experiments, we observed the number of 
I-frames per video vary between 8 to 230. The model per-
forms well even in this scenario and the MobileNet achieves 
an overall accuracy of 72.75%. We further noticed that the 
results tend to vary between runs, therefore we report the 
average accuracy across 5 runs for each experiment.

The results, presented in Table 3, indicate that the model 
is sensitive to a few random components in the network. 
Firstly, since we are starting from a pre-trained network 
(model weights learnt on ImageNet), a source of random-
ness is present in the initial weights of the output layer. In 
our experiments on the VISION data set, the output layer 

contains 28 units in contrast to 1000 units for the ImageNet. 
The weights of the output layer are initialized using Glorot 
initialization [18]. Second, the dropout layers can also play 
a role in contributing towards this randomness. To account 
for this sensitivity we repeat the experiments for 5 times. We 
believe the deviations between the runs are pronounced due 
to the small test set that we have rather than anything to do 
with the methodology. The best overall accuracy of 74.5 was 
achieved by the MobileNet when all I-frames were consid-
ered in the experiment. In Fig. 5 we illustrate the confusion 
matrices obtained with the best performing MobileNet.

Comparison with the State‑of‑the‑art

Though the VISION data set consists of both images and 
videos, most of the works [40] use only images for their 
analysis. A few works have also been conducted involv-
ing videos [28, 39]. Mandelli et al. [39] estimate the refer-
ence PRNU noise for a video based on the 50 frames per 
video extracted from the videos of the flat-still scenario. 
This approach limits their applicability when flat videos 
are unavailable for estimating the reference noise pattern 
�v . Iuliani et al. [28] proposed a hybrid solution using 100 
images (generated by the same device) to estimate the refer-
ence pattern noise �iv , for stabilized videos and 100 video 
frames for non-stabilized videos. This approach is again 
limited by the availability of images from the same device. 
These works, however, require the knowledge if a video is 
stabilized beforehand. In practice, the overall classification 

Table 3   Test accuracy of MobileNet when experimenting with N I-frames per video for both the training and test sets on the VISION data set

The columns R1–R5 indicate the overall accuracy for each of the five runs and the final column shows the respective means and standard devia-
tions

N R1 R2 R3 R4 R5 Average

50 72.7 73.5 73.3 71.9 70.9 72.47 ± 1.07

all 71.7 71.9 74.5 72.9 72.7 72.75 ± 1.10

Fig. 5   The confusion matrices obtained by evaluating the MobileNet on the VISION test data set using all I-frames. The overall results along 
with outcome specific to each of the three scenarios are depicted. The class labels correspond to the sequence of 28 devices listed in Table 1



	 SN Computer Science (2022) 3:316316  Page 10 of 15

SN Computer Science

accuracy of these methods would therefore be limited by the 
accuracy of determining the presence of video stabilization.

The recent work of Cortivo et al. [17] included experi-
ments at camera model level with 25 different cameras, 
trained with only indoor and outdoor samples, and used a 
data set split of 80:20 for train+val:test. In our experiments, 
we considered experiments at device level using 28 devices, 
used all indoor, outdoor and flat scenarios and applied a data 
set split of 65:35. Cortivo et al. [17] trained three different 
models, one for each compression type using visual con-
tent. In our experiments we combine all compression types 
and train a single model. This is more practical for forensic 
investigators when they are unaware of the exact compres-
sion type of a given video. These design differences make 
it unsuitable to have a direct comparison between the two 
approaches.

To the best of our knowledge, we are the first ones to per-
form camera identification using videos based on 28 devices 
(listed in Table 1) from the VISION data set. Furthermore, 
unlike [28, 39], we ensure that all devices from the same 
camera model are always included in our data set to test the 
performance at device level.

We also compare the results obtained using our meth-
odology on the QUFVD data set. We conduct two experi-
ments using MobileNet with and without the constrained 
convolution layer. The results of these experiments are 
reported in Table 4. The results indicate that using a pre-
trained MobileNet to classify I-frames without any scene-
suppression strategy yields better results. Furthermore, we 
achieve the best result on the QUFVD data set for SCI 
using all the 20 camera devices. Notable is the fact that for 
the QUFVD data set the performance of the constrained 
network is almost on par to that of the unconstrained net-
work. We present the confusion matrix obtained with the 
unconstrained MobileNet in Fig. 6. It can be seen that, 
most of the mispredictions are between the devices of the 
same model.

Discussion

Video Compression

It is very common for videos to be shared via social media 
platforms. This leads to video encoding and compression 
as per the policy of these platforms. As the VISION data 
set also includes videos from YouTube and WhatsApp, we 
investigate the impact of these compressions on the camera 
identification. The native videos in the data set were shared 
on YouTube and WhatsApp and both versions were included 
in the training set during model learning. We independently 
evaluate the performance of these three compression—
native, WhatsApp, and YouTube video versions and report 
the results in Table 2.

As shown in Table 2, the unconstrained ConvNets per-
form significantly better when compared to their constrained 
counterparts. Furthermore, the constrained ConvNets 
achieve higher accuracy on the native scenarios when com-
pared to WhatsApp and YouTube. Since the native videos 
contain the unaltered sensor pattern noise, we expect the 
native video versions to perform better than their com-
pressed counterparts. The results indicate that the extracted 
features from the sensor pattern noise when encoded into 
the YouTube and WhatsApp versions still retain most of 
the camera signatures especially for the unconstrained Con-
vNets. It is interesting to note that actually for the uncon-
strained MobileNet, the WhatsApp videos perform slightly 
better than the native versions. These are promising results 
and will enable forensic investigators to gain intelligence 
even from the compressed versions. Note that the sensor 
pattern noise is partly modified even in the native version as 
the videos are always generated and stored in compressed 
formats to save storage.

Number of Frames per Video

In most scenarios, the duration of videos is longer than 10 
seconds. Assuming a most common video capture rate of 
30 frames per second, we can expect at least 300 frames 
per video. There could be a few scenarios where the test 

Fig. 6   The confusion matrix obtained by evaluating the MobileNet 
on the QUFVD test data set using all I-frames. The overall accuracy 
obtained is 71.75%

Table 4   Comparison with Akbari et al. [1] on the QUFVD data set

All results are reported at the device level

Model Constraint type Overall accuracy

[1] MISLNet - grayscale Conv [6] 59.60
[1] MISLNet - color Conv [52] 51.20
Ours: MobileNet None 71.75
Ours: MobileNet Conv [52] 70.50
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videos can be extremely short. To account for this scenario 
we train ConvNets with a different strategy for frame selec-
tion. Instead of relying on I-frames we now extract 50 frames 
that are equally spaced in time. This strategy could pick 
any of the three types of frames (I-, P-, or B-frames). By 
keeping all learning parameters the same, we train two Con-
vNets, a MobileNet and a ResNet, and compare their perfor-
mance with the I-frame counterparts. The results are shown 
in Table 5. We can see that the I-frames approach is more 
beneficial than any-frame approach. Furthermore, the close 
gap between the results indicate that any-frame approach 
could also be used while encountering videos of very short 
duration during the training phase.

Additionally, at test time, few videos of extremely short 
duration may be encountered. We simulate this scheme by 
testing the performance of our trained model for different 
number of video frames. In particular, we test the perfor-
mance on 1, 5, 10, 20, 50, 100, 200, and 400 frames per 
video that are equally spaced in time, the results of which 
are presented in Table 6.

As shown in Table 6, MobileNet achieves its best perfor-
mance when evaluated with 20 frames per video which are 
equally spaced in time. The difference in overall accuracy 
between 1 frame per video to 400 frames per video is very 
small at 1.79 percentage points. Thus, a model trained with 
50 frames per video can be expected to perform reasonably 
well on test videos with very few frames. Interestingly, we 

can notice that the performance increases when increasing 
number of fpv from 1 to 20, however, there is a slight drop 
in accuracy when considering a large number of frames. The 
increasing trend in accuracy up to 20 fpv can be attributed 
to the role of the majority vote. When considering a large 
number of frames, the majority vote includes frames that are 
temporally more dense. Thereby, frames that do not result in 
correct classification could begin to dominate. Thus, using 
fewer frames that are equally spaced far apart in time are 
beneficial when performing a simple majority vote.

We conduct a similar experiment using the I-frames, 
whose results are presented in Table 7. The results indi-
cate that even with very little amount of test I-frames the 
model achieves a high accuracy. Moreover, as the videos 
in the VISION data set are of short duration, the number 
of I-frames are also limited and, therefore, even though we 
attempt to extract a higher number of I-frames, the accuracy 
remains the same.

Pre‑training ConvNets

In several deep learning tasks based on images, using a pre-
trained network improves the classification accuracy of the 
models. In our experiments, we chose MobileNet and ResNet 
that are pre-trained on ImageNet. Note that ImageNet is a 
large-scale object detection data set and the networks pre-
trained on ImageNet generalize to learn the high-level scene 

Table 5   Classification accuracy 
for various learning strategies 
on the VISION data set

These include fine-tuning (FT) and frame selection (FS). The results shown in this table correspond to the 
model which obtained the best overall accuracy across all the runs

Network FT FS Overall Flat Indoor Outdoor WA YT NA

ResNet50 No I-frame 68.13 73.40 59.60 69.90 70.20 66.70 67.50
ResNet50 Yes I-frame 68.53 76.30 61.00 67.20 68.50 67.90 69.30
MobileNet No I-frame 69.52 83.20 61.00 63.40 69.00 68.50 71.10
MobileNet Yes I-frame 73.51 81.50 61.60 75.40 77.40 69.00 74.10
MobileNet No Any 67.13 80.30 59.60 60.70 68.50 66.10 66.90
MobileNet Yes Any 72.51 80.90 59.60 74.90 72.60 70.20 74.70

Table 6   Test accuracy of MobileNet with different number of frames 
per video (fpv) on the VISION data set

# fpv Overall Flat Indoor Outdoor

1 70.32 72.3 59.6 77.0
5 72.31 80.3 56.8 77.0
10 72.91 80.9 59.6 76.0
20 73.71 82.1 60.3 76.5
50 72.51 80.9 59.6 74.9
100 73.31 81.5 58.9 74.3
200 71.91 80.9 58.9 73.8
400 72.11 80.0 58.2 74.9

Table 7   Test accuracy of MobileNet with different number of 
I-frames per video (I-fpv) on the VISION data set

Since videos may not have the required number of I-frames, we there-
fore test with up to the specified number of I-fpv

# I-fpv Overall Flat Indoor Outdoor

1 69.12 71.1 57.5 76.5
5 72.31 79.8 59.6 75.4
30 74.10 82.1 62.3 76.0
50 73.51 81.5 61.6 75.4
100 73.71 82.1 61.6 75.4
all 73.71 82.1 61.6 75.4
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details for object recognition. In our setup, we require the 
ConvNets to extract the low-level noise and therefore it is 
counter-intuitive to use a pre-trained network that works well 
to extract high-level scene details. Our experiments show 
that it is still beneficial to start training from such pre-trained 
network rather than training from randomly initialized model 
weights. Table 5 summarizes these experiments. It can be 
seen that by fine-tuning the overall accuracy for ResNet 
improves marginally. For MobileNet, however, the overall 
accuracy improves by 3.99 and 5.38 percentage points for 
the I-frames and the any-frame approach, respectively.

Camera Model Identification

We test the performance of the trained models for camera 
model identification. To perform camera model identifica-
tion, we replace the target device predictions with its cor-
responding camera model for each of the 502 test videos. 
The 28 device VISION data set, considered for our experi-
ments, consists of 22 camera models. With this evaluation, 
we observed an accuracy of 74.70% . This is a marginal 
improvement over the device level accuracy of 73.51% . A 
similar evaluation on the QUFVD data set resulted in an 
improvement in results from 71.75% to 88.5% . In compari-
son, to the VISION data set this is a significant jump. A 
network trained directly at model level would perform much 
better, which can be studied in future work.

Counter‑productive Learning Strategies

So far we have elucidated strategies that worked reasonably 
well for source camera identification for videos. However, 
it is equally important to discuss strategies that did not work 
as expected for our problem, which we believe are very ben-
eficial when considering future work.

Majority Voting Scheme

As we are dealing with multiple frames per video it is rea-
sonable to explore the role of various weighted majority 
voting schemes. The results in Table 2 show that the flat 
scenarios achieve higher performance when compared to 
indoor and outdoor scenes. It can be reasoned that since 
there is no high-level scene content in flat videos, such vid-
eos retain higher degree of camera forensic traces. Based on 
this idea, we quantitatively measured the degree of uniform-
ity by computing homogeneity, entropy and energy based on 
the gray-level co-occurrence matrix [20]. On appropriately 
weighing frame predictions with these scores, we did not 
notice any improvement in accuracy. To give more impor-
tance to homogeneous frames we further computed several 
no reference image quality metrics such as niqe, piqe, and 

brisque scores [43, 44, 53] but did not notice any patterns 
that could be exploited for better camera identification.

Frame Selection Schemes

Encouraged by the higher accuracy for flat scenario, we fur-
ther investigated if such a strategy can be used for frame 
selection. That is, we determine the homogeneity score of 
each video frame and only use the top N video frames with 
the highest homogeneity during prediction. This methodol-
ogy also did not lead to any improvement.

Scene Suppression Schemes

We already presented our experiments using two differ-
ent scene-suppression strategies, namely PRNU denoising 
[19] and the other based on constrained convolutions [6, 
52]. When the ConvNets are trained with images of vary-
ing scene content but having the same noise signature, the 
networks are forced to look beyond the high-level scene 
content and extract the camera noise. In a video, this can 
be achieved by mixing up of the sequence of video frames 
and preparing special inputs for the ConvNets. Since green 
color channel contains twice as much as forensic traces when 
compared to red and blue color channels [7], we randomly 
sample 3 different video frames and prepare a new input 
image with the corresponding green color channels. Such 
an input image would contain different scene content and 
same noise signature in the three color channels. With such 
a strategy we obtained an accuracy of 59.16% using the pre-
trained MobileNet.

Prediction Time Efficiency

As demonstrated earlier, making the ConvNets sophisticated 
resulted in increased accuracy. It is important to ensure that 
this improvement does not come at a cost of increased com-
putation time. We tested the performance of the trained Con-
vNets using Intel Xeon CPU E5-2680 and NVIDIA V100 
GPU. The performance measurements are listed in Table 8. 
In contrast, the methods proposed in [39] and [28] take 75 

Table 8   The time duration needed to classify a single video frame for 
all the ConvNets used in our experiments

The measurements were done in milliseconds (ms)

ConvNet Time length for classifying each frame

MobileNet 13.92 ms
MobileNet - Constrained 15.62 ms
ResNet 18.95 ms
ResNet - Constrained 18.72 ms
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ms and 10 minutes per frame respectively during prediction. 
Notable is the fact that the performance measurements of the 
methods can be fairly compared only when evaluated on the 
same hardware. We report these measurements as stated in 
the respective works.

In addition to the time it takes to process each video 
frame, there is a fixed cost that is associated with extraction 
of frames. This overhead is shared by all video-based SCI 
methods. In particular, it takes about 26.63 ms to extract a 
single I-frame from a 720p video, while it takes 42.06 ms 
for a 1080p video using the ffmpeg library3.

In practice, these numbers translate to a runtime of 202.75 
ms to process a 720p video with 5 frames per video. There-
fore, 5 videos can be examined in about a second and around 
35.5k videos in about 2 hours. In situations where time is 
a crucial factor for LEAs to collect crucial intelligence, our 
method can play an important role.

Future Work

As videos share temporal information, one future direction 
would be to investigate how adjacent frames can be used for 
scene suppression and enhancing the extraction of camera 
noise.

The ConvNets used in our experiments, MobileNet-v3-
small and ResNet50, were both proposed to process images 
of size 224 × 224 × 3 pixels. The input resolution that we 
consider is significantly bigger at 480 × 800 × 3 pixels. We 
speculate that by scaling these networks further we can 
extract fine-grained details of the camera noise, leading to 
improved performance. These strategies can be considered 
for a future work.

Another future direction is to leverage the structural 
content of the video file’s meta-data. The structural content 
refers to the individual building blocks and its arrangement 
that makes up the file’s meta-data. Analyzing such non-
editable meta-data would augment the information that we 
currently extract from the visual content of video frames. 
More insights can therefore be obtained by analyzing a 
fusion approach that rely on visual content and structural 
meta-data.

Conclusion

Our approach for camera device identification was designed 
with the LEAs’ practical requirement of high throughput in 
mind. In fact, our method requires only a relatively small set 
of video frames to achieve a high accuracy. Such efficiency 
allows the search space for cameras/videos to be scaled up.

We achieved the best state-of-the-art performance on the 
QUFVD data set and also demonstrated the effectiveness 
of our approach on the VISION data set. For the latter data 
set, a direct comparison, however, was not possible due to 
several differences in the experimental design.

The unconstrained networks outperform the constrained 
counterparts for sophisticated networks such as MobileNet 
and ResNet. It also turned out that using PRNU noise resid-
uals as a means to suppress scene content does not help 
neither. In fact, this preprocessing step made unconstrained 
networks less effective. Finally, we analyzed several strat-
egies to determine the aggregated decision obtained from 
the considered frames, including weighted majority voting, 
homogeneity based frame selection, and scene suppression 
strategies for sophisticated ConvNets. The simple majority 
voting yielded the best results.

The best results for the QUFVD and VISION data sets are 
achieved with fine tuning a single pre-trained unconstrained 
MobileNet that takes input from up to 50 I-frames, the out-
comes of which are combined by simple majority voting.

Acknowledgements  This work was supported by the framework agree-
ment between the University of León and INCIBE (Spanish National 
Cybersecurity Institute) under Addendum 01. This research has been 
partly funded with support from the European Commission under the 
4NSEEK project with Grant Agreement 821966. This publication 
reflects the views only of the author, and the European Commission 
cannot be held responsible for any use which may be made of the 
information contained therein. We thank the Center for Information 
Technology of the University of Groningen for their support and for 
providing access to the Peregrine high-performance computing cluster.

Declarations 

Conflict of interest  The authors declare that they have no conflict of 
interest.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article's Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article's Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

	 1.	 Akbari Y, Al-maadeed S, Almaadeed N, Al-ali A, Khelifi F, Law-
galy A, et al. A new forensic video database for source smartphone 
identification: Description and analysis. IEEE Access (2022)

	 2.	 Alles EJ, Geradts ZJ, Veenman CJ. Source camera identification 
for heavily JPEG compressed low resolution still images. J Foren-
sic Sci. 2009;54(3):628–38.3  https://​www.​ffmpeg.​org/

http://creativecommons.org/licenses/by/4.0/
https://www.ffmpeg.org/


	 SN Computer Science (2022) 3:316316  Page 14 of 15

SN Computer Science

	 3.	 Barni M, Bondi L, Bonettini N, Bestagini P, Costanzo A, Maggini 
M, Tondi B, Tubaro S. Aligned and non-aligned double JPEG 
detection using convolutional neural networks. J Vis Commun 
Image Represent. 2017;49:153–63.

	 4.	 Barni M, Chen Z, Tondi B.: Adversary-aware, data-driven detec-
tion of double JPEG compression: How to make counter-forensics 
harder. In: 2016 IEEE international workshop on information 
forensics and security (WIFS), pp. 1–6. IEEE (2016)

	 5.	 Bayar B, Stamm M.C. A deep learning approach to universal 
image manipulation detection using a new convolutional layer. 
In: Proceedings of the 4th ACM Workshop on Information Hiding 
and Multimedia Security, pp. 5–10 (2016)

	 6.	 Bayar B, Stamm MC. Constrained convolutional neural net-
works: a new approach towards general purpose image 
manipulation detection. IEEE Trans Inf Forensics Secur. 
2018;13(11):2691–706.

	 7.	 Bayer B.E. Color imaging array. United States Patent 3,971,065 
(1976)

	 8.	 Bayram S, Sencar H, Memon N, Avcibas I. Source camera iden-
tification based on CFA interpolation. In: IEEE International 
Conference on Image Processing 2005, vol. 3, pp. III–69. IEEE 
(2005)

	 9.	 Bennabhaktula S, Alegre E, Karastoyanova D, Azzopardi G.: 
Device-based image matching with similarity learning by con-
volutional neural networks that exploit the underlying camera 
sensor pattern noise. In: In Proceedings of the 9th International 
Conference on Pattern Recognition Applications and Methods 
- ICPRAM, pp. 578–584 (2020). https://​doi.​org/​10.​5220/​00091​
55505​780584

	10.	 Bondi L, Baroffio L, Güera D, Bestagini P, Delp EJ, Tubaro S. 
First steps toward camera model identification with convolutional 
neural networks. IEEE Signal Process Lett. 2016;24(3):259–63.

	11.	 Bondi L, Lameri S, Güera D, Bestagini P, Delp E.J, Tubaro 
S.: Tampering detection and localization through clustering of 
camera-based CNN features. In: 2017 IEEE Conference on Com-
puter Vision and Pattern Recognition Workshops (CVPRW), pp. 
1855–1864. IEEE (2017)

	12.	 Bunk J, Bappy J.H, Mohammed T.M, Nataraj L, Flenner A, Man-
junath B, Chandrasekaran S, Roy-Chowdhury A.K, Peterson L.: 
Detection and localization of image forgeries using resampling 
features and deep learning. In: 2017 IEEE Conference on Com-
puter Vision and Pattern Recognition Workshops (CVPRW), pp. 
1881–1889. IEEE (2017)

	13.	 Cao H, Kot AC. Accurate detection of demosaicing regularity 
for digital image forensics. IEEE Trans Inf Forensics Secur. 
2009;4(4):899–910.

	14.	 Chen C, Stamm M.C.: Camera model identification framework 
using an ensemble of demosaicing features. In: 2015 IEEE 
International Workshop on Information Forensics and Security 
(WIFS), pp. 1–6. IEEE (2015)

	15.	 Chuang W.H, Su H, Wu M.: Exploring compression effects for 
improved source camera identification using strongly compressed 
video. In: 2011 18th IEEE International Conference on Image 
Processing, pp. 1953–1956. IEEE (2011)

	16.	 Cozzolino D, Verdoliva L. Noiseprint: a CNN-based camera 
model fingerprint. IEEE Transactions on Information Forensics 
and Security. 2019;15:144–59.

	17.	 Dal Cortivo D, Mandelli S, Bestagini P, Tubaro S. CNN-based 
multi-modal camera model identification on video sequences. J 
Imaging. 2021;7(8):135.

	18.	 Glorot, X., Bengio, Y.: Understanding the difficulty of training 
deep feedforward neural networks. In: Proceedings of the thir-
teenth international conference on artificial intelligence and statis-
tics, pp. 249–256. JMLR Workshop and Conference Proceedings 
(2010)

	19.	 Goljan, M., Fridrich, J., Filler, T. Large scale test of sensor fin-
gerprint camera identification. In: Media forensics and security, 
vol. 7254, pp. 170–181. SPIE (2009)

	20.	 Haralick RM, Shanmugam K, Dinstein IH. Textural fea-
tures for image classification. IEEE Trans Syst Man Cybern. 
1973;3(6):610–21.

	21.	 He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for 
image recognition. In: Proceedings of the IEEE conference on 
computer vision and pattern recognition, pp. 770–778 (2016)

	22.	 He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep 
residual networks. In: European conference on computer vision, 
pp. 630–645. Springer (2016)

	23.	 Holst, G.C.: CCD arrays, cameras, and displays. Citeseer (1998)
	24.	 Hosler, B., Mayer, O., Bayar, B., Zhao, X., Chen, C., Shackl-

eford, J.A., Stamm, M.C.: A video camera model identification 
system using deep learning and fusion. In: ICASSP 2019-2019 
IEEE International Conference on Acoustics, Speech and Signal 
Processing (ICASSP), pp. 8271–8275. IEEE (2019)

	25.	 Howard, A., Sandler, M., Chu, G., Chen, L.C., Chen, B., Tan, 
M., Wang, W., Zhu, Y., Pang, R., Vasudevan, V., et al.: Searching 
for mobilenetv3. In: Proceedings of the IEEE/CVF International 
Conference on Computer Vision, pp. 1314–1324 (2019)

	26.	 Howard, A.G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., 
Weyand, T., Andreetto, M., Adam, H.: Mobilenets: Efficient con-
volutional neural networks for mobile vision applications. arXiv 
preprint arXiv:​1704.​04861 (2017)

	27.	 Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: 
Proceedings of the IEEE conference on computer vision and pat-
tern recognition, pp. 7132–7141 (2018)

	28.	 Iuliani M, Fontani M, Shullani D, Piva A. Hybrid reference-based 
video source identification. Sensors. 2019;19(3):649.

	29.	 Kang X, Stamm MC, Peng A, Liu KR. Robust median filtering 
forensics using an autoregressive model. IEEE Trans Inf Forensics 
Secur. 2013;8(9):1456–68.

	30.	 Kharrazi, M., Sencar, H.T., Memon, N.: Blind source camera iden-
tification. In: 2004 International Conference on Image Processing, 
2004. ICIP’04., vol. 1, pp. 709–712. IEEE (2004)

	31.	 Krizhevsky A, Sutskever I, Hinton GE. Imagenet classification 
with deep convolutional neural networks. Adv Neural Inf Process 
Syst. 2012;25:1097–105.

	32.	 Kurosawa, K., Kuroki, K., Saitoh, N.: Basic study on identification 
of video camera models by videotaped images. In: Proceedings 
of 6th Indo Pacific Congress on Legal Medicine and Forensic 
Sciences, pp. 26–30 (1998)

	33.	 Kurosawa, K., Kuroki, K., Saitoh, N.: CCD fingerprint method-
identification of a video camera from videotaped images. In: 
Proceedings 1999 International Conference on Image Processing 
(Cat. 99CH36348), vol. 3, pp. 537–540. IEEE (1999)

	34.	 Li CT. Source camera identification using enhanced sensor pattern 
noise. IEEE Trans Inf Forensics Secur. 2010;5(2):280–7.

	35.	 Li J, Li X, Yang B, Sun X. Segmentation-based image copy-move 
forgery detection scheme. IEEE Transac Inform Forens Secur. 
2014;10(3):507–18.

	36.	 Lin X, Li CT. Preprocessing reference sensor pattern noise 
via spectrum equalization. IEEE Trans Inf Forensics Secur. 
2015;11(1):126–40.

	37.	 Loshchilov, I., Hutter, F.: SGDR: Stochastic gradient descent with 
warm restarts. arXiv preprint arXiv:​1608.​03983 (2016)

	38.	 Lukas J, Fridrich J, Goljan M. Digital camera identification 
from sensor pattern noise. IEEE Trans Inf Forensics Secur. 
2006;1(2):205–14.

	39.	 Mandelli S, Bestagini P, Verdoliva L, Tubaro S. Facing device 
attribution problem for stabilized video sequences. IEEE Transact 
Inform Forens Secur. 2019;15:14–27.

https://doi.org/10.5220/0009155505780584
https://doi.org/10.5220/0009155505780584
http://arxiv.org/abs/1704.04861
http://arxiv.org/abs/1608.03983


SN Computer Science (2022) 3:316	 Page 15 of 15  316

SN Computer Science

	40.	 Marra F, Gragnaniello D, Verdoliva L. On the vulnerability of 
deep learning to adversarial attacks for camera model identifica-
tion. Signal Process. 2018;65:240–8.

	41.	 Marra Francesco, Poggi Giovanni, Sansone Carlo, Verdoliva 
Luisa. A study of co-occurrence based local features for camera 
model identification. Multimedia Tools Appl. 2017;76(4):4765–
81. https://​doi.​org/​10.​1007/​s11042-​016-​3663-0.

	42.	 Mayer, O., Bayar, B., Stamm, M.C.: Learning unified deep-fea-
tures for multiple forensic tasks. In: Proceedings of the 6th ACM 
workshop on information hiding and multimedia security, pp. 
79–84 (2018)

	43.	 Mittal A., Moorthy A. K., Bovik A. C. No-reference image qual-
ity assessment in the spatial domain. IEEE Trans Image Process. 
2012;21(12):4695–708. https://​doi.​org/​10.​1109/​TIP.​2012.​22140​
50.

	44.	 Mittal A, Soundararajan R, Bovik AC. Making a “completely 
blind” image quality analyzer. IEEE Signal Process lett. 
2012;20(3):209–12.

	45.	 Pibre L, Pasquet J, Ienco D, Chaumont M. Deep learning is a 
good steganalysis tool when embedding key is reused for different 
images, even if there is a cover source mismatch. Electron Imag-
ing. 2016;2016(8):1–11.

	46.	 Ramachandran, P., Zoph, B., Le, Q.V.: Searching for activation 
functions. arXiv preprint arXiv:​1710.​05941 (2017)

	47.	 Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.C.: 
Mobilenetv2: Inverted residuals and linear bottlenecks. In: Pro-
ceedings of the IEEE conference on computer vision and pattern 
recognition, pp. 4510–4520 (2018)

	48.	 Shullani D, Fontani M, Iuliani M, Al Shaya O, Piva A. VISION: 
a video and image dataset for source identification. EURASIP J 
Inform Secur. 2017;2017(1):1–16.

	49.	 Swaminathan A, Wu M, Liu KR. Nonintrusive component foren-
sics of visual sensors using output images. IEEE Trans Inf Foren-
sics Secur. 2007;2(1):91–106.

	50.	 Tan, M., Le, Q.: Efficientnet: Rethinking model scaling for convo-
lutional neural networks. In: International Conference on Machine 
Learning, pp. 6105–6114. PMLR (2019)

	51.	 Tang H, Ni R, Zhao Y, Li X. Median filtering detection of small-
size image based on CNN. J Vis Commun Image Represent. 
2018;51:162–8.

	52.	 Timmerman., D., Bennabhaktula., G., Alegre., E., Azzopardi., 
G.: Video camera identification from sensor pattern noise with 
a constrained ConvNet. In: Proceedings of the 10th International 
Conference on Pattern Recognition Applications and Meth-
ods - ICPRAM,, pp. 417–425. INSTICC, SciTePress (2021). 
doi:10.5220/0010246804170425

	53.	 Venkatanath, N., Praneeth, D., Bh, M.C., Channappayya, S.S., 
Medasani, S.S.: Blind image quality evaluation using perception 
based features. In: 2015 Twenty First National Conference on 
Communications (NCC), pp. 1–6. IEEE (2015)

	54.	 Wang Xinyi, Wang He, Niu Shaozhang. An image forensic method 
for AI inpainting using faster R-CNN. In: Sun Xingming, Pan 
Zhaoqing, Bertino Elisa, editors. Artificial intelligence and secu-
rity: 5th International Conference, ICAIS 2019, New York, NY, 
USA, July 26–28, 2019, Proceedings, Part III. Cham: Springer 
International Publishing; 2019. p. 476–87. https://​doi.​org/​10.​
1007/​978-3-​030-​24271-8_​43.

	55.	 Zhu X, Qian Y, Zhao X, Sun B, Sun Y. A deep learning approach 
to patch-based image inpainting forensics. Signal Proces. 
2018;67:90–9.

Publisher's Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1007/s11042-016-3663-0
https://doi.org/10.1109/TIP.2012.2214050
https://doi.org/10.1109/TIP.2012.2214050
http://arxiv.org/abs/1710.05941
https://doi.org/10.1007/978-3-030-24271-8_43
https://doi.org/10.1007/978-3-030-24271-8_43

	Source Camera Device Identification from Videos
	Abstract
	Introduction
	Related Works
	Methodology
	Frame Extraction
	Convolutional Neural Networks
	MobileNet
	ResNet
	ConstrainedNet

	Video-Level Predictions

	Experiments
	Data Set—VISION
	Camera Device Selection Procedure
	Data Set Balancing

	Data Set—QUFVD
	ConvNet Training
	ConvNet Evaluation
	Fifty I-Frames per Video
	Comparison with the State-of-the-art


	Discussion
	Video Compression
	Number of Frames per Video
	Pre-training ConvNets
	Camera Model Identification
	Counter-productive Learning Strategies
	Majority Voting Scheme
	Frame Selection Schemes
	Scene Suppression Schemes

	Prediction Time Efficiency
	Future Work

	Conclusion
	Acknowledgements 
	References




