Skip to main content
Log in

Self-Calibration of the Descent Camera of the Tianwen-1 Probe

  • Original Research
  • Published:
SN Computer Science Aims and scope Submit manuscript

Abstract

Tianwen-1 probe is equipped with the descent camera. Descent images are very special and characteristic. Many image processing missions can be done when parameters of descent camera are known. Therefore, the self-calibration method for descent camera based on the structure from motion (SfM) is proposed. The relative orientation model of the oblique and the vertical baselines is proposed in order to provide the accurate initial value. Simulated experiment of the unmanned aerial vehicle in the desert environment verifies that the proposed method has high positioning accuracy and the stability. Finally, the proposed method is practical used for Tianwen-1 mission. The average value of the root-mean-square error of the in-orbit checking points is 0.875 m.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ye PJ, Sun ZZ, Rao W, Meng LZ. Mission overview and key technologies of the first Mars probe of China. Sci China Technol Sci. 2017;60(5):649–57.

    Article  Google Scholar 

  2. Prakash R, Burkhart PD, Chen A, Comeaux KA, Guernsey CS, Kipp DM, Lorenzoni LV, Mendeck GF, Powell RW, Rivellini TP, Miguel San Martin A, Sell SW. Mars Science Laboratory entry, descent, and landing system overview. In: IEEE Aerospace Conference, pp. 1–18 (2008).

  3. Nelessen A, Sackier C, Clark I, Brugarolas P, Villar G, Chen A, Stehura A, Otero R, Stilley E, Way D, Edquist K, Mohan S, Giovingo C, Lefland M. Mars 2020 entry, descent, and landing system overview. IN: IEEE Aerospace Conference, pp. 1–20 (2019).

  4. Meng C, Zhou N, Xue X, Jia Y. Homography-based depth recovery with descent images. Mach Vis Appl. 2013;24(5):1093–106.

    Article  Google Scholar 

  5. Xu XC, Zheng ZZ, Xu AG, Liu SC. An optimized method for terrain reconstruction based on descent images. J Eng Technol Sci. 2016;48(1):31–48.

    Article  Google Scholar 

  6. Xue X, Meng C, Jia Y. An improved method for terrain mapping from descent images. Found Intell Syst. 2011;122:547–55.

    Article  Google Scholar 

  7. Xu XC, Zhen Y, Wang GB, Zhou PX, Li H, Lee MY. Terrain reconstruction based on descent images for the Chang’e III landing area. J Eng Sci Technol Rev. 2015;8(4):56–63.

    Article  Google Scholar 

  8. Meng C, Zhou N, Jia Y. Improved best match search method in depth recovery with descent images. Mach Vis Appl. 2015;26(2):251–66.

    Article  Google Scholar 

  9. Li ML, Liu SC, Ma YQ, Sun C, Jia Y. Descent image based landing area terrain reconstruction technology for lunar landing mission. Imaging Sci J. 2015;63(8):440–6.

    Article  Google Scholar 

  10. Spencer DA, Blanchard RC, Braun RD, Kallemeyn PH, Thurman SW. Mars Pathfinder entry, descent, and landing reconstruction. J Spacecr Rockets. 1999;36(3):357–66.

    Article  Google Scholar 

  11. Muñoz P, Budnik F, Companys V, Godard B, Casas CM, Morley T, Janarthanan V. Rosetta navigation during lander delivery phase and reconstruction of Philae descent trajectory and rebound. In: 25th International Symposium on Space Flight Dynamics, pp. 1–20 (2015).

  12. Kazeminejad B, Atkinson DH, Pérez-Ayúcar M, Lebreton JP, Sollazzo C. Huygens’ entry and descent through Titan’s atmosphere-Methodology and results of the trajectory reconstruction. Planet Space Sci. 2007;55(13):1845–76.

    Article  Google Scholar 

  13. Karlgaard CD, Korzun AM, Schoenenberger M, Bonfiglio EP, Kass DM, Grover MR. Mars InSight entry, descent, and landing trajectory and atmosphere reconstruction. J Spacecr Rockets. 2021;58(3):865–78.

    Article  Google Scholar 

  14. Kazeminejad B, Atkinson DH. The ESA Huygens probe entry and descent trajectory reconstruction. In: Planetary probe atmospheric entry and descent trajectory analysis and science, pp. 137–149 (2004).

  15. Blanchard RC, Desai PN. Mars phoenix entry, descent, and landing trajectory and atmosphere reconstruction. J Spacecr Rockets. 2011;48(5):809–22.

    Article  Google Scholar 

  16. Mottola S, Arnold G, Grothues HG, Jaumann R, Michaelis H, Neukum G, Bibring JP, Schröder SE, Hamm M, Otto KA, Pelivan I, Proffe G, Scholten F, Tirsch D, Kreslavsky M, Remetean E, Souvannavong F, Dolives B. The structure of the regolith on 67P/Churyumov-Gerasimenko from ROLIS descent imaging. Sci. 2015;349:1–4.

    Google Scholar 

  17. Yang B, Pi YD, Li X, Yang YH. Integrated geometric self-calibration of stereo cameras onboard the ZiYuan-3 satellite. J Photogramm Remote Sens. 2020;162:173–83.

    Article  Google Scholar 

  18. Wang JR, Wang RX, Hu X, Su ZB. The on-orbit calibration of geometric parameters of the Tian-Hui 1 (TH-1) satellite. J Photogramm Remote Sens. 2017;124:144–51.

    Article  Google Scholar 

  19. Caprile B, Torre V. Using vanishing points for camera calibration. Int J Comput Vis. 1990;4(2):127–39.

    Article  Google Scholar 

  20. Antunes M, Barreto JP, Aouada D, Ottersten B. Unsupervised vanishing point detection and camera calibration from a single manhattan image with radial distortion. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2017. p. 4288–4296.

  21. Sun J, Wang HP, Zhu XL. A fast underwater calibration method based on vanishing point optimization of two orthogonal parallel lines. Meas. 2021;178:1–19.

    Article  Google Scholar 

  22. Faugeras OD, Luong QT, Maybank SJ. Camera self-calibration: theory and experiments. In: European conference on computer vision, pp. 321–334 (1992).

  23. Chandraker M, Agarwal S, Kriegman D, Belongie S. Globally optimal algorithms for stratified autocalibration. Int J Comput Vis. 2010;90(2):236–54.

    Article  MATH  Google Scholar 

  24. Martyushev E. Self-calibration of cameras with Euclidean image plane in case of two views and known relative rotation angle. In: European Conference on Computer Vision, pp. 415–429 (2018).

  25. Ben-Artzi G. Camera calibration by global constraints on the motion of silhouettes. In: International Conference on Computer Vision, pp. 5334–5343 (2017).

  26. Paudel DP, Van Gool L. Sampling algebraic varieties for robust camera autocalibration. In: European Conference on Computer Vision, pp. 265–281 (2018).

  27. Westoby MJ, Brasington J, Glasser NF, Hambrey MJ, Reynolds JM. ‘Structure-from-Motion’ photogrammetry: a low-cost, effective tool for geoscience applications. Geomorph. 2012;179:300–14.

    Article  Google Scholar 

  28. James MR, Robson S. Straightforward reconstruction of 3D surfaces and topography with a camera: accuracy and geoscience application. J Geophys Res Earth Surf. 2012;117(F3):1–17.

  29. Smith MW, Carrivick JL, Quincey DJ. Structure from motion photogrammetry in physical geography. Prog Phys Geogr. 2016;40(2):247–75.

    Article  Google Scholar 

  30. Turner D, Lucieer A, De Jong SM. Time series analysis of landslide dynamics using an unmanned aerial vehicle (UAV). Remote Sens. 2015;7(2):1736–57.

    Article  Google Scholar 

  31. Stumpf A, Malet JP, Allemand P, Pierrot-Deseilligny M, Skupinski G. Ground-based multi-view photogrammetry for the monitoring of landslide deformation and erosion. Geomorph. 2015;231:130–45.

    Article  Google Scholar 

  32. Gonçalves G, Gonçalves D, Gómez-Gutiérrez Á, Andriolo U, Pérez-Alvárez JA. 3D reconstruction of coastal cliffs from fixed-wing and multi-rotor UAS: impact of SfM-MVS processing parameters, image redundancy and acquisition geometry. Remote Sens. 2021;13(6):1222.

    Article  Google Scholar 

  33. Pineux N, Lisein J, Swerts G, Bielders CL, Lejeune P, Colinet G, Degré A. Can DEM time series produced by UAV be used to quantify diffuse erosion in an agricultural watershed? Geomorph. 2017;280:122–36.

    Article  Google Scholar 

  34. Meinen BU, Robinson DT. Mapping erosion and deposition in an agricultural landscape: optimization of UAV image acquisition schemes for SfM-MVS. Remote Sens Environ. 2020;239: 111666.

    Article  Google Scholar 

  35. Harder P, Schirmer M, Pomeroy J, Helgason W. Accuracy of snow depth estimation in mountain and prairie environments by an unmanned aerial vehicle. Cryosphere. 2016;10(6):2559–71.

    Article  Google Scholar 

  36. Pikelj K, Ružić I, Ilić S, James MR, Kordić B. Implementing an efficient beach erosion monitoring system for coastal management in Croatia. Ocean Coast Manag. 2018;156:223–38.

    Article  Google Scholar 

  37. Pearson E, Smith MW, Klaar MJ, Brown LE. Can high resolution 3D topographic surveys provide reliable grain size estimates in gravel bed rivers? Geomorph. 2017;293:143–55.

    Article  Google Scholar 

  38. Bash EA, Moorman BJ, Gunther A. Detecting short-term surface melt on an Arctic Glacier using UAV surveys. Remote Sens. 2018;10(10):1547.

    Article  Google Scholar 

  39. Watanabe S, Hirabayashi M, Hirata N, et al. Hayabusa2 arrives at the carbonaceous asteroid 162173 Ryugu-a spinning top-shaped rubble pile. Sci. 2019;364(6437):268–72.

    Article  Google Scholar 

  40. Daly MG, Barnouin OS, Seabrook JA, et al. Hemispherical differences in the shape and topography of asteroid (101955) Bennu. Sci Adv. 2020;6(41):649.

    Article  Google Scholar 

  41. Jorda L, Gaskell RW, Hviid SF, et al. The Shape of Comet 67P/Churyumov-Gerasimenko from Rosetta/Osiris Images. In: AGU Fall Meeting, pp. P41C-3943 (2014).

Download references

Acknowledgements

Thanks to the cooperation and support of Zhurong Rover’s development team.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: SL, YJ. Methodology: SZ; resources: YJ, JZ, BW, SP. Experiment and data analysis: CQ, YW, YM, HL, YY. Funding acquisition: YJ, SL, SZ, YM. Writing-original draft preparation: SZ. Writing-review and editing: SL, YJ.

Corresponding author

Correspondence to Shaochuang Liu.

Ethics declarations

Conflict of Interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, S., Zhang, J., Peng, S. et al. Self-Calibration of the Descent Camera of the Tianwen-1 Probe. SN COMPUT. SCI. 3, 480 (2022). https://doi.org/10.1007/s42979-022-01369-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42979-022-01369-6

Keywords

Navigation