
Vol.:(0123456789)

SN Computer Science (2022) 3:511
https://doi.org/10.1007/s42979-022-01404-6

SN Computer Science

ORIGINAL RESEARCH

Static and Dynamic Dependency Visualization in a Layered Software
City

Veronika Dashuber1 · Michael Philippsen2

Received: 23 September 2021 / Accepted: 6 September 2022 / Published online: 10 October 2022
© The Author(s) 2022

Abstract
A Software City is an established way to visualize metrics such as the test coverage or complexity. As current layouting
algorithms are mainly based on the static code structure, dependencies that are orthogonal to this structure often clutter the
visualization and are hard to grasp. This paper applies layered graph drawing to layout a Software City in 3D. The proposed
layout takes both the dependencies and the static code structure into account. While having the static dependencies encoded in
the layout, we can additionally display dynamic dependencies as arcs atop the city in the night view of the Layered Software
City. By applying a trace clustering technique we can further reduce the number of shown arcs. We evaluate the advantages
of our layout over a classic layouting algorithm in a controlled study on a real-world project and also report on a short study
that evaluates the visualization of dynamic dependencies. The source code of the layouting algorithm and the raw data of
the quantitative evaluations are available from https:// github. com/ qaware/ holow are- softw are- city.

Keywords Software City · Layouting algorithm · Layered graph drawing · Dependency analysis · Architecture
comprehension · Trace clustering

Introduction

The IT labor market is becoming more and more flexible
and both projects and employees change frequently, while
complex software systems with more than 200k lines of
code have a long service life and cause significant efforts
for understanding software in development and maintenance
projects [1]. Hence, visualization tools that help developers
to sooner have a correct understanding of the software and
its behavior (dynamic processes during program execution)
increase productivity.

Software visualizations can cover the static structure
of the source code, the behavior, or the evolution, i.e., the
changes of the structure over time [2]. Regardless of which
aspects are visualized, to make the abstract software artifacts
easier to understand for humans, they are often mapped to
familiar real-world metaphors [3]. Several controlled experi-
ments have shown that the metaphor of a city is well suited
[4–6]. It mainly focuses on the static aspects and represents
components (e.g., classes) as buildings and shows containers
of components (e.g., packages or modules) as city districts.
There are Software Cities that also cover dynamic or evolu-
tionary aspects. The general principle is that the hierarchical
structure of the components (e.g., package → subpackage
→ class) is used to map artifacts to the floorplan of the city.
Proximity in the source code results in proximity in the city,
but not the other way round.

Nested TreeMaps and Street Views are well-known lay-
outing techniques (“Related Work” discusses them in some
detail). These layouts only consider the hierarchical code
structure, i.e., contains relations. Typically, extensions visu-
alize other dependencies among the components as arcs atop
the buildings. This often leads to dependency arcs that are
scattered across the entire visualization, more overwhelming
than helping to understand them. To motivate our layout,

This article is part of the topical collection “Computer Vision,
Imaging and Computer Graphics Theory and Applications” guest
edited by Jose Braz, A. Augusto Sousa, Alexis Paljic, Christophe
Hurter and Giovanni Maria Farinella.

 * Veronika Dashuber
 veronika.dashuber@qaware.de

 Michael Philippsen
 michael.philippsen@fau.de

1 QAware GmbH, Aschauer Str. 32, 81549 Munich, Germany
2 Programming Systems Group, Friedrich-Alexander-Universit

ät Erlangen-Nürnberg (FAU), Martensstr. 3, 91058 Erlangen,
Germany

http://orcid.org/0000-0001-8577-5646
http://orcid.org/0000-0002-3202-2904
https://github.com/qaware/holoware-software-city
http://crossmark.crossref.org/dialog/?doi=10.1007/s42979-022-01404-6&domain=pdf

 SN Computer Science (2022) 3:511511 Page 2 of 18

SN Computer Science

Fig. 1a visualizes the “core” module of the open source
Spring framework1 with the TreeMap layout, drawing all
usage/invocation dependencies as arcs atop the buildings.
There are far too many arcs to be helpful in understand-
ing the software architecture. The visualization of the same
software with our layout in Fig. 1b is much clearer as it
takes both the code structure and the directed dependencies
into account. We organize buildings in layers. Most of the
dependencies are implicit from one layer to the next. We
only draw a dependency as an explicit arc if its orientation is
opposing the order of the layering. These arcs often indicate
architecture violations. Note that the TreeMap visualization
uses simple buildings of the same sizes and colors, while
in addition to showing only a few (problematic) arcs our
visualization also makes architecture violations even more
clear by mapping metrics to building properties, see “Creat-
ing City Artefacts”.

Also commercial tools like Structure101 [7, 8] suffer
from the lack of clarity. Figure 1c visualizes the Spring

framework with Structure101. The layout is described in
“Related Work” in more detail. In contrast to our layered
3D city representation, Structure101 is restricted because
(a) zooming in/out and moving on the x-/y-axes are the only
ways to navigate, while we offer arbitrary angles, (b) the
nodes do not carry other information while we map metrics
to the width, height, depth, and color of the city artifacts to
promote a better understanding of the system. Our red build-
ings in Fig. 1b show dependency cycles more prominently.
For instance, note the tall red tower in the violet circle that
tells the software architect at a glance that this component
is heavily used and hence to urgently refactor the cyclic
dependency. In contrast, the same arc in the violet is easy to
miss in Fig. 1c. Also, our red coloring of packages (orange
cycles) indicates easier-to-resolve internal dependency
cycles. Structure101 does not provide any such highlighting.

To sum it up, our main contribution is a layout that is
based on layered graph drawing. The proximity of com-
ponents in our layout correlates with both the dependency
structure and the hierarchical source code structure. By
encoding most dependencies in the layers instead of drawing
them as explicit arcs, we significantly reduce their numbers
and increase the overall clarity of the Software City. Arcs
that are shown explicitly, often indicate architecture viola-
tions. To our knowledge we are the first to apply layered
graph drawing to a 3D layouting of a Software City.

This article extends our work presented at the IVAPP
2021 conference [9] and also visualizes dynamic dependen-
cies in the Layered Software City. As showing all dynamic
dependencies as arcs would again clutter the visualization,
a clustering technique finds use case clusters in the trace
data and then only displays one representative per cluster.
To further clean out the view, there are also filters both for
the dependencies from/to a particular component and for
single use cases.

This article is organized as follows: “Static Dependen-
cies in a Layered Software City” explains the Layered Soft-
ware City in detail, followed by a quantitative evaluation in
“Evaluation of the Layered Software City”. “Visualization
of Dynamic Dependencies” covers and evaluates the visuali-
zation of dynamic dependencies. “Related Work” discusses
related work before we conclude in “Conclusion”.

Static Dependencies in a Layered Software
City

We propose to not only use the hierarchical contains rela-
tionships among elements of the static source code to build
the layout of the Software City but to organize the City in
levels that also reflect the depends-on relationships between
artifacts. To achieve this, we propose to arrange the compo-
nents on levels. As the components on one level in general

(a) TreeMap layout with all dependency arcs.

(b) Our layered layout. Most dependencies encoded in the layers; only possible
architecture violation arcs remain.

(c) Structure101 2D visualization with possible architecture violation arrows.

Fig. 1 Visualization of the Spring core source code

1 https:// spring. io/ proje cts/ spring- frame work.

https://spring.io/projects/spring-framework

SN Computer Science (2022) 3:511 Page 3 of 18 511

SN Computer Science

depend on the level below, these dependencies no longer
need to be shown explicitly. Only dependencies in the other
direction form cycles that are often problematic and should
be avoided in well-designed software. To retain the static
structure of the source code in the layout, the organization of
city artifacts into layers is a recursive process, starting from
the lowest level of detail (for example, class level).

The main steps for constructing a Layered Software City
are:

1. Import raw contains and depends-on relations from the
static source code. As in general the proposed layout is
applicable to arbitrary graphs with two types of rela-
tions, we skip here how our implementation obtains the
graph from a given code base. For details see “Evalua-
tion of the Layered Software City”.

2. Determine the level of each component and identify
cyclic dependencies, see “Determining the Level” for
details.

3. Create city artifacts for the components and position
them based on their levels, see “Creating City Arte-
facts”.

4. Draw arcs for identified cyclic dependencies.

The two steps Crossing Minimization and Horizontal Coor-
dinate Assignment of standard layered graph drawing [10]
are not necessary for our layout because (a) we do not show

most of the edges (arcs) in our visualization and (b) we con-
sider the hierarchical structure of the software components,
i.e., the nodes, which already ensures a certain proximity of
nodes in our layout.

Determining the Level

In graph terminology we determine the layer of a node.
We search for a layered drawing of a directed graph with
two types of directed edges: structural contains edges and
(weighted) depends-on edges. Let us assume an example
dependency graph as in Fig. 2a with its structure edges
(orange) and its dependency edges (dashed green with
weights). The dependency edges in red are those we visual-
ize explicitly. Let us postpone how we identify such cycle-
building edges. We omit them when we present the basic
idea of the layering algorithm. The hierarchical structure
graph (orange edges only) is a rooted tree. Dependencies
only exist between leaf nodes of the hierarchical structure.

A graph with many dependency edges is cluttered, con-
fusing, and not very helpful for understanding the software.
In the example, it needs a close look to see that subpack-
age2 is providing basic components to the rest of the sys-
tem. What a software architect is mainly interested in when
analyzing the code, are both the dependencies within a (sub)
package and also the dependencies between (sub)packages,
i.e., the dependencies per and among levels of abstraction.

Fig. 2 Example of contains and
depends-on relationships with
cyclic dependencies

 SN Computer Science (2022) 3:511511 Page 4 of 18

SN Computer Science

Basic Layering

We construct such a layout recursively. The base case is
the layouting of those leaf nodes of the structural hierarchy
that have a common parent. Here, we chose a layout that is
inspired by a topological sort of the depends-on relations
between those leaf nodes. We discuss the details below.

To make the dependency structure much clearer for
the architect the recursive case one level up coarsens the
graph as shown in Fig. 2b. Dependency edges between
leaf nodes of the structural hierarchy turn into dependency
edges between their respective parents in the structural tree.
Resulting self-loops are dropped (3 times for subpackage1
and two times for subpackage2 in the example). Parallel
dependency edges are fused and their count is kept as the
weight of the fused edge. In Fig. 2b the fused depends-on
edge has weight 3. The weights later become relevant when
there are cyclic dependencies. Since the coarsened graph
again has all its depends-on edges only between its leaves,
we apply the same layouting inspired by topological sort.
The recursion terminates at the source(s).

Let us now discuss the base case. We sort all the n
leaf nodes that have a common parent in the structural
hierarchy in a topological way. For the base case, only the
e depends-on edges among the set n matter. We ignore

dependency edges that come into this set from other leaf
nodes or that leave the set. Whereas a text-book topologi-
cal sort has room for variation, we determine the unique
layer of a node as its maximal path length from it to the
last node among the set n, that has no more outgoing
dependencies. Listing 1 holds the pseudo code. Its com-
plexity is O(|n| + e) with e depends-on edges among the
nodes in n.

Consider the shaded area in Fig. 2a. As classC has no out-
going depends-on edges that stay within the set n, its layer is
0. There are two paths from classA to classC. As the longest
one has length 2, this is the layer of classA.

Once the node layers in n are computed, we draw them
layer-by-layer, leaving out depends-on edges from layer i to
j when i < j . We draw items on the same layer in a random
order. In the example, the three class nodes of the shaded
area in Fig. 2a turn into the three layers in the shaded area
in Fig. 3a (in 2D for simplicity). As the layouting process
is recursive, the layers determined for the coarsened graph
in Fig. 2b result in the shown layering of the subpackages
in Fig. 3a.

In this visualization the architect can easily identify that
items depend on the items below them. The structural hier-
archy is also still present. Note that while the abstract graph
in Fig. 3a ignores the cyclic arcs, they are already present in

Fig. 3 Dependencies encoded in
the layering

SN Computer Science (2022) 3:511 Page 5 of 18 511

SN Computer Science

the full visualization in Fig. 3b. “Creating City Artefacts”
discusses the building properties.

In our layouting task a given graph has a total of N nodes,
each of which has at most one parent, i.e., it is in a set n only
once. In the recursive procedure described above each of the
total E depends-on edges is considered only once, in one of
the sets e. The total asymptotic complexity of the layering
is hence O(N + E).

f unc t i on topoLayout (nodes n) :
degree [] = [Out degree s o f n]
q = { s e t o f a l l dependency l e av e s }
cur rent = 0
while q i s not empty :

qNew = {}
for each node k ∈ q :

k . l a y e r = current
for each incoming edge s→k :

degree [s]−−
i f degree [s] == 0 :

qNew ∪= { s }
q = qNew

current++

Listing 1: Layouting inspired by topological sort.

Dealing with Cycles

If there are cyclic dependencies, there are edges whose
directions do not fit the layering and thus need to be visual-
ized, see the cycle-building arcs in Fig. 3b. The fewer arrows
a drawing has and the shorter they are, the easier to under-
stand the visualization is. In the example, it is apparent that
the dependency from classB to classA as well as that from
classD to classC need refactoring.

While in general finding this ideal visualization boils
down to the NP-hard Minimum Feedback Arc Set problem
[11], for software systems we can give domain specific heu-
ristics that usually work well. The underlying assumption
is that a software system is not utterly broken and that the
majority of the dependencies fits to the layered software
architecture, i.e., first that cyclic dependencies are rare and
second that they are mostly quite local and do not affect
software artifacts that are “far away” in the code, either syn-
tactically or semantically. The reason is that such issues are
architecture violations that developers have learnt to avoid
and because it is a common refactoring task to remove
them. In the layered drawing we do not show dependen-
cies that fit the general layering of the software architec-
ture, i.e., its major direction. The (feedback) arrows of the
few dependencies that have the opposite direction and that
close cycles, highlight potential architecture problems. If in
a broken software architecture there is no identifiable flow of
dependencies in one major direction, i.e., if there is no class
layering of the software architecture, a detailed analysis of

the source code must be performed anyway. In such cases it
does not really matter which of the cycle-building edges is
highlighted by means of an explicit arrow.

The remainder of this subsection discusses in detail how
we identify the (few and short-range) cycle-building edges
that need to be visualized.

As suggested by Sugiyama et al. [10], a pre-processing
in each of the above recursive steps already removes cycles
from the graph. Once a depends-on cycle among the leaf
nodes of the structural hierarchy that have a common par-
ent is detected in a depth-first traversal, we immediately
remove one of the cycle-building edges. The acyclic rest
of the graph can be drawn in layers and without arrows as
before. The removed edge is later added as an arrow atop
those layers. Although conceptually a depends-on edge may
belong to several cycles, we have not seen such a case in
practice. Dependency cycles often seem to be disjunct in
real software. Even if the cycles are not disjunct, we argue
that the cycles still belong to disjunct use cases. They have
most likely been implemented at different times and solved
different tasks. Thus, from a software architect’s point of
view, there is no need to find the absolute global optimum
when minimizing the number of arrows. So in addition to
having only few cycles and only relatively short ones in our
graphs, edges in general only belong to at most one cycle.
That makes the visualization much simpler than solving
the general Minimum Feedback Arc Set problem: with
linear asymptotic complexity, we can simply traverse the
graph. Once we detect a cycle in this traversal, we remove it
instantly as soon as we found it. While there are E depends-
on edges in the given graph, the cycle only has e << E
edges.

We use two heuristics to pick which of the e edges of a
cycle to remove. Heuristics 1: If there are two edges in a
cycle and one edge has a higher weight, the higher weight
indicates the layering that originally was planned for the
software system. Hence, we pick the edge with the minimal
weight for removal. In the cycle in Fig. 2b it is obvious that
subpackage1 is meant to depend on subpackage2 and that the
red edge is the dependency that needs to be refactored, i.e.,
that should turn into an explicit arrow. Heuristics 2 comes
in if the cycle has more than one edge with minimal weight.
Let’s call these edges removal candidates. To motivate the
heuristics, consider the shaded area in Fig. 2a. There are two
ways to resolve the cycle between classA and classB, as the
weight of the edges is the same. Removing the (red) edge
from classB to classA means for the layering that classA
is placed above classB. Removing the (green) edge from
classA to classB results to classB above classA. Which
one is better for the software architect? A common design
principle of software is that the more complex component
uses the less complex one. Heuristics 2 uses the correla-
tion between complexity and the number/weight of outgoing

 SN Computer Science (2022) 3:511511 Page 6 of 18

SN Computer Science

dependencies of a component [12]. In Fig. 2a, the sum of
the weights of the outgoing edges of classA is 3, whereas for
classB it is only 2. As classA is more complex, the software
architect expects the visualization in Fig. 3.

Hence, heuristics 2 is: if there are two removal candidate
edges (with the same minimal weight) the one whose source
node has a larger total outgoing weight reflects what was
planned to be the node that makes use of others in the soft-
ware system, as it represents the more complex component.
So we pick the candidate edge for removal whose source
node has the minimal total outgoing weight.

f unc t i on removeCycle (edges e) :
minWeight = MaxInt
removalCands1 = {}
// h e u r i s t i c s 1
for each edge k ∈ e :

i f k . weight < minWeight :
minWeight = k . weight
removalCands1 = {k}

e l s i f k . weight == minWeight :
removalCands1 ∪= {k}

i f | removalCands1 | == 1 :
remove edge ∈ removalCands1

else :
minWeight = MaxInt
removalCands2 = {}
// h e u r i s t i c s 2
for each e = (se → te) ∈ removalCands1 :

out = { s e t o f a l l outgoing
edges o f se}

weight =
∑

o∈outo . weight
i f weight < minWeight :

minWeight = weight
removalCands2 = {e}

e l s i f weight == minWeight :
removalCands2 ∪= {e}

i f | removalCands2 | == 1 :
remove edge ∈ removalCands2

else :
remove random edge ∈
removalCands2

Listing 2: Cycle removal heuristics.

Listing 2 shows the pseudo code of the two-stage heu-
ristics for removing cycles. It first traverses the edges e
that form a cycle of length |e| to find the ones with mini-
mal weights. For the cycle in Fig. 2b this traversal finds
only one candidate for removal. Heuristics 2 is not needed
in this example. For subpackage1 there are two candidates
of minimal weight 1. In the worst case all |e| edges have the
same minimal weight, i.e., the traversal for heuristics 2 takes
another O(|e|). After removing an edge, |e| − 1 edges remain
that may conceptually be part of other cycles. This leads to
a worst-case complexity of O(|e|2) per cycle of length e.
For general graphs with potentially many long cycles the
complexity would add up to O(|E|2) per each of cycles say i.

This is much worse than what general purpose heuristics for
the Minimum Feedback Arc Set problem achieve. But since
our special case only has few, say i, cycles and each cycle
is short, and each edge belongs to one cycle at most, for the
overall complexity we have O(

∑
e2
i
) << O(i ⋅ �E�2) . In prac-

tice we see cycle lengths ei ≤ 3 , resulting in a constant upper
bound per cycle, for a small number of cycles. As a result,
the removeCycles function rarely needs to be called, and
if so, then only with two to three edges as parameters from
which one must be selected for removal. In practice the cycle
removal takes only a few hundred milliseconds even for large
software projects. For example, it took 90 ms for the 19.732
dependencies of the benchmark project, see “Evaluation of
the Layered Software Citylayout”, on an Intel Core i7 laptop.

The layout is stable as long as the cyclic dependencies
do not change. If the dependencies in the system change,
a class may be assigned to a different level than before.
Since such a change probably indicates an unwanted modi-
fication of the software architecture, it is useful to see this
in a shift of the layers.

Creating City Artifacts

What is left after having determined on which level to put
a component is how to employ other visual properties of
its building or district. We use dependency metrics for
this purpose since we aim at visualizing dependencies in
software.

We set the height of a building based on the number of
incoming dependencies. The square area (width = depth)
reflects the outgoing dependencies. Tall towers describe
classes that are used a lot, while flat buildings with a wide
footprint visualize classes that use many other components.
The color of a building indicates whether or not the class
belongs to a cyclic dependency. We use a red color to mark
cycles on buildings as well as on the districts. We display the
identified edges of cycle-building dependencies with explicit
arcs between the components. The arcs show the dependen-
cies that probably represent architectural violations. When a
user clicks on a component (building or district), we display
its name.

Fig. 4 Zoomed-in view of the Spring core Layered Software City

SN Computer Science (2022) 3:511 Page 7 of 18 511

SN Computer Science

Figure 4 shows a zoomed-in view of the Spring core visu-
alization, where the described city properties can be seen
in detail. Buildings of components that form a cycle are
colored in red, as well as the corresponding districts. The
cyclic dependencies appear as arcs between the respective
buildings. The tall buildings in the background are examples
of heavily used components, while the flat buildings in the
foreground represent components that use many others.

Evaluation of the Layered Software City
Layout

In order to answer the research question “Does the layered
layout for Software Cities help to better understand the archi-
tecture of a software project”, we evaluated our approach in
a controlled experiment. In the study we used a real-world
software system, i.e., version 9.0.0 of the open source pro-
ject SolrJ,2 which is the Java API for Apache Solr, a stan-
dalone enterprise search server for any kind of documents.
SolrJ has 177 740 lines of code in 974 classes/interfaces.
We analyzed the dependencies of the SolrJ jar file with the
command line tool jdeps that is included in JavaSE since
version 8. It analyzes all static dependencies between Java
class files and stores the depends-on relations in a text file.
We derived the contains relations from the class name, e.g.,
package.subpackage.class. This resulted in 19 732
depends-on relations. We created the Software City of SolrJ,
once with the most common TreeMap layout (see Fig. 5) and
once with our new layout (see Fig. 6). In the study, the par-
ticipants used the Software City visualization to find answers
for a set of questions within a given time limit.

Note that a standard TreeMap Layout would show all
dependencies as illustrated in Fig. 1a. Figure 7a shows how
the spot in the white circle on the right of Fig. 5 would have
looked like if we would show all dependency arcs. In a pre-
study participants were overwhelmed with the many depend-
ency arcs and were unable to answer any questions at all.
Therefore, we improved the TreeMap layout— like in our
layout—by only showing the architecture violation arcs plus

the affected classes and with the dependency metrics used
to determine the visual properties of their buildings. Fig-
ure 7b illustrates the effect: cyclic dependencies and affected
classes are easier to see in the enhanced TreeMap Layout.

Since the properties of the buildings and districts (height,
width, depth, color) were identical in both the enhanced
TreeMap Layout and in our layered layout and as also the
representation of cyclic dependencies with arcs was the
same for both cities, the only difference was the layout.

Participants

A total of 30 professional software engineers of QAware
conducted the study during their working hours. They
all have a computer science or similar background and
are familiar with concepts such as software architecture,
dependencies, and cycles. The company provided the
resources because they are looking for a visualization that
their employees can use to get productive in newly assigned
projects more quickly. The supervisor knew the participants
from work. The professional experience of the test persons
ranged from 1 month to over 10 years. The majority of the
test persons have a work experience of 2–5 years (43.3%),
see Fig. 8.

We randomly assigned 15 participants to the Enhanced
TreeMap group and 15 to the group that uses the Layered
Software City layout. We had only two female participants,
one in each group. None of the participants had used a Soft-
ware City visualization before. The participants only knew
that the purpose of the study was to pick among two layouts.
All participants were informed that they would solve tasks
and that both the answers and the response times would be

Fig. 5 Software City with TreeMap layout of SolrJ

Fig. 6 Layered Software City of SolrJ

2 https:// lucene. apache. org/ solr/.

https://lucene.apache.org/solr/

 SN Computer Science (2022) 3:511511 Page 8 of 18

SN Computer Science

documented. They were also told that they would have to fill
out a questionnaire afterwards.

Experiment

The experiment was performed remotely. The participants
received executable files of the visualizations in advance.
The study itself was then conducted via video conference
and screen sharing. To warm up, all test persons initially
received a playground project, which was also created with
the layout of their respective group. The participants had five
minutes to get familiar with the navigation. During this time,
the supervisor used a script to explain the visual properties

(height, footprint, color) as well as the layout. Participants
were allowed to ask questions.

After this familiarization phase, the SolrJ study started.
The participants had to solve 7 tasks in which they had to
analyze the software architecture:

1. Which class is the entry point in SolrJ? (2 min)
2. Locate package “util”. (2 min)
3. Locate package “impl”. (2 min)
4. Which dependency would you refactor in a 1–1 cycle of

your choice? (2 min)
5. Find the component in the system that is used most. (1

min)
6. Find a package with a deep dependency tree and one

with a flat one. (4 min)
7. Specify how you would refactor all cycles in package

“noggit”. (4 min)

The tasks were tailored to the software system that the par-
ticipants were supposed to analyze. Nevertheless, we asked
questions aimed at skills that are generally required for soft-
ware analysis. Tasks #1 to #3 reveal how well and quickly
participants can orientate within the visualization. Tasks #4
and #7 expose whether the visualization supports refactor-
ing issues. And tasks #5 and #6 target the question of how
well a layout can give a broad overview of the architecture.

The tasks were posed one after the other. The supervisor
did not give any feedback on the correctness of the answers
and hence on the subject’s comprehension of the software
architecture. The upper part of Fig. 9 holds the results.

There was a maximal response time per task, given in
parentheses above. Time measurements started once a task
was posed. If no answer was given within the allotted time,
the answer was considered incorrect and the time limit was
noted with an added fail mark (the red x with the number

(a) TreeMap layout with all dependencies shown.

(b) Enhanced TreeMap Layout with only cycle-building
edges and our building properties.

(c) Cycles in our layered layout.

Fig. 7 Zoomed-in view of a spot in Figs. 5 and 6 that is relevant for
task #4

0

5

10

11 year 2-5 years 6-10 years >10 years

TreeMap Layered

Fig. 8 Years of work experience of the participants for the TreeMap
group in dark blue on top and for the Layered group in light blue
below

SN Computer Science (2022) 3:511 Page 9 of 18 511

SN Computer Science

of failed answers in the lower part of Fig. 9). Otherwise,
the time required was documented. The time limits per task
suited the complexity of the question and were determined
in a small preliminary study. After the 5 minutes warmup the
maximal duration of the experiment was 20 minutes. Most
participants finished sooner.

After all tasks had been completed, the participants had to
fill out an anonymous questionnaire asking for general infor-
mation, e.g., years of professional experience or position. In
addition, we used the standardized NASA Task Load Index
(TLX) to make a comparable statement about the effective-
ness of the two visualizations [13]. We added this question-
naire to be able to make a more general statement about the
effectiveness of the visualization besides the specific task
solving. In the same style, participants were asked about how
much the layout helped them in solving the tasks. There was
also a free text field for further comments.

Results and Discussion

Comprehension: The total results in Fig. 9 (top) show that
the Layered group solved the tasks significantly more cor-
rectly than the TreeMap group (significance level � = 0.01%
determined by a Chi-squared test). In total, the Layered
group reached a median correctness of 100% with the
first and third quartiles spreading from 86 to 100% and
one outlier outside the lower whisker at 56%. In contrast,
the TreeMap group only achieved a median of 57% cor-
rect answers (quartiles spread from 37–69%). The detailed
results for the seven tasks vary. As the Layered group was
almost always correct, we show only the medians and outli-
ers (no boxes, no whiskers).

Task #1 has been solved correctly by 13 participants of
the Layered group but only by one of the TreeMap group.
The layered layout is ideal for this task as it arranges the

Fig. 9 Comprehension (top)
and Time (bottom). For each
task, the distribution of answers
for the TreeMap group in dark
blue on top and for the Layered
group in light blue below. Boxes
correspond to the first and third
quartiles (the 25th and 75th per-
centiles), whiskers drawn using
Tukey method (1.5 IQR), points
are outliers in the data. Failures
to solve a task due to the time
limit are shown with a red x and
the number of such failures

Total

Task #7

Task #6

Task #5

Task #4.

Task #3

Task #2

Task #1

wrong 50% correct

Comprehension

 SN Computer Science (2022) 3:511511 Page 10 of 18

SN Computer Science

components according to their dependencies so that the
entry point is in the foreground when users view the city
with a perspective from the top layer. We added a green cir-
cle to highlight this in Fig. 10. The TreeMap layout places
the items solely based on their footprint sizes. There is no
way to guess the entry point. Even when we pick the best
possible angle to view the city in Fig. 10b, this view still
does not reveal the dependencies. Note that for orientation,
the green circles are also present in Figs. 5 and 6 .

For tasks #2 and #3 the Layered group also performed
better. In the layered layout the “util” package, which con-
tains all auxiliary classes of SolrJ, is used by many and is
therefore further down in the layering. The “impl” pack-
age, which contains the implementation of business logic
and uses many components, is thus shown further up. This
helped the Layered group in finding the respective packages.
There is no such help in the TreeMap layout.

Only for task #5 (identifying hotspots) both layouts score
equally well. The TreeMap group is better than usual as the
layout is compact and hotspots can be easily recognized.
But it also shows that hotspots are not less visible with the
layered layout, so the more extensive layout does not have
any disadvantage.

Time: We also measured how long it took the participants
to solve the tasks. If they exceeded the maximal allotted
time, the task was also judged non-solved. Figure 9 (bot-
tom) shows the results of the time measurements. The time
interval is normalized to an interval from 0 to the time limit.
An exceeding of the time limit is marked as a separate data
point to the right of the maximum.

The average responding time for the TreeMap group is
40.7% (median) of the time limit while it is a better 35.4%
for the Layered group. We do not consider the correctness

of the answers here. Overall, the Layered group solved the
tasks not only qualitatively better, but also significantly
faster (significance level � = 0.01% determined by a Chi-
squared test).

The TreeMap group detected hotspots (#5) faster since
the layout is more compact (see above). The TreeMap group
was also faster with task #7, but there were also more wrong
answers while the median in the Layered group was correct.

The time difference in task #4 is also worth explaining.
The layered layout arranges buildings so that architecture
violations in cyclic dependencies are displayed as arcs from
lower to upper layers. Fig. 7c zooms to such a spot in the
SolrJ visualization in Fig. 6. The Layered group easily spot-
ted such patterns. In contrast, the TreeMap group had to
derive the dependencies and the resulting complexity solely
based on the building properties (height and footprint, see
Fig. 7b) since the arcs have an irregular pattern. This took
longer, even though we did not present all dependencies
which is the standard in Software Cities with a TreeMap lay-
out (see Fig 7a) but used our color encoding of the affected
class buildings and only showed the architecture violating
arcs to the TreeMap group.

There is a notable time difference for task #6. In a bird’s
eye view, the layered layout instantly reveals which packages
have a deep tree of dependencies. Figure 11a zooms into one
of the packages of the SolrJ visualization in Fig. 6. A similar
view does not help the TreeMap group at all (Fig. 11b).

Questionnaire (NASA-TLX): We also used the NASA
Task Load Index (TLX) questionnaire [13] to measure the
effectiveness of our visualization and to compare it to the
TreeMap layouts in a standardized way. As the weighting
of the six dimensions originally proposed by the authors
has been criticized [14], we made an unweighted evaluation

Fig. 10 Helpful viewing angles
to solve task #1. The green
circles can also be found in
Figs. 5 and 6

(a) Layered: view from the top layer. (b) TreeMap: view from best corner.

SN Computer Science (2022) 3:511 Page 11 of 18 511

SN Computer Science

according to the latest recommendations. Figure 12 shows
both the comparison of the two layouts in each dimension
and the overall Task Load Index. It is obvious that the cogni-
tive load for solving the tasks (all but the physical demand
dimension) is lower for the Layered group than for the
TreeMap group. The median of the overall Task Load Index
is 45% for the TreeMap group compared to significantly
lower and better 22% for the Layered group (significance
level � = 0.01% determined by a Chi-squared test). The par-
ticipants of the Layered group did not show any signs of
cognitive overload.

We added an extra summary question to the question-
naire: “How much did the layout help you in solving the
tasks?” As can be seen in Fig. 13, there is again a signifi-
cant difference between the two layouts (significance level
� = 0.01% determined by a Chi-squared test). The TreeMap
group found the layout in 40% (median) supportive, but 70%
of the Layered group indicated the layout helpful.

There is only indirect evidence about the handling of
cycles. Many participants correctly and more quickly solved
the refactoring tasks that have to do with cycles (#4 and
#7 in Fig. 9). In their answers they often referred to the

Fig. 11 Zoomed-in view of
a package with a deep tree of
dependencies needed to solve
task #6. Same areas as in Figs. 5
and 6

(a) Layered layout. (b) TreeMap layout.

Fig. 12 Questionnaire (NASA-
TLX). Evaluation of the task
load. For each question, the
distribution of load for the
TreeMap group in dark blue on
top of the Layered group in light
blue below

Overall

Frustration
Level

Effort

Overall
Performance

Temporal
Demand

Physical
Demand

Mental
Demand

0% 50% 100%

TreeMap Layered

 SN Computer Science (2022) 3:511511 Page 12 of 18

SN Computer Science

arrows (e.g., “I would refactor the upwards arrow”), while
the TreeMap group solely used the building properties and
names in their responses.

Also the free text fields varied a lot between the two lay-
outs. In the questionnaires of the TreeMap group we encoun-
tered the following word heaps at least twice: “no help”, “not
intuitive”, “difficult to find the right conclusions”. Those
word heaps did not occur in the Layered group. In contrast,
there we found word heaps like “supported”, “quick to rec-
ognize”, “intuitive”, and “easy to use”.

In conclusion, the study has shown that without the visual
clutter of too many arrows and with the layering according
to the main direction of dependencies, our layout makes it
easy to intuitively understand dependencies between com-
ponents. The test persons also appreciated the handling of
cycles and considered the resulting arcs to be helpful in the
refactoring task. The layered layout of the Software City can
be used to analyze software architecture and outperforms
the default TreeMap layout, even in its enhanced version.
The layered layout can also keep up with the typical use
cases of the TreeMap layout like detecting hotspots. Most
participants stated that the layout supported them strongly
in solving the tasks.

Threats to Validity

We assess the threats to validity of our study as low.
Although we randomly assigned the participants to one of
the two study groups, we only discovered afterwards that the
Layered group on average had 1.5 years more professional
experience, see Fig. 8. This imbalance is a potential threat
as the fraction of participants with longer work experience
(1/3 vs. 1/5) may have caused the differences in the results.
To gauge the impact of the fraction of seniors, we re-ran the
analysis with the data only of the less experienced partici-
pants (<6 years). The overall correctness of solving the tasks
for the TreeMap group got worse (from 57 to 50%), while it
remained the same for the Layered group (100%). This still
is statistically significant despite the smaller group sizes.
Therefore, the slightly higher seniority of the Layered group
was not the cause of its better performance.

Since our layout is primarily designed for the visualiza-
tion and analysis of dependencies, we chose the tasks in the
study accordingly. When designing the tasks we made sure
to check required skills such as orientation, refactoring, and

clarity. If the participants had to solve tasks, such as quickly
finding the component with the largest area, the more com-
pact TreeMap layout would probably score better. For our
study, however, the focus was on the analysis of dependen-
cies, and for this purpose we set the tasks so that they sur-
veyed generally important skills.

As male and female participants were equally distributed
in the two groups, gender specifics did not skew the results.
But one female participant per group is far from enough to
conclude that the results hold for all genders.

Another potential threat is that the participants knew the
supervisor and have guessed that the layered layout should
perform better. As countermeasures, all participants were
encouraged to solve the tasks as best as possible. Further-
more, the TreeMap group scored better on task #5, which
would not have been the case if participants had tried to
influence the outcome of the study.

As we fixed all other parameters of the visualization, such
as colors, building heights, etc., and only changed the layout,
non-layout differences did not influence the results. We even
highlighted architecture violations and cyclic dependencies
to help the TreeMap participants find spots of interests.

Visualization of Dynamic Dependencies

To view the dynamic dependencies, the user can switch the
Software City to a night view that leaves the layered lay-
out unchanged, but instead of cyclic dependencies displays
dynamic dependencies as arcs. We use a neon color scheme
as it mimics currently popular computer games. As software
developers are the users of our visualization and they often
also play computer games, the neon color scheme appeals to
them more. A design company also encouraged us to choose
neon colors. We also wanted to have a clear separation
between the visualization of static and cyclic dependencies
for analyzing the software architecture and the visualization
of dynamic dependencies. Thereby, the day/night view fits
well into the city metaphor.

Figures 1a and 7a already demonstrate that displaying all
dependencies, whether static or dynamic, leads to a cluttered
view. To reduce the number of arcs when visualizing dynam-
ics this section presents a novel trace clustering that groups
traces according to similar call structures, i.e., use cases, and
only shows one representative trace per cluster instead of

Fig. 13 “How much did the
layout help you in solving the
tasks?”

How much did the
layout support you

in solving the tasks?

little much

TreeMap Layered

SN Computer Science (2022) 3:511 Page 13 of 18 511

SN Computer Science

all traces. This reduces the number of explicitly drawn arcs.
Some additional filter options further clean out the view.

Trace Clustering

Trace Representation: Assume a software system with N
components/endpoints. To recognize call patterns we repre-
sent each of the n traces from the runtime data as a separate
N × N matrix. As in real-world systems N is too large for
reasonably sized matrices, we hash the names of the end-
points to keep the dimensions of the matrix bounded. With
the hashing of the endpoint names we achieve two advan-
tages: (a) the clustering is applicable to systems of any type
and (b) changes such as addition/removal of endpoints can
be modeled, since in both cases the dimension of the hash
space remains constant. We use a hash table of size 101, a
prime number to get an even distribution of hash values.
For a system with over 101 endpoints this will cause colli-
sions, i.e., two or more endpoints can have the same hash.
However, in our clustering we do not look at individual end-
points, but always at sequences of endpoint calls, i.e., entire
traces. In practice, trace lengths are at least 10 calls long; 25
or more calls per trace are not uncommon. The probability
that all the hash values of all these individual calls collide
and that different traces yield the same pattern is low. In
the study example no such cases occurred. The matrix of a
trace is initialized with zeros. If in the trace a component i
calls a component j, we add the call duration to the matrix
at position (i, j). As shown in Fig. 14 there is a matrix for
each trace.

Clustering: We feed the matrices into a 3-component
Principal Component Analysis and apply a DBSCAN clus-
tering. This identifies k sets of similar call patterns that most
likely semantically belong together and form a use case of
the application. The plot on the right of Fig. 14 uses one
color for all traces of a cluster. Developers can manually
assign a name to a cluster that reflects its semantics in the
application. In general, this is the name of the use case.

We picked this clustering algorithm because (a) we do
not know the number of clusters in advance, (b) we poten-
tially have a large number of samples, (c) the shape of the
clusters can be diverse, and (d) we have noise in the trace

data. We fine-tune the algorithm by adjusting the minimal
number of samples per cluster and use a grid search with
the silhouette score as a metrics to evaluate performance.
The silhouette score is a textbook metrics for the quality of
a clustering [15]. It indicates how close a point in a cluster
is to points in neighboring clusters. The score is in [– 1,1],
where – 1 means a false cluster assignment (worst), 0 means
that a sample is close to the cluster boundaries, and 1 means
that the sample is far away from the neighboring clusters
(best). It is used in many clustering approaches to find a
good-fitting clustering [16–18].

Cluster Representatives: We then use the point closest to
a center of the cluster as the representative of the entire clus-
ter. Showing only this representative in the Software City
instead of all traces significantly reduces the clutter.

To better demonstrate our visualization of dynamic
dependencies we have to switch the running example.
Whereas in the SolrJ system used so far the traces mostly
follow the static dependencies, the open source blogging
project Spring Boot Realworld Example App3 (with a modi-
fied microservice architecture) has more interesting trace
data in load tests that ran for a total of about 15 minutes.
Fig. 15a shows what a visualization of all traces would look
like. The visualization is cluttered and it is difficult to follow
the arcs to see which components communicate with each
other. Even with a simple edge-bundling, the many arcs that
must be displayed obscure the buildings behind them and
additional navigation or perspective changes are needed to
see the hidden components. In contrast, Fig. 15b only dis-
plays the trace representatives from the clustering, one per
use case. The resulting fewer arcs clean out the visualization
and it is possible to see all buildings. The dynamic depend-
encies are easier to understand and to follow.

Further Filter Options

In addition, there are two filter options to further reduce the
number of arcs.

Fig. 14 Steps of the clustering
process

3 https:// github. com/ gothi nkster/ spring- boot- realw orld- examp le- app.

https://github.com/gothinkster/spring-boot-realworld-example-app

 SN Computer Science (2022) 3:511511 Page 14 of 18

SN Computer Science

Filter on components’ dependencies: With a mouse click
on a component, only the dependencies from/to this com-
ponent are shown. In addition, the name of the component
is displayed as in the day view. Figure 16a shows the effect
of the filter on the ArticleApi. The filter reduces the
number of arcs again and it is easy to see the dependencies
of this component.

Filter on use cases: The user can filter on a particular
use case using the arrow keys. If a name has been assigned
to a trace cluster this use case name is displayed in the top
right corner. Figure 16b shows the effect of the filter on the
use case Update Article. The components involved in this
use case and how they communicate with each other can be
quickly identified.

Evaluation

To evaluate the usefulness of the clustering and the two filter
options, we conducted a short study based on the blogging
project and the above figures. We used the Elastic stack4 to
gather the trace data from the blogging project but every
other tracing framework would also have worked.

Subjects: From the set of participants described in “Par-
ticipants” a subset of 22 professional software developers
were available for this study. They had a similar average
work experience (2–5 years) and we again had 2 female
subjects.

Experiment: The participants received a textual and
illustrated description of both the visualization and the
filter options. Also, the subjects were given the option to
download the visualization and to try it out. None of the
participants felt a need to do so, presumably because they
all were familiar enough with the visualization and controls
so that there was no need for an extra demo. In an online
questionnaire they had to evaluate in which typical software
engineering tasks both filtering options would help them,
and how much. There was also a free-text field to comment
on the ranking. The tasks were inspired by the knowledge
areas defined in the IEEE Guide to the Software Engineering
Body of Knowledge:5

• Software construction, e.g., API design and use, coding.
• Software testing, e.g., unit or E2E tests.
• Software maintenance, e.g., software comprehension,

refactoring, retirement.
• Software quality, e.g., architecture validation, reviews,

audits.
• Software documentation, e.g., flow charts, UML dia-

grams.

Results and Discussion: Figure 17a shows the answers of
the participants for the component dependency filter. The
median of the participants ranked this filter as (much) help-
ful for all five software engineering areas. In particular,
for software creation and documentation, the participants
have considered the filter to be very helpful. In the free text
field they stated that it is easy to directly see the depend-
encies of an external API and where it is used. They have
also positively pointed out that when changing the code of
existing components, one can see at a glance which other
components depend on it and take care of not breaking any
dependencies. These features are especially useful for soft-
ware creation and documentation.

(a) Showing all dynamic dependencies as arcs.

(b) Showing only the cluster representatives.

Fig. 15 Night view of the Spring Boot example

(a) Filter on dependencies from/to ArticleApi.

(b) Filter on the Update Article use case.

Fig. 16 Further filter options

4 https:// www. elast ic. co/ elast ic- stack/.
5 https:// www. compu ter. org/ educa tion/ bodies- of- knowl edge/ softw
are- engin eering.

https://www.elastic.co/elastic-stack/
https://www.computer.org/education/bodies-of-knowledge/software-engineering
https://www.computer.org/education/bodies-of-knowledge/software-engineering

SN Computer Science (2022) 3:511 Page 15 of 18 511

SN Computer Science

The subjects considered the use case filter to be less
helpful than the component dependency filter, although,
the differences were not statistically significant (except for
the documentation). Only for testing, the participants gave
a slight better ranking, see Fig. 17b. They mentioned in the
free text field that knowing the individual use cases of an
application is very helpful when writing end-to-end tests.

Finally, we asked the subjects whether they needed
the visualization of all traces as in Fig. 15a and if so, for
what purpose. The majority of 81.8% regarded a view of
all dependencies as unnecessary. The subjects confirmed
that the reduced number of dependencies as well as our
two filtering options help in typical software engineering
tasks. The remaining 18.2% gave reasons why they need
such a visualization in corner cases of a software analysis.
In the free text field of the questionnaire, they mentioned
that this would help them to spot unused components or
anomalous dependencies, for example ones that do not fit
into any cluster.

Related Work

We visualize the static and dynamic aspects of a given soft-
ware, regardless of its (original) design specification or its
evolution history. Here, we sketch the differences between
our work and related approaches. We intentionally do not
discuss visualizations that focus on relationships between
software versions and/or between an expected architecture
and the actual code.

Static Aspects

Software City Layouts: The city metaphor maps software
artifacts to city artifacts: components (e.g., classes) are
buildings and containers of components (e.g., packages) are
districts on which these buildings are located.

The TreeMap Layout [4–6, 19–21] is the most common
layout for Software Cities. It uses binpacking to place rectan-
gles (i.e., buildings and districts) into the smallest possible
common rectangle and sorts them in descending order of
their width, depth, or base area. The TreeMap layout consid-
ers only the hierarchical code structure.

Another way to layout a Software City is the Street Lay-
out [19, 22] that is mainly used to visualize the development
history. The buildings are organized by streets, classes of the
same package are placed on the same street. However, Street
Layouts also only consider the hierarchical code structure
and require extensions that also show other dependencies as
cluttered arcs atop the city. These layouts also suffer from
the visual clutter and the overwhelming number of displayed
arcs that we avoid.

Structure101: Structure101 [7, 8] is a tool to analyze soft-
ware architectures. Its so-called Levelized Structure Maps
(LSM) display dependencies among components in 2D.
Similar to our approach, LSM also organizes the compo-
nents into a stack of so-called levels. A component is shown
in a level iff it depends on at least one component in the level
directly below it. Components on the same level have no
dependencies among them. Components transitively depend
on others from the highest to the lowest level. Components

Fig. 17 Filter helpfulness for
typical software engineering
tasks

documentation

quality

maintenance

testing

construction

not at all a little to some extent rather much very much

Would the filter on components' dependencies help you in software...

(a) Helpfulness of the component dependency filter.

documentation

quality

maintenance

testing

construction

not at all a little to some extent rather much very much

Would the filter on single use cases help you in software...

(b) Helpfulness of the use case filter.

 SN Computer Science (2022) 3:511511 Page 16 of 18

SN Computer Science

on the lowest level do not have any dependencies. In the
LSM representation there is also no need to use arrows to
show dependencies, except for cyclic ones.

Graph Layout Techniques: Layered Graph Drawing
organizes nodes in layers with most edges going in the
same direction and with as few crossings and as few edges
in the opposite direction. This is the key idea of our layout
as well. Most layered graph drawing algorithms are based
on the work of Sugiyama et al. [10] or its improvements [23,
24]. To avoid the NP-hardness of many of its steps (e.g., the
Minimum Feedback Arc Set problem [11]), heuristics are
used in practice. To avoid suffering from the complexity of
this general problem, our heuristics exploit three properties
of dependency graphs of software systems: (a) there are only
a few cycles, (b) they are short, and (c) edges in general only
belong to at most one cycle.

As far as we know, we are the first to apply layered graph
drawing to layout Software Cities. We present domain spe-
cific heuristics that result in few feedback arcs, i.e., architec-
ture violating dependency edges that cause cyclic dependen-
cies in software.

Another common approach to make a graph easier
to understand is Edge Bundling to reduce visual clutter
[25–28]. But as we visualize most of the dependencies
implicitly, there are too few arcs for such techniques anyway.

Dynamic Aspects

Trace Clustering: Thaler et al. [29] give a detailed over-
view and classify trace clustering techniques. We experi-
mented with some common methods and determined that a
density-based method is well suited for the trace data, but
other methods may also fit. For visualizing dynamic soft-
ware aspects it is not the clustering method that matters, but
what it accomplishes. The clustering reduces the number
of traces that we need to show explicitly as arcs, resulting
in a less cluttered visualization. This allows us to visualize
the dynamic behavior in the Layered Software City without
losing clarity and comprehensibility.

Trace Visualizations: Common trace visualizations are
graph representations [30–32], circular bundles [33], mas-
sive sequences [34], and hierarchical edge bundles [35].
To visualize traces in a Software City some approaches
use straight lines between buildings [36], even with vary-
ing thickness [37], while most often arcs are spanned over
buildings [38]. To avoid overloading the visualization with
many traces edge-bundling is used [39]. SArF Map [40]
uses a trace clustering to layout the buildings in a Software
City and then visualizes all traces as edge-bundled arcs. Our
approach reduces the number of explicitly displayed arcs
as we only show one representative of a cluster and also
provide filtering options.

Conclusion

To understand the functioning of a software system,
one needs to understand the static dependencies among
individual components. Showing all these dependencies
explicitly, for example using arrows, leads to a confusing
representation that is difficult to grasp. Based on ideas
from layered graph drawing and using the well-researched
city metaphor, this article presented a new layout for visu-
alizing software. By encoding most dependencies in the
layering, the proposed layout avoids all but those arrows
that potentially indicate architecture violations. While
minimizing the number of such so-called feedback arcs
is a NP-hard problem, we presented heuristics that work
well for cyclic dependencies in real software systems. In a
controlled experiment we challenged professional software
engineers with comprehension and refactoring tasks. They
performed better (43%) and faster (5.3%) with the layered
layout compared to the default layout of a Software City.

We extended the Layered Software City with a night
view that displays dynamic dependencies as arcs atop
buildings. To reduce the number of arcs and to preserve
clarity, we suggested a clustering of similar traces and dis-
play only one representative trace per cluster, that usually
corresponds to a use case of the studied application. Two
additional filtering options, on the components’ dependen-
cies and on a single use case, further reduce the number
of arcs. In a short study with professional engineers we
investigated the usefulness of these two filters and learnt
that 81.8% of the subjects do not need the visualization of
all dependencies to perform software engineering tasks.

While our current work has been focused on software
architects analyzing applications on their own, in the
future we want to explore collaboration possibilities in
the Software City to gain a better understanding in ana-
lyzing the software together. Open questions here include
how to share information appropriately or how distinctive
collaborators should be able to move around.

The source code of our visualizations and the raw data
of the quantitative evaluations are available from https://
github. com/ qaware/ holow are- softw are- city.

Funding Open Access funding enabled and organized by Projekt
DEAL. No funding was received to assist with the preparation of this
manuscript.

Declarations

 Conflict of interest Veronika Dashuber receives a salary from com-
pany QAware GmbH. Michael Philippsen declares he has no financial
interest.

https://github.com/qaware/holoware-software-city
https://github.com/qaware/holoware-software-city

SN Computer Science (2022) 3:511 Page 17 of 18 511

SN Computer Science

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

 1. Telea A. Data visualization: principles and practice. Boca
Raton: CRC Press; 2008. https:// doi. org/ 10. 1201/ b10679.

 2. Weninger M, Makor L, Mössenböck H. Memory cities: visual-
izing heap memory evolution using the software city metaphor.
In: Proc. 8th IEEE Working Conf. on Softw. Vis. 2020; pp.
110–121. IEEE.

 3. Caserta P, Zendra O. Visualization of the static aspects
of software: a survey. IEEE Trans Vis Comput Graph.
2011;17(7):913–33.

 4. Alam S, Dugerdil P. EvoSpaces visualization tool: exploring
software architecture in 3D. In: Proc. 14th Working Conf. on
Reverse Eng., Vancouver, Canada. 2007: pp. 269–270.

 5. Dhambri K, Sahraoui H, Poulin P. Visual detection of design
anomalies. In: Proc. 12th Europ. Conf. on Softw. Maintenance
Reeng., Athens, Greece, 2008: pp. 279–283.

 6. Wettel R, Lanza M. Visualizing software systems as cities. In:
Proc. 4th IEEE Intl. Workshop on Vis. Softw. Understanding
Anal., Banff, Canada, 2007; pp. 92–99.

 7. Headway Software Technologies Ltd: Levelized Structure Map
(LSM), 2019. https:// struc ture1 01. com/ help/ java/ studio/ Conte
nt/ restr uctur e101/ lsm. html. Accessed: 10 Jun 2020.

 8. Muccini H, Tekinerdogan B. Software architecture tool dem-
onstrations. In: Proc. Working IEEE Conf. on Softw. Arch.,
Helsinki, Finland, 2012; pp. 84–85.

 9. Dashuber V, Philippsen M, Weigend J. A layered software city
for dependency visualization. In: Proceedings of the 16th Interna-
tional Joint Conference on Computer Vision, Imaging and Com-
puter Graphics Theory and Applications, Online, 2021; pp. 15–26.

 10. Sugiyama K, Tagawa S, Toda M. Methods for visual under-
standing of hierarchical system structures. IEEE Trans Syst Man
Cybern. 1981;11(2):109–25.

 11. Karp RM. Reducibility among combinatorial problems. In:
Complexity of computer computations. New York: Springer;
1972. p. 85–103.

 12. Zimmermann T. Changes and bugs—mining and predicting
development activities. In: Proc. IEEE Intl. Conf. on Softw.
Maintenance, Edmonton, Canada, 2009; pp. 443–446.

 13. Hart SG, Staveland LE. Development of NASA-TLX (task load
index): results of empirical and theoretical research. In: Human
mental workload. Amsterdam: Elsevier; 1988. p. 139–83.

 14. Hart SG. NASA-task load index (NASA-TLX); 20 years later.
In: Proc. Annu. Meeting of Human Factors and Ergonom. Soc.,
Santa Monica, CA, 2006; pp. 904–908

 15. Rousseeuw PJ. Silhouettes: a graphical aid to the interpreta-
tion and validation of cluster analysis. J Comput Appl Math.
1987;20:53–65.

 16. Aranganayagi S, Thangavel K. Clustering categorical data using
silhouette coefficient as a relocating measure. In: Intl. Conf. on

Comput. Intelligence and Multimedia Applications. 2007; pp.
13–17. IEEE, Tamil Nadu, India.

 17. Layton R, Watters P, Dazeley R. Evaluating authorship distance
methods using the positive Silhouette coefficient. Nat Lang Eng.
2013;19(4):517–35.

 18. Zhou HB, Gao JT. Automatic method for determining clus-
ter number based on silhouette coefficient. Adv Mater Res.
2014;951:227–30.

 19. Caserta P, Zendra O, Bodenes D. 3D hierarchical edge bundles
to visualize relations in a software city metaphor. In: Proc. IEEE
Intl. Workshop on Vis. Softw. for Understanding and Anal.,
Williamsburg, VA, 2011; pp. 1–8. https:// doi. org/ 10. 1109/ VIS-
SOF. 2011. 60694 51.

 20. Fittkau F, Waller J, Wulf C, Hasselbring W. Live trace visu-
alization for comprehending large software landscapes: The
ExplorViz approach. In: Proc. IEEE Working Conf. on Softw.
Vis., Eindhoven, The Netherlands, 2013; pp. 1–4.

 21. Vincur J, Navrat P, Polasek I. VR city: software analysis in virtual
reality environment. In: Proc. IEEE Intl. Conf. on Softw. Qual-
ity, Reliability and Security Companion, Prague, Czech Republic,
2017; pp. 509–516.

 22. Steinbrückner F, Lewerentz C. Representing development history
in software cities. In: Proc. 5th Intl. Symp. on Softw. Vis., Salt
Lake City, UT, 2010; pp. 193–202.

 23. Dujmović Vea. On the parameterized complexity of layered graph
drawing. In: Proc. Europ. Symp. on Algorithms, Århus, Denmark,
2001; pp. 488–499.

 24. Eiglsperger M, Siebenhaller M, Kaufmann M. An efficient imple-
mentation of Sugiyama’s algorithm for layered graph drawing. In:
Proc. Intl. Symp. on Graph Drawing, New York, NY, 2004; pp.
155–166 .

 25. Gansner ER, Hu Y, North S, Scheidegger C. Multilevel agglom-
erative edge bundling for visualizing large graphs. In: Proc. IEEE
Pacific Vis. Symp., Hong Kong, China 2011; pp. 187–194.

 26. Holten D, Van Wijk JJ. Force-directed edge bundling for graph
visualization. Comput Graph Forum. 2009;28(3):983–90.

 27. Pupyrev S, Nachmanson L, Kaufmann M. Improving layered
graph layouts with edge bundling. In: Proc. Intl. Symp. on Graph
Drawing, Konstanz, Germany, 2010; pp. 329–340.

 28. Zhou H, Xu P, Yuan X, Qu H. Edge bundling in information visu-
alization. Tsinghua Sci Technol. 2013;18(2):145–56.

 29. Thaler T, Ternis SF, Fettke P, Loos P. A comparative analysis of
process instance cluster techniques. In: Proc. 12th Intl. Conf. on
Wirtschaftsinformatik, Osnabrück, Germany. 2015.

 30. Knupfer A, Brunst H, Nagel WE. High performance event trace
visualization. In: Proc. 13th Euromicro Conf. on Parallel, Distrib-
uted and Network-Based Processing, Lugano, Switzerland, 2005;
pp. 258–263 .

 31. Maoz S, Kleinbort A, Harel D. Towards trace visualization and
exploration for reactive systems. In: Proc. IEEE Symp. on Visual
Languages and Human-Centric Computing, Coeur d’Alene, ID,
2007; pp. 153–156.

 32. Trümper J, Bohnet J, Döllner J. Understanding complex multi-
threaded software systems by using trace visualization. In: Proc.
5th Intl. Symp. on Softw. Vis., Salt Lake City, UT, 2010; pp.
133–142. https:// doi. org/ 10. 1145/ 18792 11. 18792 32.

 33. Cornelissen B, Holten D, Zaidman A, Moonen L, van Wijk JJ,
van Deursen A. Understanding execution traces using massive
sequence and circular bundle views. In: Proc. 15th IEEE Intl.
Conf. on Program Comprehension, Banff, Canada, 2007; pp.
49–58.

 34. Elzen SVD, Holten D, Blaas J, van Wijk JJ. Dynamic network
visualization with extended massive sequence views. IEEE Trans
Vis Comput Graph. 2014;20(8):1087–99.

 35. Holten D, Cornelissen B, van Wijk JJ. Trace visualization using
hierarchical edge bundles and massive sequence views. In: 4th

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1201/b10679
https://structure101.com/help/java/studio/Content/restructure101/lsm.html
https://structure101.com/help/java/studio/Content/restructure101/lsm.html
https://doi.org/10.1109/VISSOF.2011.6069451
https://doi.org/10.1109/VISSOF.2011.6069451
https://doi.org/10.1145/1879211.1879232

 SN Computer Science (2022) 3:511511 Page 18 of 18

SN Computer Science

IEEE Intl. Workshop Vis. Softw. for Understanding and Anal.,
Banff, Canada, 2007; pp. 47–54. https:// doi. org/ 10. 1109/ VISSOF.
2007. 42906 99.

 36. Waller J, Wulf C, Fittkau F, Dohring P, Hasselbring W. Syn-
chrovis: 3D visualization of monitoring traces in the city meta-
phor for analyzing concurrency. In: Proc. 1st IEEE Work. Conf.
on Softw. Vis., Eindhoven, The Netherlands, 2013; pp. 1–4.

 37. Fittkau F, Waller J, Wulf C, Hasselbring W. Live trace visualiza-
tion for comprehending large software landscapes: The ExplorViz
approach. In: 1st IEEE Work. Conf. on Softw. Vis., Eindhoven,
The Netherlands, 2013; pp. 1–4. https:// doi. org/ 10. 1109/ VISSO
FT. 2013. 66505 36.

 38. Dugerdil P, Alam S. Execution trace visualization in a 3D space.
In: Proc. 5th Intl. Conf. on Information Technology, Las Vegas,
NV, 2008; pp. 38–43.

 39. Caserta P, Zendra O, Bodenes D. 3D hierarchical edge bundles
to visualize relations in a software city metaphor. In: Proc. 6th
Intl. Workshop on Vis. Softw. for Understanding and Anal., Wil-
liamsburg, VA, 2011; pp. 1–8.

 40. Kobayashi K, Kamimura M, Yano K, Kato K, Matsuo A. SArF
map: visualizing software architecture from feature and layer
viewpoints. In: Proc. 21st IEEE Intl. Conf. on Program Compre-
hension, San Francisco, CA, USA, 2013; pp. 43–52.

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1109/VISSOF.2007.4290699
https://doi.org/10.1109/VISSOF.2007.4290699
https://doi.org/10.1109/VISSOFT.2013.6650536
https://doi.org/10.1109/VISSOFT.2013.6650536

	Static and Dynamic Dependency Visualization in a Layered Software City
	Abstract
	Introduction
	Static Dependencies in a Layered Software City
	Determining the Level
	Basic Layering
	Dealing with Cycles

	Creating City Artifacts

	Evaluation of the Layered Software City Layout
	Participants
	Experiment
	Results and Discussion
	Threats to Validity

	Visualization of Dynamic Dependencies
	Trace Clustering
	Further Filter Options
	Evaluation

	Related Work
	Static Aspects
	Dynamic Aspects

	Conclusion
	References

