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Abstract
A Software City is an established way to visualize metrics such as the test coverage or complexity. As current layouting 
algorithms are mainly based on the static code structure, dependencies that are orthogonal to this structure often clutter the 
visualization and are hard to grasp. This paper applies layered graph drawing to layout a Software City in 3D. The proposed 
layout takes both the dependencies and the static code structure into account. While having the static dependencies encoded in 
the layout, we can additionally display dynamic dependencies as arcs atop the city in the night view of the Layered Software 
City. By applying a trace clustering technique we can further reduce the number of shown arcs. We evaluate the advantages 
of our layout over a classic layouting algorithm in a controlled study on a real-world project and also report on a short study 
that evaluates the visualization of dynamic dependencies. The source code of the layouting algorithm and the raw data of 
the quantitative evaluations are available from https:// github. com/ qaware/ holow are- softw are- city.

Keywords Software City · Layouting algorithm · Layered graph drawing · Dependency analysis · Architecture 
comprehension · Trace clustering

Introduction

The IT labor market is becoming more and more flexible 
and both projects and employees change frequently, while 
complex software systems with more than 200k lines of 
code have a long service life and cause significant efforts 
for understanding software in development and maintenance 
projects [1]. Hence, visualization tools that help developers 
to sooner have a correct understanding of the software and 
its behavior (dynamic processes during program execution) 
increase productivity.

Software visualizations can cover the static structure 
of the source code, the behavior, or the evolution, i.e., the 
changes of the structure over time [2]. Regardless of which 
aspects are visualized, to make the abstract software artifacts 
easier to understand for humans, they are often mapped to 
familiar real-world metaphors [3]. Several controlled experi-
ments have shown that the metaphor of a city is well suited 
[4–6]. It mainly focuses on the static aspects and represents 
components (e.g., classes) as buildings and shows containers 
of components (e.g., packages or modules) as city districts. 
There are Software Cities that also cover dynamic or evolu-
tionary aspects. The general principle is that the hierarchical 
structure of the components (e.g., package → subpackage 
→ class) is used to map artifacts to the floorplan of the city. 
Proximity in the source code results in proximity in the city, 
but not the other way round.

Nested TreeMaps and Street Views are well-known lay-
outing techniques (“Related Work” discusses them in some 
detail). These layouts only consider the hierarchical code 
structure, i.e., contains relations. Typically, extensions visu-
alize other dependencies among the components as arcs atop 
the buildings. This often leads to dependency arcs that are 
scattered across the entire visualization, more overwhelming 
than helping to understand them. To motivate our layout, 
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Fig. 1a visualizes the “core” module of the open source 
Spring framework1 with the TreeMap layout, drawing all 
usage/invocation dependencies as arcs atop the buildings. 
There are far too many arcs to be helpful in understand-
ing the software architecture. The visualization of the same 
software with our layout in Fig. 1b is much clearer as it 
takes both the code structure and the directed dependencies 
into account. We organize buildings in layers. Most of the 
dependencies are implicit from one layer to the next. We 
only draw a dependency as an explicit arc if its orientation is 
opposing the order of the layering. These arcs often indicate 
architecture violations. Note that the TreeMap visualization 
uses simple buildings of the same sizes and colors, while 
in addition to showing only a few (problematic) arcs our 
visualization also makes architecture violations even more 
clear by mapping metrics to building properties, see “Creat-
ing City Artefacts”.

Also commercial tools like Structure101 [7, 8] suffer 
from the lack of clarity. Figure 1c visualizes the Spring 

framework with Structure101. The layout is described in 
“Related Work” in more detail. In contrast to our layered 
3D city representation, Structure101 is restricted because 
(a) zooming in/out and moving on the x-/y-axes are the only 
ways to navigate, while we offer arbitrary angles, (b) the 
nodes do not carry other information while we map metrics 
to the width, height, depth, and color of the city artifacts to 
promote a better understanding of the system. Our red build-
ings in Fig. 1b show dependency cycles more prominently. 
For instance, note the tall red tower in the violet circle that 
tells the software architect at a glance that this component 
is heavily used and hence to urgently refactor the cyclic 
dependency. In contrast, the same arc in the violet is easy to 
miss in Fig. 1c. Also, our red coloring of packages (orange 
cycles) indicates easier-to-resolve internal dependency 
cycles. Structure101 does not provide any such highlighting.

To sum it up, our main contribution is a layout that is 
based on layered graph drawing. The proximity of com-
ponents in our layout correlates with both the dependency 
structure and the hierarchical source code structure. By 
encoding most dependencies in the layers instead of drawing 
them as explicit arcs, we significantly reduce their numbers 
and increase the overall clarity of the Software City. Arcs 
that are shown explicitly, often indicate architecture viola-
tions. To our knowledge we are the first to apply layered 
graph drawing to a 3D layouting of a Software City.

This article extends our work presented at the IVAPP 
2021 conference [9] and also visualizes dynamic dependen-
cies in the Layered Software City. As showing all dynamic 
dependencies as arcs would again clutter the visualization, 
a clustering technique finds use case clusters in the trace 
data and then only displays one representative per cluster. 
To further clean out the view, there are also filters both for 
the dependencies from/to a particular component and for 
single use cases.

This article is organized as follows: “Static Dependen-
cies in a Layered Software City” explains the Layered Soft-
ware City in detail, followed by a quantitative evaluation in 
“Evaluation of the Layered Software City”. “Visualization 
of Dynamic Dependencies” covers and evaluates the visuali-
zation of dynamic dependencies. “Related Work” discusses 
related work before we conclude in “Conclusion”.

Static Dependencies in a Layered Software 
City

We propose to not only use the hierarchical contains rela-
tionships among elements of the static source code to build 
the layout of the Software City but to organize the City in 
levels that also reflect the depends-on relationships between 
artifacts. To achieve this, we propose to arrange the compo-
nents on levels. As the components on one level in general 

(a) TreeMap layout with all dependency arcs.

(b) Our layered layout. Most dependencies encoded in the layers; only possible
architecture violation arcs remain.

(c) Structure101 2D visualization with possible architecture violation arrows.

Fig. 1  Visualization of the Spring core source code

1 https:// spring. io/ proje cts/ spring- frame work.

https://spring.io/projects/spring-framework
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depend on the level below, these dependencies no longer 
need to be shown explicitly. Only dependencies in the other 
direction form cycles that are often problematic and should 
be avoided in well-designed software. To retain the static 
structure of the source code in the layout, the organization of 
city artifacts into layers is a recursive process, starting from 
the lowest level of detail (for example, class level).

The main steps for constructing a Layered Software City 
are: 

1. Import raw contains and depends-on relations from the 
static source code. As in general the proposed layout is 
applicable to arbitrary graphs with two types of rela-
tions, we skip here how our implementation obtains the 
graph from a given code base. For details see “Evalua-
tion of the Layered Software City”.

2. Determine the level of each component and identify 
cyclic dependencies, see “Determining the Level” for 
details.

3. Create city artifacts for the components and position 
them based on their levels, see “Creating City Arte-
facts”.

4. Draw arcs for identified cyclic dependencies.

The two steps Crossing Minimization and Horizontal Coor-
dinate Assignment of standard layered graph drawing [10] 
are not necessary for our layout because (a) we do not show 

most of the edges (arcs) in our visualization and (b) we con-
sider the hierarchical structure of the software components, 
i.e., the nodes, which already ensures a certain proximity of 
nodes in our layout.

Determining the Level

In graph terminology we determine the layer of a node. 
We search for a layered drawing of a directed graph with 
two types of directed edges: structural contains edges and 
(weighted) depends-on edges. Let us assume an example 
dependency graph as in Fig. 2a with its structure edges 
(orange) and its dependency edges (dashed green with 
weights). The dependency edges in red are those we visual-
ize explicitly. Let us postpone how we identify such cycle-
building edges. We omit them when we present the basic 
idea of the layering algorithm. The hierarchical structure 
graph (orange edges only) is a rooted tree. Dependencies 
only exist between leaf nodes of the hierarchical structure.

A graph with many dependency edges is cluttered, con-
fusing, and not very helpful for understanding the software. 
In the example, it needs a close look to see that subpack-
age2 is providing basic components to the rest of the sys-
tem. What a software architect is mainly interested in when 
analyzing the code, are both the dependencies within a (sub)
package and also the dependencies between (sub)packages, 
i.e., the dependencies per and among levels of abstraction.

Fig. 2  Example of contains and 
depends-on relationships with 
cyclic dependencies
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Basic Layering

We construct such a layout recursively. The base case is 
the layouting of those leaf nodes of the structural hierarchy 
that have a common parent. Here, we chose a layout that is 
inspired by a topological sort of the depends-on relations 
between those leaf nodes. We discuss the details below.

To make the dependency structure much clearer for 
the architect the recursive case one level up coarsens the 
graph as shown in Fig. 2b. Dependency edges between 
leaf nodes of the structural hierarchy turn into dependency 
edges between their respective parents in the structural tree. 
Resulting self-loops are dropped (3 times for subpackage1 
and two times for subpackage2 in the example). Parallel 
dependency edges are fused and their count is kept as the 
weight of the fused edge. In Fig. 2b the fused depends-on 
edge has weight 3. The weights later become relevant when 
there are cyclic dependencies. Since the coarsened graph 
again has all its depends-on edges only between its leaves, 
we apply the same layouting inspired by topological sort. 
The recursion terminates at the source(s).

Let us now discuss the base case. We sort all the n 
leaf nodes that have a common parent in the structural 
hierarchy in a topological way. For the base case, only the 
e depends-on edges among the set n matter. We ignore 

dependency edges that come into this set from other leaf 
nodes or that leave the set. Whereas a text-book topologi-
cal sort has room for variation, we determine the unique 
layer of a node as its maximal path length from it to the 
last node among the set n, that has no more outgoing 
dependencies. Listing 1 holds the pseudo code. Its com-
plexity is O(|n| + e) with e depends-on edges among the 
nodes in n.

Consider the shaded area in Fig. 2a. As classC has no out-
going depends-on edges that stay within the set n, its layer is 
0. There are two paths from classA to classC. As the longest 
one has length 2, this is the layer of classA.

Once the node layers in n are computed, we draw them 
layer-by-layer, leaving out depends-on edges from layer i to 
j when i < j . We draw items on the same layer in a random 
order. In the example, the three class nodes of the shaded 
area in Fig. 2a turn into the three layers in the shaded area 
in Fig. 3a (in 2D for simplicity). As the layouting process 
is recursive, the layers determined for the coarsened graph 
in Fig. 2b result in the shown layering of the subpackages 
in Fig. 3a.

In this visualization the architect can easily identify that 
items depend on the items below them. The structural hier-
archy is also still present. Note that while the abstract graph 
in Fig. 3a ignores the cyclic arcs, they are already present in 

Fig. 3  Dependencies encoded in 
the layering
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the full visualization in Fig. 3b. “Creating City Artefacts” 
discusses the building properties.

In our layouting task a given graph has a total of N nodes, 
each of which has at most one parent, i.e., it is in a set n only 
once. In the recursive procedure described above each of the 
total E depends-on edges is considered only once, in one of 
the sets e. The total asymptotic complexity of the layering 
is hence O(N + E).

f unc t i on topoLayout ( nodes n ) :
degree [ ] = [ Out degree s o f n ]
q = { s e t o f a l l dependency l e av e s }
cur rent = 0
while q i s not empty :

qNew = {}
for each node k ∈ q :

k . l a y e r = current
for each incoming edge s→k :

degree [ s ]−−
i f degree [ s ] == 0 :

qNew ∪= { s }
q = qNew

current++

Listing 1: Layouting inspired by topological sort.

Dealing with Cycles

If there are cyclic dependencies, there are edges whose 
directions do not fit the layering and thus need to be visual-
ized, see the cycle-building arcs in Fig. 3b. The fewer arrows 
a drawing has and the shorter they are, the easier to under-
stand the visualization is. In the example, it is apparent that 
the dependency from classB to classA as well as that from 
classD to classC need refactoring.

While in general finding this ideal visualization boils 
down to the NP-hard Minimum Feedback Arc Set problem 
[11], for software systems we can give domain specific heu-
ristics that usually work well. The underlying assumption 
is that a software system is not utterly broken and that the 
majority of the dependencies fits to the layered software 
architecture, i.e., first that cyclic dependencies are rare and 
second that they are mostly quite local and do not affect 
software artifacts that are “far away” in the code, either syn-
tactically or semantically. The reason is that such issues are 
architecture violations that developers have learnt to avoid 
and because it is a common refactoring task to remove 
them. In the layered drawing we do not show dependen-
cies that fit the general layering of the software architec-
ture, i.e., its major direction. The (feedback) arrows of the 
few dependencies that have the opposite direction and that 
close cycles, highlight potential architecture problems. If in 
a broken software architecture there is no identifiable flow of 
dependencies in one major direction, i.e., if there is no class 
layering of the software architecture, a detailed analysis of 

the source code must be performed anyway. In such cases it 
does not really matter which of the cycle-building edges is 
highlighted by means of an explicit arrow.

The remainder of this subsection discusses in detail how 
we identify the (few and short-range) cycle-building edges 
that need to be visualized.

As suggested by Sugiyama et al. [10], a pre-processing 
in each of the above recursive steps already removes cycles 
from the graph. Once a depends-on cycle among the leaf 
nodes of the structural hierarchy that have a common par-
ent is detected in a depth-first traversal, we immediately 
remove one of the cycle-building edges. The acyclic rest 
of the graph can be drawn in layers and without arrows as 
before. The removed edge is later added as an arrow atop 
those layers. Although conceptually a depends-on edge may 
belong to several cycles, we have not seen such a case in 
practice. Dependency cycles often seem to be disjunct in 
real software. Even if the cycles are not disjunct, we argue 
that the cycles still belong to disjunct use cases. They have 
most likely been implemented at different times and solved 
different tasks. Thus, from a software architect’s point of 
view, there is no need to find the absolute global optimum 
when minimizing the number of arrows. So in addition to 
having only few cycles and only relatively short ones in our 
graphs, edges in general only belong to at most one cycle. 
That makes the visualization much simpler than solving 
the general Minimum Feedback Arc Set problem: with 
linear asymptotic complexity, we can simply traverse the 
graph. Once we detect a cycle in this traversal, we remove it 
instantly as soon as we found it. While there are E depends-
on edges in the given graph, the cycle only has e << E 
edges.

We use two heuristics to pick which of the e edges of a 
cycle to remove. Heuristics 1: If there are two edges in a 
cycle and one edge has a higher weight, the higher weight 
indicates the layering that originally was planned for the 
software system. Hence, we pick the edge with the minimal 
weight for removal. In the cycle in Fig. 2b it is obvious that 
subpackage1 is meant to depend on subpackage2 and that the 
red edge is the dependency that needs to be refactored, i.e., 
that should turn into an explicit arrow. Heuristics 2 comes 
in if the cycle has more than one edge with minimal weight. 
Let’s call these edges removal candidates. To motivate the 
heuristics, consider the shaded area in Fig. 2a. There are two 
ways to resolve the cycle between classA and classB, as the 
weight of the edges is the same. Removing the (red) edge 
from classB to classA means for the layering that classA 
is placed above classB. Removing the (green) edge from 
classA to classB results to classB above classA. Which 
one is better for the software architect? A common design 
principle of software is that the more complex component 
uses the less complex one. Heuristics 2 uses the correla-
tion between complexity and the number/weight of outgoing 



 SN Computer Science (2022) 3:511511 Page 6 of 18

SN Computer Science

dependencies of a component [12]. In Fig. 2a, the sum of 
the weights of the outgoing edges of classA is 3, whereas for 
classB it is only 2. As classA is more complex, the software 
architect expects the visualization in Fig. 3.

Hence, heuristics 2 is: if there are two removal candidate 
edges (with the same minimal weight) the one whose source 
node has a larger total outgoing weight reflects what was 
planned to be the node that makes use of others in the soft-
ware system, as it represents the more complex component. 
So we pick the candidate edge for removal whose source 
node has the minimal total outgoing weight.

f unc t i on removeCycle ( edges e ) :
minWeight = MaxInt
removalCands1 = {}
// h e u r i s t i c s 1
for each edge k ∈ e :

i f k . weight < minWeight :
minWeight = k . weight
removalCands1 = {k}

e l s i f k . weight == minWeight :
removalCands1 ∪= {k}

i f | removalCands1 | == 1 :
remove edge ∈ removalCands1

else :
minWeight = MaxInt
removalCands2 = {}
// h e u r i s t i c s 2
for each e = (se → te) ∈ removalCands1 :

out = { s e t o f a l l outgoing
edges o f se}

weight =
∑

o∈outo . weight
i f weight < minWeight :

minWeight = weight
removalCands2 = {e}

e l s i f weight == minWeight :
removalCands2 ∪= {e}

i f | removalCands2 | == 1 :
remove edge ∈ removalCands2

else :
remove random edge ∈
removalCands2

Listing 2: Cycle removal heuristics.

Listing 2 shows the pseudo code of the two-stage heu-
ristics for removing cycles. It first traverses the edges e 
that form a cycle of length |e| to find the ones with mini-
mal weights. For the cycle in Fig. 2b this traversal finds 
only one candidate for removal. Heuristics 2 is not needed 
in this example. For subpackage1 there are two candidates 
of minimal weight 1. In the worst case all |e| edges have the 
same minimal weight, i.e., the traversal for heuristics 2 takes 
another O(|e|). After removing an edge, |e| − 1 edges remain 
that may conceptually be part of other cycles. This leads to 
a worst-case complexity of O(|e|2) per cycle of length e. 
For general graphs with potentially many long cycles the 
complexity would add up to O(|E|2) per each of cycles say i. 

This is much worse than what general purpose heuristics for 
the Minimum Feedback Arc Set problem achieve. But since 
our special case only has few, say i, cycles and each cycle 
is short, and each edge belongs to one cycle at most, for the 
overall complexity we have O(

∑
e2
i
) << O(i ⋅ �E�2) . In prac-

tice we see cycle lengths ei ≤ 3 , resulting in a constant upper 
bound per cycle, for a small number of cycles. As a result, 
the removeCycles function rarely needs to be called, and 
if so, then only with two to three edges as parameters from 
which one must be selected for removal. In practice the cycle 
removal takes only a few hundred milliseconds even for large 
software projects. For example, it took 90 ms for the 19.732 
dependencies of the benchmark project, see “Evaluation of 
the Layered Software Citylayout”, on an Intel Core i7 laptop.

The layout is stable as long as the cyclic dependencies 
do not change. If the dependencies in the system change, 
a class may be assigned to a different level than before. 
Since such a change probably indicates an unwanted modi-
fication of the software architecture, it is useful to see this 
in a shift of the layers.

Creating City Artifacts

What is left after having determined on which level to put 
a component is how to employ other visual properties of 
its building or district. We use dependency metrics for 
this purpose since we aim at visualizing dependencies in 
software.

We set the height of a building based on the number of 
incoming dependencies. The square area (width = depth) 
reflects the outgoing dependencies. Tall towers describe 
classes that are used a lot, while flat buildings with a wide 
footprint visualize classes that use many other components. 
The color of a building indicates whether or not the class 
belongs to a cyclic dependency. We use a red color to mark 
cycles on buildings as well as on the districts. We display the 
identified edges of cycle-building dependencies with explicit 
arcs between the components. The arcs show the dependen-
cies that probably represent architectural violations. When a 
user clicks on a component (building or district), we display 
its name.

Fig. 4  Zoomed-in view of the Spring core Layered Software City
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Figure 4 shows a zoomed-in view of the Spring core visu-
alization, where the described city properties can be seen 
in detail. Buildings of components that form a cycle are 
colored in red, as well as the corresponding districts. The 
cyclic dependencies appear as arcs between the respective 
buildings. The tall buildings in the background are examples 
of heavily used components, while the flat buildings in the 
foreground represent components that use many others.

Evaluation of the Layered Software City 
Layout

In order to answer the research question “Does the layered 
layout for Software Cities help to better understand the archi-
tecture of a software project”, we evaluated our approach in 
a controlled experiment. In the study we used a real-world 
software system, i.e., version 9.0.0 of the open source pro-
ject SolrJ,2 which is the Java API for Apache Solr, a stan-
dalone enterprise search server for any kind of documents. 
SolrJ has 177 740 lines of code in 974 classes/interfaces. 
We analyzed the dependencies of the SolrJ jar file with the 
command line tool jdeps that is included in JavaSE since 
version 8. It analyzes all static dependencies between Java 
class files and stores the depends-on relations in a text file. 
We derived the contains relations from the class name, e.g., 
package.subpackage.class. This resulted in 19 732 
depends-on relations. We created the Software City of SolrJ, 
once with the most common TreeMap layout (see Fig. 5) and 
once with our new layout (see Fig. 6). In the study, the par-
ticipants used the Software City visualization to find answers 
for a set of questions within a given time limit.

Note that a standard TreeMap Layout would show all 
dependencies as illustrated in Fig. 1a. Figure 7a shows how 
the spot in the white circle on the right of Fig. 5 would have 
looked like if we would show all dependency arcs. In a pre-
study participants were overwhelmed with the many depend-
ency arcs and were unable to answer any questions at all. 
Therefore, we improved the TreeMap layout— like in our 
layout—by only showing the architecture violation arcs plus 

the affected classes and with the dependency metrics used 
to determine the visual properties of their buildings. Fig-
ure 7b illustrates the effect: cyclic dependencies and affected 
classes are easier to see in the enhanced TreeMap Layout.

Since the properties of the buildings and districts (height, 
width, depth, color) were identical in both the enhanced 
TreeMap Layout and in our layered layout and as also the 
representation of cyclic dependencies with arcs was the 
same for both cities, the only difference was the layout.

Participants

A total of 30 professional software engineers of QAware 
conducted the study during their working hours. They 
all have a computer science or similar background and 
are familiar with concepts such as software architecture, 
dependencies, and cycles. The company provided the 
resources because they are looking for a visualization that 
their employees can use to get productive in newly assigned 
projects more quickly. The supervisor knew the participants 
from work. The professional experience of the test persons 
ranged from 1 month to over 10 years. The majority of the 
test persons have a work experience of 2–5 years (43.3%), 
see Fig. 8.

We randomly assigned 15 participants to the Enhanced 
TreeMap group and 15 to the group that uses the Layered 
Software City layout. We had only two female participants, 
one in each group. None of the participants had used a Soft-
ware City visualization before. The participants only knew 
that the purpose of the study was to pick among two layouts. 
All participants were informed that they would solve tasks 
and that both the answers and the response times would be 

Fig. 5  Software City with TreeMap layout of SolrJ

Fig. 6  Layered Software City of SolrJ

2 https:// lucene. apache. org/ solr/.

https://lucene.apache.org/solr/
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documented. They were also told that they would have to fill 
out a questionnaire afterwards.

Experiment

The experiment was performed remotely. The participants 
received executable files of the visualizations in advance. 
The study itself was then conducted via video conference 
and screen sharing. To warm up, all test persons initially 
received a playground project, which was also created with 
the layout of their respective group. The participants had five 
minutes to get familiar with the navigation. During this time, 
the supervisor used a script to explain the visual properties 

(height, footprint, color) as well as the layout. Participants 
were allowed to ask questions.

After this familiarization phase, the SolrJ study started. 
The participants had to solve 7 tasks in which they had to 
analyze the software architecture: 

1. Which class is the entry point in SolrJ? (2 min)
2. Locate package “util”. (2 min)
3. Locate package “impl”. (2 min)
4. Which dependency would you refactor in a 1–1 cycle of 

your choice? (2 min)
5. Find the component in the system that is used most. (1 

min)
6. Find a package with a deep dependency tree and one 

with a flat one. (4 min)
7. Specify how you would refactor all cycles in package 

“noggit”. (4 min)

The tasks were tailored to the software system that the par-
ticipants were supposed to analyze. Nevertheless, we asked 
questions aimed at skills that are generally required for soft-
ware analysis. Tasks #1 to #3 reveal how well and quickly 
participants can orientate within the visualization. Tasks #4 
and #7 expose whether the visualization supports refactor-
ing issues. And tasks #5 and #6 target the question of how 
well a layout can give a broad overview of the architecture.

The tasks were posed one after the other. The supervisor 
did not give any feedback on the correctness of the answers 
and hence on the subject’s comprehension of the software 
architecture. The upper part of Fig. 9 holds the results.

There was a maximal response time per task, given in 
parentheses above. Time measurements started once a task 
was posed. If no answer was given within the allotted time, 
the answer was considered incorrect and the time limit was 
noted with an added fail mark (the red x with the number 

(a) TreeMap layout with all dependencies shown.

(b) Enhanced TreeMap Layout with only cycle-building
edges and our building properties.

(c) Cycles in our layered layout.

Fig. 7  Zoomed-in view of a spot in Figs. 5 and 6 that is relevant for 
task #4

0

5

10

11 year 2-5 years 6-10 years >10 years

TreeMap Layered

Fig. 8  Years of work experience of the participants for the TreeMap 
group in dark blue on top and for the Layered group in light blue 
below
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of failed answers in the lower part of Fig. 9). Otherwise, 
the time required was documented. The time limits per task 
suited the complexity of the question and were determined 
in a small preliminary study. After the 5 minutes warmup the 
maximal duration of the experiment was 20 minutes. Most 
participants finished sooner.

After all tasks had been completed, the participants had to 
fill out an anonymous questionnaire asking for general infor-
mation, e.g., years of professional experience or position. In 
addition, we used the standardized NASA Task Load Index 
(TLX) to make a comparable statement about the effective-
ness of the two visualizations [13]. We added this question-
naire to be able to make a more general statement about the 
effectiveness of the visualization besides the specific task 
solving. In the same style, participants were asked about how 
much the layout helped them in solving the tasks. There was 
also a free text field for further comments.

Results and Discussion

Comprehension: The total results in Fig. 9 (top) show that 
the Layered group solved the tasks significantly more cor-
rectly than the TreeMap group (significance level � = 0.01% 
determined by a Chi-squared test). In total, the Layered 
group reached a median correctness of 100% with the 
first and third quartiles spreading from 86 to 100% and 
one outlier outside the lower whisker at 56%. In contrast, 
the TreeMap group only achieved a median of 57% cor-
rect answers (quartiles spread from 37–69%). The detailed 
results for the seven tasks vary. As the Layered group was 
almost always correct, we show only the medians and outli-
ers (no boxes, no whiskers).

Task #1 has been solved correctly by 13 participants of 
the Layered group but only by one of the TreeMap group. 
The layered layout is ideal for this task as it arranges the 

Fig. 9  Comprehension (top) 
and Time (bottom). For each 
task, the distribution of answers 
for the TreeMap group in dark 
blue on top and for the Layered 
group in light blue below. Boxes 
correspond to the first and third 
quartiles (the 25th and 75th per-
centiles), whiskers drawn using 
Tukey method (1.5 IQR), points 
are outliers in the data. Failures 
to solve a task due to the time 
limit are shown with a red x and 
the number of such failures

Total

Task #7

Task #6

Task #5

Task #4.

Task #3

Task #2

Task #1

wrong 50% correct

Comprehension
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components according to their dependencies so that the 
entry point is in the foreground when users view the city 
with a perspective from the top layer. We added a green cir-
cle to highlight this in Fig. 10. The TreeMap layout places 
the items solely based on their footprint sizes. There is no 
way to guess the entry point. Even when we pick the best 
possible angle to view the city in Fig. 10b, this view still 
does not reveal the dependencies. Note that for orientation, 
the green circles are also present in Figs. 5 and 6 .

For tasks #2 and #3 the Layered group also performed 
better. In the layered layout the “util” package, which con-
tains all auxiliary classes of SolrJ, is used by many and is 
therefore further down in the layering. The “impl” pack-
age, which contains the implementation of business logic 
and uses many components, is thus shown further up. This 
helped the Layered group in finding the respective packages. 
There is no such help in the TreeMap layout.

Only for task #5 (identifying hotspots) both layouts score 
equally well. The TreeMap group is better than usual as the 
layout is compact and hotspots can be easily recognized. 
But it also shows that hotspots are not less visible with the 
layered layout, so the more extensive layout does not have 
any disadvantage.

Time: We also measured how long it took the participants 
to solve the tasks. If they exceeded the maximal allotted 
time, the task was also judged non-solved. Figure 9 (bot-
tom) shows the results of the time measurements. The time 
interval is normalized to an interval from 0 to the time limit. 
An exceeding of the time limit is marked as a separate data 
point to the right of the maximum.

The average responding time for the TreeMap group is 
40.7% (median) of the time limit while it is a better 35.4% 
for the Layered group. We do not consider the correctness 

of the answers here. Overall, the Layered group solved the 
tasks not only qualitatively better, but also significantly 
faster (significance level � = 0.01% determined by a Chi-
squared test).

The TreeMap group detected hotspots (#5) faster since 
the layout is more compact (see above). The TreeMap group 
was also faster with task #7, but there were also more wrong 
answers while the median in the Layered group was correct.

The time difference in task #4 is also worth explaining. 
The layered layout arranges buildings so that architecture 
violations in cyclic dependencies are displayed as arcs from 
lower to upper layers. Fig. 7c zooms to such a spot in the 
SolrJ visualization in Fig. 6. The Layered group easily spot-
ted such patterns. In contrast, the TreeMap group had to 
derive the dependencies and the resulting complexity solely 
based on the building properties (height and footprint, see 
Fig. 7b) since the arcs have an irregular pattern. This took 
longer, even though we did not present all dependencies 
which is the standard in Software Cities with a TreeMap lay-
out (see Fig 7a) but used our color encoding of the affected 
class buildings and only showed the architecture violating 
arcs to the TreeMap group.

There is a notable time difference for task #6. In a bird’s 
eye view, the layered layout instantly reveals which packages 
have a deep tree of dependencies. Figure 11a zooms into one 
of the packages of the SolrJ visualization in Fig. 6. A similar 
view does not help the TreeMap group at all (Fig. 11b).

Questionnaire (NASA-TLX): We also used the NASA 
Task Load Index (TLX) questionnaire [13] to measure the 
effectiveness of our visualization and to compare it to the 
TreeMap layouts in a standardized way. As the weighting 
of the six dimensions originally proposed by the authors 
has been criticized [14], we made an unweighted evaluation 

Fig. 10  Helpful viewing angles 
to solve task #1. The green 
circles can also be found in 
Figs. 5 and 6

(a) Layered: view from the top layer. (b) TreeMap: view from best corner.
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according to the latest recommendations. Figure 12 shows 
both the comparison of the two layouts in each dimension 
and the overall Task Load Index. It is obvious that the cogni-
tive load for solving the tasks (all but the physical demand 
dimension) is lower for the Layered group than for the 
TreeMap group. The median of the overall Task Load Index 
is 45% for the TreeMap group compared to significantly 
lower and better 22% for the Layered group (significance 
level � = 0.01% determined by a Chi-squared test). The par-
ticipants of the Layered group did not show any signs of 
cognitive overload.

We added an extra summary question to the question-
naire: “How much did the layout help you in solving the 
tasks?” As can be seen in Fig. 13, there is again a signifi-
cant difference between the two layouts (significance level 
� = 0.01% determined by a Chi-squared test). The TreeMap 
group found the layout in 40% (median) supportive, but 70% 
of the Layered group indicated the layout helpful.

There is only indirect evidence about the handling of 
cycles. Many participants correctly and more quickly solved 
the refactoring tasks that have to do with cycles (#4 and 
#7 in Fig. 9). In their answers they often referred to the 

Fig. 11  Zoomed-in view of 
a package with a deep tree of 
dependencies needed to solve 
task #6. Same areas as in Figs. 5 
and 6

(a) Layered layout. (b) TreeMap layout.

Fig. 12  Questionnaire (NASA-
TLX). Evaluation of the task 
load. For each question, the 
distribution of load for the 
TreeMap group in dark blue on 
top of the Layered group in light 
blue below

Overall

Frustration
Level

Effort

Overall
Performance

Temporal
Demand

Physical
Demand

Mental
Demand

0% 50% 100%

TreeMap Layered
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arrows (e.g., “I would refactor the upwards arrow”), while 
the TreeMap group solely used the building properties and 
names in their responses.

Also the free text fields varied a lot between the two lay-
outs. In the questionnaires of the TreeMap group we encoun-
tered the following word heaps at least twice: “no help”, “not 
intuitive”, “difficult to find the right conclusions”. Those 
word heaps did not occur in the Layered group. In contrast, 
there we found word heaps like “supported”, “quick to rec-
ognize”, “intuitive”, and “easy to use”.

In conclusion, the study has shown that without the visual 
clutter of too many arrows and with the layering according 
to the main direction of dependencies, our layout makes it 
easy to intuitively understand dependencies between com-
ponents. The test persons also appreciated the handling of 
cycles and considered the resulting arcs to be helpful in the 
refactoring task. The layered layout of the Software City can 
be used to analyze software architecture and outperforms 
the default TreeMap layout, even in its enhanced version. 
The layered layout can also keep up with the typical use 
cases of the TreeMap layout like detecting hotspots. Most 
participants stated that the layout supported them strongly 
in solving the tasks.

Threats to Validity

We assess the threats to validity of our study as low. 
Although we randomly assigned the participants to one of 
the two study groups, we only discovered afterwards that the 
Layered group on average had 1.5 years more professional 
experience, see Fig. 8. This imbalance is a potential threat 
as the fraction of participants with longer work experience 
(1/3 vs. 1/5) may have caused the differences in the results. 
To gauge the impact of the fraction of seniors, we re-ran the 
analysis with the data only of the less experienced partici-
pants (<6 years). The overall correctness of solving the tasks 
for the TreeMap group got worse (from 57 to 50%), while it 
remained the same for the Layered group (100%). This still 
is statistically significant despite the smaller group sizes. 
Therefore, the slightly higher seniority of the Layered group 
was not the cause of its better performance.

Since our layout is primarily designed for the visualiza-
tion and analysis of dependencies, we chose the tasks in the 
study accordingly. When designing the tasks we made sure 
to check required skills such as orientation, refactoring, and 

clarity. If the participants had to solve tasks, such as quickly 
finding the component with the largest area, the more com-
pact TreeMap layout would probably score better. For our 
study, however, the focus was on the analysis of dependen-
cies, and for this purpose we set the tasks so that they sur-
veyed generally important skills.

As male and female participants were equally distributed 
in the two groups, gender specifics did not skew the results. 
But one female participant per group is far from enough to 
conclude that the results hold for all genders.

Another potential threat is that the participants knew the 
supervisor and have guessed that the layered layout should 
perform better. As countermeasures, all participants were 
encouraged to solve the tasks as best as possible. Further-
more, the TreeMap group scored better on task #5, which 
would not have been the case if participants had tried to 
influence the outcome of the study.

As we fixed all other parameters of the visualization, such 
as colors, building heights, etc., and only changed the layout, 
non-layout differences did not influence the results. We even 
highlighted architecture violations and cyclic dependencies 
to help the TreeMap participants find spots of interests.

Visualization of Dynamic Dependencies

To view the dynamic dependencies, the user can switch the 
Software City to a night view that leaves the layered lay-
out unchanged, but instead of cyclic dependencies displays 
dynamic dependencies as arcs. We use a neon color scheme 
as it mimics currently popular computer games. As software 
developers are the users of our visualization and they often 
also play computer games, the neon color scheme appeals to 
them more. A design company also encouraged us to choose 
neon colors. We also wanted to have a clear separation 
between the visualization of static and cyclic dependencies 
for analyzing the software architecture and the visualization 
of dynamic dependencies. Thereby, the day/night view fits 
well into the city metaphor.

Figures 1a and 7a already demonstrate that displaying all 
dependencies, whether static or dynamic, leads to a cluttered 
view. To reduce the number of arcs when visualizing dynam-
ics this section presents a novel trace clustering that groups 
traces according to similar call structures, i.e., use cases, and 
only shows one representative trace per cluster instead of 

Fig. 13  “How much did the 
layout help you in solving the 
tasks?”

How much did the 
layout support you 

in solving the tasks? 

little much

TreeMap Layered
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all traces. This reduces the number of explicitly drawn arcs. 
Some additional filter options further clean out the view.

Trace Clustering

Trace Representation: Assume a software system with N 
components/endpoints. To recognize call patterns we repre-
sent each of the n traces from the runtime data as a separate 
N × N matrix. As in real-world systems N is too large for 
reasonably sized matrices, we hash the names of the end-
points to keep the dimensions of the matrix bounded. With 
the hashing of the endpoint names we achieve two advan-
tages: (a) the clustering is applicable to systems of any type 
and (b) changes such as addition/removal of endpoints can 
be modeled, since in both cases the dimension of the hash 
space remains constant. We use a hash table of size 101, a 
prime number to get an even distribution of hash values. 
For a system with over 101 endpoints this will cause colli-
sions, i.e., two or more endpoints can have the same hash. 
However, in our clustering we do not look at individual end-
points, but always at sequences of endpoint calls, i.e., entire 
traces. In practice, trace lengths are at least 10 calls long; 25 
or more calls per trace are not uncommon. The probability 
that all the hash values of all these individual calls collide 
and that different traces yield the same pattern is low. In 
the study example no such cases occurred. The matrix of a 
trace is initialized with zeros. If in the trace a component i 
calls a component j, we add the call duration to the matrix 
at position (i, j). As shown in Fig. 14 there is a matrix for 
each trace.

Clustering: We feed the matrices into a 3-component 
Principal Component Analysis and apply a DBSCAN clus-
tering. This identifies k sets of similar call patterns that most 
likely semantically belong together and form a use case of 
the application. The plot on the right of Fig. 14 uses one 
color for all traces of a cluster. Developers can manually 
assign a name to a cluster that reflects its semantics in the 
application. In general, this is the name of the use case.

We picked this clustering algorithm because (a) we do 
not know the number of clusters in advance, (b) we poten-
tially have a large number of samples, (c) the shape of the 
clusters can be diverse, and (d) we have noise in the trace 

data. We fine-tune the algorithm by adjusting the minimal 
number of samples per cluster and use a grid search with 
the silhouette score as a metrics to evaluate performance. 
The silhouette score is a textbook metrics for the quality of 
a clustering [15]. It indicates how close a point in a cluster 
is to points in neighboring clusters. The score is in [– 1,1], 
where – 1 means a false cluster assignment (worst), 0 means 
that a sample is close to the cluster boundaries, and 1 means 
that the sample is far away from the neighboring clusters 
(best). It is used in many clustering approaches to find a 
good-fitting clustering [16–18].

Cluster Representatives: We then use the point closest to 
a center of the cluster as the representative of the entire clus-
ter. Showing only this representative in the Software City 
instead of all traces significantly reduces the clutter.

To better demonstrate our visualization of dynamic 
dependencies we have to switch the running example. 
Whereas in the SolrJ system used so far the traces mostly 
follow the static dependencies, the open source blogging 
project Spring Boot Realworld Example App3 (with a modi-
fied microservice architecture) has more interesting trace 
data in load tests that ran for a total of about 15 minutes. 
Fig. 15a shows what a visualization of all traces would look 
like. The visualization is cluttered and it is difficult to follow 
the arcs to see which components communicate with each 
other. Even with a simple edge-bundling, the many arcs that 
must be displayed obscure the buildings behind them and 
additional navigation or perspective changes are needed to 
see the hidden components. In contrast, Fig. 15b only dis-
plays the trace representatives from the clustering, one per 
use case. The resulting fewer arcs clean out the visualization 
and it is possible to see all buildings. The dynamic depend-
encies are easier to understand and to follow.

Further Filter Options

In addition, there are two filter options to further reduce the 
number of arcs.

Fig. 14  Steps of the clustering 
process

3 https:// github. com/ gothi nkster/ spring- boot- realw orld- examp le- app.

https://github.com/gothinkster/spring-boot-realworld-example-app
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Filter on components’ dependencies: With a mouse click 
on a component, only the dependencies from/to this com-
ponent are shown. In addition, the name of the component 
is displayed as in the day view. Figure 16a shows the effect 
of the filter on the ArticleApi. The filter reduces the 
number of arcs again and it is easy to see the dependencies 
of this component.

Filter on use cases: The user can filter on a particular 
use case using the arrow keys. If a name has been assigned 
to a trace cluster this use case name is displayed in the top 
right corner. Figure 16b shows the effect of the filter on the 
use case Update Article. The components involved in this 
use case and how they communicate with each other can be 
quickly identified.

Evaluation

To evaluate the usefulness of the clustering and the two filter 
options, we conducted a short study based on the blogging 
project and the above figures. We used the Elastic stack4 to 
gather the trace data from the blogging project but every 
other tracing framework would also have worked.

Subjects: From the set of participants described in “Par-
ticipants” a subset of 22 professional software developers 
were available for this study. They had a similar average 
work experience (2–5 years) and we again had 2 female 
subjects.

Experiment: The participants received a textual and 
illustrated description of both the visualization and the 
filter options. Also, the subjects were given the option to 
download the visualization and to try it out. None of the 
participants felt a need to do so, presumably because they 
all were familiar enough with the visualization and controls 
so that there was no need for an extra demo. In an online 
questionnaire they had to evaluate in which typical software 
engineering tasks both filtering options would help them, 
and how much. There was also a free-text field to comment 
on the ranking. The tasks were inspired by the knowledge 
areas defined in the IEEE Guide to the Software Engineering 
Body of Knowledge:5

• Software construction, e.g., API design and use, coding.
• Software testing, e.g., unit or E2E tests.
• Software maintenance, e.g., software comprehension, 

refactoring, retirement.
• Software quality, e.g., architecture validation, reviews, 

audits.
• Software documentation, e.g., flow charts, UML dia-

grams.

Results and Discussion: Figure 17a shows the answers of 
the participants for the component dependency filter. The 
median of the participants ranked this filter as (much) help-
ful for all five software engineering areas. In particular, 
for software creation and documentation, the participants 
have considered the filter to be very helpful. In the free text 
field they stated that it is easy to directly see the depend-
encies of an external API and where it is used. They have 
also positively pointed out that when changing the code of 
existing components, one can see at a glance which other 
components depend on it and take care of not breaking any 
dependencies. These features are especially useful for soft-
ware creation and documentation.

(a) Showing all dynamic dependencies as arcs.

(b) Showing only the cluster representatives.

Fig. 15  Night view of the Spring Boot example

(a) Filter on dependencies from/to ArticleApi.

(b) Filter on the Update Article use case.

Fig. 16  Further filter options

4 https:// www. elast ic. co/ elast ic- stack/.
5 https:// www. compu ter. org/ educa tion/ bodies- of- knowl edge/ softw 
are- engin eering.

https://www.elastic.co/elastic-stack/
https://www.computer.org/education/bodies-of-knowledge/software-engineering
https://www.computer.org/education/bodies-of-knowledge/software-engineering
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The subjects considered the use case filter to be less 
helpful than the component dependency filter, although, 
the differences were not statistically significant (except for 
the documentation). Only for testing, the participants gave 
a slight better ranking, see Fig. 17b. They mentioned in the 
free text field that knowing the individual use cases of an 
application is very helpful when writing end-to-end tests.

Finally, we asked the subjects whether they needed 
the visualization of all traces as in Fig. 15a and if so, for 
what purpose. The majority of 81.8% regarded a view of 
all dependencies as unnecessary. The subjects confirmed 
that the reduced number of dependencies as well as our 
two filtering options help in typical software engineering 
tasks. The remaining 18.2% gave reasons why they need 
such a visualization in corner cases of a software analysis. 
In the free text field of the questionnaire, they mentioned 
that this would help them to spot unused components or 
anomalous dependencies, for example ones that do not fit 
into any cluster.

Related Work

We visualize the static and dynamic aspects of a given soft-
ware, regardless of its (original) design specification or its 
evolution history. Here, we sketch the differences between 
our work and related approaches. We intentionally do not 
discuss visualizations that focus on relationships between 
software versions and/or between an expected architecture 
and the actual code.

Static Aspects

Software City Layouts: The city metaphor maps software 
artifacts to city artifacts: components (e.g., classes) are 
buildings and containers of components (e.g., packages) are 
districts on which these buildings are located.

The TreeMap Layout [4–6, 19–21] is the most common 
layout for Software Cities. It uses binpacking to place rectan-
gles (i.e., buildings and districts) into the smallest possible 
common rectangle and sorts them in descending order of 
their width, depth, or base area. The TreeMap layout consid-
ers only the hierarchical code structure.

Another way to layout a Software City is the Street Lay-
out [19, 22] that is mainly used to visualize the development 
history. The buildings are organized by streets, classes of the 
same package are placed on the same street. However, Street 
Layouts also only consider the hierarchical code structure 
and require extensions that also show other dependencies as 
cluttered arcs atop the city. These layouts also suffer from 
the visual clutter and the overwhelming number of displayed 
arcs that we avoid.

Structure101: Structure101 [7, 8] is a tool to analyze soft-
ware architectures. Its so-called Levelized Structure Maps 
(LSM) display dependencies among components in 2D. 
Similar to our approach, LSM also organizes the compo-
nents into a stack of so-called levels. A component is shown 
in a level iff it depends on at least one component in the level 
directly below it. Components on the same level have no 
dependencies among them. Components transitively depend 
on others from the highest to the lowest level. Components 

Fig. 17  Filter helpfulness for 
typical software engineering 
tasks

documentation

quality

maintenance

testing

construction

not at all a little to some extent rather much very much

Would the filter on components' dependencies help you in software...

(a) Helpfulness of the component dependency filter.

documentation

quality

maintenance

testing

construction

not at all a little to some extent rather much very much

Would the filter on single use cases help you in software...

(b) Helpfulness of the use case filter.
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on the lowest level do not have any dependencies. In the 
LSM representation there is also no need to use arrows to 
show dependencies, except for cyclic ones.

Graph Layout Techniques: Layered Graph Drawing 
organizes nodes in layers with most edges going in the 
same direction and with as few crossings and as few edges 
in the opposite direction. This is the key idea of our layout 
as well. Most layered graph drawing algorithms are based 
on the work of Sugiyama et al. [10] or its improvements [23, 
24]. To avoid the NP-hardness of many of its steps (e.g., the 
Minimum Feedback Arc Set problem [11]), heuristics are 
used in practice. To avoid suffering from the complexity of 
this general problem, our heuristics exploit three properties 
of dependency graphs of software systems: (a) there are only 
a few cycles, (b) they are short, and (c) edges in general only 
belong to at most one cycle.

As far as we know, we are the first to apply layered graph 
drawing to layout Software Cities. We present domain spe-
cific heuristics that result in few feedback arcs, i.e., architec-
ture violating dependency edges that cause cyclic dependen-
cies in software.

Another common approach to make a graph easier 
to understand is Edge Bundling to reduce visual clutter 
[25–28]. But as we visualize most of the dependencies 
implicitly, there are too few arcs for such techniques anyway.

Dynamic Aspects

Trace Clustering: Thaler et al. [29] give a detailed over-
view and classify trace clustering techniques. We experi-
mented with some common methods and determined that a 
density-based method is well suited for the trace data, but 
other methods may also fit. For visualizing dynamic soft-
ware aspects it is not the clustering method that matters, but 
what it accomplishes. The clustering reduces the number 
of traces that we need to show explicitly as arcs, resulting 
in a less cluttered visualization. This allows us to visualize 
the dynamic behavior in the Layered Software City without 
losing clarity and comprehensibility.

Trace Visualizations: Common trace visualizations are 
graph representations [30–32], circular bundles [33], mas-
sive sequences [34], and hierarchical edge bundles [35]. 
To visualize traces in a Software City some approaches 
use straight lines between buildings [36], even with vary-
ing thickness [37], while most often arcs are spanned over 
buildings [38]. To avoid overloading the visualization with 
many traces edge-bundling is used [39]. SArF Map [40] 
uses a trace clustering to layout the buildings in a Software 
City and then visualizes all traces as edge-bundled arcs. Our 
approach reduces the number of explicitly displayed arcs 
as we only show one representative of a cluster and also 
provide filtering options.

Conclusion

To understand the functioning of a software system, 
one needs to understand the static dependencies among 
individual components. Showing all these dependencies 
explicitly, for example using arrows, leads to a confusing 
representation that is difficult to grasp. Based on ideas 
from layered graph drawing and using the well-researched 
city metaphor, this article presented a new layout for visu-
alizing software. By encoding most dependencies in the 
layering, the proposed layout avoids all but those arrows 
that potentially indicate architecture violations. While 
minimizing the number of such so-called feedback arcs 
is a NP-hard problem, we presented heuristics that work 
well for cyclic dependencies in real software systems. In a 
controlled experiment we challenged professional software 
engineers with comprehension and refactoring tasks. They 
performed better (43%) and faster (5.3%) with the layered 
layout compared to the default layout of a Software City.

We extended the Layered Software City with a night 
view that displays dynamic dependencies as arcs atop 
buildings. To reduce the number of arcs and to preserve 
clarity, we suggested a clustering of similar traces and dis-
play only one representative trace per cluster, that usually 
corresponds to a use case of the studied application. Two 
additional filtering options, on the components’ dependen-
cies and on a single use case, further reduce the number 
of arcs. In a short study with professional engineers we 
investigated the usefulness of these two filters and learnt 
that 81.8% of the subjects do not need the visualization of 
all dependencies to perform software engineering tasks.

While our current work has been focused on software 
architects analyzing applications on their own, in the 
future we want to explore collaboration possibilities in 
the Software City to gain a better understanding in ana-
lyzing the software together. Open questions here include 
how to share information appropriately or how distinctive 
collaborators should be able to move around.

The source code of our visualizations and the raw data 
of the quantitative evaluations are available from https:// 
github. com/ qaware/ holow are- softw are- city.
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