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Abstract
The flexibility of Knowledge Graphs to represent heterogeneous entities and relations of many types is challenging for con-
ventional data integration frameworks. In order to address this challenge the use of Knowledge Graph Embeddings (KGEs) 
to encode entities from different data sources into a common lower-dimensional embedding space has been a highly active 
research field. It was recently discovered however that KGEs suffer from the so-called hubness phenomenon. If a dataset 
suffers from hubness some entities become hubs, that dominate the nearest neighbor search results of the other entities. Since 
nearest neighbor search is an integral step in the entity alignment procedure when using KGEs, hubness is detrimental to the 
alignment quality. We investigate a variety of hubness reduction techniques and (approximate) nearest neighbor libraries to 
show we can perform hubness-reduced nearest neighbor search at practically no cost w.r.t speed, while reaping a significant 
improvement in quality. We ensure the statistical significance of our results with a Bayesian analysis. For practical use and 
future research we provide the open-source python library kiez at https:// github. com/ dobra czka/ kiez.
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Introduction

Knowledge graphs (KGs) have seen a surge in popularity as 
a flexible and intuitive way to store relational information. 
In order to perform complex tasks such as question answer-
ing [1] and recommendation [2] the integration of multiple 
KGs is crucial. Conventional data integration frameworks 
however struggle with the heterogeneity of KGs. Knowledge 
Graph Embeddings (KGE) have been found to provide a way 
to deal with this problem by encoding entities from different 
data sources into a common lower-dimensional embedding 
space. If done properly this technique reconstructs semantic 

and relational information and similar entities end up close 
in the embedding space [3].

While a plethora of models have been devised to obtain 
KGEs, their refinement in the final alignment step of the data 
integration pipeline has seen little attention. Sun et al. [3] 
have discoverd, that KGEs as many other high-dimensional 
data structures suffer from hubness. This phenomenon refers 
to the fact that some entities in the dataset become dan-
gerously popular by dominating the nearest neighbor slots 
of the other entities. Hubness has been shown to plague a 
variety of tasks such as recommender systems [4], speech 
recognition [5], image classification [6] and many more. For 
our data integration setting hubness leads to a decrease in 
alignment quality.

In order to investigate the effects of hubness on entity 
alignment we will use 15 different Knowledge Graph 
Embedding approaches on 16 alignment tasks containing 
samples of KGs with varying properties. This provides us 
with 240 KGEs as input for our study.

In our evaluation we compare six different hubness reduc-
tion techniques and eight different (approximate) nearest 
neighbor (ANN) algorithm implementations w.r.t. their 
accuracy and execution time. This paper extends our previ-
ous work [7] in a variety of ways:

This article is part of the topical collection “Knowledge Discovery, 
Knowledge Engineering and Knowledge Management” guest edited 
by Joaquim Filipe, Ana Fred, Jan Dietz, Ana Salgado and Jorge 
Bernardino.

 * Daniel Obraczka 
 obraczka@informatik.uni-leipzig.de

 Erhard Rahm 
 rahm@informatik.uni-leipzig.de

1 ScaDS.AI/Database Group, Leipzig University, Leipzig, 
Germany

http://orcid.org/0000-0002-0366-9872
https://github.com/dobraczka/kiez
http://crossmark.crossref.org/dialog/?doi=10.1007/s42979-022-01417-1&domain=pdf


 SN Computer Science (2022) 3:501501 Page 2 of 19

SN Computer Science

• The related work section and discussion have been 
extended.

• We enhanced our experiment section with another ANN 
library and investigate how the use of GPUs factors into 
our assessment.

• While we previously used a frequentist approach [8] to 
check the statistical significance of our claims, we now 
use a more modern Bayesian testing regime [9]. This 
enables us to directly reevaluate our previous results and 
leads us to new conclusions in some cases.

Overall our work provides the following contributions:

• We provide an extensive evaluation of hubness reduction 
techniques for entity alignment with Knowledge Graph 
Embeddings.

• Our results suggest that using the Faiss [10] ANN library 
we can perform hubness reduction at practically no cost 
with large and small datasets, while reaping the accuracy 
benefits of reduced hubness.

• Hubness-reduced nearest neighbor search for entity 
alignment is made practically available in our open-
source library at https:// github. com/ dobra czka/ kiez and 
the configurations of our experiments are available in a 
separate benchmark repository https:// github. com/ dobra 
czka/ kiez- bench marki ng.

We begin with an overview of related work, followed by 
an outline of hubness reduction for entity alignment in 
section “Hubness Reduction for Entity Alignment”. Sub-
sequently, we present our extensive evaluation in sec-
tion “Evaluation” and we close with a conclusion.

Preliminaries and Related Work

In this section we present the central concepts related to 
our work. We start by giving a brief outline to the notion of 
Knowledge Graphs, followed by an overview of Knowledge 
Graph Embedding approaches. Afterwards we present the 
hubness problem and ways to mitigate it, followed by a syn-
opsis of entity alignment techniques for Knowledge Graph 
alignment.

Knowledge Graphs

Knowledge Graphs (KG) are now a widely used data struc-
ture, which is able to represent relations between entities 
intuitively. Especially the ability to postpone the definition 
a rigid schema enables a more flexible extension of data than 
e.g. a relational database management system. Nowadays 
KGs serve as backbone for a variety of tasks. For example 
in the use-case of semantic search, the semantically rich 

structure of KGs helps identify a user’s information need. 
Moreover, the nowadays common use of knowledge cards 
as search engine result, which displays the most important 
information about an entity (e.g. birth date, net worth, etc. 
of a person) relies heavily on the aggregated information 
contained in the KG [11].

In Fig. 1 we see an example snippet of the DBpedia KG 
containing information about a motion picture. We see that 
knowledge graphs enable us to store a variety of data and 
relations between data points. For our purposes a KG is a 
tuple KG = (E,P,L, T) , where E is the set of entities, P the 
set of properties, L the set of literals and T  the set of triples. 
KGs consist of triples (h, r, t) ∈ T  , with h ∈ E , r ∈ P and 
t ∈ {E,L}.

Looking at our example graph a triple contained there 
is for example (dbr:Parasite_(2019_film), 
rdf:type, dbo:Film). For a thorough introduction 
into the subject of knowledge graphs we refer the reader 
to [12].

Knowledge Graph Embedding

Methods of machine learning belong to the standard reper-
toire of any data analytics endeavour nowadays. However 
many machine learning algorithms rely on input in the form 
of dense numerical vectors, which is in stark contrast to the 
conventional representation of knowledge graphs. To make 
KGs usable for machine learning tasks Knowledge Graph 
Embedding approaches are used to encode KG entities (and 
sometimes relationships) into a lower-dimensional space.

While there are different paradigms of algorithms most 
embedding approaches score the plausibility of a given tri-
ple (h, r, t), i.e. how likely is this statement to be true. The 
goal of the algorithm is then to compute the embeddings in 
such a way that positive examples (triples contained in the 

dbr:Bong_Joon-ho

dbo:Film"Parasite"^^xsd:String

rdfs:label
rdf:type

dbr:Parasite_(2019_film)

1969-09-
14^^xsd:date

"Bong
Joon-ho"

dbr:Cho_Yeo-jeong

"Cho Yeo-
jeong"

dbo:starring dbo:director

rdfs:label rdfs:label
dbo:birthDate

Fig. 1  Sample of DBpedia showing information about the movie 
“Parasite”
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graph) are scored high, while negative examples are scored 
low. Negative examples are typically created by corrupting 
a given triple by replacing either h resp. t with (h�, r, t) ∉ T  
resp. (h, r, t�) ∉ T  . This way of self-supervised learn-
ing is highly convenient since there is no need for human 
labeling [12].

In the following we give a brief overview over different 
paradigms of embedding approaches. For a more detailed 
overview we direct the reader to [13, 14].

Translational

An intuitive way to make sure a model learns the plausibility 
of a triple is the translational approach. Algorithms that fall 
into this category encode relations as translations from head 
entity embedding to the embedding of the tail entity. This 
technique was popularized with TransE [15]. Suppose for a 
triple (h, r, t), the embedding vectors of h,r and t are �, � and 
� respectively, TransE utilizes the distance between � + � and 
� to model the embeddings. The central idea of this approach 
was quickly picked up to address shortcomings of TransE, 
namely the problem modeling 1 − n or n − n relations. For 
example TransH [16] encodes relations in their own hyper-
plane, and TransR [17] even uses relation-specific spaces. 
While these and other generalizations of TransE enhanced 
the capabilities of translational models, Kazeemi and 
Poole [18] showed that these translational models put severe 
constraints on the types of relations that can be learned (at 
least, when these models operate solely in euclidean spaces). 
These fundamental limitations are adressed for example by 
HyperKG [19], which operates in the hyperbolic space.

Tensor‑Factorization

Another paradigm of embedding approaches relies on 
decomposing tensors (also known as tensor-factorization). 
A tensor is a generalization of matrices towards arbitrary 
dimensions. A conventional matrix is therefore a 2-order 
tensor [12]. Decomposing a tensor means finding lower 
order tensors from which the original tensor can be (approxi-
mately) reconstructed. The lower order tensors of the 
decomposition capture latent factors of the original tensor. 
For example RESCAL [20] models KGs as a 3-order binary 
tensor G ∈ ℝ

n×n×m , where n and m respectively denote the 
number of entities and relations. Each relation is represented 
as a matrix Wr ∈ ℝ

n×n . The weights wi,j in the matrix cap-
ture the interaction between the i-th latent factor of � and 
j-th latent factor of � . We can then score the plausibility of 
a triple (h, r, t) by

(1)f (h, r, t) = �T�r�.

Again the goal is to maximize the plausibility of positive 
examples and minimize the plausibility of negative exam-
ples. A plethora of methods belong to this paradigm. RES-
CAL’s representation of relations as matrices is rather costly, 
so for example HolE [21] models both entities and relations 
as vectors. Furthermore it uses a circular correlation opera-
tor, which combines the outer product of two vectors by 
taking the sums along their diagonals. This circular correla-
tion compresses pairwise interactions, which makes HolE 
more light-weight than RESCAL [14]. Another approach 
called TuckER [22] utilizes Tucker Decomposition [23], 
which decomposes the given tensor into a sequence of three 
matrices �,� and � and a smaller “core” tensor T  . More 
precisely, given the knowledge graph as 3-order tensor G this 
decomposition approximates G ≈ T⊗ �⊗ �⊗ � , where 
⊗ denotes the outer product. � and � represent the entity 
embeddings and � contains the relation embeddings.

Neural

The previously discussed approaches consist of either linear 
or bilinear (e.g., matrix multiplication) operations to com-
pute plausibility scores. In order to incorporate non-linear 
scoring functions approaches rely on neural networks [12]. 
For example the usage of a 2-dimensional convolutional ker-
nel has been proposed by ConvE [24]. First a matrix is gen-
erated by reshaping and concatenating � and � . This matrix 
is then used as input for the convolutional layer, where dif-
ferent filters of the same shape return a feature map tensor. 
After vectorization this feature map tensor is then linearly 
projected into a k-dimensional space. Finally, the plausibil-
ity scores are obtained by calculating the dot product of this 
projected vector and �.

Path‑Based

Oftentimes interesting information can be found in a KG, 
when looking not only at triples, but at longer paths. For 
example if a person is born in a certain city and the KG 
contains information about which country this city is located 
in we can infer the nationality of a person. PTransE [25] 
generalizes TransE by incorporating path-based informa-
tion in the embedding process. So while TransE uses triples 
in the form of (h, r, t) to optimize the objective function 
� + � = � , PTransE uses paths like (h, r1, e), (e, r2, t) to opti-
mize � + (��◦��) = � , with ◦ being an operator that joins the 
relations r1 and r2 into a unified relational path represen-
tation. Inspired by neural language models RDF2Vec [26] 
models paths in the knowledge graphs as sequences of 
entities which is akin to sentences in the language model 
setting. The embeddings are then trained similarly to the 
word2vec [27] neural language model.
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Hubness

High-dimensional spaces present a variety of challenges 
commonly referred to under the umbrella of the curse of 
dimensionality. For example distances (or measures) tend 
to concentrate in higher dimensions. In fact, with dimen-
sionality approaching infinity distances between pairs of 
objects become effectively useless by being indistinguish-
able [28]. This distance concentration can be explained by 
the fact that with increasing dimensions the volume of a unit 
hypercube grows faster than the volume of a unit hyperball. 
Consequently, numerous distance metrics (such as e.g. the 
euclidean distance) lose their relative contrast, i.e. given a 
query point the distance between the nearest and farthest 
neighbor decreases almost entirely [29]. This is worrisome, 
since neighborhood-based approaches rely fundamentally 
on distances.

Closely related, it has been shown that high-dimensional 
spaces suffer from a phenomenon known as hubness [30]. 
While first noticed in the field of music recommenda-
tion [31] this issue has been found harmful w.r.t result qual-
ity in a variety of tasks ranging from graph analysis [32], 
over clustering of single-cell transcriptomic data [33] to 
outlier detection [34]. In order to understand what hubness 
means, k-occurrence must first be introduced:

Definition 1 (k-occurrence) Given a non-empty dataset 
D ⊆ ℝ

m with n objects in an m-dimensional space. We can 
count how often an object x ∈ D occurs in the k-nearest 
neighbors of all other objects D∖x . This count is referred to 
as k-occurrence Ok(x) [7].

If the distribution of the k-occurence is skewed to the 
right, this means there exist some hubs, that occur more 
frequently as nearest neighbors of other points than the rest 
of the dataset entries [35].

Figure 2 shows how hubness means a skewed k-occur-
rence distribution. In the top we see that hubs (the darker, 
bigger points) have a much higher k-occurrence than their 
neighbors and how hubness reduction changes that. The bot-
tom graphic shows the entire k-occurrence distribution. Most 
nodes show up rarely as nearest neighbors if at all, while a 
handful of nodes are nearest neighbors to more than 300 
other entities. Hubness reduction techniques can mitigate 
this somewhat. Most notably, the 2 nodes with the high-
est k-occurrence (> 300) lose their prominence. More spe-
cifically, the entity that previously showed up as k-nearest 
neighbor (kNN) of 327 entities, now only shows up as kNN 
of 164 entities. Since the underlying task of this dataset 
is entity alignment, the practical implications of hubness 
reduction here are a diminished probability of wrongfully 

Fig. 2  Visualization of hub-
ness and hubness reduction on 
SimplE embeddings of the D-W 
15K(V1) dataset. Left column 
shows visualization without 
hubness reduction, right column 
after NICDM hubness reduc-
tion. The value of k is 10

(a) Entity embeddings of the ten entities with the highest k-occurrence and their
neighbors. Color and size show amount of k-occurrence. The larger and darker a
node is the more it is considered a hub. For visualization we reduced the embedding
dimensions from 100 to 50 via PCA and finally to 2 dimensions with t-SNE.

(b) Number of nodes with specific k-occurrence values across the entire dataset.
Beware of the logscale on the y-axis.
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aligning entities with hub entities. We will take a closer 
look on hubness reduction techniques in section “Hubness 
Reduction”.

Initial research indicated that hubness was simply an 
intrinsic property of high-dimensional data [36]. However, 
a later study suspects that density gradients are the culprit of 
the hubness phenomenon [37]. In this case, density gradients 
refer to spatial variations in density over an empirical data 
distribution [38].

Hubness Reduction

Reduction of hubness has been a lively field of research since 
discovery of the hubness phenomenon. The objects closer 
to the mean of a data distribution have a higher probability 
to become hubs. This fact is denoted as spatial centrality of 
hubs [36]. One method of hubness reduction therefore aims 
to reduce the spatial centrality by subtracting the centroid 
of the data [39]. Hara et al. [40] argue that variants of these 
centering approaches mainly work by flattening the density 
gradient.

Another paradigm of hubness reduction approaches tries 
to repair asymmetric nearest neighbor relations. The nearest 
neighbor relation between two points x and y is symmetric 
if x is the nearest neighbor of y and vice versa. Because 
hubs are disproportionally more often nearest neighbors of 
other points than the other way round, a dataset that suf-
fers from hubness has an asymmetry in nearest neighbor 
relations [38]. Some hubness reduction methods therefore 
transform primary distances (such as e.g. euclidean distance) 
to secondary distances, where these asymmetric relations are 
alleviated. Methods such as local scaling [41] and the (non-
iterative) contextual dissimilarity measure [42] were later 
discoverd to actually reduce hubness. Mutual proximity [43] 
was specifically developed to reduce hubness. For a more 
comprehensive overview of hubness reduction techniques 
we refer to [35, 38]. In Section “Hubness Reduction” we will 
present a more detailed view of the mentioned approaches 
with regards to entity alignment.

Entity Alignment

Matching entities from different data sources has been a 
research effort spanning decades, ironically under a variety 
of terms such as record linkage, data deduplication or entity 
resolution [44]. While historically research in this field was 
centered around matching records in tables, soon enough 
incorporating relational information was found to be ben-
eficial for the alignment process [45]. For example [46] use 
Personalized PageRank to attain a nodes importance and 
propagate similarities in a graph of potential matches.

The flexibility of knowledge graphs poses a challenge 
to the matching process, which approaches that are build 

for table-based matching cannot handle easily. Take a look 
at Figure 3, where the previously introduced snippet from 
DBpedia is juxtaposed with a snippet from Wikidata. We see 
that the heterogeneity of the data sources poses a variety of 
obstacles in the matching process. From different naming 
conventions for the same relations (e.g dbo:director 
and wdt:P57), to distinct representation of data (e.g. the 
birth dates).

A way to manage the heterogeneity of Knowledge Graphs 
is through the use of Knowledge Graph Embeddings. Gener-
ally entity alignment through Knowledge Graph Embeddings 
can be divided into two major categories: Approaches that 
utilize the information contained in literals (e.g. the target 
of the rdfs:title property) and those, that rely solely 
on the graph structure. While structure-only approaches ini-
tialize the entity embeddings randomly and usually have to 
translate the embeddings of these two different graphs into 
the same embedding space, approaches that utilize literal 
information commonly utilize pre-trained word embeddings 
to initialize the entity embeddings already in the same space. 
For the latter, the training process is then concerned with 
fine-tuning the initial embeddings via the structural informa-
tion (and in some cases also via the attribute information). 
Both paradigms generally rely on seed alignment, which 
consists of already known matches, as training data. Finally, 
nearest neighbor search is used in almost all approaches to 
align entities from the different KGs based on how close 
these entities are in the embedding space.

AttrE [47] uses predicate alignment via string-similarity 
to create a common schema for the two given knowledge 
graphs. To incorporate literal information this approach 
uses a compositional function to aggregate the character 
embeddings of a given literal. Pre-trained word embeddings 
are not used in this approach. MultiKE [48] uses different 

dbr:Bong_Joon-ho

dbo:Film
"Parasite"^^xsd:String

rdfs:label rdf:type

dbr:Parasite_(2019_film)

1969-09-
14^^xsd:date

"Bong
Joon-ho"

dbr:Cho_Yeo-jeong

"Cho Yeo-
jeong"

dbo:starring
dbo:director

rdfs:label
rdfs:label

dbo:birthDate

wd:Q495980

wd:Q11424
"Parasite"^^xsd:String

rdfs:labelwdt:P31

wd:Q61448040

14 September 1969

"Bong
Joon-ho"

wd:Q484400

"Song
Kang-ho"

wdt:P161wdt:P57

rdfs:label
rdfs:label

wdt:P569

DBpedia Wikidata

Fig. 3  Two snippets from DBpedia and Wikidata containing informa-
tion about the film “Parasite”. The dark dotted lines connect entities 
from each source which should be matched
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views of the entities to capture different aspects of informa-
tion, including specific “name” properties (like values of 
rdfs:title), attributes and relational information. The 
literal embeddings are initialized with pre-trained word 
embeddings. AttrE and MultiKE both rely on a translational 
approach to incorporate structural information.

An approach that does not rely on literal information 
is RSN4EA [49]. This algorithm relies on sampling paths 
via biased random walks and utilizes a so-called recurrent 
skipping network(RSN)  [50], a refinement of recurrent 
neural networks (RNN) for the alignment task. Because 
RNNs cannot distinguish relations and entities given as a 
path sequence, the RSN is more fitting for entity alignment 
since this network is able to “skip” directly from an entity 
to another entity.

A more thorough overview over KGE-based entity align-
ment is found in [3]. This benchmarking study also first 
mentioned that alignment results can be improved via hub-
ness reduction. However no systematic investigation of dif-
ferent hubness reduction techniques was carried out.

Hubness Reduction for Entity Alignment

In this section we formally define the task of entity align-
ment, present methods to measure hubness and introduce our 
framework for hubness reduced entity alignment. Finally we 
showcase the hubness reduction methods utilized for entity 
alignment and introduce various (approximate) nearest 
neighbor approaches that we employ.

Entity Alignment

As already introduced in section “Knowledge Graphs” a 
KG is a tuple KG = (E,P,L, T) , with the tuple elements 
denoting the sets of entities, properties, literals and triples 
respectively. Entity alignment now seeks to determine the 
mapping M = {(e1, e2) ∈ E1 × E2|e1 ≡ e2} , with ≡ denoting 
the equivalence relation. E1 and E2 are the entity sets of the 
respective KGs.

Hubness

Hubness can be measured in different ways. As already dis-
cussed in section “Hubness” skewness in k-occurence Ok can 
be used to determine the degree of hubness [36].

With the commonly used notation of � denoting the expected 
value, � the mean and � the standard deviation. Feldbauer 
et al. [35] criticize k-skewness as difficult to understand and 
instead adapted the income inequality measure known as 
Robin Hood index to calculate k-occurence inequality

with D being a dataset of size n. This measure is easily 
interpretable, since it answers the question: “What share 
of ’nearest neighbor slots’ must be redistributed to achieve 
k-occurence equality among all objects?” [35].

Hubness Reduction

In order to align two KGs we need to find the most similar 
entities between the KGs.

Given the embeddings �s,�t of the two KGs we intend 
to align, we utilize a distance dx,y , with x ∈ �s and y ∈ �t . 
The k points closest to x will be referred to as x’s k-nearest 
neighbors.

The implementation of our open-source framework is 
inspired by [51] and has been adapted to the task of hub-
ness-reduced nearest neighbor search for entity alignment. 
An overview of the workflow of our framework, which we 
named kiez is shown in Fig. 4.

We start by retrieving a number of kNN candidates 
from the two given KGEs using a primary distance (e.g. 
euclidean). Note that the kNN candidates for all x ∈ �s , 
as well as y ∈ �t are retrieved. Due to asymmetric nearest 
neighbor relations introduced by hubness x might be a kNN 

(2)Sk = �[(Ok − �Ok )3]∕�3

Ok .

(3)H
k =

1

2

∑
x∈D �Ok(x) − �Ok �
(
∑

x∈D Ok(x)) − k
=

∑
x∈D �Ok(x) − k�
2k(n − 1)

,

Fig. 4  Overview of our 
framework. Graphic previously 
published in [7]

Obtain kNN
candidates

Primary Distances
S ➝ T

Primary Distances
T ➝ S

Hubness
reduction kNN

Source KGE

Target KGE

SecondaryDistances
S ➝ T
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candidate of y but not the other way round. However the 
distance between such two points x and y is the same no mat-
ter whether x is a kNN candidate of y or vice versa. These 
primary distances can now be utilized to perform hubness 
reduction and attain secondary distances. The final kNN are 
obtained by using these secondary distances. To offset the 
higher cost w.r.t speed introduced by hubness reduction we 
offer a variety of approximate nearest neighbor libraries. 
In section “Evaluation” we will see, that this gives a speed 
advantage on larger datasets, while still benefiting from the 
accuracy increase of hubness reduction. More information 
about the ANN approaches is given in section “(Approxi-
mate) Nearest Neighbor Search”.

We selected the best performing hubness reduction tech-
niques reported in [38] to implement in kiez and will pre-
sent them in detail now.

First introduced in  [41] Local Scaling was later dis-
covered to reduce hubness [43]. Given a distance dx,y this 
approach calculates the pairwise secondary distance

with �x (or resp. �y ) being the distance between x (resp. y) 
and their kth-nearest neighbor

A closely related technique is the non-iterative contex-
tual dissimilarity measure (NICDM) [42] which similarly 
to Local Scaling was discovered by Schnitzer et. al. [43] to 
reduce hubness:

where �x is the mean distance to the k-nearest neighbors of 
x and analogously for y and �y

Cross-domain similarity local scaling (CSLS) [52] was 
introduced to reduce hubness in word embeddings. As the 
previous approaches it relies on scaling locally:

with �x being the mean distance from x to its k-nearest 
neighbors. Sun et al. [3] showed that this measure also suc-
cessfully reduces hubness in knowledge graph embeddings.

While the previously presented approaches rely on local 
distances Mutual Proximity (MP) [43] counts the distances 
of all entities whose distances to both x and y are larger 
than dx,y:

The presented version in Eq. 7 was adapted by [38] to nor-
malize the range to [0, 1].

(4)LS(dx,y) = 1 − exp

(
−

d2
x,y

�x�y

)

(5)NICDM(dx,y) =
dx,y

√
�x�y

,

(6)CSLS(dx,y) = 2 ⋅ dx,y − �x − �y

(7)MPemp(dx,y) =
|{j ∶ dx,j > dx,y} ∩ {j ∶ dy,j > dy,x}|

n − 2

Since counting all these distances is computationally 
expensive, we can use an approximation:

where the estimated sample mean 𝜇x and variance 𝜎x of the 
distances of all other objects to x is used. Furthermore, SF 
is the complement to the cumulative density function at dx,y.

Finally, we implemented DSL [40], which relies on flat-
tening the density gradient, by estimating the local centroids 
ck(x) =

1

k

∑
x�∈kNN(x) x

� , with kNN(x) being the set of k-nearest 
neighbors of x. This leads to the following formula:

(Approximate) Nearest Neighbor Search

Nearest neighbor (NN) search is a fundamental task in many 
areas of computer science. This is also true for the area of 
entity alignment, when utilizing knowledge graph embed-
dings. For higher dimensional datasets efficient exact near-
est neighbor algorithms tend to suffer under the curse of 
dimensionality. The reason for this is again, the distance 
concentration mentioned in “Hubness”. Many exact NN 
algorithms rely on the triangle inequality to avoid making 
unnecessary comparisons, however with rising dimensional-
ity distances between points become indistinguishable and 
all points have to be compared against all other points in the 
worst case [53].

Approximate nearest neighbor (ANN) algorithms have 
therefore been a highly active research field. While these 
approaches may miss some nearest neighbors they increase 
the speed of retrieval by creating efficient indexing structures 
of the search space to avoid comparing all data points with 
each other. These algorithms can be roughly divided into 
three categories: tree-based, graph-based and hashing-based.

Tree-based algorithms rely on splitting the dataset and 
storing these subsets in nodes of a tree. The children of a 
node split the dataset again and so on until the respective 
subset that belongs to a node is small enough to be stored 
there. This node becomes a leaf of the tree. When querying, 
the tree is traversed to find the closest points to the query.

Graph-based algorithms build a k-NN graph, where ver-
tices are data points and edges associate true nearest neigh-
bors. Similar to tree-based methods, given a query point 
this graph is traversed in greedy fashion to find the nearest 
neighbors.

Finally, hashing-based algorithms utilize hashing func-
tions to encode data points as hash values. For example 
locality-sensitive hashing [54] creates multiple hash-codes 
for each entry by applying hash functions which are ran-
domly chosen from the same function family. The NN 
of a query point are then determined by inspecting hash 

(8)MPGauss(dx,y) = SF(dx,y,𝜇x, �̂�
2
x
) ⋅ SF(dx,y,𝜇y, �̂�

2
y
).

(9)DSL(x, y) = ‖x − y‖2
2
− ‖x − ck(x)‖22 − ‖x − ck(y)‖22.
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collisions. A general benchmark and overview of ANN algo-
rithms can be found in [55].

For use in kiez, we needed libraries that provide a 
python implementation/wrapper. We therefore choose the 
following libraries similar to [35]:

• scikit-learn1 offers the exact methods Ball Tree [56] and 
KD-Tree [57] (short for k-dimensional tree). Additionally 
a brute-force variant simply computes pairwise distances 
and returns the exact nearest neighbors.

• NMSLIB2 implements a variety of algorithms for nearest 
neighbor search. In our benchmark we use their imple-
mentation of Hierarchical Navigable Small World Graphs 
(HNSW) [58]. This is a popular ANN algorithm that 
relies on hierarchical proximity graphs.

• NGT3 offers methods to utilize kNN graphs for approxi-
mate nearest neighbor search [59].

• Annoy4 provides a tree-based approach, subsequently 
splitting the space with random hyperplanes until a cer-
tain depth is reached.

• Faiss5 makes available a vast variety of algorithms of all 
three ANN categories. For our evaluation this library is 
especially interesting since it provides implementations 
that are capable of utilizing GPUs [10].

Evaluation

We begin the evaluation section by giving an overview of 
our experimental setup, presenting the used datasets and 
embedding approaches as well as configurations. Subse-
quently we will show our results in detail.

Evaluation Setup

We use 16 alignment tasks for our evaluation consisting 
of samples from DBpedia (D), Wikidata (W) and Yago 
(Y), which were introduced in [3]. These knowledge graph 
chunks contain a plethora of different relationships and 
entity types. Furthermore, they cover a cross-lingual set-
ting in some cases (EN-DE & EN-FR). Depending on the 
number of entities per source there are two differently sized 
tasks (15 and 100 K). We show more information about the 
datasets in Table 1. The tasks consist of finding a 1–1 align-
ment between the sources, since the number of entities per 
KG sample is equal to the size of the gold standard mapping 
M . Differences in results between our evaluation and the 
outcomes of [3] are explained by the fact, that we use an 
updated version of the datasets.6 We however used the same 
hyperparameter settings to create the KGEs as said study.

The knowledge graph embeddings were created by using 
a wide range of approaches implemented in the framework 
OpenEA.7 A summary of the 15 embedding approaches we 
used is shown in 2. Given these 15 embedding approaches 

Table 1  Statistics of datasets 15K 100K

|T| |P| |L| |T| |P| |L|

D-W V1 D 90399 589 28237 628901 905 133931
W 180992 818 118515 939568 1135 542921

V2 D 125361 341 25690 977153 645 137483
W 259051 578 146977 1466422 999 682367

D-Y V1 D 82384 421 25297 654603 665 101386
Y 143752 62 105710 1050305 69 497633

V2 D 117665 161 22561 951332 506 97433
Y 177121 40 104546 1620426 66 578596

EN-DE V1 DE 184195 324 35630 922447 447 199527
EN 110079 500 28973 759025 831 147142

V2 DE 253947 211 33185 1285853 358 200356
EN 144378 339 23831 1053340 648 139867

EN-FR V1 EN 104498 574 30281 693855 865 145103
FR 95265 613 28760 599010 818 157791

V2 EN 148714 381 22761 1046052 742 145382
FR 136226 386 21645 904159 754 157564

1 https:// github. com/ scikit- learn/ scikit- learn.
2 https:// github. com/ nmslib/ nmslib.
3 https:// github. com/ yahoo japan/ NGT.
4 https:// github. com/ spoti fy/ annoy.
5 https:// github. com/ faceb ookre search/ faiss.

6 https:// github. com/ nju- webso ft/ OpenEA# datas et- overv iew.
7 https:// github. com/ nju- webso ft/ OpenEA.

https://github.com/scikit-learn/scikit-learn
https://github.com/nmslib/nmslib
https://github.com/yahoojapan/NGT
https://github.com/spotify/annoy
https://github.com/facebookresearch/faiss
https://github.com/nju-websoft/OpenEA#dataset-overview
https://github.com/nju-websoft/OpenEA
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and 16 alignment tasks we obtained 240 KGE pairs for our 
study.

The exact nearest neighbor algorithms we used were on 
one hand scikit-learn’s implementations of BallTree and 
KD-Tree, as well as their brute-force variant which simply 
computes pairwise distances and then returns the nearest 
neighbors. On the other hand we used Faiss’s brute-force 
variant (specifically IndexFlatL2). We also used Faiss’s 
approximate nearest neighbor approaches. For choosing the 
most fitting we utilized the autofaiss8 library which 
automatically selects a fitting indexing approach, based on 
the Faiss guidelines and tunes it with the provided data. In 
our case this resulted in the use of HNSW as algorithm in 
all cases. Furthermore we used Annoy, NGT and NMSLIB’s 
HNSW implementation. For these algorithms we found, that 
their default settings gave the best results, with the excep-
tions of NMSLIB, where the hyperparameters M = 96 and 
efConstruction = 500 gave the best results. M controls 
the probability of adding a given point to a specific layer of 
the graph and efConstruction controls the recall. More 
details about our setup can be found in our benchmarking 
repository https:// github. com/ dobra czka/ kiez- bench marki ng.

The setting of our evaluation consists of doing a full 
alignment between the data sources, which means finding 
the k-NN of all source entities in the target entity embed-
dings. We set k = 50 and to obtain the primary distances we 
allowed 100 kNN candidates. For all algorithms the primary 
distance was euclidean, except for NMSLIB, where cosine 
was used.

We used a single machine running CentOS 7 with 4 AMD 
EPYC 7551P 32-Core CPUs for all experiments. For the 
small dataset experiments we allowed 10 GB of RAM. The 
experiments with the large datasets were provided 30 GB of 
RAM. Since Faiss is able to utilize a GPU we used a Nvidia 
RTX2080Ti 11 GB for the small datasets and a Nvidia Tesla 
V100 32 GB for the large datasets. Bear in mind, that we 
also included settings were Faiss didn’t use a GPU.

We use hits@k to evaluate retrieval quality:

with kNN being the calculated nearest neighbors and kNN(x) 
returning the k nearest neighbors of x. This metric simply 
counts the proportion of true matches t in the k nearest 
neighbors. We choose hits@k, since it is the most common 
metric for entity alignment tasks and is especially useful 
to judge the quality of neighbor-based tasks. While hits@k 
has it’s weaknesses, when used for evaluating the quality 
of the knowledge graph embeddings themselves [69], it is 
well-suited for our case, since any result where the correct 
entity is at rank k + 1 is in fact as bad, as a result where it is 
at k + n >> k . Either way this correct entity would be lost 
in a kNN setting. In our case we present hits@50, since we 
wanted the 50 nearest neighbors.

For our evaluation we intend to answer four questions: 

(��):  Does hubness reduction improve the alignment 
accuracy?

(��):  Does hubness reduction offset loss in retrieval qual-
ity by ANN algorithms?

(��):  Can hubness reduction be used with ANN algorithms 
without loss of the speed advantage of ANNs?

(��):  Does the answer to (��) change, when utilizing 
GPUs?

Results

Hubness Reduction with Exact Nearest Neighbors

The absolute hits@k value is to some degree determined by 
the quality of the given KGEs. Since our intention in (��) 
is to measure improvements through hubness reduction, we 
will measure the increase in hits@k compared to the base-
line of using no hubness reduction. In Fig. 5 we present 
a boxplot representation of these improvements for exact 
nearest neighbor search summarized across all embedding 
approaches per alignment task.

(10)hits@k(kNN) =
|{t ∶ y ∈ kNN(x) ∧ (x, y) ∈ M}|

|M|
,

Table 2  Embedding approaches used in the evaluation

Approach Method Literal info.

AttrE [47] Translational Yes
BootEA [60] Translational –
ConvE [24] Neural –
GCNAlign [61] Neural Yes
HolE [21] Factorization –
IMUSE [62] Translational Yes
IPTransE [63] Path –
JAPE [64] Translational Yes
MultiKE [48] Translational Yes
ProjE [65] Neural –
RSN4EA [49] Path –
RotatE [66] Factorization –
SimplE [67] Factorization –
TransD [68] Translational –
TransH [16] Translational –

8 https:// github. com/ criteo/ autof aiss.

https://github.com/dobraczka/kiez-benchmarking
https://github.com/criteo/autofaiss
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Any values above zero show an improvement. We can 
see that all hubness reduction methods have a tendency to 
improve the quality, albeit not to the same degree. For exam-
ple both Mutual Proximity variants perform the worst.

We can see a high variance in Fig. 5 showing that the 
improvements vary across different embedding approaches. 
In Fig. 6 we therefore take a close look at some selected 
approaches.

Fig. 5  Improvement in hits@50 compared to no hubness reduction. Results are aggregated over different embedding approaches. Graphic was 
originally published in [7]

Fig. 6  Robin Hood index and 
hits@50 for selected embedding 
approaches on D-Y 100K(V2) 
dataset. Graphic originally 
published in [7]



SN Computer Science (2022) 3:501 Page 11 of 19 501

SN Computer Science

There is a large difference w.r.t hubness produced by 
the different embedding approaches. For example BootEA 
produces embeddings with relatively low hubness, even 
without hubness reduction. SimplE on the other hand has 
a Robin Hood index of almost 75% percent, which means 
almost three quarters of the nearest neighbor slots need to be 
redistributed in order to obtain k-occurence equality. While 
BootEA’s hits@50 score is already very high and leaves lit-
tle room for improvement we can see that hubness reduction 
improves accuracy in the other approaches noticeably.

In our previous study [7] we used the frequentist analy-
sis regime proposed in [8] to compare the performance of 
approaches. While this is certainly more statistically sound, 
than e.g. simply comparing medians of a performance met-
ric it comes with the pitfalls of frequentist null hypothesis 
significance testing. This includes ignoring the magnitude 
of effect sizes, no real possibility to determine uncertainty 
and no hints about the probability of the null hypothesis. In 
practice this often means that given enough data minor dif-
ferences can be considered significant. In this evaluation we 
therefore use the Bayesian testing regime proposed in [9], 
which comes with all benefits of Bayesian approaches. 
Namely, being able to not only reject, but also verify a null 
hypothesis, as well as being able to take actions that mini-
mize loss. In our case this means we use a Bayesian signed 
rank test [70] to determine whether the difference among 
two classifiers is significant. Furthermore we can define a 
so-called region of practical equivalence (ROPE), where 
approaches are considered equally good. The Python pack-
age Autorank [71] makes these best practices readily avail-
able and enables us to automatically set the ROPE in relation 
to effect size.9 The proposed Bayesian analysis furthermore 
provides us with the probability that one algorithms is better/
worse than the other as well as with the probability that they 
are equal. We make a decision if one these probabilities is 
≥ 95% , else we see the analysis as inconclusive.

In Fig. 7 we show a decision matrix visualizing which 
hubness reduction methods outperform each other. We can 
see that NICDM, CSLS and DSL significantly outperform 
using no hubness reduction and the results for LS are incon-
clusive. Both Mutual Proximity approaches are practically 
equivalent to using no hubness reduction. This is in contrast 
to our previous study, where we determined NICDM to sig-
nificantly outperform all other approaches.

In summary, we can answer our research question (��) 
positively: Yes the correct hubness reduction technique (i.e. 
NICDM, CSLS and DSL) improves results significantly.

Hubness Reduction with Approximate Nearest Neighbors

In order to answer (��) we now take a look at approxi-
mate nearest neighbor algorithms. Again we compare the 
improvement of hits@50 to the baseline, which is exact 
NN search without hubness reduction. In Fig. 8 we pre-
sent a boxplot summarizing the results over all embedding 
approaches.

When using ANN approaches we can see that hubness 
reduction cannot in all cases offset the retrieval loss of the 
approximation. This is especially prominent for Annoy, 
which not only shows the highest variance but also the 
worst results generally. Both HNSW implementations seem 
to work the best with almost all results staying in the posi-
tive range. To make sound claims about which algorithms 
outperform the baseline/and or other approaches we pre-
sent a decision matrix containing the results of the pairwise 
Bayesian signed rank test in Fig. 9.

Since we already discovered in Section Hubness Reduc-
tion with Exact Nearest Neighbors that both Mutual Proxim-
ity variants are outperformed by the other hubness reduction 
techniques we omit them from the decision matrix in order 
to keep the graphic more concise.

We can see that Annoy is generally outperformed by all 
other approaches and is in fact even worse than the baseline 
(Exact None). Faiss is the only algorithm that outperforms 
the baseline, but only with NICDM, CSLS or DSL as hub-
ness reduction technique. The results for NMSLIB’s HNSW 
implementation is inconclusive for NICDM and DSL. Again, 
this is in contrast to the findings of our previous study, where 
we found that NMSLIB’s HNSW with NICDM/DSL was 
significantly better than all other approaches. We suggest the 
reason for this discrepancy is the fact that our new Bayes-
ian analysis can reason about practical equivalence of two 

Fig. 7  Decision matrix comparing hubness reduction techniques 
using Bayesian signed rank tests. Each cell shows the decision, when 
comparing the row approach to the column approach. A decision is 
reached if the posterior probability is ≥ 95%

9 More precisely it sets ROPE as half the size of a small effect fol-
lowing  [72]. Since Autorank determined our data to be non-normal 
this means ROPE is defined as 0.1*gamma, where gamma is Akin-
shin’s gamma [73].
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algorithms, while the previous frequentist approach could 
only falsify the null hypothesis, that there is no difference 
between the approaches. Which means minor difference can 
be significant given enough data.

However, the answer to (��) stays the same as in our pre-
vious study: “While not all ANN algorithms can achieve the 
same quality as the baseline, given the right algorithm and 
hubness reduction technique we can not only match the per-
formance of exact NN algorithms, but we can significantly 
outperform them” [7]. What changes is our recommendation 
of ANN algorithm implementation: Faiss’s HNSW imple-
mentation in combination with either CSLS,NICDM or DSL 
performs significantly better than the baseline.

Execution Time

Our third question revolves around speed. Since there are 
large differences in execution time between the large and 
small datasets we show the graphs separately in Fig. 10.

The slowest approaches are the exact “effective” algo-
rithm variants (BallTree and KDTree). While they can give 
performance increases for low-dimensional data, they are 
unable to perform well for our use-case. We can also see 
that in most cases hubness reduction comes with some cost 
w.r.t speed. Especially the Mutual Proximity variants are 
costly. On the small datasets Faiss is the fastest approach. 
Faiss’s brute-force variant is in fact faster than it’s HNSW 

Fig. 8  Improvement in hits@50 compared to using no hubness reduction with an exact NN algorithm. Results are aggregated over different 
embedding approaches
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implementation. Faiss’s speed becomes especially prominent 
when looking at the large datasets, where it is an order of 
magnitude faster than Scikit-learn’s brute force variant or 
NMSLIB’s HNSW. While Annoy is also very fast we have 
already established that it is not accurate enough for our use-
case. The answer to (��) depends on the dataset size. Using 
Faiss even exact hubness reduction can be used on smaller 
datasets with virtually no cost. For the 100K datasets Faiss’s 
exact and approximate approaches tend perform very simi-
larly even when comparing fast hubness reduction methods 
(e.g. NICDM or CSLS) with no hubness reduction. Bear in 
mind, that the execution time of Faiss_HNSW depicted here 
includes the optimization search of autofaiss.

GPU Utilization

Finally, we investigate how the use of GPUs changes our 
assessments. Since the only approach capable of utilizing a 
GPU is Faiss we focus our comparisons on the different vari-
ants within this library. In Fig. 11 we again show the execu-
tion time in different graphs for the small and large datasets.

To give a more granular view we show the time it took for 
each configuration to build the index and how long the query 
time was. Indexing time not only includes the time of Faiss 
to load the data or in case of HNSW build the graph, but 
also includes time our library needs to gather information 
that will be used for hubness reduction later. This is usually 
the primary distances from target entities to source entities, 
which will then be used, when we query the distances from 

source to target to reduce hubness. Because the hubness 
reduction techniques perform different calculations in this 
initial step the indexing times are different between them 
even though the same (A)NN algorithm is used. For HNSW 
most time is spent on building the index (except when using 
the expensive MP emp hubness reduction). As said before 
in Hubness Reduction with Approximate Nearest Neighbors 
this time includes the index optimization search of auto-
faiss. Generally we can see that the use of GPU is espe-
cially beneficial for the brute-force variant. Both NICDM 
and CSLS are not only the best hubness reduction techniques 
w.r.t to hits@50 improvement but are also the two fastest 
approaches (together with LS). For small datasets again the 
exact variant is generally faster. For the large dataset HNSW 
is faster, except when a GPU is available, then the exact vari-
ant is an order of magnitude faster.

More research is needed to establish a guideline w.r.t to 
dataset size, when HNSW on the GPU is faster than the 
brute variant. Our results indicate that 100.000 entities per 
source might very well be the point where HNSW is the 
more favorable choice.

Conclusion and Future Work

We investigated how hubness reduction techniques can 
improve entity alignment results. Our evaluation was done 
on a variety of real-world datasets with differing proper-
ties from knowledge graph embeddings were create with 

Fig. 9  Decision matrix 
comparing hubness reduction 
techniques and ANN algorithms 
utilizing Bayesian signed rank 
tests. Each cell shows the 
decision, when comparing the 
row approach to the column 
approach. A decision is reached 
if the posterior probability is 
≥ 95%
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(a) 15K datasets

(b) 100K datasets

Fig. 10  Time in seconds for different (A)NN algorithms and hubness reduction methods. Results are averaged over datasets with black bar show-
ing variance
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a variety of approaches. Our results suggest that mitigat-
ing hubness significantly improves alignment results, with 
practically no decline in retrieval speed of nearest neigh-
bors. This is also true, when utilizing approximate nearest 

neighbor search for larger datasets. For example using the 
Faiss library with the hubness reduction technique NICDM 
we got a median improvement in hits@50 of 3.99% when 
using the exact variant and 3.88% when using their HNSW 

(a) 15K datasets

(b) 100K datasets

Fig. 11  Time in seconds for different Faiss configurations and hubness reduction methods. Results are averaged over datasets with black bar 
showing variance. We differentiate indexing time by darker color and query time by lighter color
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implementation. On the small datasets we saw no speed 
decrease for the exact algorithms, and on the large data-
sets we saw a negligible median decrease in speed of 1–4 s 
compared to using no hubness reduction. This makes hub-
ness reduction a cheap way to get more accurate results. 
When a GPU is available the exact Faiss variant is notice-
ably the fastest even on large datasets, where we can perform 
hubness-reduced 50 nearest neighbor search in 8 seconds 
on knowledge graph embedding pairs containing 100.000 
entities each.

Since we saw a negative correlation10 between hubness 
and hits@50 a worthwhile investigation might be how to 
reduce hubness already while creating the embeddings. 
While nearest neighbor search is a crucial part of the align-
ment process it is not the final step. The hubness-reduced 
secondary distances can be used as input for clustering-
based [74] matchers to find the definitive matching pairs. 
An investigation we leave for future work.
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