
Vol.:(0123456789)

SN Computer Science (2023) 4:14
https://doi.org/10.1007/s42979-022-01422-4

SN Computer Science

ORIGINAL RESEARCH

Personal Health Train Architecture with Dynamic Cloud Staging

Luiz Olavo Bonino da Silva Santos1,2 · Luís Ferreira Pires1 · Virginia Graciano Martinez1 ·
João Luiz Rebelo Moreira1 · Renata Silva Souza Guizzardi1

Received: 17 March 2022 / Accepted: 16 September 2022 / Published online: 17 October 2022
© The Author(s) 2022

Abstract
Scientific advances, especially in the healthcare domain, can be accelerated by making data available for analysis. However,
in traditional data analysis systems, data need to be moved to a central processing unit that performs analyses, which may be
undesirable, e.g. due to privacy regulations in case these data contain personal information. This paper discusses the Personal
Health Train (PHT) approach in which data processing is brought to the (personal health) data rather than the other way
around, allowing (private) data accessed to be controlled, and to observe ethical and legal concerns. This paper introduces
the PHT architecture and discusses the data staging solution that allows processing to be delegated to components spawned
in a private cloud environment in case the (health) organisation hosting the data has limited resources to execute the required
processing. This paper shows the feasibility and suitability of the solution with a relatively simple, yet representative, case
study of data analysis of Covid-19 infections, which is performed by components that are created on demand and run in
the Amazon Web Services platform. This paper also shows that the performance of our solution is acceptable, and that our
solution is scalable. This paper demonstrates that the PHT approach enables data analysis with controlled access, preserv-
ing privacy and complying with regulations such as GDPR, while the solution is deployed in a private cloud environment.

Keywords Personal health train · Cloud · Staging station · Data station · Privacy preservation

Introduction

In the last decades, the progressive spread of information
technologies in the global society has caused a substantial
increase in the amount of generated data [1]. These data are
of paramount value for the modern way of life and spread
through all domains, from science to life style to commerce
and to security. In the healthcare domain, for instance, these
data can foster medical advances and improve healthcare
services, improve disease surveillance, and enable clini-
cal decision support and population health management, to
mention just a few benefits [2].

Until recently, data analysis required data to be copied
and moved to a central location where they would be eventu-
ally combined with data from other sources. This approach
requires potentially large amounts of data to be moved
around, so that centralising them is in general not convenient
anymore. From technical and economical perspectives, it is
increasingly unlikely that a single organisation or individual
can afford to collect and store all the needed data and main-
tain their required infrastructure. Another argument against
data centralisation comes from a social perspective related

This article is part of the topical collection “Web Information
Systems and Technologies 2021” guest edited by Joaquim Filipe,
Francisco Domínguez Mayo and Massimo Marchiori.

 * Luiz Olavo Bonino da Silva Santos
 l.o.boninodasilvasantos@utwente.nl

 Luís Ferreira Pires
 l.ferreirapires@utwente.nl

 Virginia Graciano Martinez
 graciano.virginia90@gmail.com

 João Luiz Rebelo Moreira
 j.luizrebelomoreira@utwente.nl

 Renata Silva Souza Guizzardi
 r.guizzardi@utwente.nl

1 Faculty of Electrical Engineering, Mathematics
and Computer Science, University of Twente, PO Box 217,
Enschede 7500, AE, The Netherlands

2 Leiden University Medical Center, PO Box 9600,
Leiden 2300, RC, The Netherlands

http://orcid.org/0000-0002-1164-1351
http://crossmark.crossref.org/dialog/?doi=10.1007/s42979-022-01422-4&domain=pdf

 SN Computer Science (2023) 4:1414 Page 2 of 17

SN Computer Science

to the ethical and legal restrictions to the sharing of privacy-
sensitive data. Regulations such as the European General
Data Protection Rules (GDPR) defines rules to protect the
access of personal data and have an impact on the way data
can be stored and processed [3]. Therefore, to comply with
these regulations and, at the same time, harness the potential
of the massive amount of data available, a distributed and
privacy-preserving data analysis approach is necessary.

Distributed learning allows data from different source
locations to be analysed without the need to move them to
a central location [4]. In the healthcare domain, the Per-
sonal Health Train (PHT) is an approach that have been
gaining momentum in the last years. The Personal Health
Train initiative started in 2016 when a number of life sci-
ences researchers in the Netherlands discussed the idea of
a decentralised and privacy-preserving data and services
infrastructure that could facilitate the reuse of data. This
infrastructure should be based on the FAIR principles [5] to
guarantee that not only the data but all relevant elements of
the infrastructure are findable, accessible, interoperable and
reusable. To introduce the initial ideas in an intuitive way,
the Dutch Techcenter for Life Sciences produced an anima-
tion video1 in collaboration with the involved researchers,
showing the main elements of the intended infrastructure
and illustrating some of the expected use cases. The main
idea of the PHT is that the algorithms move to the data
instead of the other way around. The PHT uses the analogy
of a train system, in which trains (the analysis algorithm)
move through (data) stations, so that in each station data
can be accessed and analysed. This approach allows analysis
to be performed on scattered data, including sensitive data,
without the data leaving their organisational boundaries, so
that data privacy and control can be preserved, and ethical
and legal concerns are observed [6].

The personal part of the Personal Health Train is about
giving to the data controller the means to exercise control-
ling authority over their personal data that are hosted and
managed in different locations. This allows data controllers
to more precisely know where their data are located and
also to determine the data access and reuse conditions. The
PHT supports dynamic consent, in which the data controller
is asked to explicitly consent for a data requester to access
his/her data under some specific context. Regarding privacy
and security, the main benefit of the PHT is that data pro-
cessing happens within the administrative realm of the data
controller. In this way, data analysts are able to get valuable
information from different sources, including sensitive data,
without directly accessing the data [7].

Data analysis algorithms require input data. Although
seemly obvious, this statement embeds a number of

assumptions such as that the data have been discovered,
are accessible, match the algorithm’s requirements and
are allowed to be used. In biomedical research, there is an
increase adoption of machine learning (ML) techniques for
identification, classification and prediction of, for instance,
pathologies and their outcomes [8–11]. A commonality
among these works is that ML algorithms require an often
large amount of training data to improve their results. By
following the FAIR principles, the PHT approach improves
the findability, accessibility, interoperability and reusabil-
ity of the data made available in the Data Stations. This is
expected to improve the availability of potential training sets
for these algorithms.

The PHT vision foresees data stations of different sizes
and capabilities. For instance, large hospitals would have
large stations containing data from a significant number of
patients, while small medical practices would have a station
containing only the data of its patients. Since computing
capacity is necessary whenever processing is expected to
be performed, a suitable environment should be available
in the organisation hosting the data station. However, the IT
infrastructure of many organisations may not be powerful
enough to support the processing required by arriving trains
in addition to their own operational processes. In this case,
a mechanism has to be devised to allow more powerful pro-
cessing environments to be dynamically staged for execut-
ing the incoming algorithms while keeping the data under
control of the data controller and sensitive data protected.

This paper reports on our efforts to extend the PHT
approach to allow data to be processed in the cloud, dynami-
cally augmenting the processing power of the IT infrastruc-
ture of healthcare organisations. Our solution not only fulfils
the functional requirements of the PHT approach, but it also
complies with privacy regulations, particularly the GDPR.
The paper describes the design and implementation of our
solution, and demonstrates its suitability with a simple yet
representative case study.

This paper extends [12] by giving more details on the
PHT architecture and describing the process that determines
whether a data station needs to be staged. Other small adjust-
ments have also been made in the staging process to better
reflect the current status of its design and development.

This paper is further structured as follows: the next sec-
tion introduces the PHT architecture, explaining its main
components, the third section discusses the data visiting
process that determines the data stations to which a train is
forwarded, the fourth section presents the data staging pro-
cess that is performed in case a train is executed in the cloud,
the fifth section presents the implementation of our solution,
by justifying our choices of technologies, the sixth section
discusses the case study we used to validate our solution, the
seventh section discusses related work and the last section
gives our conclusions and recommendations for future work.1 https:// vimeo. com/ 14324 5835.

https://vimeo.com/143245835

SN Computer Science (2023) 4:14 Page 3 of 17 14

SN Computer Science

Architecture

The Personal Health Train (PHT) architecture adopts the
metaphor of a train system in which trains move around and
stop at stations. In the PHT, the trains represent analysis
(processing) algorithms that visit stations where data are
made available for processing. The architecture is specified
with the Archimate 3.1 language [13], which is the OMG
standard for Enterprise Architecture modelling as a visual
language with a default iconography for describing, analys-
ing, and communicating architectural concerns. Parts of the
PHT architecture are also specified with UML [14], such as
sequence and activity diagrams for describing behavioural
aspects.

Components and Roles

Figure 1 shows the main architectural components of the
PHT, namely:

• Data Station is a software application responsible for
making data and their related metadata available to users
under the accessibility conditions determined by applica-
ble regulations and the related Data Controllers.

• Personal Gateway is a software application responsible
for mediating the communication between Data Stations
and Data Controllers. The Data Controllers are able to
exercise their control over the data available in different
Data Stations through the Personal Gateway.

• Station Directory is a software application respon-
sible for indexing metadata from the reachable Data
Stations, allowing users to search for data available in
those stations.

• Train represents the way data consumers interact with
the data available in the Data Stations. Trains represent
a particular data access request and, therefore, each
train carries information about who is responsible for
the request, the required data, what will be done with
the data, what it expects from the station, etc.

• Train Handler is a software application that interacts
with the Stations Directory on behalf of a client to dis-
cover the availability and location of data and sends
Trains to Data Stations.

Related to the components above, the following roles
played by stakeholder also depicted in Fig. 1 have been
identified:

• Station Owner is the role of being responsible for the
operation of a Data Station.

• Directory Owner is the role of being responsible for
the operation of a Station Directory.

• Data Controller is the role of controlling rights over
data.

• Train Provider is the role of being responsible for the
creation of a specific Train, e.g. the developer of a spe-
cific analysis algorithm.

Fig. 1 Main roles and components of the PHT architecture

 SN Computer Science (2023) 4:1414 Page 4 of 17

SN Computer Science

• Train Owner is the role of using a Train Handler to send
Trains to Data Stations.

Since the PHT data analysis is mainly performed at the
data source side, appropriate definitions are necessary to
determine where to find, how to access, how to interpret and
how to reuse the data. These definitions are provided using
appropriate metadata to describe each of the PHT elements
as depicted in Fig. 1. Therefore, the PHT infrastructure relies
on the FAIR (Findable, Accessible, Interoperable, Reusable)
data principles [5], which should apply to all elements of the
architecture, including the Train and Data Station, focus-
sing on the reusability of distributed data with distributed
analytics.

Train Types and Structure

Trains represent algorithms that manipulate data. We can
use different methods to realise data manipulation such as
queries, API calls, container technologies, scripts, among
others. Therefore, Trains can have different types, according
to the data manipulation method they use. Figure 2 depicts

examples of Train types as application components with
their respective data objects.

A Train is composed of two parts (see Fig. 2), namely
the Train metadata and its payload. The metadata provides
information about the Train, including its creator (Train
Provider), its dispatcher (Train Dispatcher), the required
input data, the expected output, what is supposed to happen
with the data (the process), its purpose and its computa-
tion requirements. Most of the Train metadata properties
are applicable to any type of train. In contrast, the train pay-
load depends on the train type. For instance, in a SPARQL
train, which is a specialisation of Query Train, the payload
is the SPARQL query, while in a Docker train, which is a
Container Train, the payload is the identifier of the Docker
image stored in a Docker repository.

Data Station Services

Data Stations provide access to their functionality through
their API. In the PHT architecture, we classified the ser-
vices offered by the Data Stations in three groups, namely

Fig. 2 Examples of Train types in the PHT approach

SN Computer Science (2023) 4:14 Page 5 of 17 14

SN Computer Science

Station Metadata Service, Station Services and Interaction
Service, as depicted in Fig. 3.

The Station Metadata Service is responsible for man-
aging and providing access to the metadata of the Data
Station itself and its contents. This includes interfaces
for managers and data stewards to add and edit metadata
records, and for users and client applications to search and
retrieve the available metadata content.

The Station Services include Data Station-specific func-
tions, such as the connection between the Data Station
and the Personal Gateway, subscription services where, for
instance, the Station Directory can subscribe to received
notifications on updates on the metadata content of the
station.

The Interaction Service is responsible for receiving and
executing trains. Since we have different types of trains,
stations need to specialise this service with the specific
functionality required to support each of the train types.

Station owners may restrict the types of interaction ser-
vices a given station supports.

Data Visiting Process

The PHT approach encourages and regulates data reuse since
Trains reaching the Data Stations access the necessary data
and complete their tasks without giving direct data access
to their end-users. In the PHT, a data consumer who wants
to analyse or manipulate data in any way, plays the role of a
Train Owner and uses the Train Handler (client application)
to dispatch a Train to the relevant Data Station.

Figure 3 shows how the Interaction Component of the
Data Station executes the train payload. This component
serves as an intermediary between the data source (Data
Storage in Fig. 3) and the Train. Therefore, data manipula-
tion (analysis, copy, creation, etc.) occurs at the Data Station

Fig. 3 Data Station functions, services, interfaces and internal components

 SN Computer Science (2023) 4:1414 Page 6 of 17

SN Computer Science

and under the supervision of the Station Owner. This allows,
for instance, that the station has the opportunity to inspect
the output of the train execution and check whether the
results are allowed to be returned to the Train Owner.

Figure 4 depicts the sequence of interactions involved in
selecting and dispatching a train. The process starts with the
Train Owner using its Train Handler application to select a
train. In order to list the available trains to its user, the Train
Handler interacts with the Station Directory to request the
list of Train Garages, which are Data Stations specialised in
providing Trains instead of or in addition to data. With this
list, the Train Handler invokes each Train Garage to retrieve
the metadata of the available trains. These options are then
returned to the Train Owner, who selects a train to be dis-
patched. From the train metadata, the Train Handler retrieves
the required parameters of the train. For example, in a health
application one parameter could indicate the disease the
train provides analysis for. The parameters are provided by
the Train Owner, who then proceeds to dispatch the train.
The Train Handler identifies the required input data from
the train metadata, searches in the Station Directory for the
Data Stations that provide the required data, plans the train
execution and dispatches the train to the discovered stations.
Once the train is executed, the Train Handler receives the
results and presents them to the Train Owner.

Data Staging

An important step of the data visiting process that is per-
formed by a Data Station is the decision to accept or refuse
the execution of the train. To make this decision, the station
needs to consider a number of different variables such as
who sent the train, for which purpose, the required data, the
expected results and the computation requirements of the
train. Figure 5 gives the high-level steps of the train evalu-
ation process. In this process, once a train gets to the sta-
tion, two parallel evaluations are triggered, one to evaluate
the train data access requirements and another to evaluate
the train computation needs. In this process we have three
possible outcomes, (i) the train is executed because both
computation and data access requirements are matched, (ii)
the train is rejected because either the data access has been
denied or the station does not have enough resources to run
the train, or (iii) the data access has been authorised, the
station is not capable of executing the train but it can stage a
capable station with enough resources to run the train.

The train evaluation process path related to data can
become significantly complex as issues such as privacy,
security, access control and data structure and semantics
should be taken into consideration. We are progressively
working on these issues by investigating the use of seman-
tic descriptions of data requirements and data offerings to

support automated matching. However, in this paper, we
focus on the situation in which (i) the original station has
asserted that the incoming train has access to the required
data, and (ii) the station is not able to execute the train but
has determined the feasibility of dynamically deploying
another station with the required data in an environment
with enough computing resources, such as a cloud plat-
form. The architectural design of the Data Station supports
that the Data Station platform runs the Train either locally
or uses a Staging Station in the cloud, depending on the
computing resources available at the main Data Station
and the Train requirements. This capability improves flex-
ibility and scalability, using local resources or extending
the infrastructure resources with the Staging Station when
required.

Figure 6 depicts the proposed Data Station architec-
ture with the elements related to staging. The Data Inter-
action Service provides functionality that allows Trains
to access the data available at the Data Station and also
validates the incoming Train via the Train Validation Ser-
vice, as depicted in Fig. 5. The Data Interaction Service
assesses whether the Train behaves according to the Sta-
tion requirements and the Train description provided in
the Train metadata. Whenever the data required by a Train
have access restrictions, the Data Interaction Service also
enforces the required access control through authentica-
tion and authorisation. In some cases, the authorisation
process triggers the Consent Service, which is responsible
for requesting a consent from the responsible person or
entity to grant access to the data.

The Data Station Metadata Service provides access to the
metadata of the Data Station and of all data sets made avail-
able through this Station. External applications willing to
retrieve metadata from the Data Station invoke this metadata
service to accomplish the task.

Once the station has determined that it needs to stage a
new station in the cloud in order to execute the train, the
Staging Service proceeds to deploy a new Data Station in
the cloud through its related Staging Interface, configuring
the environment with the computing capabilities compatible
with the Train requirements. The Staging Service uses the
Data Interaction Service to retrieve the data required by the
Train and copy them to the newly deployed Staging Station.
Finally, the Train is forwarded to the Staging Station where
it is expected to be executed.

The Station Owner of the original Data Station is also
responsible for the Staging Station. The staging process
should therefore be transparent to the Train Owner. How-
ever, the use of an external platform can incur an extra cost.
For this reason, we defined a Billing component, which can
be used at the Station Owner’s convenience and can accrue
the staging costs that should be covered by the Train Owner,
depending on prior agreements.

SN Computer Science (2023) 4:14 Page 7 of 17 14

SN Computer Science

Fi
g.

 4

Se
qu

en
ce

 o
f t

ra
in

 d
is

pa
tc

hi
ng

 in
te

ra
ct

io
ns

 SN Computer Science (2023) 4:1414 Page 8 of 17

SN Computer Science

The Staging Station is an extension of the regular Data
Station and it behaves like the original Data Station, but with
some additional features.

Figure 7 depicts the architecture elements of the Staging
Station, which offers the following services:

• Access Control Service offers access control to the
cloud environment, but only to the Data Station Owner. If
needed, more users can be added and get specific permis-
sions and policies to execute particular tasks. Commu-
nication between the components in the cloud is denied
by default to provide a proper secure environment. The
Identity Management Service can later provide roles to

allow or deny access to the other resources deployed and
used by the Staging Data Station, such as storage and
computing instances.

• Data Storage Service stores the input and output data.
The input data are selected at the original Data Station
based on the Train needs and moved to the Staging Data
Station in the cloud. The output data result from the Train
execution, and are sent to the original Data Station.

• Even-Based Services The Staging Platform provides
event-based services to automate the execution steps. For
instance, when the data are entirely moved to the cloud,
the Staging Data Station notifies the cloud computing
instance in which the Train can be executed. Further,

Fig. 5 High-level steps of the train evaluation process

Fig. 6 Data Station architecture with staging components

SN Computer Science (2023) 4:14 Page 9 of 17 14

SN Computer Science

the original Data Station may subscribe to be notified
when the Train execution finishes, to harvest the output
data once they are available. Events and trigger actions
are achieved through the Event Handler and Event Dis-
patcher services, which listens to the events issued by
infrastructure components to create rules and trigger
actions, and executes the actions provided by the Event
Handler, respectively.

• Logging Service logs the data access interactions, ena-
bling regulatory compliance and security, but also opera-
tional tasks. It identifies which actions were taken by
whom, the resources that were acted upon, who accessed
which data when the event occurred, and other details to
help analyse and respond to an activity. This is a require-
ment for GDPR compliance, but it is also used to com-
municate with the Event-based services to launch tasks
when an event occurs.

Solution Implementation

In this section, we present our implementation of the pro-
posed Staging Station architecture that has been developed
to process a Container Train, which is a Train that represents
a Docker image. We begin by discussing the selection of
tools, followed by the implementation in the dynamic infra-
structure platform.

Technologies

For the dynamic platform to stage Data Stations, we chose
Amazon Web Services (AWS), due to its GDPR compli-
ance [15], free-tier resources for testing, plenty of options
for infrastructure resources [16] and its global infrastructure,
with multiple locations worldwide and especially in Europe.
For the provisioning tool, we chose Terraform2, since it is
open source, supports multiple dynamic platforms and has
declarative configuration. Furthermore, most alternatives are
vendor-specific solutions and could create yet another ven-
dor lock-in. The extensive integration and support offered
by Terraform confirmed our choice for AWS as dynamic
platform.

Terraform is convenient because it allows many infra-
structure components to be implemented through pieces
of code that can be deployed at the same time. Terraform
provisions the resources of a dynamic platform, and a
Terraform provider is used to interact with the APIs and
expose the resources from the corresponding dynamic
platform. In our implementation, the AWS provider is
used for provisioning all the required resources. Besides,
we chose the closest European AWS region (Frankfurt) in

Fig. 7 Staging Station architecture

2 https:// www. terra form. io.

https://www.terraform.io

 SN Computer Science (2023) 4:1414 Page 10 of 17

SN Computer Science

order to comply with GDPR. Terraform has been installed
in the machine that runs the Data Station.

The implementation comprises two parts: the Data
Station, which runs in a laptop, and the Staging Station,
which runs in AWS. Since we implemented our data stag-
ing prototype to run Container Trains, once the Train is
set up to run in a Data Station, the Station takes the con-
tainer identifier from the Train payload and retrieves the
container image from its Train Registry. In our prototype,
we used the Amazon Elastic Container Registry (ECR)
service, which supports Docker images, as the Image
Repository.

We implemented the Data Station in our prototype on
a computer with 1.8 GHz Dual-Core Intel Core i5 and
8 GB memory. We implemented an API that plays the
Data Station role and interacts with the Staging Station.
In addition to Terraform, the technologies used in the
implementation and installed in the computer are Docker
client, AWS SDK for Python, NodeJS, and Express. The
Data Station API is configured in NodeJS and exposed to
the Internet via the localtunnel npm tool.

Our implementation supports the functionality trig-
gered after the decision that the Train cannot run at the
original Data Station due to lack of enough computing
resources. In addition, it assumes that the Train can have
access to the required data.

Interactions

Figure 8 depicts the sequence diagram that shows the inter-
actions between our implementation components to support
the deployment and execution of the Train in the Staging
Station. Once the decision to stage a new station in the cloud
has been made, the Data Station Staging Interface launches
the Staging Station in AWS as described in the Terraform
definition files. This allows all the necessary components to
be provisioned in the AWS cloud at the same time.

Once the Staging Station is deployed, the (original) Data
Station subscribes to the Staging Station Publish-Subscribe
Service to receive a notification when the Train execution is
completed. The Data Station also moves the required data to
the Staging Station through its Data Storage Service. Once
the required data have been transferred to the Staging Data
Station, the Event-Based Service immediately triggers the
Data Interaction Service to launch the Train. In order to
do so, the Data Interaction Service pulls the Train Image
from the Image Repository, deploys it in the Staging Station
and executes it. Once the Train execution is completed, the
resulting data are stored by the Data Storage Service.

When the Train finishes its execution, the Data Interac-
tion Service informs this via the Event-Based Service to
the Publish-Subscribe service. Finally, the Publish-Sub-
scribe Service sends a notification message to the Data
Station, which can proceed to transfer the output data

Fig. 8 Interaction sequence for Staging Station

SN Computer Science (2023) 4:14 Page 11 of 17 14

SN Computer Science

from the Stating Station. At this point if necessary, the
Data Station can verify whether the output data complies
with the expected output as defined in the train metadata.
Once all checks have been done, the Data Station sends
the output data to the requesting Train Handler.

AWS Services

Figure 9 illustrates the Staging Data Station implementa-
tion we deployed in the AWS cloud in accordance with
the interaction diagram of Fig. 8.

Table 1 shows the AWS services we used in our imple-
mentation, as well as the service that implements each
PHT component from Fig. 7.

Authentication

In order to create an environment in AWS, we first need
an Amazon Web Service Account and a special authentica-
tion method. We used Multi Factor Authentication (MFA)
to access the AWS console. We assigned an Admin role to
the Station Owner, having a name and two keys, namely, the
public assess key and the secret key. In this way, the desired
connection to the environment is established in an absolutely
reliable and secure way.

The authentication credential are configured in the Data
Station, allowing it to interact with AWS through its Staging
Service to trigger the deployment of a Staging Station. The
creation of the AWS account and the configuration of the
Data Station with the AWS account credentials are manual
steps that have to be taken by the Station Owner.

Fig. 9 Implementation in AWS

Table 1 PHT components and AWS services

PHT component AWS service Description

Data storage service Simple storage service (S3) Provides object storage through a web service interface
Event handler, event dispatcher Cloud watch Monitoring service that provides data and actionable insights for AWS

infrastructure resources
Publish-subscribe service Simple notification service (SNS) Using SNS topics, publisher systems can fan out messages to many

subscriber systems, including HTTP endpoints
Container environment Elastic container service (ECS) fargate Computation runtime environment based on serverless technology that

facilitates deployment, so that we do not need to be concerned about
how many resources assign in advance

Access control Identity and access management (IAM) Manages access to AWS services and resources securely
Networking Virtual private cloud (VPC) Creates a custom networking environment
Image repository Elastic container registry (ECR) Fully managed Docker container registry

 SN Computer Science (2023) 4:1414 Page 12 of 17

SN Computer Science

Publish‑Subscribe Service

We use Amazon SNS to implement the Publish-Subscribe
Service. The SNS can respond with three types of mes-
sages: (i) subscription confirmation, (ii) confirmation to
unsubscribe, and (iii) the actual notification. The mes-
sages sent by SNS use HTTP POST requests with the
message type on the header, allowing us to identify the
type of message and run specific jobs in the Data Station
Staging Interface, as shown in Fig. 8.

Storage

The Data Storage Service is implemented with Ama-
zon S3, so from now on it is referred to as the bucket, in
accordance with the AWS S3 terminology. We used three
buckets by design, to store input data, output data and log
files, respectively. The use of several buckets provides
more granular security and facilitates automation, trig-
gering different actions on each of them: the availability
of input data triggers the Train execution, while the avail-
ability of output data triggers the download and smooth
data retrieval at the end of the Train execution. Table 2
shows our buckets and their use.

The implementation supports client-side encryption
and server-side encryption for protecting data stored in
the cloud and in transit against unauthentic and unau-
thorised access, while ensuring that they remain intact
and available. Client-side encryption is used to protect
data in transit by encrypting data before sending them
to AWS S3. HTTPS is used to guarantee secure con-
nections. If the healthcare organisation has a Virtual
Private Network (VPN) infrastructure, we recommend
to establish a private connection to the cloud. For the
server-side encryption, a unique encryption key is gen-
erated for each object, and data are encrypted using the
256-bit Advanced Encryption Standard 256 (AES-256).
After that, a securely stored and regularly rotated master
key encrypts the encryption key itself. Users can choose
between mutually exclusive possibilities to manage the
encryption keys. The input and output buckets use unique
Amazon S3-Managed Keys (SSE-S3) with strong multi-
factor encryption.

Data Transfer

Data transfer is configured with the Terraform files. We used
the depends on meta-argument provided by Terraform to
express dependencies between components. In this case,
data are transferred once the remaining resources are created
in the cloud, so that we can move data without concerns.
Furthermore, we verify the integrity of the uploaded data
with Message Digest (MD5) checksum in order to detect
data corruption.

Event‑Based Services

Usually, AWS Services generate notifications when an event
occurs, and these events are used to trigger an action. How-
ever, these actions have to be stored somewhere, and rules
and targets should be defined based on them, so we use Log
Bucket to store all the input bucket actions. We create a
CloudTrail that reports the activities of objects in the input
bucket, which are seen as events by the CloudWatch service.
After that, we configure an upload S3 event rule in Cloud-
Watch. Once a rule condition is fulfilled, the CloudWatch
target triggers an action. Accordingly, when data are com-
pletely uploaded to the Input Bucket, our system launches a
compute engine for containers using ECS, and in this way
the Train is executed.

Computing Resources

Amazon ECS makes it easy to launch containers and scale
rapidly to meet changing demands, but one of the challenges
during execution is the provision and management of com-
puting and memory resources. There are several mechanisms
to predict the resources required and scale them appropri-
ately. However, the Staging Station is a temporary deploy-
ment that has the main task of providing the appropriate
computing resources for the Train. ECS Fargate is a server-
less solution that allocates the required amount of computing
capabilities, so that instances do not have to be chosen in
advance since it scales cluster capacity as required by the
application.

We use an entity called a task definition to describe to
ECS how to run the container. The ECS task definition can
be thought of as a prototype for running an actual task, and

Table 2 Buckets description Bucket Use

Input data Stores the data required by the Train transferred from the original Data Station
Log Stores event history logs of the AWS account activity in the region, besides

helping the event-based service launch other resources dynamically
Output Stores the results of the Train execution. The original Data Station retrieves

the data from this bucket at the end of the Train execution

SN Computer Science (2023) 4:14 Page 13 of 17 14

SN Computer Science

allows for one or more containers to be specified. In our
implementation, each Train is mapped onto one task defini-
tion, which describes that the Train should be pulled from
the Image Repository when the CloudWatch rule matches
the uploading event. Unlike Virtual Machines in the cloud,
ECS Fargate is charged by vCPU and memory, and not by
the hour.

Security

In addition to the use of authentication and encryption mech-
anisms, an appropriate strategy for increasing security is to
classify, split, and divide everything, using roles, permis-
sions, regions, networks or firewalls. In a cloud environ-
ment, we can implement security at different levels. In our
solution, we created a Virtual Private Cloud to isolate our
components from other customers in AWS. However, the
resources cannot interact with each other if we do not config-
ure a policy to allow them to interact. Therefore, we provide
security via an Identity and Access Management service
with access control through user definitions, roles and per-
missions to users in each step of the workflow. For instance,
the ECS Cluster has read access to the S3 input bucket, but
it does not have write permission as it only requires to get
data from it. In contrast, ECS has write-access to the S3
output bucket.

The implementation uses a collection of network access
rules to limit the traffic types that can interact with a
resource. This collection of rules is called a security group,
and each resource can be assigned to one or more security
groups. The rules in a security group control the traffic
allowed to an instance. If incoming traffic does not match a
rule from the group, access is denied by default.

Case Study

We evaluated the design proposed in this research with a
simple analysis of COVID-19 data spread through data
sets of various sizes representing different workloads. This
allowed us to evaluate the system behaviour, mainly in terms
of the consumed network and computing resources. We used
our implementation to build a Container Train with an algo-
rithm to process and analyse COVID-19 patients’ informa-
tion. We used data sets created in the literature [17], where
the authors generated synthetic data using the open-source
Synthea tool, resulting in data sets containing synthetic
Electronic Health Records (EHR). The experiment aimed
at calculating all matching patients diagnosed with COVID-
19 and evaluate our system using 10K and 100K bundles.
For the patients diagnosed with COVID-19, we got summary
statistics of patients who recovered and died and the care
plan of the people infected.

Evaluation Metrics

Performance is the most suitable quality attribute to evalu-
ate the architecture using dynamic analysis. We used two
sets of measurements for this quality at- tribute, based on
the ISO 25010 standard [18] and the validation technique
presented in [19]:

• Time Behaviour is the degree to which the response and
processing time and throughput rates of a system meet
its requirements when performing its functions. For this
we measured the execution times from when the GET
method is invoked until the resources are deallocated.

• Resource Utilisation is the degree to which the amount
and types of resources used by a system meet its require-
ments when performing its functions. For this we meas-
ured the CPU Average use and RAM average use in the
cloud. Moreover, we measured network traffic in the Data
Station during the execution process.

Validation

We ran the execution of the system five times per bundle.
After these executions, we got an average calculation for the
analysis of the system. This prevents any data disturbance
caused by isolated events from having significant effects
on the results. We used the tool iftop on the computer that
runs the Data Station to collect network traffic information.
Besides, we harnessed the CloudWatch monitoring tool in
AWS to get the CPU and memory utilisation.

Table 3 shows the execution time for the provision and
deprovisioning process for both bundles. The provisioning
process comprises the Terraform files execution, data trans-
fer, Train routing, Train processing in the cloud, and down-
loading the results. The deprovision process covers only
the deletion of the entire cloud resources created by Ter-
raform. We observed that the difference between the execu-
tion time of both bundles is around 15%. Table 4 shows that

Table 3 Average execution time

10K 100K

Provision 3 min. 54 seg 4 min. 14 seg
Deprovision 17 seg 20 seg

Table 4 Average resource
utilisation

Resource 10K 100K

Network 62 Mb 70 Mb
CPU 53.5% 85.6%
RAM 12% 16%

 SN Computer Science (2023) 4:1414 Page 14 of 17

SN Computer Science

this behaviour can be justified by considering the average
resource utilisation.

Table 4 shows the network traffic during the provisioning
process in the Data Station. The 100K bundle consumes on
average around 70 Mb while the 10K consumes around 62
Mb. The slight difference in consumption is because in the
100K bundle case the multi-upload option was used due to
the size of the bundle. Multi-upload divides the bundle into
several chunks consuming more networking resources but
in less time. Consequently, the transmission times were dif-
ferent but not ten times bigger than the amount of data, like
it could be expected.

Table 4 also depicts the CPU and RAM average utilisa-
tion, which are the resources consumed in the cloud. We
observed that the CPU average utilisation for the 100K bun-
dle was 85.6%, almost 30% higher than for the 10K bundle.
From Tables 3 and 4, we have that the cloud processing time
was very similar among both bundles, but the 100K bundle
consumed more resources. In general, the average memory
utilisation was low and both tests used less than 20% of
the available memory. This may also indicate that we could
reduce the memory allocation in the cloud configuration.
The overall execution time of both bundles was also very
similar with a difference of around 8% despite a tenfold size
difference between the two data bundles.

We can conclude that the Data Station network and cloud
computing instance play a crucial role in the performance
of our system, more than the amount of data. Scalability of
the computing resources is achieved in the cloud, however,
the network consumption depends on the network capabili-
ties of each healthcare organisation. If we want to increase
transfer data speed, we can use multi-threading techniques,
although in this case many more network resources would
be consumed.

Table 5 presents the results from the analysis of the 10K
data sets. With 8820 infections, 96% of the people recovered,
which is a high rate, from which we concluded that COVID-
19 is highly contagious but not highly fatal.

The care plan in this data set has two values, namely
‘home isolation’ and ‘hospitalised’. Table 6 summarises the
statistics of patients who recovered at home and hospitals.

The hospitalisation rate is considered high for the period
these data were gathered. However, still, the vast majority
of people followed a ‘home isolation’ care plan, i.e. they
stayed and were treated at home. Table 7 shows that the
Intensive Care Unit (ICU) Admission rate was high, and
almost everyone at the ICU required ventilation. The death
rate for people in the ICU was also high. From these data,
we can conclude that patients admitted to the ICU and who
use ventilation have a high probability of dying.

These results demonstrate that our architecture imple-
mentation is capable of running a Train to perform data
analysis in the cloud. Our deployment enables analysis using
privacy-sensitive data sources and successive evaluation of
that analysis in a secure enclave. We could deploy the Stag-
ing Data Station, so that the Train analysed the data and got
a final file with the information provided in Tables 5, 6 and
7 directly in the Data Station. This also demonstrates that
the standardisation of the data structures alongside a proper
architecture facilitates data analysis in any environment, par-
ticularly in a distributed environment.

Related Work

The Personal Health Train is often related to Distributed
learning, a concept first introduced by Google in 2016 [4],
where distributed databases are analysed at different data
sources location. In this paradigm, data source organisations
control the entire execution and return just the results, with-
out sharing information and keeping the privacy of sensitive
data [6].

The inspiration for the PHT was the Euregional Computer
Assisted Theragnostics project (EuroCAT)3, which started
in September 2010. From the scope of this project, the Var-
ian Learning Portal (VLP) has been developed by Varian
Medical Systems. Varian Medical Systems is an American
manufacturer of oncology software and treatments, and that
is why the papers reporting the use of this technology men-
tion only applications involving cancer [20–24].

The VLP is a cloud-based system that implements user,
distributed data sources, and project management. It consists
of two elements, namely a master and a learning connector.

Table 5 Mortality rate

COVID-19 Recovered Deceased Ventilated

(n = 8820) 0.9606 0.0404 0.0325

Table 6 Care plan Care plan Rate

Home isolation 0.7952
Hospitalised 0.2116

Table 7 ICU admission rate

Care plan Rate

Ventilation req 0.7653 1.0
Recovered 0.3573 0.1637
Death 0.6453 0.8362

3 http:// www. euroc at. info/ index. html.

http://www.eurocat.info/index.html

SN Computer Science (2023) 4:14 Page 15 of 17 14

SN Computer Science

A learning connector is installed at each data source to con-
nect the VLP master to a local source. The end-user uploads
his application to the VLP web portal, which can be done
in MATLAB. VLP and data sources communicate via file-
based, asynchronous messaging. The iterative execution of
applications and communication between them is known as
a learning run, which can be accepted or denied by each
data source.

In [22], the authors demonstrated that it is feasible to use
the distributed learning approach to train a Bayesian network
model on patient data coming from several medical institu-
tions. Data were extracted from the local data sources in
each hospital and then mapped to codes. Besides, in the Var-
ian learning portal, the researchers uploaded their Bayesian
network model application for learning. The Varian learning
portal transmits the model application and validation results
between the central location and the hospitals. In [23], the
authors built a logistic regression model in MATLAB R2018
to predict post-treatment 2-year survival. The VLP connec-
tor was installed in 8 healthcare institutions. In [21], the
authors used the VLP to run a study to develop a radiomic
signature; the authors pointed out the preference for VLP
because it offered already the essential technical overhead
such as logging, messaging and Internet security.

In these proofs of concept, the authors have concentrated
on the algorithms to evaluate and train the data distributed
geographically. They tried to demonstrate that the results
are just as accurate as when data are centralised. Therefore,
they have harnessed the PHT approach using VLP technol-
ogy, but they did not try to define a reference architecture.
Furthermore, the VLP is a proprietary solution. Moreover,
the applications are not freely reusable, and only the users
of each project can see what they have done. For case stud-
ies beyond cancer, this solution may not be suitable, so that
other options must be explored or developed.

DataSHIELD [25] and Vantage6 [26, 27] are two other
distributed processing platforms. Both have been designed
and developed in the biomedical sciences domain but Data-
SHIELD is also used in other domains such as social sci-
ences. Both approaches follow a similar client-server schema
where a client application sends analysis requests to poten-
tially multiple servers where the data are accessed and the
analysis occurs. Concerning the interaction mechanism,
DataSHIELD is based on R while Vantage6 is based on
Docker images. In June 2021, the Vantage6 team announced
a partnership with DataSHIELD to allow Vantage6 users
to take advantage of the extensive DataSHIELD toolset by
embedding these tools in Docker images used in the Van-
tage6 environment [28].

After the emergence of the PHT concept, a number of
research groups started working on the implementation
of different aspects of the ideas and concepts depicted in
the PHT animation video [29]. In [3] and [7], the authors

leveraged containerisation technologies for sending appli-
cations to Data Stations, more precisely Docker containers.
The former created a Train containing an FHIR query and
an algorithm to calculate summary statistics, then wrapped
them as a Docker image and submitted it to a private Docker
registry. The latter initially used a phenotype design web cli-
ent to create Docker images containing a query, the metadata
and the script and then submitted them to a public Docker
registry.

Some aspects set our approach apart from the aforemen-
tioned distributed learning initiatives. The first is that, to
the extend of our knowledge, our approach is the only one
that takes the FAIR principles as the basis for design and
development. As a direct consequence, metadata are given
a key role to describe the data and services in a semantically
rich and machine-actionable way, supporting improvements
in automation such as matching between Train requirements
and Data Station capabilities. In our architecture, we offer
the flexibility of using different data interaction mechanisms,
not imposing one particular method such as R scripts or
Docker images. Finally, our proposed architecture has been
defined to lead and guide the development of existing and
new applications based on common interfaces, metadata for-
mats and schemata. The reference implementation is being
development to serve as a concrete example of the realisa-
tion of the architecture and not as the only implementation
option. In this way, we aim at supporting flexibility as devel-
opers may decide to just extend their current applications to
comply with these common interfaces, metadata formats and
schemata instead of having to replace their whole system.

Conclusion

In this work, we started from the reference architecture of
the Personal Health Train and focussed on the architectural
elements and processes to enable the dynamic staging of a
Data Station in the cloud in case the original Data Station
does not have enough resources to perform the computation
required by a given Train in the premises of an organisation.
In our implementation, we employed Infrastructure as Code,
APIs, and event-based systems to realise a dynamic deploy-
ment in the cloud. We implemented the architecture proposal
for the dynamic staging of a station using novel technolo-
gies and a popular cloud environment (AWS). We evaluated
the proposal with a dynamic analysis through a case study,
analysing data sets of 10,000 patients and 100,000 patients,
respectively.

Our research showed that we could seamlessly deploy
a more powerful computation environment when required
using the cloud and automation tools, complying with the
PHT principles while providing a fitting and secure site.
Although our design requires moving the data to the cloud,

 SN Computer Science (2023) 4:1414 Page 16 of 17

SN Computer Science

the data are still within the realm and control of the original
Data Station, keeping the same privacy levels. Moreover, our
proposal complies with the main regulation for processing
personal data in the cloud to keep the information as secure
and private as possible, assuming that the cloud environment
does not misbehave nor has been hacked. The case study
showed that the instantiation and processing times of the
Staging Station depend on the network in the Data Station
and the computing resources consumed in the cloud. The
simulation showed similar execution times with different
workloads sizes, but a significant difference in the network
and computing consumption, which can cause a bottleneck
in the Data Station network. We highlight that the same cor-
relation between processing time and computing resources
consumed holds for the original Data Station. This leads
to the conclusion that further investigation is necessary to
improve the identification of the Train computing require-
ments so that the dynamic staging mechanism would be able
to define a better provision of cloud resources for the staged
station and, therefore, achieve optimal processing time.
Other parameters such as execution time constraints and
costs have not been included in the current implementation
but should also be taken into consideration by the improved
dynamic staging mechanism.

Different types of Trains have different data and comput-
ing requirements, which affect both the volume of data to
be transferred to the Staging Station and the Train execu-
tion. Therefore, we think that it may be useful to design
capabilities that allow the originally targeted Data Station to
inform the Train Owner in case the Train cannot be executed
in the station but in a dynamically deployed Staging Sta-
tion in the cloud. In this way, in time-critical situations, the
Train Owner can decide beforehand whether the increase in
response time and the possible additional costs are accept-
able, and may choose to abort the Train execution.

The case study worked adequately with a simple aggrega-
tion algorithm, so we have evidences to conclude that our
system can alleviate the IT infrastructure constraints that
healthcare organisations may have to ensure the PHT execu-
tion, while respecting the principles of the PHT approach.

Future research should be performed to test our solution
with other use cases, by including Machine Learning algo-
rithms in the Train or dependent transactions, for instance,
to experience idle moments waiting for input data. Other
Trains types with different interaction mechanisms (e.g.,
APIs, queries, and messages) should be implemented and
tested as extensions to our system. We also propose some
future work to assess the solution developed in this research,
integrating the implementation to existing proof of concepts
developed by organisations that contribute to the PHT initia-
tive. Some of these implementations already have deployed
a vast majority of the PHT workflow and have elaborated
more robust case studies. It would beneficial to combine

these efforts and to evaluate how our solution behaves by
applying other metrics like performance and execution time
measured from when the end-user dispatches the Train until
the results are made available.

Finally, the work reported in the paper together with
efforts to implement other aspects of the PHT architecture,
such as data access authorisation process and dynamic con-
sent are being further developed and tested in a number of
projects such as the C4yourself, Personal Genetic Locker
and the European Joint Programme on Rare Diseases. In
these projects, the PHT architecture is being applied to new
and existing applications, aiming at demonstrating the con-
vergence of approaches and interoperability improvements
that can be achieved by agreeing on a common architectural
specification.

Funding This study has been partially carried out in the context of the
following projects: C4yourself (funder: Health Holland—Top Sector
Life Sciences and Health, grant number: LSHM 21044_C4YOUR-
SELF) and Personal Genetic Locker (funder: Nederlandse Organisa-
tie voor Wetenschappelijk Onderzoek, grant number: 628.011.022).
LOBSS work is partially supported by the funding from the European
Union’s Horizon 2020 research and innovation programme under the
EJP RD COFUND-EJP N ◦ 825575, particularly in providing input for
the design of the FDP-based federated infrastructure of the EJP RD
Virtual Platform.

Declarations

Conflict of Interest On behalf of all the authors, the corresponding au-
thor states that there is no conflict of interest.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article's Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

 1. Yang C, Huang Q, Li Z, Liu K, Hu F. Big data and cloud comput-
ing: innovation opportunities and challenges. Int J Digit Earth.
2017;10(1):13–53.

 2. Kumar S, Singh M. Big data analytics for healthcare indus-
try: impact, applications, and tools. Big Data Mining Anal.
2019;2(1):48–57. https:// doi. org/ 10. 26599/ BDMA. 2018. 90200 31.

 3. Choudhury A, van Soest J, Nayak S, Dekker A. Personal health
train on fhir: a privacy preserving federated approach for analyz-
ing fair data in healthcare. In: Bhattacharjee A, Borgohain SK,
Soni B, Verma G, Gao X-Z, editors. Machine learning, image

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.26599/BDMA.2018.9020031

SN Computer Science (2023) 4:14 Page 17 of 17 14

SN Computer Science

processing, network security and data sciences. Singapore:
Springer; 2020. p. 85–95.

 4. Rieke N, Hancox J, Li W, Milletarì F, Roth HR, Albarqouni S,
Bakas S, Galtier MN, Landman BA, Maier-Hein K, Ourselin S,
Sheller M, Summers RM, Trask A, Xu D, Baust M, Cardoso MJ.
The future of digital health with federated learning. NPJ Digit
Med. 2020;3:1. https:// doi. org/ 10. 1038/ s41746- 020- 00323-1.

 5. Wilkinson MD, Dumontier M, Aalbersberg IJ, Appleton G, Axton
M, Baak A, Blomberg N, Boiten J-W, Bonino Santos LO, Bourne
PE, et al. The FAIR guiding principles for scientific data manage-
ment and stewardship. Sci Data. 2016;3(1):1–9.

 6. Beyan O, Choudhury A, van Soest J, Kohlbacher O, Zimmermann
L, Stenzhorn H, Karim MR, Dumontier M, Decker S, da Silva
Santos LOBSS, et al. Distributed analytics on sensitive medical
data: the personal health train. Data Intell. 2020;2(1–2):96–107.

 7. Karim M, Nguyen B-P, Zimmermann L, Kirsten T, Löbe M,
Meineke F, Stenzhorn H, Kohlbacher O, Decker S, Beyan O, et al.
A distributed analytics platform to execute FHIR-based phenotyp-
ing algorithms. In: Proceedings of the 11th International Con-
ference Semantic Web Applications and Tools for Life Sciences
(SWAT4HCLS 2018) 2018. http:// ceur- ws. org/ Vol- 2275/

 8. Dash S, Verma S, Kavita A, Bevinakoppa S, Wozniak M, Shafi
J, Ijaz MF. Guidance image-based enhanced matched filter with
modified thresholding for blood vessel extraction. Symmetry.
2022;14:2. https:// doi. org/ 10. 3390/ sym14 020194.

 9. Vulli A, Srinivasu PN, Sashank MSK, Shafi J, Choi J, Ijaz MF.
Fine-tuned densenet-169 for breast cancer metastasis prediction
using fastai and 1-cycle policy. Sensors. 2022;22:8. https:// doi.
org/ 10. 3390/ s2208 2988.

 10. Ijaz MF, Attique M, Son Y. Data-driven cervical cancer prediction
model with outlier detection and over-sampling methods. Sensors.
2020;20:10. https:// doi. org/ 10. 3390/ s2010 2809.

 11. Srinivasu PN, SivaSai JG, Ijaz MF, Bhoi AK, Kim W, Kang JJ.
Classification of skin disease using deep learning neural networks
with mobilenet v2 and lstm. Sensors. 2021;21:8. https:// doi. org/
10. 3390/ s2108 2852.

 12. Graciano Martinez V, Ferreira Pires L, Bonino da Silva Santos
LO, Rebelo Moreira JL, Silva Souza Guizzardi R. A framework
for staging Personal Health Trains in the cloud. In: Mayo FJD,
Marchiori M, Filipe J, editors. Proceedings of the 17th Interna-
tional Conference on Web Information Systems and Technologies
(WEBIST), 2021;133–144. SciTePress, Portugal. https:// doi. org/
10. 5220/ 00107 12800 003058. INSTICC

 13. The Open Group: Archimate(r) 3.1 Specification. The Open Group
Series, 2019. https:// publi catio ns. openg roup. org/ stand ards/ archi
mate/ c197

 14. Object Management Group: OMG Unified Modeling Language
(OMG UML) version 2.5.1. https:// www. omg. org/ spec/ UML/2.
5.1/ PDF. Accessed: 14 Mar 2022

 15. Amazon: Navigating GDPR Compliance on AWS. https:// docs.
aws. amazon. com/ white papers/ latest/ navig ating- gdpr- compl iance/
welco me. html. Accessed: 09 Sept 2021.

 16. Mathew S. Overview of Amazon Web Services. https:// docs. aws.
amazon. com/ white papers/ latest/ aws- overv iew/ intro ducti on. html.
Accessed: 09 Sept 2021.

 17. Walonoski J, Klaus S, Granger E, Hall D, Gregorowicz A,
Neyarapally G, Watson A, Eastman J. Synthea™novel corona-
virus (covid-19) model and synthetic data set. Intell Based Med.
2020;1:100007.

 18. ISO: ISO/IEC 25010:2011, Systems and Software Engineer-
ing—Systems and Software Quality Requirements and Evaluation
(SQuaRE)—System and Software Quality Models, 2011.

 19. Erder M, Pureur P. Chapter 6 - validating the architecture. In:
Erder M, Pureur P, editors. Continuous Architecture, pp. 131–159.
Morgan Kaufmann, Boston 2016. https:// doi. org/ 10. 1016/ B978-
0- 12- 803284- 8. 00006-3

 20. Czeizler E, Wiessler W, Koester T, Hakala M, Basiri S, Jordan
P, Kuusela E. Using federated data sources and varian learning
portal framework to train a neural network model for automatic
organ segmentation. Phys Med. 2020;72:39–45.

 21. Shi Z, Zhovannik I, Traverso A, Dankers FJ, Deist TM, Kalendra-
lis P, Monshouwer R, Bussink J, Fijten R, Aerts HJ, et al. Distrib-
uted radiomics as a signature validation study using the Personal
Health Train infrastructure. Sci Data. 2019;6(1):1–8.

 22. Jochems A, Deist TM, Van Soest J, Eble M, Bulens P, Coucke P,
Dries W, Lambin P, Dekker A. Distributed learning: developing
a predictive model based on data from multiple hospitals without
data leaving the hospital-a real life proof of concept. Radiother
Oncol. 2016;121(3):459–67.

 23. Deist TM, Dankers FJ, Ojha P, Marshall MS, Janssen T, Faivre-
Finn C, Masciocchi C, Valentini V, Wang J, Chen J, et al. Distrib-
uted learning on 20 000+ lung cancer patients-the personal health
train. Radiother Oncol. 2020;144:189–200.

 24. Deist TM, Jochems A, van Soest J, Nalbantov G, Oberije C, Walsh
S, Eble M, Bulens P, Coucke P, Dries W, et al. Infrastructure and
distributed learning methodology for privacy-preserving multi-
centric rapid learning health care: eurocat. Clin Transl Radiat
Oncol. 2017;4:24–31.

 25. DataSHIELD. https:// datas hield. org. . Accessed: 14 Mar 2022
 26. Moncada-Torres A, Martin F, Sieswerda M, Van Soest J, Geleijnse

G. VANTAGE6: an open source priVAcy preserviNg federaTed
leArninG infrastructurE for Secure Insight eXchange. Annual
Symp Proc AMIA Symp. 2021;2020:870–7.

 27. Vantage6. https:// distr ibute dlear ning. ai. Accessed: 14 Mar 2022
 28. Moncada-Torres A. Partnership with DataSHIELD. https:// distr

ibute dlear ning. ai/ blog- index/ partn ership- datas hield/. Accessed:
2022-08-24 2021.

 29. Personal Health Train video 2016. https:// vimeo. com/ 14324 5835

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1038/s41746-020-00323-1
http://ceur-ws.org/Vol-2275/
https://doi.org/10.3390/sym14020194
https://doi.org/10.3390/s22082988
https://doi.org/10.3390/s22082988
https://doi.org/10.3390/s20102809
https://doi.org/10.3390/s21082852
https://doi.org/10.3390/s21082852
https://doi.org/10.5220/0010712800003058
https://doi.org/10.5220/0010712800003058
https://publications.opengroup.org/standards/archimate/c197
https://publications.opengroup.org/standards/archimate/c197
https://www.omg.org/spec/UML/2.5.1/PDF
https://www.omg.org/spec/UML/2.5.1/PDF
https://docs.aws.amazon.com/whitepapers/latest/navigating-gdpr-compliance/welcome.html
https://docs.aws.amazon.com/whitepapers/latest/navigating-gdpr-compliance/welcome.html
https://docs.aws.amazon.com/whitepapers/latest/navigating-gdpr-compliance/welcome.html
https://docs.aws.amazon.com/whitepapers/latest/aws-overview/introduction.html
https://docs.aws.amazon.com/whitepapers/latest/aws-overview/introduction.html
https://doi.org/10.1016/B978-0-12-803284-8.00006-3
https://doi.org/10.1016/B978-0-12-803284-8.00006-3
https://datashield.org
https://distributedlearning.ai
https://distributedlearning.ai/blog-index/partnership-datashield/
https://distributedlearning.ai/blog-index/partnership-datashield/
https://vimeo.com/143245835

	Personal Health Train Architecture with Dynamic Cloud Staging
	Abstract
	Introduction
	Architecture
	Components and Roles
	Train Types and Structure
	Data Station Services

	Data Visiting Process
	Data Staging
	Solution Implementation
	Technologies
	Interactions
	AWS Services
	Authentication
	Publish-Subscribe Service
	Storage
	Data Transfer
	Event-Based Services
	Computing Resources
	Security

	Case Study
	Evaluation Metrics
	Validation

	Related Work
	Conclusion
	References

