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Abstract

This paper presents a consensus-based approach that incorporates three microarray and three RNA-Seq methods for unbi-
ased and integrative identification of differentially expressed genes (DEGs) as potential biomarkers for critical disease(s).
The proposed method performs satisfactorily on two microarray datasets (GSE20347 and GSE23400) and one RNA-Seq
dataset (GSE130078) for esophageal squamous cell carcinoma (ESCC). Based on the input dataset, our framework employs
specific DE methods to detect DEGs independently. A consensus based function that first considers DEGs common to all
three methods for further downstream analysis has been introduced. The consensus function employs other parameters to
overcome information loss. Differential co-expression (DCE) and preservation analysis of DEGs facilitates the study of
behavioral changes in interactions among DEGs under normal and diseased circumstances. Considering hub genes in bio-
logically relevant modules and most GO and pathway enriched DEGs as candidates for potential biomarkers of ESCC, we
perform further validation through biological analysis as well as literature evidence. We have identified 25 DEGs that have
strong biological relevance to their respective datasets and have previous literature establishing them as potential biomark-
ers for ESCC. We have further identified 8 additional DEGs as probable potential biomarkers for ESCC, but recommend
further in-depth analysis.

Keywords Differential expression analysis - Biomarker identification - Esophageal squamous cell carcinoma - Differentially
expressed gene - RNA-sequencing - Microarray

Introduction

For a critical disease of interest, the knowledge of differ-

entially expressed genes (DEG) are a crucial step toward
biomarker identification. This is achieved through Dif-
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ferential Expression Analysis (DEA) which monitors the
behavior of each gene in isolation over normal and disease
conditions and streamlines the search for biomarkers by
providing a candidate list of these discriminative candidate
genes. DNA microarray and RNA Sequencing (RNA-Seq)
are indispensable methods for DEA. Previously, microarray
technology was the most widely used approach. However,
there are inherent limitations such as the pre-requisite prior
knowledge of the sequence for the array design or the fact
that cross-hybridization makes it difficult to analyze highly
correlated sequences. Furthermore, the lack of sensitivity
to highly or lowly expressed genes as well as the lack of
reproducibility across laboratories and platforms pose major
challenges. These limitations are overcome by RNA-Seq
technology.
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Numerous DEA methods have been developed to serve
both microarray and RNA-Seq technologies. Furthermore,
a large number of datasets related to critical diseases that
are compatible with both technologies are widely available.
Keeping in mind the fact that most methods developed for
these technologies are not effective for all cases, we pro-
pose a consensus-based integrative approach that ensembles
a selected few of these methods with the aim to achieve
improved performance. In other words, in this paper, we pre-
sent a consensus-based approach that employs a few chosen
microarray DEA methods (Limma [1], SAM [2] and EBAM
[3]) and RNA-Seq (Limma+Voom [4], edgeR [5], DESeq2
[6]) to present an unbiased list of DEGs as candidates for
potential biomarkers. As the primary focus of our work is
on the critical disease ESCC, we validate our results on two
ESCC microarray datasets (GSE20347 and GSE23400)
datasets and one ESCC RNA-Seq (GSE130078) dataset.

The rest of the paper is organized as follows. Section
“Related Work” provides a brief overview of related work.
Section “Proposed DE Framework” describes our proposed
framework for biomarker identification of critical disease(s)
employing three microarray and three RNA-Seq methods.
We also introduce our consensus function for unbiased
integration of DEGs individually detected by previously
mentioned methods. Section “Analysis” reports a detailed
experimental analysis and validation of our method on
two benchmark microarray gene expression datasets and
one RNA Sequencing (RNA-Seq) dataset. Section “Dis-
cussion” presents a detailed analysis and discussion on
candidate genes that have been identified as potential bio-
markers for ESCC. In this section, we also present a com-
parison of our algorithm with two recent works with similar
approaches. Finally, the concluding remarks are given in
Section “Conclusion”.

Related Work

A number of statistical approaches are used by Limma [1]
to achieve effectiveness in large-scale expression studies.
Limma takes advantage of the flexibility of linear models
and fits one to each row (gene) of data in a gene expression
matrix where columns correspond to samples. Limma has
the inherent ability to model correlations between samples
through analysis of the entire dataset as one entity. Signifi-
cance Analysis of Microarrays (SAM) [2] assimilates a set
of gene-specific t-tests to identify genes that exhibit sta-
tistically significant changes in expression. For each gene,
based on the changes in gene expression in terms of standard
deviation for repeated measurements, SAM assigns a score.
Potentially significant genes are identified using a threshold
for these scores. Empirical Bayes Analysis of Microarrays
(EBAM) [3] employs the removal Bayes rule to obtain the
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posterior probability that a gene was affected or unaffected
under the various conditions. EBAM makes multiple test-
ing a possibility by establishing a connection between prior
probabilities and local false discovery rate (local fdr) in turn
handling the issues that arise from simultaneous tests.

Voom [4] works on the idea that commonly used micro-
array-based statistical methods can be applied to read counts
of corresponding RNA-Seq through robust and non-para-
metric estimation of mean-variance. In other words, Voom
incorporates the mean-variance trend into the empirical
Bayes procedure of Limma. edgeR [5] and DESeq?2 [6] are
estimations of gene-wise dispersion by conditional maxi-
mum likelihood, conditioning on the total count for the
gene. edgeR effectively borrows information within genes
to shrink the dispersion towards a consensus value through
the use of empirical Bayes. It adapts for overdispersed data
and incorporates an exact test to assess each gene. DESeq?2
accurately estimates the expected dispersion value for genes
of a given expression strength, which is then used to con-
form the gene-wise dispersion towards the predicted values
. It also accounts for gene-specific variations and makes it
possible to estimate fitted curves and testing even in settings
with less information.

Proposed DE Framework

The proposed framework aims to work with microarray and
RNA Sequencing data. We have chosen three methods that
work on micro-array (Limma, SAM and EBAM) and three
on RNA-Seq (Limma+voom, DESeq and EdgeR). First, both
types of data require pre-processing. For microarray, pre-
processing consists of the removal of unwanted and redun-
dant information, normalization of the dataset, missing value
estimation while for RNA-Seq data, we perform removal of
low read counts, normalization, and transformation.

Pre-processing is followed by DE analysis that results in
differentially expressed genes (DEG). For each data type,
we employ a consensus function that filters out all common
DEGs for each dataset. In other words, depending on the
type of the input dataset, the DE analysis unit detects DEGs
using three corresponding methods, followed by a consensus
function that filters the DEGs common to all three methods
as well as identify other relevant DEGs. Our consensus func-
tion is given by

DEGs = DEGs U DEGs

others ( 1 )

relevant common

where

DEGs

common

_ ) DEGSjima N DEGsgay N DEGsggawm, for Microarray,
DEGSjimma-voom N DEGS¢geer N DEGSppgeqr, for RNA- Seq,
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Fig. 1 Proposed framework for differential expression analysis
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Here, a and f are g-value and local.fdr significance values
that are chosen according to their relevance to the experi-
ment. Through multiple iterations of implementation, we
observed that consideration of only genes common to all
three methods leads to information loss. Thus, to overcome
this we introduced g-value into the consensus function. The
main idea behind this is that while a p-value of 0.05 gives
the implication that 5% of the tests will be false positive
(FP), g-value, which is an FDR adjusted p-value, implies
that 5% of the test found to be significant will be FP. g-value
requires a very important adjustment for multiple tests on
the same data sample. Our consensus function considers
all genes common to all three methods with p = 0.05 as
detected DEGs. Furthermore, all genes that are not among
the common genes but have a ¢ = 0.05, i.e. @ (Eq. 1), are
added to the list of DEGs. However, in the microarray data-
sets, we implement the proposed consensus function given
by Eq. 1 to start off by taking the DEGs common to all three
methods. Unlike RNA-Seq, instead of g-value, we incor-
porate its useful counterpart local fdr (f in Eq. 1). Local
fdr is a measure of the posterior probability that the null
hypothesis is true. We use local fdr since Limma and SAM
calculate p-value. EBAM, on the other hand, estimates the
posterior probability and local fdr. It is worth mentioning

that posterior probability and p-value are not interchange-
able. However, local fdr can be estimated from p-values. Our
consensus function (Eq. 1) considers all genes common to
all three methods with p = 0.05 as detected DEGs. Further-
more, all genes that are not among the common genes but
have a local.fdr = 0.05 (f) are added to the list of DEGs.

The relevant DEGs are then taken as input to the DCE anal-
ysis unit. The idea behind performing DCE analysis is that it
leads to the creation of biologically relevant modules which
are easier for further analysis and validation. The DCE unit
identifies differentially co-expressed modules and performs
preservation analysis on these modules to identify biologi-
cally relevant modules. This is followed by the identification
of hub genes in these modules using WGCNA [7] intramodu-
lar connectivity.

We validate our results using several approaches. First, we
consider all relevant DEGs detected by the DE analysis unit in
isolation and perform Gene Ontology (GO) and KEGG path-
way enrichment analysis to validate biological relevance. We
consider all the hub genes in the biologically relevant modules
identified by the DCE unit as biomarker candidates. Further-
more, all DEGs that are annotated with the most enriched GO
term in all three databases as well as the most enriched KEGG
pathway are also considered as candidates for biomarkers. We
term such genes as Top Enriched DEGs (TEDs). Secondly, we
further analyze the biomarker candidates through observation
of their interactions and behavioral changes. Finally, we trace
literature evidence for the relevant genes in other scientific
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Table 1 Datasets

Dataset No. of genes Normal sam- Tumor
ples sam-
ples
GSE20347* 22,278 17 17
GSE23400P 22,283 53 53
GSE130078°¢ 57,783 23 23

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE20347
Phitps://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE23400
“https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE130078

sources and works for further validation of these identified
genes as possible biomarkers.

Analysis

Our focus is on ESCC, a cancer very common in developing
countries, especially in North-East India, and is highly attrib-
uted to tobacco and betelnut chewing, alcohol consumption
as well as poor diet. Two microarray datasets GSE20347 and
GSE23400 and an RNA-Sequencing dataset GSE130078 were
chosen to validate our proposed DE framework (see Fig. 1).
Details of each dataset is provided in Table 1. All three data-
sets examined gene expression in tumor and matched normal
adjacent tissue. The test platform is a DELL workstation with
Intel(R) Xeon(R) W-2145 with 3.70GHz processor, 64 GB
RAM running Windows 10 Pro for workstations.

Preprocessing

RNA-Seq dataset GSE130078 has 57,783 genes and 46 samples.
Large datasets tend to add complications to the analysis and
as such, we filter out genes with low read counts. We achieve
this by calculating the counts per million (CPM) for each sam-
ple for each gene and keep only those genes that have CPM
> 1 for at least two samples. This reduces the dataset size from
57,783 to 22,270. We then follow up by normalization of the
dataset. We also consider two microarray datasets GSE20347
and GSE23400 for analysis. The inputs to these datasets are
expression values of genes across samples. First, we pre-process
the data through the removal of unwanted and redundant genes,
missing value estimation, and normalization. However, for both
GSE20347 and GSE23400, there are no missing values and as
such we proceed further down the pipeline.

DE Analysis

For the microarray datasets, Limma takes the pre-processed
dataset as input and outputs the equivalent DEGs with a
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significance of 5% (p-value < 0.05) and False Discovery
Rate (FDR) of 0.05. On the other hand, for the other two
methods SAM and EBAM, we employ findDelta with FDR
= 0.05 fiving us an estimate of the delta values at which
FDR is closest to 0.05 and chose accordingly. In SAM, delta
is the distance between the observed and the expected test
scores, whereas in EBAM, delta is the probability that a gene
with a specific test score is differentially expressed. Table 2
summarizes the DEGs detected by all three methods on all
three datasets.

In the case of the RNA-Seq dataset, the pre-pro-
cessed data are the input to all three methods, i.e.,
Limma+Voom, edgeR and DESeq2. However, it is to be
noted that while DESeq2 directly takes the count data as
input, the other two methods require the count data to be
transformed into a DGEList (Digital Gene Expression
Data) object. All the methods perform multiple tests on
all the 22,270 genes in the dataset across 46 samples. We
consider a significance of 5%, i.e., p-value < 0.05 and the
corresponding DEGs detected by the 3 these methods are
summarized in Table 2.

We implement the proposed consensus Eq. 1 to iden-
tify the common genes detected by these three meth-
ods. First, we consider the DEGs detected by all three
methods, i.e. common genes. In GS20347, there are such
7706 DEGs. So as not to bypass crucial information,
we use f in Eq. 1, i.e., the consensus function. With
local.fdr = 0.05 (f) another 662 genes are considered
DEGs resulting in a list of 8,368 DEGs. Similarly, in
GSE23400, Limma, SAM, and EBAM find 3,431 com-
mon DEGs. With local.fdr = 0.05 (f), another 4,066
genes are considered as DEGs, resulting in a list of
7,497 DEGs. In the case of GSE130078, the three meth-
ods Limma+Voom, edgeR, and DESeq2 discover 2,765
common DEGs and a g-value (a) adds another 9,945
genes resulting in a list of 12,710 DEGs.

Table2 Summary of detected DEGs by the three RNA-Seq methods
and the three microarray methods

Dataset Method No. of DEGs Common DEGs
with p < 0.05
GSE20347 Limma 8689 7706
SAM 10,642
EBAM 9565
GSE23400 Limma 13,558 3431
SAM 14,301
EBAM 3,431
GSE130078 Limma +Voom 6858 2765
edgeR 12,623
DESeq2 12,766
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DCE Analysis

To analyze the interactions among the DEGs as well as the
variations in behavior under normal and disease circum-
stances, we construct co-expression networks (CEN) using
WGCNA [7]. The pipeline for DCE analysis is to detect
DEGs by our method is as follows.

1. Divide the dataset into separate datasets: All genes with
only normal samples and all genes with only disease
samples

2. Choose the soft thresholding power to which co-expres-
sion similarity is raised to calculate an adjacency matrix.
Soft thresholding power is based on the criterion of
approximate scale-free topology.

3. Construct two separate CENs in the form of an adja-
cency matrix: normal and disease.

4. Transform adjacency matrices into topological overlap
matrices (TOM [8]) to minimize the effects of noise and
spurious associations

5. Extract all connections that correspond to the subset of
DEGs from both CENs.

6. Extract normal and disease modules using hierarchical
clustering.

7. Merge modules through eigenvector module selection
and MEDissThres threshold merging.

8. Identify modules extracted in the normal dataset that are
non-preserved in disease dataset and vice versa through
preservation analysis [9]. We consider such modules as
modules of interest for further downstream analysis.

9. Identify the top 20 hub genes using intramodular con-
nectivity [7] in all modules of interest.

We start DCE analysis by clustering the samples using the
hierarchical approach to detect outlier samples. We remove
the outlier samples with the aim of creating a more robust
CEN. For GSE23047, as seen in Fig. 2a, b, we find a single
outlier in the case of normal samples with a tree cut at height
h =70 (Blue). However, in disease samples, there are two
outliers with a cut at 4~ = 130 (Red). Similarly, in the case
of GSE23400, as seen in Fig. 2c, d, a tree cut at height & =
105 (Blue) and at & = 95 (Red) removes one and two outli-
ers from normal and disease samples, respectively. In the
case of GSE130078, a cut at 2 = 1,500,000 (Blue) and &
= 2,000,000 (Red) removes one normal (Fig. 2e) and one
disease Fig. 2f sample.

In GSE20347, hierarchical Clustering and tree cut
results in 50 and 75 normal and disease modules,
respectively. Figure 3a shows the dendrogram while the
first strip of colors below represents the corresponding
module colors for the normal dataset. Similarly, Fig. 3b
shows the dendrogram for the disease dataset. To merge

modules, we choose a height cut of 0.25, correspond-
ing to a correlation of 0.75. Merging of the modules
with tree cut at & = 0.25 further reduces the number of
modules to 38 and 61 for normal and disease datasets,
respectively. The second color strip in Fig. 3a, b shows
the colors for the merged normal and disease modules
respectively. In GSE23400, hierarchical clustering
results in 9 normal (the first color strip in Fig. 3¢) and
13 (the first color strip in Fig. 3d) disease modules,
which are then reduced to 8 normal (the second color
strip in Fig. 3c) and 11 disease (second color strip in
Fig. 3d) modules after merging. Finally in GSE130078,
hierarchical clustering results in 65 normal (the first
color strip in Fig. 3e) and 40 disease (the first color
strip in Fig. 3f) modules, which are then reduced to
21 normal (the second color strip in Fig. 3e) and 24
disease (the second color strip in Fig. 3f) modules after
merging.

We follow module extraction by module preserva-
tion analysis with the aim of analyzing the distinc-
tion between preserved and non-preserved modules.
According to Langfelder et al. [9], while the preserved
modules retain a majority of their co-expressed con-
nections (or edges between two genes), the same can-
not be perceived from non-preserved modules. Accord-
ing to Langfelder et al. [9], a module with Zg,, .,y <2
is considered non-preserved [9]. It is noteworthy that,
GSE23400 due to its inherent nature, extracts a smaller
number of modules with significantly larger sizes and
higher densities (Fig. 4). There are no non-preserved
modules with Z .,y <2 and most modules are either
moderately preserved or highly preserved. We take
into consideration moderately preserved modules with
Zgmmary < 10 [9].

Table 3 summarizes the preservation analysis for
non-preserved modules in all three datasets. The
second column highlights the module preservation
reference and test networks. For example, the table
reading for module pink in Normal/Disease subset of
dataset GSE20347 can be interpreted module pink of
size 278 detected in the normal network that is non-
preserved in disease network with a value of
—0.118842161.

We only consider non-preserved modules of substan-
tial size (size > 100) as modules of interest for further
downstream analysis and validation. To find the hub
genes for each module of interest extracted previously
we employ WGCNA intramodular-connectivity pro-
posed by Langfelder et al. [7]. Intramodular-connectiv-
ity calculates the connectivity of a node to other nodes
in the same module.

Zsummary
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Fig.2 Outlier hierarchical trees for normal and disease samples for all three datasets

Validation
Enrichment Analysis of Modules
For a module of interest to be regarded as Gene Ontology

(GO) or pathway enriched, at least one gene in the mod-
ule must be assigned to an enriched GO term or pathway,
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respectively with a significance of 5% (i.e., p < 0.05). To
perform functional enrichment analysis, we use the easily
available online tool DAVID [10, 11]. Table 5 summarizes
the percentages of genes in the modules of interest anno-
tated to enriched GO terms as well as enriched KEGG
pathways. We observe that all modules of interest are GO
and pathway enriched.
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Candidate Genes

As mentioned earlier, we select DEGs as candidates for
potential biomarkers based on the following two criteria:

1. All hub genes detected by the DCE analysis unit of
our framework in all modules of interest are candidate
genes.

2. DEGs that have been annotated to the most enriched
GO terms in all three GO databases (BP, CC and MF)
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modules for the ESCC dataset: GSE20347 (a, b); GSE23400 (¢, d);
GSE130078 (e, f)

and are also annotated to the most enriched pathway
after GO and Pathway enrichment analysis on the entire
dataset are also considered as potential biomarkers. We
rename these DEGs as TEDs (Top Enriched DEGs)

Thus, alongside all DEGs that are among Top 20 hub
genes in modules of interest (as summarized in Table 4),
our second criterion adds 22, 18 and 11 TEDs to the
list of candidate genes in GSE20347, GSE23400 and
GSE130078, respectively. We summarize these DEGs
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(TEDs) in Table 6. The numbers of candidate genes for
GSE20347,GSE23400 and GSE130078 increase from
140, 60 and 160 to 162, 78 and 171, respectively. We per-
form the enrichment analysis on the entire dataset or in
more specific terms the list of all genes in the dataset.
This leads to the observation that as the lists of genes in
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all modules between the red and blue lines (2 < Zgymary < 10) are

weak to moderately preserved and all modules above the blue line

(Zgummary > 10) have strong evidence of being preserved

GSE20347 (22,278 genes) and GSE23400 (22,283 genes)
are almost the same, the list of top enriched genes (35
genes) extracted are the same. However, the differences
in TEDs are seen (Table 6) due to the fact that there are
DEGs identified in one dataset that might not be detected
in the other.
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Table 3 Preservation analysis of modules in all three datasets

Ref/Test Module Size  Zgmmary
GSE20347 Normal/Dis-  pink 276  —0.118842161
ease
bisque4 62 0.84895892
orangered4 82 1.10844007
grey 17 1.38809779
Disease/Nor-  grey 3 —0.11691952
mal
greenyellow 149 0.21296495
brown2 39 0.40355693
darkgreen 201  0.57638054
lightpink4 61 0.58347786
white 99 0.72904092
lightyellow 122 0.88046344
darkolive- 40 1.13783059
greend
antiquewhite4 58 1.19766058
lightsteelbluel 143  1.42400619
mediumpur- 77 1.74769518
ple3
black 775  1.79866799
skybluel 51 1.79952166
lavender- 60 1.83004964
blush3
lightgreen 123 1.88961457
GSE23400 Normal/Dis- magenta 45 5.63609823
ease
Disease/Nor-  magenta 231  5.59355067
mal
salmon 44 5.64755802
greenyellow 172 6.47180995
purple 225 9.42312232
GSE130078 Normal/Dis-  magenta 248 —1.80627625
ease
skyblue2 37  -0.62266325
bisque4 1000 0.01985689
maroon 82  0.58940588
grey 70 1.90096828
Disease/Nor-  lightyellow 240 -1.18378716
mal
red 759 —-0.18883575
lightcyan 321  0.68868388
steelblue 145  0.92648735
skyblue3 104 1.01960350
violet 142 1.38497020

Biological Analysis

To establish the biological relevance of the candidate
genes detected by our method, we use functional enrich-
ment analysis and the construction of a gene regula-
tory network (GRN). Transcription Factors (TF) have

remarkable diversity as well potency as drivers of cell
transformation. Bhagwat et al. [12] justify the continued
pursuit of TFs as potential biomarkers across many forms
cancer by the prevalent deregulation of the same. We
observe that 26 (hub genes:21, TEDs:5), 11 (hub genes:6,
TEDs:5) and 23 (hub genes:23, TEDs:0) candidate genes
detected by our method in GSE20347, GSE23400 and
GSE130078, respectively are TFs. These TFs exhibit reg-
ulatory behavior in their respective modules, establish-
ing their biological relevance. For easy visualization, we
extract a manageable subset of hub genes from the non-
preserved modules detected by our method (Figs. Sa—f and
6a—f). We construct a Gene Regulatory Network (GRN)
with these hub genes and associated Transcription Factors
(TFs) so as to observe the regulatory behavior of the cor-
responding genes. The resulting GRN is in the form of an
adjacency list with weighted directed edges from TFs to
other target genes (TGs).

As in the the case of validation of modules, we employ
DAVID [10, 11] to perform functional enrichment analysis
of all candidate genes detected by our method. A candi-
date gene can be regarded as GO enriched considering a
GO database (GO_BP, GO_CC, GO_MF) if it is annotated
to at least one GO term in that database with significance of
5% (p < 0.05). Tables 7, 8 and 9 summarize the candidate
genes annotated to the top 3 GO terms in each GO database
in GSE20347, GSE23400 and GSE130078, respectively.
Similarly, a candidate gene is KEGG pathway enriched if it
is annotated to at least one KEGG pathway term with sig-
nificance of 5%. Table 10 summarizes the candidate genes
annotated to top 3 enriched KEGG pathways in GSE20347,
GSE23400 and GSE130078.

Literature Trace

Zhu et al. [13] highlight that prothymosin alpha (PTMA)
expression was up-regulated in ESCC tissues, thus present-
ing PTMA as a potential candidate for ESCC. Tang et al.
[14] indicated that the expression of PTPRF interacting pro-
tein alpha 1 is significantly increased and is related to some
malignant clinical features and poor outcomes in ESCC
patients, thus establishing it as a valuable biomarker for early
detection, treatment formulation and prognosis evaluation
for ESCC. Jiang et al. [15] suggested that downregulation of
VGLL4 was very important in the progression of ESCC, and
restoring the function of VGLL4 might be a promising thera-
peutic strategy for ESCC. In Shen et al. [16], homer scaffold-
ing protein 3 (HOMER?3) is one of the three genes presented
as candidate cancer-associated genes and may play a tumori-
genic role in ESCC. Ma et al. [17] summarized that upregu-
lation of Proteasome 26S subunit non-ATPase 4 (PSMD4)
promotes the progression of ESCC through the reduction
of ERS-induced cell apoptosis. Chen et al. [18] found that
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Table 4 Top 20 hub genes for each extracted module of interest in all three datasets using WGCNA [7] intramodular connectivity

Dataset Module Hub genes
GSE20347 pink PTMA, MEDI1, TRIO, TERF1,BRD2, PWP1, HSD17B10, PPFIA1, EEF1B2,
ZNF148, TCOF1 NSD2, SLC25A36, RUFYS3, PIK3CB, VGLL/4, LYN, DDX2j,
EPB41L1.
greenyellow HOMER3, SHC1, EXT2, PSMD/, CLIC4, MAP3K20, DNMT3B, TGFB2, SELENOP,
PSMD11, EXOSC4, SARS1, NABP1, ENTPD7, MYO1B, RAB8B, PSATI.
darkgreen SLC8A2, IMPj, MAPRE1, RALY, PSMB5, UQCRC2, NONO, GNB5, TFRC,
GNAPDA1, ODF2, NMDS8, RPL22 NEU1, SENP5, NID1, ITSN2, ABI2.
lightyellow ANP32E, NEB, AHDC1, RPRM, HOXC11, ENOX2, TNS1, MAN1C1, RCN1, CNPY2,
APOOL, HAUSS, SBF1, ESF1, GNAQ, LSS, MCL1.
lightsteelbluel DBF4, POP7, MCM7, RFC2, DUS4L, POM121, ZKSCAN5, ORCS3, PUS7, GMCL2,
PSMC2, ITPKC, TRRAP, TIMELESS, EPHA2, CRYBG2, POM121C, CEP290.
black KPNA2, RRP7A, EBNA1BP2, KIF/A, TMEM97, CYP3A5, CCT4, CKS2, HAUS7,
CIAPIN1, RANBP1, PITX1, PRMT1, PNO1, MAGOHB, JPT2, SPAG5, VPS13D.
lightgreen ITGB7, CXCRS3, HPRT1, TARP, NPIPB3, CD48, NEDD/L, CASP10, TP63, UBA7,
ITM2A, CD3D, MSRA, ECHDC2, LST1, CD2, UBASHSA, CD52.
GSE23400 greenyellow TAP1, PSMB9, IFIH1, HLA-F, IFIT3, HLA-G, HLA-J, IFl44L, UBE2L6, HLA-C,
IFI35, CXCL10, OAS3, IFIT1, PSMBS8, ISG15, GZMB, SCO2, CXCL11.
magenta CDKNS3, PHB, MTHFD1, DLGAP5, EIF2S1, ZNRD2, MNAT1, TIMMY9, VRKI,
YIF1A, PSMA3, NASP, SRM, PSMC1, EBNA1BP2, C12o0rf29, GLRX5, PLEK2,
TUBG1, TIMM10.
purple FCER1G, HNMT, CD14, CD163, TYROBP, LAPTM5, C1QB, MS4A4A, PLXNCI1,

C1QA, ENTPD1, SRGN, CD53, TFEC, ITGB2, CDS6, MS{A6A, FCGR2A, C3AR1,
MNDA.

GSE130078 lhghtyellow
red
lightcyan

steelblue

skyblue3
violet
magenta

bisques

PCNX1, CAV1, RRAS2, IGF2BP2, CAVIN1, PIJK2A, PPPR/, HRH1, SAMD/A,
VEGFC, FJX1, SGPP1, LINC01998, PGF, LINC0245/, HIF1A, ANO/, FOLRS,
FEZ1, CSF2.

COAG6, GNA13, LIN52, POLR2D, APPBP2, PPP2R5A, PPP6C, RIT1, RBBPS5,
MEGF9, RALB, MEF2A, ERCC3, CDC42SE1, SDE2, STARD7, CTDSPLZ2,
BLOC1S2, DDX59, COQ10B.

ANKRD20ASP, LINC01287, SOHLH1, CDH22, DHRS2, CRLF1, TENM1, EMILINS,
ADGRLS, AGGF1PS, CCDC1/4NL, RHBDL1, HCG23, LOC105370792, ADAMTS20,
RPL31P25, RBMS3, TESMIN, OR11J2P, NFIB.

GMNN, RFC5, TMTC1, UBE2T, LIMK1, OSR2, CLUAP1, HMGB3, DTL, DNAZ2,
LMOJ, SENP1, ZNF367, CDK/, EXO1, MSH2, SUMOS, ARLLA, H1-2, TMEMZ270.
MANEAL, CCT2, PCSK1, GNS, ZNF737, ZNF85, PANK2, NATSB, TBKI1,
TBC1D15, SYT15, MON2, CXCL13, ZNF91, TDRD1, NEXMIF, TMBIM/, DLGAP1-
AS5, RHOXF1-AS1, MUCLI.

GRID2IP, ZNF568, ZNF239, PIWIL1, HPDL, ZNF233, ELP6, ZNF470, MSTiL,
ZNF232, ZNF790-AS1, LRP6, ESRRG, CFAP91, ZNFS829, THUMPDS3, GSEI1,
LINC01205, ZNF667, KIF15.

FAM155A, SORCS1, IGFN1, ZAN, ACAN, XIRP1, CACNA1B, DNAH10, EPHAS,
CDHJ, PCDH10, CACNA1E, RNF112, ST6GALNACS5, TGM{, DSCAM, CFAP61,
CDH23, FNDC1, KCNH3.

CHPF, TRAM2, IGFBP3, CXCL16, PIGT, CRELD2, SEPTINY9, MFHAS1, TORSA,
PDIA4, CARMIL1, MOGS, ORAI2, CLPTM1L, ARSB, CHST15 ARFGAPI1,
ST6GAL1, CDK18, CSF2RB.

Hub genes with strong literature evidence of association to esophageal squamous cell carcinoma (ESCC) are marked in Red while hub genes
with evidence of association with five other SCCs namely, Oral, Tongue, Head and Neck, Tongue or Laryngeal squamous cell carcinoma are

marked in Blue

overexpression of DNA methyltransferase 3b (DNMT3b) is
responsible for more aggressive tumor growth and resist-
ance to treatment in ESCC and is linked to activated STAT3
signaling. Liu et al. [19] concluded that Phosphoserine Ami-
notransferase 1 (PSATI) expression was elevated in ESCC
tissues compared to normal esophageal tissues and increase
in the same is significantly associated with stage of disease,
lymph node metastasis, distant metastasis and poor prog-
nosis. Findings by Cheng et al. [20] suggested that through
activation of the Akt and Erk1/2 signaling pathways, Non-
POU Domain Containing Octamer Binding (NONO) plays
a potent role in multiple biological aspects of ESCC. Wada
et al. [21] highlighted the clinically important implications
associated with Transferrin Receptor (TFRC) and concluded
that it offers an independent prognostic factor. By employing

SN Computer Science
A SPRINGER NATURE journal

Cox regression He et al. [22] demonstrated the prognostic
value of Canopy FGF Signaling Regulator 2 (CNPY2) for
ESCC. Yu et al. [23] demonstrated that Myeloid cell leuke-
mia 1 (MCL-1) contributes to the development of ESCC.
Yang et al. [24] concluded that a lower expression of Pro-
cessing Of Precursor 7 (POP7) predicts a worse prognosis
in esophageal cancer. Qiu et al. [25] suggested that through
activation of AKT1/mTOR signaling pathway, maintenance
complex component 7 (MCM7) promotes tumor cell prolifer-
ation, colony formation and migration of ESCC cells. Choy
et al. [26] and [27] further suggested MCM7 as a more sensi-
tive proliferation markers for evaluation and for predicting
various clinical outcomes of ESCC respectively. Miyazaki
et al. [28] concluded that ephrin receptor A2 (EphA2) over-
expression appears to be related to poor degree of tumor
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Table5 Percentages of genesin ;o Module Size. GO_BP(%) GO MF(%) GO CC (%) KEGG (%)
each module that are annotated
30 thg GeneB?)ng!Oi‘%y §G(17> GSE130078  lightyellow 240 789 80.5 78.9 383
b 0P B
components or MF: Molecular skyblue3 104 82.6 87.2 85.3 46.8
function) and KEGG pathways steelblue 145 73.1 76.6 71.9 26.9
violet 142 82.0 84.7 80.0 37.3
lightcyan 321 69.1 70.7 69.4 27.7
bisque4 1000 875 91.4 89.1 40.5
magenta 249 84.4 89.9 84.9 31.0
GSE20347 pink 276 90.1 96.0 95.2 472
greenyellow 149 98.4 98.4 97.7 49.2
darkgreen 201 95.6 96.7 95.6 55.0
lightyellow 122 95.0 96.0 97.0 53.5
lightsteelbluel 143 95.2 94.4 94.4 49.2
black 775 94.9 97.0 96.1 529
lightgreen 123 90.7 98.1 92.6 56.5
GSE23400 greenyellow 172 97.7 98.3 96.5 63.4
magenta 231 94.8 96.5 934 44.5
purple 225 96.6 98.1 96.3 58.2

differentiation and lymph node metastasis in ESCC. Ma et al.
[29] suggested that Karyopherin a 2 (KPNA2) protein lev-
els were high in ESCC tumors, and siRNA against KPNA2
could inhibit the growth of ESCC cells, suggesting it may
be a new potent marker and therapeutic target for ESCC.
Sakai et al. [30] further concluded that KPNA2 expression
is associated with poor differentiation, tumor invasiveness,
and tumor proliferation in ESCC. Wang et al. [31] identified
kinesin family member 4A (KIF4A) as a facilitator of prolif-
eration, cell cycle, migration, and invasion of ESCC in vivo
and in vitro. Similarly, Sun et al. [32] stated that through the
Hippo signaling pathway, KIF4A regulates the biological

Table 6 DEGs that are annotated to most enriched GO term in all
three GO databases (BP, CC and MF) as well as the most enriched
pathway

Dataset Top enriched DEGs

GSE20347 TXNRDI1, APPL1, FADD, FAS, MAPKI,
PIK3R1, STAT1, RAF1, RARA, MAP2KI,
PIK3CD, RAC2, MAPKI10, PRKACB, AR,
PIKS8CB, BCR, KRAS, GSK3B, NFKB2,
PIKSR2, FLT3LG

GSE23400 RAF1, PIKSR1, APPL1, MAP2KI1, AR,

PRKCB, PRKACB, STAT1, HIF1A, TXNRDI,
FADD, RARA, PIK3CD, IL15, RAC2, GSK3B,
STAT2, BCR

GSE130078 TYMP, PDE/A, PIK3CD, PIP5K1A, GPI,
PDE1B, PDESB, PDE9A, HPGDS, PDES3A,
PIJKA

DEGs with strong literature evidence of association to Esophageal
squamous cell carcinoma (ESCC) are marked in Red while hub genes
with evidence of association to five other SCC namely, Oral, Tongue,
Head and Neck, Tongue or Laryngeal Squamous Cell Carcinoma are
marked in Blue

function of ESCC cells thus promoting ESCC cell prolif-
eration and migration. Kita et al. [33] demonstrated that the
expression of cyclin-dependent kinase subunit 2 (CKS2) in
ESCC was elevated relative to levels in normal tissue, and
that CKS2 overexpression is associated with the depth of
tumor invasion, lymphatic invasion, clinical stage, distant
metastasis and poor prognosis. Zheng et al. [34] found that
the expression of cytokine induced apoptosis inhibitor 1
(CIAPINI) was statistically correlated with the degree of
differentiation, depth of invasion, and lymph node metas-
tasis of ESCC and thus has been considered as a valuable
prognostic indicator in ESCC. Zhao et al. [35] highlighted
that Protein arginine methyltransferase 1 (PRMT1) activates
and maintains esophageal TICs by mediating transcription
alteration through histone H4 arginine methylation. Zhou
et al. [36] highlighted that PRMT] activates Hedgehog sign-
aling and up-regulated the expression of target genes down-
stream of Hedgehog signaling thus taking an oncogenic role
of PRMT1 in the progression of ESCC.

Zhang et al. [37] provided evidence that Human Leuko-
cyte Antigen-F (HLA-F) antigen expression was associated
with survival in patients with ESCC. Yie et al. [38] estab-
lished that Human Leukocyte Antigen-G (HLA-G) expres-
sion has a strong and independent prognostic value in human
ESCC. According to Sato et al. [39], high chemokine (CXC
motif) ligand 10 (CXCL10) expression is an independent
prognostic factor and has the potential to serve as a clini-
cally useful marker of the need for adjuvant chemotherapy
after surgery in patients with advanced thoracic ESCC.
Yuan et al. [40] suggested the tumor promotion role of
Interferon-stimulated gene 15 (ISG15) in ESCC via c-MET/
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Fig.5 Gene Regulatory Network (GRN) on the subset of hub genes
detected by our method for modules pink, greenyellow, darkgreen,
lightsteelbluel, black and magenta. Regulatory behavior is repre-

Fyn/a-catenin pathway. Yu et al. [41] and Wang et al. [42]
identified that Cyclin-dependent kinase inhibitor 3 (CDKN3)
regulates tumor progression through activation of AKT sign-
aling pathway in ESCC. Liu et al. [43] further suggested
that CDKN3 acted as an oncogene in human ESCC and
may accelerate the G1/S transition by affecting CyclinD-
CDK4 complex via regulating pAKT-p53-p21 axis and p27
independent of AKT. Preliminary studies by Hu et al. [44]
suggested that disks large-associated protein 5 (DLGAPS)
promotes cell proliferation in ESCC. According to Liu et al.
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sented by a weighted directed edge from a Transcription Factor (TF)
to a Target Gene (TG)

[45], vaccinia-related kinase (VRK) serine/threonine kinase
1 promotes CDDP resistance through ¢-MYC by activating
c-Jun and potentiating a malignant phenotype in ESCC.
Liu et al. [46] provided a potential target for the immuno-
oncology effect of roteasome alpha-subunit 3 (PSMA3) in
ESCC therapy. Wang et al. [47] detected the major role of
Pleckstrin-2 (PLEK?) in driving metastasis and chemoresist-
ance in ESCC by regulating LCN2. Qu et al. [48] found that
Component 3a Receptor 1 (C3AR) might be the cause of
an immunosuppressive microenvironment by affecting the
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Fig.6 Gene Regulatory Network (GRN) on the subset of hub genes detected by our method for modules purple, greenyellow, blue, lightyellow,
violet and steelblue. Regulatory behavior is represented by a weighted directed edge from a Transcription Factor (TF) to a Target Gene (TG)

polarization of macrophages to M2 phenotype and lead to
the progression of ESCC. Zhang et al. [49] suggested that
Signal Transducer and Activator of Transcription-1 (STAT1)
is a tumor suppressor in ESCC. According to Shao et al.
[50], Hypoxia-inducible factor 1a (HIF-1a), pS3, and vascu-
lar endothelial growth factor (VEGF) are important factors
that facilitate tumor progression. The results from the study
conducted by Hu et al. [51] indicated that HIF-1a promotes
metastasis of ESCC by targeting SP1 in a hypoxic microen-
vironment. Bolidong et al. [52] suggested that via cyclin D1/
CDK4-mediated cell cycle progression Glycogen synthase

kinase 3 (GSK3f) has a tumor promoting role in ESCC.
According to Gao et al. [53], GSK3f expression promotes
ESCC progression through STAT3 in vitro and in vivo, and
GSK3p-STAT3 signaling could be a potential therapeutic
target for ESCC treatment.

According to Kato et al. [54] and [55] caveolin-1 (CAVI)
is a biomarker for ESCC. Lu et al. [56] and Shu et al. [57]
indicated that insulin-like growth factor 2 mRNA-binding
protein 2 (IGF2BP2) serves a major carcinogenic role
in ESCC. According to [58], the expression of vascular
endothelial growth factor C (VEGF-C) correlates with
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Table 7 Summary of candidate genes detected by our method in the microarray dataset, GS20347 that are annotated to top 3 GO terms in the

three GO databases
GO Term Annotated Candidate Genes
GO_BP GO:0007165 signal transduction PRKACB, BCR, AR, LYN, APPLI, STATI, SHCI, NFKB2, PIK3CD, PIK3CB, PIK3R2,

GO_CC

GO0:0045944 positive regulation of

transcription from RNA polymerase 11

promoter
GO0:0016032 viral process

GO:0005829 cytosol

PIK3RI1, EXT2, RAC2, PPFIAI, RAFI, GNB5, GSK3B, MAPKI10, KRAS, RARA,
MAP2KI1, TXNRDI1, FLT3LG, FADD, RANBPI, FAS, MAPK1

AR, HOXCI1, STATI, PITX1, NFKB2, TP63, PIK3R2, PIK3RI, PTMA, RAFI, MEDI,
ZNF148, RARA, FADD, CXCR3

ITSN2, POM121, POM121C, LYN, BRD2, PSMBS, STAT1, ABI2, SHCI, PIK3R1, FADD,
RANBPI, MAPK1I

ITSN2, PRKACB, BCR, CASP10, MSRA, RAC2, PTMA, RAF1, UBA7, HOMER3, RARA,

MAP2KI, MAP3K20, MCL1, MCM7, UBASH3A, AR, LYN, APPLI, STATI, KPNA2,
PIK3CD, PIK3CB, PIK3R2, PIK3RI1, TRIO, RPL22, NEDD4L, PNOI, ABI2, NEB,
SARS1, TXNRDI, FADD, CLIC4, PRMTI, FAS, SENPS5, EPB41L1, HOXCI11, SHCI,
ODF2, CEP290, EEF1B2, NABPI, GNB5, KRAS, HAUS7, PSATI1, FLT3LG, MAPKI,
PSMD4, RUFY3, PSMBS5, TCOF1, PSMC2, NFKB2, JPT2, EXOSC4, CCT4, PPFIAI,
SBF1, KIF4A, GSK3B, MAPK10, HPRTI, ITPKC, ENOX2, SPAG5, MAPREI, RANBP1

G0O:0005654 nucleoplasm

PRKACB, CIAPINI, TP63, MSRA, PTMA, UBA7, SLC3A2, RRP7A, RARA, ORC3, MCLI,

MCM7, TIMELESS, NONO, UBASH3A, AR, STATI, KPNA2, PIK3CB, DBF4, MEDI,
NEDDA4L, PNOI, ABI2, DNMT3B, TXNRD1, PRMTI, SENP5, POP7, MAGOHB,
HOXCI11, NABP1, TERFI1, NSD2, RFC2, NPIPB3, RABSB, MAPKI1, PSMD4, UQCRC?2,
PSMBS5, TCOF1, PSMC2, NFKB2, IMP4, EXOSC4, CCT4, KIF4A, GSK3B, MAPK10,
TRRAP, POM121, ZNF148, BRD2, ESF1, NMD3

GO0:0016020 membrane

TFRC, BCR, ITGB7, CEP290, NEUI, EXT2, RAC2, GNAQ, SLC3A2, MANIC1, KRAS,

MCLI, MCM7, FLT3LG, NONO, LSS, RUFY3, APPLI, PSMC2, KPNA2, PIK3CD,
PIK3CB, ENTPD7, PIK3R1, CD52, CD48, SBF1, KIF4A, DDX24, MED1, LSTI,
NMD3, CLIC4, FAS

GO_MF GO:0005515 protein binding

TFRC, PRKACB, BCR, ZKSCANS, NEUI1, MSRA, RAC2, RAF1, RALY, CD2, HOMER3,

RRP7A, APOOL, RARA, MAP2K1, MCLI1, MCM7, TIMELESS, UBASH3A, AR, APPLI,
STATI, PITX1, PIK3CD, PIK3CB, HSD17B10, EPHA2, PIK3R2, PIK3R1, RCNI,
MEDI, RPL22, NEDDA4L, PNOI, ABI2, DNMT3B, TXNRDI1, GMCL2, FADD, ITM2A,
CLIC4, PRMTI, FAS, TGFB2, POP7, EPB41L1, MAGOHB, HOXCI11, CNPY2, SHCI,
CEP290, MANICI, KRAS, TERFI, RFC2, PSATI, FLT3LG, RABSB, VGLLA4, MAPKI,
UQCRC2, CKS2, TCOF1, NFKB2, IMP4, EXOSC4, KIF4A, GSK3B, MAPK10, TNS1,

RANBPI1
G0:0042802 identical protein binding

TFRC, PSMD4, APPLI, STATI, CEP290, TP63, CD3D, RAFI, RALY, CD2, KRAS,

HOMER3, RPL22, HPRTI, TERF1, ABI2, PSATI, FADD, PRMTI, MAPREI, FAS,
TIMELESS, NONO, MAPK1

GO:0003723 RNA binding

POP7, TFRC, PSMD4, MAGOHB, TCOF1, KPNA2, HSD17B10, CCT4, NABP1, DDX24,

SLC3A2, RALY, RPL22, RRP7A, PNOI, EBNAIBP2, MAP3K20, SARSI, ENOX2, ESF1,
TNS1, NMD3, PRMTI, MAPREI, PUS7, NONO

lymph node metastasis and poor prognosis. Similarly, [59]
suggests that VEGF-C expression in ESCC may play a great
key role in lymphatic spread. Feng et al. [60] indicated that
ras-like without CAAX1 (RITI) displays tumor-suppress-
ing functions in ESCC, and these functions were carried
out by inhibiting MAPK and PI3K/AKT signaling pathway,
inhibiting EMT, and downregulating cancer stemness of
ESCC cells. Zhou et al. [61] demonstrated that Dehydro-
genase/reductase member 2 (DHRS2) had an important
part in ESCC development and progression. Li et al. [62]
suggested a tumor suppression function for RNA Binding
Motif Single Stranded Interacting Protein 3 (RBMS3) gene
in ESCC. According to Wang et al. [63], UBE2T is involved
in the development of ESCC, and gene signatures derived

SN Computer Science
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from UBE2T-associated genes are predictive of prognosis
in ESCC. Gao et al. [64] demonstrated that High Mobility
Group Box 3 (HMBG3) may be a potential molecular marker
for predicting the prognosis of ESCC patients. According to
Huang et al. [65], cyclin-dependent kinase 4 (CDK4) ampli-
fication was identified as an independent prognostic factor
for survival, which could be incorporated into the tumor-
node-metastasis staging system to refine risk stratification
of patients with esophageal squamous cell carcinoma. Ling
et al. [66] suggested that MutS Homolog 2 (MSH2) meth-
ylation in the plasma would be a good predictor of DFS
for these ESCC patients before oesophagectomy. Xu et al.
[67] identified Estrogen-related receptor gamma (ESRRG
) as one of four molecular markers that may be helpful
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Table 8 Summary of candidate genes detected by our method in the microarray dataset GSE23400 that have been annotated to top 3 GO terms

in the three GO databases

Data base GO Term Annotated Candidate Genes
GO_BP GO0:0007165 signal transduction BCR, AR, APPLI, STATI, STAT2, CXCL10, CXCLI11, PIK3CD, PIK3RI, RAC2,
CD53, IL15, TYROBP, RAF1, GSK3B, PRKCB, HIFIA, RARA, MAP2K1,
VRKI1, TXNRDI, FADD
G0:0045944 positive regulation of transcription AR, STATI, STAT2, CXCL10, PIK3R1, RAF1, HIFIA, RARA, FADD, TFEC
from RNA polymerase II promoter
G0:0045893 positive regulation of transcription PRKCB, AR, HIFIA, RARA, STATI, MAP2K1, CD86
GO_CC GO0:0005829 cytosol BCR, MTHFDI1, SCO2. SRM, GZMB, RAC2, RAFI1, PRKCB, IFIHI, RARA,
MAP2KI, IFITI, IFIT3, OAS3, AR, APPLI, STATI, STAT2, HNMT, PIK3CD,
UBE2L6, PIK3R1, LAPTMS5, CD163, TXNRD1, MNDA, FADD, DLGAPS,
CDKNS3, IL15, VRK1, EIF2S1, PSMA3, PSMBS, PSMB9, PSMCI, IFI35,
ISG15, GSK3B, HIF1A, TUBGI
G0:0005654 nucleoplasm MNATI, PRKCB, RARA, OAS3, AR, STATI, STAT2, HNMT, UBE2L6, TXNRD1,
MNDA, IL15, NASP, VRK1, PSMA3, PSMBS, PSMB9, PSMCI, ISG15,
GSK3B, HIFIA, TFEC
G0:0016020 membrane BCR, MTHFD1, ITGB2, GZMB, RAC2, PLXNCI1, HLA-C, HLA-F, HLA-G,
EIF2S1, OAS3, APPLI, PSMCI, PIK3CD, IFI35, ENTPDI, PIK3RI, TAPI,
CD163
GO_MF  GO:0005515 protein binding BCR, SCO2, MNATI1, SRM, RAC2, FCERIG, RAFI, PRKCB, RARA, MAP2KI,

AR, APPLI, STATI, STAT2, PIK3CD, UBE2L6, ENTPDI, PIK3RI, GLRXS,
CD163, TXNRDI, FADD, IL15, TIMMY, PLXNC1, VRKI1, EIF2S51, FCGR2A,
IFI35, GSK3B, HIFIA, TUBGI

G0:0042802 identical protein binding

APPLI, STATI, STAT2, SRM, IFI35, CD53, FCERIG, TYROBP, RAF1I, IFIHI,

IFIT3, HLA-G, FADD, TUBGI, C10B

G0:0003723 RNA binding

PSMCI, IFIHI, EBNAIBP2, IFIT1, IFIT3, EIF2S1

in the diagnosis and treatment of ESCC. Chen et al. [68]
demonstrated that silencing EphA3 in KYSE410 cells trig-
gers epithelial-mesenchymal transition, and promoted cell
migration and invasion in ESCC. Luo et al. [69] found that
knockdown of Insulin-like growth factor binding protein-3
(IGFBP-3) confers resistance to the cell killing effects of
IR on ESCC in vitro and in vivo. Zhao et al. [70] indicated
that the increased ESCC chemosensitivity might be depend-
ent on /GFBP-3 upregulation through EGFR-dependent
pathway. Furthermore, according to Luo et al. [71], high
level of IGFBP-3 expression in ESCC associates with early
clinical stages and are predictive for favorable survival of
the patients treated with radiotherapy. According to Wang
et al. [72], carbohydrate sulfotransferase 15 (CHST15) pro-
motes the proliferation of TE-1 cells via multiple pathways
in ESCC.

Discussion

In Table 11, we give a detailed summary of all DEGs that
have been identified by our method as candidates for poten-
tial biomarkers for ESCC. In our method, we consider strong
literature evidence for association with ESCC and five other
SCCs related to ESCC as the necessary criterion for a candi-
date gene to be a potential biomarker, and the findings from

literature are summarized in Table 11. In the table, we also
highlight the enriched GO terms and pathways to which the
candidate genes has been annotated. Furthermore, it also
details whether the same is a hub gene, a transcription fac-
tor (TF) or whether it is upregulated or down-regulated. A
DEQG is upregulated if logF'C > 0 and downregulated when
logFC < 0. We take into consideration logFC values calcu-
lated by limma for the microarray datasets, and edgeR in the
RNA-Seq dataset.

The biological relevance of a candidate to its respective
dataset is considered based on three criteria:

(a) Annotated to at least one GO term in 2 of 3 GO data-
bases with p value < 0.05,

(b) Annotated to at least one KEGG pathway with
p value < 0.05, and

(c) It’saTF and thus exhibits regulatory behavior towards
other DEGs in the network.

For a candidate gene to be considered a potential biomarker,
we consider following four cases.

Case 1: Strong literature evidence of association with
ESCC and biologically relevant to its dataset based on all
three criteria a,b and c,

SN Computer Science
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Table 9 Summary of candidate genes detected by our method in GS130078 that have been annotated to top 3 GO terms in the three GO data-

bases

Data base GO Term

Hub Genes

GO_BP GO:0007165 signal transduction

GO0:0000122 negative regulation of transcription from RNA

polymerase II promoter

G0:0045944 positive regulation of transcription from RNA

polymerase II promoter

GO_CC GO0:0005886 plasma membrane

G0:0005829 cytosol

GO:0005654 nucleoplasm

GO_MF  GO:0005515 protein binding

G0:0042802 identical protein binding

GO:0004712 protein serine/threonine/tyrosine kinase activity

PIP5KIA, RHBDLI, RRAS2, CXCL16, HPGDS, PIK3CD,
PIK3CB, VEGFC, RIT1, RALB, CDC42SEI, HIFIA, GPI,
PGF, CDK4, PDEIB, PDE2A, PDE3A, TENM1, TYMP,
PDE9A, CSF2RB, PI4KA, PI4KB, PDE3B, PDE4A, PDE4D,
PPP2R5A, PDESA, GNAI3, LIMK1

MEF2A, HI-2, ZNF239, ZNF85, OSR2, CAVI, NFIB, ZNF568,
PDE2A

TBK1, MEF2A, LRP6, OSR2, ZNF91, HIFIA, NFIB, ESRRG,
LMO4, SENP1

FEZI, KCNH3, ARLAA, SDE2, RITI, RALB, PI4K2A, COAG,
TENM1I, CDH22, CDH23, RRAS2, CXCLI6, PIK3CD,
PIK3CB, LRP6, EPHA3, CAVINI, CARMILI, PDE2A,
PDE9YA, PDE4A, PDE4D, PIP5KIA, ADGRL3, EXOI, SYTI5,
CACNAIB, CACNAIE, CAVI, GPI, CSF2, HRHI, PI4KA,
GNA13, ZAN, PCDHI10, ANO4, CDC42SE1, CDH4, MUCLI

ARFGAPI, ARLA4A, SDE2, PI4K2A, ELP6, TYMP, NEXMIF,
SAMD4A, HPGDS, PIK3CD, PIK3CB, DTL, EPHA3,
CAVINI, CHPF, PPP6C, PDEIB,CARMILI, PDE2A, PDE3A,
PDE9A, PDE3B, PDE4A, PDE4D, PDESA, TBK1, PIP5KIA,
CRLFI1, GMNN, IGF2BP2, MON2, GPI, POLR2D, PANK2,
HRHI, PI4KA, PI4KB, PPP2R5A, RBMS3, GNA13, LIMK1,
PPP4R4, MEF2A, THUMPD3, KIF15, CCT2

MSH?2, ARL4A, SDE2, ZNF85, ERCC3, NFIB, COA6, NEXMIF,
HPGDS, PIK3CB, SUMO3, DTL, EPHA3, CAVINI, APPBP2,
RNF112, ESRRG, PPP6C, RBBP5, CARMILI, PDE9A, CTD-
SPL2, PDE4A, SENP1, TBK1, PIP5KIA, LIN52, ZNF470,
GMNN, EXO1, UBE2T, GPI, ZNF367, DHRS2, RFCS,
POLR2D, DNA2, MEF2A, ZNF232, CLUAPI, HIFIA, CDK4

ORAI2, KCNH3, MSH2, PIWILI, SDE2, RALB, XIRP1,GSEI,
TYMP, RRAS2, HPGDS, MFHASI, PIK3CD, PIK3CB, DTL,
LRP6, EPHA3, CRELD2, APPBP2, RNF112, ESRRG, RBBPS,
PDEIB, PDE2A, PDE3A, IGFNI, PDE9A, SOHLHI, PDE3B,
PDEA4A, PDE4D, PDE5A, ACAN, PIP5KIA, LIN52, CRLFI,
TMBIMA4, VEGFC, CACNAIB, UBE2T, GNS, GPI, RFCS,
DNA2, PI4KA, PI4KB, PPP2R5A

TBK1, CAVI, PGF, EMILIN3, LRP6, PCSK1, CAVINI, ESRRG,
PDE2A, PDE9A

TBKI1, CDKIS8, CDK4, EPHA3, LIMK]

Case 2: Strong literature evidence of association with
ESCC and biologically relevant to its dataset based on
criteria a and b,

Case 3: Strong literature evidence of association with
ESCC and biologically relevant to its dataset based on
criteria a or b,

Case 4: Biologically relevant to its dataset using all three
criteria a,b and c, and has literature evidence of associa-
tion with previously mentioned 5 SCCs related to ESCC,
namely, oral SCC, Lung SCC, Tongue SCC, Head and
Neck SCC and Laryngeal SCC.

All candidate genes that fall under Case 1 and Case 2 are
considered potential biomarkers for ESCC because of exist-
ing evidence of association with ESCC in the form of other

SN Computer Science
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works while our biological validation of these genes estab-
lishes their relevance to their respective datasets. For can-
didate genes that fall under Case 3, although there is strong
literature evidence of association with ESCC, we have weak
evidence of their biological relevance to their datasets. On
the other hand, for candidate genes that fall under Case 4,
although we strongly validate their biological relevance to
their datasets, there is only literature evidence of association
with other SCCs related to ESCC. For both these cases, the
candidates can be considered probable potential biomarkers,
but need further in-depth analysis.

Top Enriched DEGs (TEDs), STATI and HIF' 1A detected
in both microarray datasets (GSE20347 and GSE23400) and
GSE130078, respectively, belong to Case 1. In GSE20347,
two candidates DNMT3B and MCM?7 also belong to Case 1.
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Table 10 Summary of candidate genes detected by our method in all three databases that have been annotated to the top 5 KEGG enriched path-

ways in these two microarray datasets

Data set KEGG Pathways Annotated Candidate Genes
GSE20347  hsa05200:Pathways in cancer BCR, AR, APPLI, CKS2, RARA, STATI, MAP2KI1, NFKB2, PIK3CD, PIK3CB,
TXNRDI, FLT3LG, PIK3R2, PIK3R1, FADD, RAC2, FAS, RAFI, TGFB2, GNAQ,
GNB5, GSK3B, MAPKI1, MAPK10, KRAS
hsa04010:MAPK signaling pathway PRKACB, FLT3LG, EPHA2, RAC2, FAS, MAP2K1, RAF1, MAP3K20, TGFB2,
NFKB2, MAPK1, MAPK10, KRAS
hsa05169:Epstein-Barr virus infection PSMD4, PIK3R2, PIK3R1, FADD, LYN, CD3D, STATI, PSMC2, FAS, NFKB2,
PIK3CD, PIK3CB, MAPK10
hsa04151:PI3K-Akt signaling pathway FLT3LG, EPHA2, PIK3R2, PIK3RI, MAP2KI, RAFI, MCLI, GNB5, GSK3B,
PIK3CD, PIK3CB, ITGB7, MAPKI, KRAS
hsa05171:Coronavirus disease - COVID-19 RPL22, PIK3R2, PIK3R1, STATI, PIK3CD, PIK3CB, MAPKI1, MAPKI0
GSE23400  hsa05200:Pathways in cancer PRKCB, BCR, AR, HIFIA, APPLI, RARA, STATI, STAT2, MAP2K1, PIK3CD,

TXNRDI, PIK3R1, FADD, RAC2, IL15, RAF1, GSK3B

hsa04010:MAPK signaling pathway
hsa04151:PI3K-Akt signaling pathway
hsa05169:Epstein-Barr virus infection

PRKCB, CDI14, RAC2, MAP2K1, RAFI
PIK3RI, MAP2KI, RAF1, GSK3B, PIK3CD
ENTPDI, HLA-C, HLA-F, HLA-G, PIK3RI1, FADD, STATI1, STAT2, PSMCI, TAPI,

ISG15, CXCLI0, PIK3CD, OAS3

hsa05171:Coronavirus disease - COVID-19 C3ARI, PRKCB, PIK3RI1, IFIHI1, CI1QB, CI1QA, STATI, STAT2, ISG15, CXCLI10,
PIK3CD, OAS3, FCGR2A

GSE130078 hsa01100:Metabolic pathways

PIP5KIA, PIGT, HPGDS, PIK3CD, PIK3CB, ST6GALNACS, ST6GALI, MOGS,

ARSB, NATSB, PI4K2A, GNS, GPI, CHPF, PANK2, PDEIB, PDE2A, PDE3A,
TYMP, PDE9A, PI4KA, PI4KB, PDE3B, PDE4A, PDE4D, PDESA, SGPP1

hsa05200:Pathways in cancer
GNAI3

hsa04144:Endocytosis
hsa04010:MAPK signaling pathway

hsa05165:Human papillomavirus infection

HIFIA, PGF, MSH2, CDK4, PIK3CD, PIK3CB, LRP6, VEGFC, CSF2RB, RALB,

PIP5KIA, CAVI, ARFGAPI, FOLR3
RRAS2, VEGFC, PGF, CACNAIB, CACNAIE
TBK1, CDK4, PIK3CD, PIK3CB, PPP2R5A

Thus, STATI, HIFIA, DNMT3B and MCM7 are potential
biomarkers for ESCC. GSK3B is a TED detected in both
microarrays, and belongs to Case 2. In dataset GSE20347,
9 candidate genes HOMER3, PSMD4, PSTATI, TFRC,
MCLI, EPHA2, KPNA2, CKS2 and PRMT1 belong to Case
2, and thus are potential biomarkers for ESCC. Similarly, 7
candidate genes HLA-F, HLA-G, CXCLI10, ISG15, PSMA3,
FCGR2A and C3AR] are potential biomarkers for ESCC as
they fall under Case 2. Four candidate genes in the RNASeq
dataset GSE130078, CAVI, VEGFC, CDK4 and MSH?2 fall
under Case 2 and are potential biomarkers for ESCC.
Three candidates genes in GSE20347, PTMA, VGLL4
and NONO fall in Case 3. In other words, although there
are other works that establish their role as potential bio-
markers for ESCC, the biological relevance to their respec-
tive datasets is not that strong. However, they can still be
regarded as probable potential biomarkers for ESCC, but
need further in-depth validation. Similarly in GSEE23400
and GSE130078, one (PLEK?2) and 2 (HMGB3 and ESRRG
) genes fall under Case 3. PSMC2 detected in GSE20347,
on the other hand falls under Case 4. We validate its strong
association with the dataset as this candidate gene has been
annotated to GO terms in all three GO databases as well as

several enriched pathways. They further exhibit regulatory
behavior in a GRN, but there are no previous works that
relate the same to ESCC. However, its worth mentioning that
there is literature evidence that identify PSMC2 as potential
biomarker for OSCC. Similarly, the TED identified in the
two microarray datasets, AR, also falls under Case 4. Both,
PSMC?2 and AR are probable potential biomarkers for ESCC,
but need further in-depth analysis.

In Table 12, we put forward a comparison between our
work and two recent works presented by Patowary et al.
[166] and Hu. et al. [44] that perform DE analysis by
employing approaches and methods similar to our work.

Conclusion

All six methods, three microarray and three RNA-sequenc-
ing, employed by the proposed integrative approach based
differential expression (DE) Analysis framework were found
effective in extracting differentially expressed genes (DEGs)
with a p-value of 0.05. We further proposed a consensus
function that takes into account the information loss due
to the DEGs common to all three respective methods and

SN Computer Science
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further employs local fdr (for microarray) and g-value (for
RNA-Seq). Through differential co-expression (DCE) and
preservation analysis, we studied the behavioral changes
among the DEGs under normal and disease circumstances.
All non-preserved modules of reasonable sizes are con-
sidered modules of interest and analyzed further down the
pipeline. DEGs are considered candidates for potential bio-
markers for ESCC when they are either: (a) hub genes in
the modules of interest, or (b) Top Enriched DEG (TED),
i.e., a DEG annotated to the most enriched GO term in all
three GO databases as well as the most enriched KEGG
pathway in their respective datasets. Our proposed frame-
work was validated on two microarray datasets (GSE20347
and GSE23400) and one RNA-Sequencing dataset
(GSE130078). From, 7, 3 and 8 modules of interest in
GSE20347, GSE23400 and GSE130078 respectively, 124,
59 and 160 hub genes were identified. The consideration
of 22, 18 and 16 TEDs detected by GSE20347, GSE23400
and GSE130078 respectively results in 146, 77 and 176 as
candidates for potential biomarkers of ESCC. Biological
relevance for each candidate to their respective datasets is
analysed based on (a) annotation to enriched GO terms in
the GO databases, (b) annotation to enriched KEGG path-
ways, and (c) if the candidate gene is a transcription fac-
tor in a gene regulatory network. Another very important
criterion that we considered for a candidate gene to be a
potential biomarker is previous literature that has either (a)
established them as potential biomarkers for ESCC itself,
or (b) established them as potential biomarkers for 5 other
SCCs related to ESCC, namely, Oral SCC, Tongue SCC,
Lung SCC, Head and Neck SCC and Laryngeal SCC.

Our method identified 4 candidate genes, STATI, HIFIA ,
DNMT3B and MCM7, that are transcription factors (TFs),
have strong biological relevance to their respective datasets
and have previous literature works that establish their role as
potential biomarkers in ESCC. Our method identified GSK3B ,
detected as DEG by both microarray datasets (GSE20347 and
GSE23400), as a TED and has both strong literature evidence
as potential biomarker of ESCC and we established its strong
biological relevance to both microarray datasets. Similarly, nine
(HOMERS3 , PSMD4, PSTATI, TFRC, MCLI, EPHA2, KPNA2,
CKS2 and PRMT]I), seven (HLA-F, HLA-G, CXCLI10, ISG15,
PSMA3, FCGR2A and C3ARI) and four (CAVI, VEGFC,
CDK4 and MSH?2 ) candidates genes in GSE20347, GSE23400
and GSE130078 are established as potential biomarkers for
ESCC. We further identified 3 (PTMA, VGLIL4 and NONO),
1 (PLEK?2) and 2 (HMGB3 and ESRRG) TFs in GSE20347,
GSE23400 and GSE130078 respectively, that have strong liter-
ature evidence as potential biomarkers of ESCC, but have mod-
erate evidence for biological relevance to their respective data-
sets, and thus can be regarded as probable potential biomarkers
for ESCC. On the other side of the spectrum, the transcription

factor AR, a TED that is identified as a DEG in both microarray
datasets and PSMC2 have strong biological relevance to their
datasets, but have been identified as potential biomarkers for
other SCC related to ESCC. They can also be considered prob-
able potential biomarkers for ESCC, but need further in-depth
analysis. For future work, there is scope for improvement in
the framework in general and consensus function specifically,
towards detection of a smaller number of DEGs with minimum
loss of relevant information.

Declarations

Conflict of interest On the behalf of all authors, the corresponding au-
thors states that there is no conflict of interest.

References

1. Smyth GK, limma, Linear Models for Microarray Data. In: Gen-
tleman R, Carey VJ, Huber W, Irizarry RA, Dudoit S, editors.
Bioinformatics and Computational Biology Solutions Using R
and Bioconductor. New York, NY: Springer; 2005. p. 397-420.
https://doi.org/10.1007/0-387-29362-0.

2. Tusher VG, Tibshirani R, Chu G. Significance analysis of micro-
arrays applied to the ionizing radiation response. Proc Natl Acad
Sci. 2001;98(9):5116-21. https://doi.org/10.1073/pnas.09106
2498.

3. Efron B, Tibshirani R, Storey JD, Tusher V. Empirical Bayes
analysis of a microarray experiment. ] Am Stat Assoc.
2001;96(456):1151-60. https://doi.org/10.1198/0162145017
53382129.

4. Law CW, Chen Y, Shi W, Smyth GK. voom: precision weights
unlock linear model analysis tools for RNA-seq read counts.
Genome Biol. 2014;15(2):R29. https://doi.org/10.1186/
gb-2014-15-2-129.

5. Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconduc-
tor package for differential expression analysis of digital gene
expression data. Bioinformatics. 2010;26(1):139-40. https://doi.
org/10.1093/bioinformatics/btp616.

6. Love MI, Huber W, Anders S. Moderated estimation of
fold change and dispersion for RNA-seq data with DESeq?2.
Genome Biol. 2014;15(12):550. https://doi.org/10.1186/
$13059-014-0550-8.

7. Langfelder P, Horvath S. WGCNA: an R package for weighted
correlation network analysis. BMC Bioinform. 2008;9:559.
https://doi.org/10.1186/1471-2105-9-559.

8. Ravasz E, Somera AL, Mongru DA, Oltvai ZN, Barabési AL.
Hierarchical organization of modularity in metabolic networks.
Science. 2002;297(5586):1551-5. https://doi.org/10.1126/
science.1073374.

9. Langfelder P, Luo R, Oldham MC, Horvath S. Is My Network
Module Preserved and Reproducible? PLoS Comput Biol.
2011;7(1): https://doi.org/10.1371/journal.pcbi.1001057.

10. Sherman BT, Lempicki RA, et al. Systematic and integra-
tive analysis of large gene lists using DAVID bioinformatics
resources. Nat Protoc. 2009;4(1):44-57. https://doi.org/10.
1038/nprot.2008.211.

11. Huang DW, Sherman BT, Lempicki RA. Bioinformatics enrich-
ment tools: paths toward the comprehensive functional analysis

SN Computer Science
A SPRINGER NATURE journal


https://doi.org/10.1007/0-387-29362-0
https://doi.org/10.1073/pnas.091062498
https://doi.org/10.1073/pnas.091062498
https://doi.org/10.1198/016214501753382129
https://doi.org/10.1198/016214501753382129
https://doi.org/10.1186/gb-2014-15-2-r29
https://doi.org/10.1186/gb-2014-15-2-r29
https://doi.org/10.1093/bioinformatics/btp616
https://doi.org/10.1093/bioinformatics/btp616
https://doi.org/10.1186/s13059-014-0550-8
https://doi.org/10.1186/s13059-014-0550-8
https://doi.org/10.1186/1471-2105-9-559
https://doi.org/10.1126/science.1073374
https://doi.org/10.1126/science.1073374
https://doi.org/10.1371/journal.pcbi.1001057
https://doi.org/10.1038/nprot.2008.211
https://doi.org/10.1038/nprot.2008.211

114

Page 26 of 31

SN Computer Science (2023) 4:114

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

of large gene lists. Nucleic Acids Res. 2009;37(1):1-13. https://
doi.org/10.1093/nar/gkn923.

Bhagwat AS, Vakoc CR. Targeting Transcription Factors in Can-
cer. Trends Cancer. 2015;1(1):53-65. https://doi.org/10.1016/j.
trecan.2015.07.001.

. Zhu Y, Qi X, Yu C, Yu S, Zhang C, Zhang Y, et al. Identifica-

tion of prothymosin alpha (PTMA) as a biomarker for esopha-
geal squamous cell carcinoma (ESCC) by label-free quantitative
proteomics and Quantitative Dot Blot (QDB). Clin Proteomics.
2019;16(1):12. https://doi.org/10.1186/s12014-019-9232-6.
Tang P, Jia R, Gong L, Sui Z, Xiao W, Yang Y, Gong L, Sui Z,
Xiao W, Yang Y, Wu X and Yu Z, Zhang, H. High expression
of PPFIA1 in human esophageal squamous cell carcinoma cor-
relates with tumor progression and poor prognosis. Res Square;
2022. https://doi.org/10.21203/rs.3.r5-554718/v2.

Jiang W, Yao F, He J, Lv B, Fang W, Zhu W, He G, Chen J, He
J. Downregulation of VGLL4 in the progression of esophageal
squamous cell carcinoma. Tumor Biol 2015;36(2):1289-97.
https://doi.org/10.1007/s13277-014-2701-7.

Shen TY, Mei LL, Qiu YT, Shi ZZ. Identification of candidate
target genes of genomic aberrations in esophageal squamous
cell carcinoma. Oncol Lett. 2016;12(4):2956-2961. https://doi.
0rg/10.3892/01.2016.4947.

Ma AG, Yu LM, Zhao H, Qin CW, Tian XY, Wang Q. PSMD4
regulates the malignancy of esophageal cancer cells by sup-
pressing endoplasmic reticulum stress. Kaohsiung J Med Sci.
2019;35(10):591-597. https://doi.org/10.1002/kjm2.12093.
Chen WC, Chen MF, Lin PY. Significance of DNMT3b in oral
cancer. PLoS One. 2014;9(3):e89956. https://doi.org/10.1371/
journal.pone.0089956.

Liu B, Jia Y, Cao Y, Wu S, Jiang H, Sun X, et al. Overexpres-
sion of Phosphoserine Aminotransferase 1 (PSAT1) Predicts
Poor Prognosis and Associates with Tumor Progression in
Human Esophageal Squamous Cell Carcinoma. Cell Physiol
Biochem. 2016;39(1):395-406.https://doi.org/10.1159/00044
5633 .

Cheng R, Zhu S, Guo S, Min L, Xing J, Guo Q, Li P, Zhang
S. Downregulation of NONO induces apoptosis, suppressing
growth and invasion in esophageal squamous cell carcinoma.
Oncol Rep. 2018;39(6):2575-2583. https://doi.org/10.3892/or.
2018.6334.

Wada S, Noguchi T, Takeno S, Kawahara K. PIK3CA and
TFRC located in 3q are new prognostic factors in esophageal
squamous cell carcinoma. Ann Surg Oncol. 2006;13(7):961-6.
https://doi.org/10.1245/AS0.2006.08.006.

He JZ, Wu ZY, Wang SH, Ji X, Yang CX, Xu XE, et al. A deci-
sion tree-based combination of ezrin-interacting proteins to
estimate the prognostic risk of patients with esophageal squa-
mous cell carcinoma. Hum Pathol. 2017;66:115-125. https://
doi.org/10.1016/j.humpath.2017.06.003.

Yu X, Li W, Xia Z, Xie L, Ma X, Liang Q, Liu L, Wang J,
Zhou X, Yang Y, Liu H. Targeting MCL-1 sensitizes human
esophageal squamous cell carcinoma cells to cisplatin-induced
apoptosis. BMC Cancer. 2017;17(1):449. https://doi.org/10.
1186/512885-017-3442-y.

Yang X, Han B, He Z, Zhang Y, Lin K, Su H, Hosseini DK, Sun
H, Yang M, Chen X. RNA-Binding Proteins CLK1 and POP7 as
Biomarkers for Diagnosis and Prognosis of Esophageal Squa-
mous Cell Carcinoma. Front Cell Dev Biol. 2021;9:715027.
https://doi.org/10.3389/fcell.2021.715027.

Qiu YT, Wang WIJ, Zhang B, Mei LL, Shi ZZ. MCM7 ampli-
fication and overexpression promote cell proliferation, colony
formation and migration in esophageal squamous cell carcinoma
by activating the AKT1/mTOR signaling pathway. Oncol Rep.
2017;37(6):3590-3596. https://doi.org/10.3892/0r.2017.5614.

SN Computer Science

A SPRINGER NATURE journal

26.

217.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

Choy B, Lal.onde A, Que J, Wu T, Zhou Z. MCM4 and MCM?7,
potential novel proliferation markers, significantly correlated
with Ki-67, Bmil, and cyclin E expression in esophageal adeno-
carcinoma, squamous cell carcinoma, and precancerous lesions.
Hum Pathol. 2016;57:126-135. https://doi.org/10.1016/j.humpa
th.2016.07.013.

Zhong X, Chen X, Guan X, Zhang H, Ma Y, Zhang S, Wang E,
Zhang L, Han Y. Overexpression of G9a and MCM?7 in oesopha-
geal squamous cell carcinoma is associated with poor prognosis.
Histopathology. 2015;66(2):192-200. https://doi.org/10.1111/
his.12456.

Miyazaki T, Kato H, Fukuchi M, Nakajima M, Kuwano H.
EphA?2 overexpression correlates with poor prognosis in esopha-
geal squamous cell carcinoma. Int J Cancer. 2003;103(5):657-63.
https://doi.org/10.1002/ijc.10860.

Ma S, Zhao X. KPNA?2 is a promising biomarker candidate for
esophageal squamous cell carcinoma and correlates with cell
proliferation. Oncol Rep. 2014;32(4):1631-7. https://doi.org/10.
3892/0r.2014.3381.

Sakai M, Sohda M, Miyazaki T, Suzuki S, Sano A, Tanaka
N, et al. Significance of karyopherin-a 2 (KPNA2) expres-
sion in esophageal squamous cell carcinoma. Anticancer Res.
2010;30(3):851-6.

Wang L, Liu G, Bolor-Erdene E, Li Q, Mei Y, Zhou L. Identifica-
tion of KIF4A as a prognostic biomarker for esophageal squa-
mous cell carcinoma. Aging (Albany NY). 2021;13(21):24050—
24070. https://doi.org/10.18632/aging.203585.

Sun X, Chen P, Chen X, Yang W, Chen X, Zhou W, Chen X,
Zhou W, Huang D, Cheng Y. KIF4A enhanced cell proliferation
and migration via Hippo signaling and predicted a poor prog-
nosis in esophageal squamous cell carcinoma. Thorac Cancer.
2021;12(4):512-524. https://doi.org/10.1111/1759-7714.13787.
Kita Y, Nishizono Y, Okumura H, Uchikado Y, Sasaki K, Mat-
sumoto M, Setoyama T, Tanoue K, Omoto I, Mori S, Owaki T,
Ishigami S, Nakagawa H, Tanaka F, Mimori K, Mori M, Natsu-
goe S. Clinical and biological impact of cyclin-dependent kinase
subunit 2 in esophageal squamous cell carcinoma. Oncol Rep.
2014; 31(5):1986-92. https://doi.org/10.3892/0r.2014.3062.
Zheng X, Zhao Y, Wang X, Li Y, Wang R, Jiang Y, Gong T, Li
M, Sun L, Hong L, Li X, Liang J, Luo G, Jin B, Yang J, Zhang
H, Fan D. Decreased expression of CIAPIN1 is correlated with
poor prognosis in patients with esophageal squamous cell car-
cinoma. Dig Dis Sci. 2010; 55(12):3408-14. https://doi.org/10.
1007/s10620-010-1212-7.

Zhao Y, Lu Q, Li C, Wang X, Jiang L, Huang L, Wang C, Chen
H. PRMT1 regulates the tumour-initiating properties of esopha-
geal squamous cell carcinoma through histone H4 arginine meth-
ylation coupled with transcriptional activation. Cell Death Dis.
2019; 10(5):359. https://doi.org/10.1038/s41419-019-1595-0.
Zhou W, Yue H, Li C, Chen H, Yuan Y. Protein arginine methyl-
transferase 1 promoted the growth and migration of cancer cells
in esophageal squamous cell carcinoma. Tumour Biol. 2016;
37(2):2613-9. https://doi.org/10.1007/s13277-015-4098-3.
Zhang X, Lin A, Zhang JG, Bao WG, Xu DP, Ruan Y'Y, Yan WH.
Alteration of HLA-F and HLA I antigen expression in the tumor
is associated with survival in patients with esophageal squamous
cell carcinoma. Int J Cancer. 2013; 132(1):82-9. https://doi.org/
10.1002/ijc.27621.

Yie SM, Yang H, Ye SR, Li K, Dong DD, Lin XM. Expression
of HLA-G is associated with prognosis in esophageal squamous
cell carcinoma. Am J Clin Pathol. 2007;128(6):1002-9. https://
doi.org/10.1309/INCW1QLDFB6AMI9WE.

Sato Y, Motoyama S, Nanjo H, Wakita A, Yoshino K, Sasaki
T, Nagaki Y, Liu J, Imai K, Saito H, Minamiya Y. CXCL10


https://doi.org/10.1093/nar/gkn923
https://doi.org/10.1093/nar/gkn923
https://doi.org/10.1016/j.trecan.2015.07.001
https://doi.org/10.1016/j.trecan.2015.07.001
https://doi.org/10.1186/s12014-019-9232-6
https://doi.org/10.21203/rs.3.rs-554718/v2
https://doi.org/10.1007/s13277-014-2701-7
https://doi.org/10.3892/ol.2016.4947
https://doi.org/10.3892/ol.2016.4947
https://doi.org/10.1002/kjm2.12093
https://doi.org/10.1371/journal.pone.0089956
https://doi.org/10.1371/journal.pone.0089956
https://doi.org/10.1159/000445633
https://doi.org/10.1159/000445633
https://doi.org/10.3892/or.2018.6334
https://doi.org/10.3892/or.2018.6334
https://doi.org/10.1245/ASO.2006.08.006
https://doi.org/10.1016/j.humpath.2017.06.003
https://doi.org/10.1016/j.humpath.2017.06.003
https://doi.org/10.1186/s12885-017-3442-y
https://doi.org/10.1186/s12885-017-3442-y
https://doi.org/10.3389/fcell.2021.715027
https://doi.org/10.3892/or.2017.5614
https://doi.org/10.1016/j.humpath.2016.07.013
https://doi.org/10.1016/j.humpath.2016.07.013
https://doi.org/10.1111/his.12456
https://doi.org/10.1111/his.12456
https://doi.org/10.1002/ijc.10860
https://doi.org/10.3892/or.2014.3381
https://doi.org/10.3892/or.2014.3381
https://doi.org/10.18632/aging.203585
https://doi.org/10.1111/1759-7714.13787
https://doi.org/10.3892/or.2014.3062
https://doi.org/10.1007/s10620-010-1212-7
https://doi.org/10.1007/s10620-010-1212-7
https://doi.org/10.1038/s41419-019-1595-0
https://doi.org/10.1007/s13277-015-4098-3
https://doi.org/10.1002/ijc.27621
https://doi.org/10.1002/ijc.27621
https://doi.org/10.1309/JNCW1QLDFB6AM9WE
https://doi.org/10.1309/JNCW1QLDFB6AM9WE

SN Computer Science (2023) 4:114

Page27of31 114

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

Expression Status is Prognostic in Patients with Advanced Tho-
racic Esophageal Squamous Cell Carcinoma. Ann Surg Oncol.
2016;23(3):936-42. https://doi.org/10.1245/5s10434-015-4909-1.
Yuan H, Zhou W, Yang Y, Xue L, Liu L, Song Y. ISG15 pro-
motes esophageal squamous cell carcinoma tumorigenesis via
c-MET/Fyn/p-catenin signaling pathway. Exp Cell Res. 2018;
367(1):47-55. https://doi.org/10.1016/j.yexcr.2018.03.017.

Yu H, Yao J, DuM, Ye J, He X, Yin L. CDKN3 promotes cell
proliferation, invasion and migration by activating the AKT sign-
aling pathway in esophageal squamous cell carcinoma. Oncol
Lett. 2020;19(1):542-548. https://doi.org/10.3892/01.2019.
11077.

Wang W, Liao K, Guo HC, Zhou S, Yu R, Liu Y, Pan Y, Pu
J. Integrated transcriptomics explored the cancer-promoting
genes CDKN3 in esophageal squamous cell cancer. J Car-
diothorac Surg. 2021;16(1):148. https://doi.org/10.1186/
s13019-021-01534-7.

LiuJ,Min L, Zhu S, Guo Q, Li H, Zhang Z, Zhao Y, Xu C, Zhang
S. Cyclin-Dependent Kinase Inhibitor 3 Promoted Cell Prolifera-
tion by Driving Cell Cycle from G1 to S Phase in Esophageal
Squamous Cell Carcinoma. J Cancer. 2019; 10(8):1915-1922.
https://doi.org/10.7150/jca.27053.

Hu J, Li R, Miao H, Wen Z. Identification of key genes for
esophageal squamous cell carcinoma via integrated bioinformat-
ics analysis and experimental confirmation. J Thorac Dis. 2020;
12(6):3188-3199. https://doi.org/10.21037/jtd.2020.01.33.

Liu ZC, Cao K, Xiao ZH, Qiao L, Wang XQ, Shang B, Jia Y,
Wang Z. VRK1 promotes cisplatin resistance by up-regulating
¢-MYC via c-Jun activation and serves as a therapeutic target
in esophageal squamous cell carcinoma. Oncotarget. 2017,
8(39):65642-65658. https://doi.org/10.18632/oncotarget.20020.
LiuJ, Shao J, Zhang C, Qin G, Liu J, Li M, Wu P, Zhao X, Zhang
Y. Immuno-oncological role of 20S proteasome alpha-subunit
3 in aggravating the progression of esophageal squamous cell
carcinoma. Eur J Immunol. 2022; 52(2):338-351. https://doi.org/
10.1002/eji.202149441.

Wang F, Zhang C, Cheng H, Liu C, Lu Z, Zheng S, Wang S, Sun
N, He J. TGF-f-induced PLEK?2 promotes metastasis and chem-
oresistance in oesophageal squamous cell carcinoma by regulat-
ing LCN2. Cell Death Dis. 2021 Oct 2;12(10):901. https://doi.
0rg/10.1038/s41419-021-04155-z.

QuJ, Zhao Q, Yang L, Ping Y, Zhang K, Lei Q, Liu F, Zhang Y.
Identification and characterization of prognosis-related genes in
the tumor microenvironment of esophageal squamous cell carci-
noma. Int Immunopharmacol. 2021; 96:107616. https://doi.org/
10.1016/j.intimp.2021.107616.

Zhang Y, Molavi O, Su M, Lai R. The clinical and biological
significance of STAT1 in esophageal squamous cell carcinoma.
BMC Cancer. 2014; 14:791. https://doi.org/10.1186/1471-2407-
14-791 .

Shao N, Han Y, Song L, Song W. Clinical significance of
hypoxia-inducible factor la, and its correlation with p53
and vascular endothelial growth factor expression in resect-
able esophageal squamous cell carcinoma. J Cancer Res Ther.
2020;16(2):269-275. https://doi.org/10.4103/jert.JCRT_781_19.
Hu X, Lin J, Jiang M, He X, Wang K, Wang W, Hu C, Shen Z,
He Z, Lin H, Wu D, Wang M. HIF-1a Promotes the Metastasis
of Esophageal Squamous Cell Carcinoma by Targeting SP1. J
Cancer. 2020; 11(1):229-240. https://doi.org/10.7150/jca.35537.
Bolidong D, Domoto T, Uehara M, Sabit H, Okumura T,
Endo Y, Nakada M, Ninomiya I, Miyashita T, Wong RW,
Minamoto T. Potential therapeutic effect of targeting glyco-
gen synthase kinase 3p in esophageal squamous cell carci-
noma. Sci Rep. 2020; 10(1):11807. https://doi.org/10.1038/
$41598-020-68713-9.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

Gao S, Li S, Duan X, Gu Z, Ma Z, Yuan X, Feng X, Wang
H. Inhibition of glycogen synthase kinase 3 beta (GSK3p)
suppresses the progression of esophageal squamous cell car-
cinoma by modifying STAT3 activity. Mol Carcinog. 2017;
56(10):2301-2316. https://doi.org/10.1002/mc.22685.

Kato K, Hida Y, Miyamoto M, Hashida H, Shinohara T, Itoh T,
Okushiba S, Kondo S, Katoh H. Overexpression of caveolin-1
in esophageal squamous cell carcinoma correlates with lymph
node metastasis and pathologic stage. Cancer. 2002; 94(4):929-
33. https://doi.org/10.1002/cner.10329.

Ando T, Ishiguro H, Kimura M, Mitsui A, Mori Y, Sugito
N, Tomoda K, Mori R, Harada K, Katada T, Ogawa R, Fujii
Y, Kuwabara Y. The overexpression of caveolin-1 and cave-
olin-2 correlates with a poor prognosis and tumor progres-
sion in esophageal squamous cell carcinoma. Oncol Rep.
2007;18(3):601-9.

Lu F, Chen W, Jiang T, Cheng C, Wang B, Lu Z, Huang G, Qiu
J, Wei W, Yang M, Huang X. Expression profile, clinical sig-
nificance and biological functions of IGF2BP2 in esophageal
squamous cell carcinoma. Exp Ther Med. 2022; 23(4):252.
https://doi.org/10.3892/etm.2022.11177.

Shu W, Lin Y, Yan Y, Sun Y, Wu X, Cao Q. IGF2BP2 Promotes
the Proliferation, Invasion and Migration of Esophageal Car-
cinoma Cells via Activation of the PI3K/AKT/EMT Signaling
Pathway. Research Square; 2021. https://doi.org/10.21203/rs.3.
rs-711778/v1.

Tanaka T, Ishiguro H, Kuwabara Y, Kimura M, Mitsui A,
Katada T, Shiozaki M, Naganawa Y, Fujii Y, Takeyama H.
Vascular endothelial growth factor C (VEGF-C) in esophageal
cancer correlates with lymph node metastasis and poor patient
prognosis. J Exp Clin Cancer Res. 2010; 29(1):83. https://doi.
org/10.1186/1756-9966-29-83.

Kimura Y, Watanabe M, Ohga T, Saeki H, Kakeji Y, Baba H,
Macehara Y. Vascular endothelial growth factor C expression
correlates with lymphatic involvement and poor prognosis in
patients with esophageal squamous cell carcinoma. Oncol Rep.
2003; 10(6):1747-51. https://doi.org/10.3892/0r.10.6.1747.
Feng YF, Lei YY, Lu JB, Xi SY, Zhang Y, Huang QT, Wu
QL, Wang F. RIT1 suppresses esophageal squamous cell car-
cinoma growth and metastasis and predicts good prognosis.
Cell Death Dis. 2018; 9(11):1085. https://doi.org/10.1038/
s41419-018-0979-x.

Zhou Y, Wang L, Ban X, Zeng T, Zhu Y, Li M, Guan XY,
Li Y. DHRS?2 inhibits cell growth and motility in esophageal
squamous cell carcinoma. Oncogene. 2018; 37(8):1086-1094.
https://doi.org/10.1038/onc.2017.383.

LiY, Chen L, Nie CJ, Zeng TT, Liu H, Mao X, Qin Y, Zhu YH,
Fu L, Guan XY. Downregulation of RBMS3 is associated with
poor prognosis in esophageal squamous cell carcinoma. Cancer
Res. 2011; 71(19):6106-15. https://doi.org/10.1158/0008-5472.
CAN-10-4291.

Wang X, Liu Y, Leng X, Cao K, Sun W, Zhu J, Ma J. UBE2T
Contributes to the Prognosis of Esophageal Squamous Cell Car-
cinoma. Pathol. Oncol. Res. 2021;27: https://doi.org/10.3389/
pore.2021.632531.

Gao J, Zou Z, Gao J, Zhang H, Lin Z, Zhang Y, Luo X, Liu C,
Xie J, Cai C. Increased expression of HMGB3: a novel inde-
pendent prognostic marker of worse outcome in patients with
esophageal squamous cell carcinoma. Int J Clin Exp Pathol.
2015; 8(1):345-52.

Huang J, Wang X, Zhang X, Chen W, Luan L, Song Q, Wang
H, LiuJ, Xu L, Xu Y, Shen L, Tan L, Jiang D, Su J, Hou Y.
CDK4 Amplification in Esophageal Squamous Cell Carcinoma
Associated With Better Patient Outcome. Front Genet. 2021;
12:616110. https://doi.org/10.3389/fgene.2021.616110.

SN Computer Science
A SPRINGER NATURE journal


https://doi.org/10.1245/s10434-015-4909-1
https://doi.org/10.1016/j.yexcr.2018.03.017
https://doi.org/10.3892/ol.2019.11077
https://doi.org/10.3892/ol.2019.11077
https://doi.org/10.1186/s13019-021-01534-7
https://doi.org/10.1186/s13019-021-01534-7
https://doi.org/10.7150/jca.27053
https://doi.org/10.21037/jtd.2020.01.33
https://doi.org/10.18632/oncotarget.20020
https://doi.org/10.1002/eji.202149441
https://doi.org/10.1002/eji.202149441
https://doi.org/10.1038/s41419-021-04155-z
https://doi.org/10.1038/s41419-021-04155-z
https://doi.org/10.1016/j.intimp.2021.107616
https://doi.org/10.1016/j.intimp.2021.107616
https://doi.org/10.1186/1471-2407-14-791
https://doi.org/10.1186/1471-2407-14-791
https://doi.org/10.4103/jcrt.JCRT_781_19
https://doi.org/10.7150/jca.35537
https://doi.org/10.1038/s41598-020-68713-9
https://doi.org/10.1038/s41598-020-68713-9
https://doi.org/10.1002/mc.22685
https://doi.org/10.1002/cncr.10329
https://doi.org/10.3892/etm.2022.11177
https://doi.org/10.21203/rs.3.rs-711778/v1
https://doi.org/10.21203/rs.3.rs-711778/v1
https://doi.org/10.1186/1756-9966-29-83
https://doi.org/10.1186/1756-9966-29-83
https://doi.org/10.3892/or.10.6.1747
https://doi.org/10.1038/s41419-018-0979-x
https://doi.org/10.1038/s41419-018-0979-x
https://doi.org/10.1038/onc.2017.383
https://doi.org/10.1158/0008-5472.CAN-10-4291
https://doi.org/10.1158/0008-5472.CAN-10-4291
https://doi.org/10.3389/pore.2021.632531
https://doi.org/10.3389/pore.2021.632531
https://doi.org/10.3389/fgene.2021.616110

114

Page 28 of 31

SN Computer Science (2023) 4:114

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

77.

78.

Ling ZQ, Zhao Q, Zhou SL, Mao WM. MSH?2 promoter hyper-
methylation in circulating tumor DNA is a valuable predictor of
disease-free survival for patients with esophageal squamous cell
carcinoma. Eur J Surg Oncol. 2012; 38(4):326-32. https://doi.
org/10.1016/j.ejs0.2012.01.008.

Xu'Y, Wang N, Liu R, Lv H, Li Z, Zhang F, Gai C, Tian Z. Epi-
genetic Study of Esophageal Carcinoma Based on Methylation,
Gene Integration and Weighted Correlation Network Analysis.
Onco Targets Ther. 2021; 14:3133-3149. https://doi.org/10.2147/
OTT.S298620.

Chen X, Lu B, Ma Q, Ji CD, Li JZ. EphA3 inhibits migration and
invasion of esophageal cancer cells by activating the mesenchy-
mal-epithelial transition process. Int J Oncol. 2019; 54(2):722-
732. https://doi.org/10.3892/ij0.2018.4639.

Luo LL, Zhao L, Wang YX, Tian XP, Xi M, Shen JX, He LR,
Li QQ, Liu SL, Zhang P, Xie D, Liu MZ. Insulin-like growth
factor binding protein-3 is a new predictor of radiosensitivity on
esophageal squamous cell carcinoma. Sci Rep. 2015; 5(1):17336.
https://doi.org/10.1038/srep17336.

Zhao L, Li QQ, Zhang R, Xi M, Liao YJ, Qian D, He LR,
Zeng YX, Xie D, Liu MZ. The overexpression of IGFBP-3 is
involved in the chemosensitivity of esophageal squamous cell
carcinoma cells to nimotuzumab combined with cisplatin.
Tumour Biol. 2012; 33(4):1115-23. https://doi.org/10.1007/
s13277-012-0352-0.

Luo LL, Zhao L, Xi M, He LR, Shen JX, Li QQ, Liu SL, Zhang
P, Xie D, Liu MZ. Association of insulin-like growth factor-
binding protein-3 with radiotherapy response and prognosis
of esophageal squamous cell carcinoma. Chin J Cancer. 2015;
34(11):514-21. https://doi.org/10.1186/s40880-015-0046-2.
Wang X, Cheng G, Zhang T, Deng L, Xu K, Xu X, Wang W,
Zhou Z, Feng Q, Chen D, Bi N, Wang L. CHST15 promotes the
proliferation of TE-1 cells via multiple pathways in esophageal
cancer. Oncol Rep. 2020; 43(1):75-86. https://doi.org/10.3892/
0r.2019.7395.

Tripathi SC, Matta A, Kaur J, Grigull J, Chauhan SS, Thakar A,
Shukla NK, Duggal R, Choudhary AR, Dattagupta S, Sharma
MC, Ralhan R, Siu KW. Overexpression of prothymosin alpha
predicts poor disease outcome in head and neck cancer. PLoS
One. 2011; 6(5):e19213. https://doi.org/10.1371/journal.pone.
0019213.

Tan KD, Zhu Y, Tan HK, Rajasegaran V, Aggarwal A, Wu J,
Wu HY, Hwang J, Lim DT, Soo KC, Tan P. Amplification and
overexpression of PPFIA1, a putative 11q13 invasion suppressor
gene, in head and neck squamous cell carcinoma. Genes Chro-
mosomes Cancer. 2008; 47(4):353-62. https://doi.org/10.1002/
gcc.20539.

Al-Rawi NH, Merza MS, Ghazi AM, et al. PIK3CB and K-ras in
oral squamous Cell carcinoma. A possible cross-talk! J Orofac
Sci. 2014;6(2):99.

Liang Y, Lei Y, Du M, Liang M, Liu Z, Li X, Gao Y. The
increased expression and aberrant methylation of SHC1 in non-
small cell lung cancer: Integrative analysis of clinical and bioin-
formatics databases. J Cell Mol Med. 2021; 25(14):7039-7051.
https://doi.org/10.1111/jcmm.16717.

Xue H, Lu J, Yuan R, Liu J, Liu Y, Wu K, Wu J, Du J, Shen
B. Knockdown of CLIC4 enhances ATP-induced HN4 cell
apoptosis through mitochondrial and endoplasmic reticu-
lum pathways. Cell Biosci. 2016;6:5. https://doi.org/10.1186/
s13578-016-0070-1.

Chen MF, Lu MS, Lin PY, Chen PT, Chen WC, Lee KD. The
role of DNA methyltransferase 3b in esophageal squamous cell
carcinoma. Cancer. 2012;118(16):4074-89. https://doi.org/10.
1002/cncr.26736.

SN Computer Science

A SPRINGER NATURE journal

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

89.

90.

91.

92.

Liu Z, Wang L, Wang LE, Sturgis EM, Wei Q. Polymorphisms
of the DNMT3B gene and risk of squamous cell carcinoma of
the head and neck: a case-control study. Cancer Lett. 2008;
268(1):158-65. https://doi.org/10.1016/j.canlet.2008.03.034.
Ohmura G, Tsujikawa T, Yaguchi T, Kawamura N, Mikami S,
Sugiyama J, Nakamura K, Kobayashi A, Iwata T, Nakano H,
Shimada T, Hisa Y, Kawakami Y. Aberrant Myosin 1b Expres-
sion Promotes Cell Migration and Lymph Node Metastasis of
HNSCC. Mol Cancer Res. 2015; 13(4):721-31. https://doi.org/
10.1158/1541-7786.MCR-14-0410.

Liang J, Sun Z. Overexpression of membranal SLC3A2 regu-
lates the proliferation of oral squamous cancer cells and affects
the prognosis of oral cancer patients. J Oral Pathol Med. 2021;
50(4):371-377. https://doi.org/10.1111/jop.13132.

Ding X, SunJ, Wang L, Li G, Shen Y, Zhou X, Chen W. Overex-
pression of SENPS in oral squamous cell carcinoma and its asso-
ciation with differentiation. Oncol Rep. 2008 Nov;20(5):1041-5.
https://doi.org/10.3892/or_00000107.

Ueda S, Hashimoto K, Miyabe S, Hasegawa S, Goto M, Shimizu
D, Oh-Iwa I, Shimozato K, Nagao T, Nomoto S. Salivary NUS1
and RCN1 Levels as Biomarkers for Oral Squamous Cell Car-
cinoma Diagnosis. In Vivo. 2020; 34(5):2353-2361. https://doi.
org/10.21873/invivo.12048.

Zhu MH, Ji SL, Zhang CY, Cui L, Xiong L, Zheng HL. DNA
microarray reveals ZNF195 and SBF1 are potential biomarkers
for gemcitabine sensitivity in head and neck squamous cell car-
cinoma cell lines. Int J Clin Exp Pathol. 2014;7(4):1514-23.
Maji S, Samal SK, Pattanaik L, Panda S, Quinn BA, Das SK,
Sarkar D, Pellecchia M, Fisher PB, Dash R. Mcl-1 is an impor-
tant therapeutic target for oral squamous cell carcinomas. Onco-
target. 2015; 6(18):16623-37. https://doi.org/10.18632/oncot
arget.3932.

Feng CJ, Li HJ, LiJN, Lu YJ, Liao GQ. Expression of Mcm7 and
Cdc6 in oral squamous cell carcinoma and precancerous lesions.
Anticancer Res. 2008; 28(6A):3763-9.

MaH, Li L, Jia L, Gong A, Wang A, Zhang L, Gu M, Tang G.
POM121 is identified as a novel prognostic marker of oral squa-
mous cell carcinoma. J Cancer. 2019; 10(19):4473-4480. https://
doi.org/10.7150/jca.33368.

Wang Z, Xiong H, Zuo Y, Hu S, Zhu C, Min A. PSMC2 knock-
down inhibits the progression of oral squamous cell carcinoma
by promoting apoptosis via PI3K/Akt pathway. Cell Cycle. 2022;
21(5):477-488. https://doi.org/10.1080/15384101.2021.2021722.
Faoro L, Singleton PA, Cervantes GM, Lennon FE, Choong NW,
Kanteti R, Ferguson BD, Husain AN, Tretiakova MS, Ramnath
N, Vokes EE, Salgia R. EphA2 mutation in lung squamous cell
carcinoma promotes increased cell survival, cell invasion, focal
adhesions, and mammalian target of rapamycin activation. J
Biol Chem. 2010; 285(24):18575-85. https://doi.org/10.1074/
jbc.M109.075085.

Liu Y, Zhang X, Qiu Y, Huang D, Zhang S, Xie L, Qi L, Yu C,
Zhou X, Hu G, Tian Y. Clinical significance of EphA2 expres-
sion in squamous-cell carcinoma of the head and neck. J Cancer
Res Clin Oncol. 2011; 137(5):761-9. https://doi.org/10.1007/
s00432-010-0936-2.

Rivera RS, Gunduz M, Nagatsuka H, Gunduz E, Cengiz B,
Fukushima K, Beder LB, Pehlivan D, Yamanaka N, Shimizu K,
Nagai N. Involvement of EphA2 in head and neck squamous cell
carcinoma: mRNA expression, loss of heterozygosity and immu-
nohistochemical studies. Oncol Rep. 2008;19(5):1079-84. https://
doi.org/10.3892/0r.19.5.1079.

LinF, Gao L, SuZ, Cao X, Zhan Y, Li Y, Zhang B. Knockdown
of KPNA?2 inhibits autophagy in oral squamous cell carcinoma
cell lines by blocking p53 nuclear translocation. Oncol Rep.
2018; 40(1):179-194. https://doi.org/10.3892/0r.2018.6451.


https://doi.org/10.1016/j.ejso.2012.01.008
https://doi.org/10.1016/j.ejso.2012.01.008
https://doi.org/10.2147/OTT.S298620
https://doi.org/10.2147/OTT.S298620
https://doi.org/10.3892/ijo.2018.4639
https://doi.org/10.1038/srep17336
https://doi.org/10.1007/s13277-012-0352-0
https://doi.org/10.1007/s13277-012-0352-0
https://doi.org/10.1186/s40880-015-0046-2
https://doi.org/10.3892/or.2019.7395
https://doi.org/10.3892/or.2019.7395
https://doi.org/10.1371/journal.pone.0019213
https://doi.org/10.1371/journal.pone.0019213
https://doi.org/10.1002/gcc.20539
https://doi.org/10.1002/gcc.20539
https://doi.org/10.1111/jcmm.16717
https://doi.org/10.1186/s13578-016-0070-1
https://doi.org/10.1186/s13578-016-0070-1
https://doi.org/10.1002/cncr.26736
https://doi.org/10.1002/cncr.26736
https://doi.org/10.1016/j.canlet.2008.03.034
https://doi.org/10.1158/1541-7786.MCR-14-0410
https://doi.org/10.1158/1541-7786.MCR-14-0410
https://doi.org/10.1111/jop.13132
https://doi.org/10.3892/or_00000107
https://doi.org/10.21873/invivo.12048
https://doi.org/10.21873/invivo.12048
https://doi.org/10.18632/oncotarget.3932
https://doi.org/10.18632/oncotarget.3932
https://doi.org/10.7150/jca.33368
https://doi.org/10.7150/jca.33368
https://doi.org/10.1080/15384101.2021.2021722
https://doi.org/10.1074/jbc.M109.075085
https://doi.org/10.1074/jbc.M109.075085
https://doi.org/10.1007/s00432-010-0936-2
https://doi.org/10.1007/s00432-010-0936-2
https://doi.org/10.3892/or.19.5.1079
https://doi.org/10.3892/or.19.5.1079
https://doi.org/10.3892/or.2018.6451

SN Computer Science (2023) 4:114

Page290f31 114

93.

94.

95.

96.

97.

98.

99.

100.

101.

102.

103.

104.

105.

Minakawa Y, Kasamatsu A, Koike H, Higo M, Nakashima D,
Kouzu Y, Sakamoto Y, Ogawara K, Shiiba M, Tanzawa H, Uzawa
K. Kinesin family member 4A: a potential predictor for progres-
sion of human oral cancer. PLoS One. 2013; 8(12):e85951.
https://doi.org/10.1371/journal.pone.0085951.

Dong Y, Lu S, Wang Z, Liu L. CCTs as new biomarkers for the
prognosis of head and neck squamous cancer. Open Med (Wars).
2020; 15(1):672-688. https://doi.org/10.1515/med-2020-0114.
Gao F, Li C, Zhao X, Xie J, Fang G, Li Y. CKS2 modulates
cell-cycle progression of tongue squamous cell carcinoma cells
partly via modulating the cellular distribution of DUTPase. J
Oral Pathol Med. 2021; 50(2):175-182. https://doi.org/10.1111/
jop.13116.

Chuang CY, Chang CP, Lee YJ, Lin WL, Chang WW, Wu JS,
Cheng YW, Lee H, Li C. PRMT1 expression is elevated in head
and neck cancer and inhibition of protein arginine methylation
by adenosine dialdehyde or PRMT1 knockdown downregulates
proliferation and migration of oral cancer cells. Oncol Rep. 2017,
38(2):1115-1123. https://doi.org/10.3892/0r.2017.5737.

Wu T, Jiao Z, Li Y, Su X, Yao F, Peng J, Chen W, Yang A.
HPRT1 Promotes Chemoresistance in Oral Squamous Cell Car-
cinoma via Activating MMP1/PI3K/Akt Signaling Pathway. Can-
cers (Basel). 2022; 14(4):855. https://doi.org/10.3390/cancers 140
40855.

Ahmadi M, Eftekhari Kenzerki M, Akrami SM, Pashangzadeh
S, Hajiesmaeili F, Rahnavard S, Habibipour L, Saffarzadeh N,
Mousavi P. Overexpression of HPRT1 is associated with poor
prognosis in head and neck squamous cell carcinoma. FEBS
Open Bio. 2021;11(9):2525-2540. https://doi.org/10.1002/2211-
5463.13250.

Zhang G, Zhao X, Liu W. NEDDA4L inhibits glycolysis and pro-
liferation of cancer cells in oral squamous cell carcinoma by
inducing ENOI ubiquitination and degradation. Cancer Biol
Ther. 2022; 23(1):243-253. https://doi.org/10.1080/15384047.
2022.2054244.

Acker F, Stratmann J, Aspacher L, Nguyen NTT, Wagner S,
Serve H, Wild PJ, Sebastian M. KRAS Mutations in Squamous
Cell Carcinomas of the Lung. Front Oncol. 2021;11: https://doi.
org/10.3389/fonc.2021.788084.

Vallejo-Diaz J, Olazabal-Moran M, Cariaga-Martinez AE,
Pajares MJ, Flores JM, Pio R, Montuenga LM, Carrera AC. Tar-
geted depletion of PIK3R2 induces regression of lung squamous
cell carcinoma. Oncotarget. 2016; 7(51):85063-85078. https://
doi.org/10.18632/oncotarget.13195.

Attaran N, Gu X, Coates PJ, Fahraeus R, Boldrup L, Wilms T,
Wang L, Sgaramella N, Zborayova K, Nylander K. Downregula-
tion of TAP1 in Tumor-Free Tongue Contralateral to Squamous
Cell Carcinoma of the Oral Tongue, an Indicator of Better Sur-
vival. Int J Mol Sci. 2020; 21(17):6220. https://doi.org/10.3390/
ijms21176220.

Pidugu VK, Wu MM, Yen AH, Pidugu HB, Chang KW, Liu CJ,
Lee TC. IFIT1 and IFIT3 promote oral squamous cell carcinoma
metastasis and contribute to the anti-tumor effect of gefitinib via
enhancing p-EGFR recycling. Oncogene. 2019;38(17):3232—
247. https://doi.org/10.1038/s41388-018-0662-9.

Lee TC, Pidugu VK, Wu MM, Liu CJ. IFIT1 and IFIT3 modu-
late the drug response via enhancing EGFR signaling and in
human oral squamous cell carcinoma cells. In: Proceedings
for Annual Meeting of The Japanese Pharmacological Society
WCP2018 (The 18th World Congress of Basic and Clinical
Pharmacology), pp. PO4-6, 2018, Japanese Pharmacological
Society.

Sarmah N, Baruah MN, Baruah S. Immune Modulation in
HLA-G Expressing Head and Neck Squamous Cell Carcinoma
in Relation to Human Papilloma Virus Positivity: A Study From

106.

107.

108.

109.

110.

111.

112.

113.

114.

115.

116.

117.

118.

Northeast India. Front Oncol. 2019;9:58. https://doi.org/10.3389/
fonc.2019.00058.

Bora M, Sarmah N, Das B, Baruah MN, Deka G, Hazarika
SG, Baruah S. A comparative study on regulation of HLA-G
expression in bad obstetric history and in head and neck squa-
mous cell carcinoma from Northeast India. Human Immunol.
2022;83(5):453-7. https://doi.org/10.1016/j.humimm.2022.02.
006.

Imani R, Seyedmajidi M, Ghasemi N, Moslemi D, Shafaee S,
Bijani A. HLA-G Expression is Associated with an Unfavorable
Prognosis of Oral Squamous Cell Carcinoma. Asian Pac J Cancer
Prev. 2018;19(9):2527-33https://doi.org/10.22034/APICP.2018.
19.9.2527.

Ou D, Wu Y. The prognostic and clinical significance of IFI44L
aberrant downregulation in patients with oral squamous cell car-
cinoma. BMC Cancer. 2021;21(1):1327. https://doi.org/10.1186/
$12885-021-09058-y.

Rentoft M, Coates PJ, Loljung L, Wilms T, Laurell G, Nylander
K. Expression of CXCL10 is associated with response to radio-
therapy and overall survival in squamous cell carcinoma of the
tongue. Tumour Biol. 2014;35(5):4191-8. https://doi.org/10.
1007/s13277-013-1549-6.

Li Y, Wu T, Gong S, Zhou H, Yu L, Liang M, Shi R, Wu Z,
Zhang J, Li S. Analysis of the Prognosis and Therapeutic Value
of the CXC Chemokine Family in Head and Neck Squamous Cell
Carcinoma. Front Oncol. 2021;10: https://doi.org/10.3389/fonc.
2020.570736.

Li H, Yang LL, Wu CC, Xiao Y, Mao L, Chen L, Zhang WF,
Sun ZJ. Expression and Prognostic Value of IFIT1 and IFITM3
in Head and Neck Squamous Cell Carcinoma. Am J Clin Pathol.
2020;153(5):618-29. https://doi.org/10.1093/ajcp/aqz205.
Laljee RP, Muddaiah S, Salagundi B, Cariappa PM, Indra AS,
Sanjay V, Ramanathan A. Interferon stimulated gene-ISG15 is a
potential diagnostic biomarker in oral squamous cell carcinomas.
Asian Pac J Cancer Prev. 2013;14(2):1147-50. https://doi.org/10.
7314/apjcp.2013.14.2.1147.

Zhang Q, He Y, Nie M, Cai W. Roles of miR-138 and ISG15 in
oral squamous cell carcinoma. Exp Ther Med. 2017;14(3):2329-
34. https://doi.org/10.3892/etm.2017.4720.

Santos CR, Rodriguez-Pinilla M, Vega FM, Rodriguez-Peralto
JL, Blanco S, Sevilla A, Valbuena A, Hernandez T, van Wijnen
AJ, Li F, de Alava E, Sanchez-Céspedes M, Lazo PA. VRK1
signaling pathway in the context of the proliferation pheno-
type in head and neck squamous cell carcinoma. Mol Cancer
Res. 2006;4(3):177-85. https://doi.org/10.1158/1541-7786.
MCR-05-0212.

Cao X, Luan K, Yang J, Huang Y. Targeting IncRNA PSMA3-
AS1, a Prognostic Marker, Suppresses Malignant Pro-
gression of Oral Squamous Cell Carcinoma. Dis Markers.
2021;2021:3138046. https://doi.org/10.1155/2021/3138046.
Wang J, Sun Z, Wang J, Tian Q, Huang R, Wang H, Wang X, Han
F. Expression and prognostic potential of PLEK?2 in head and
neck squamous cell carcinoma based on bioinformatics analy-
sis. Cancer Med. 2021;10(18):6515-33. https://doi.org/10.1002/
cam4.4163.

Troiano G, Caponio VCA, Adipietro I, Tepedino M, Santoro R,
Laino L, Lo Russo L, Cirillo N, Lo Muzio L. Prognostic signifi-
cance of CD68+ and CD163+ tumor associated macrophages
in head and neck squamous cell carcinoma: A systematic review
and meta-analysis. Oral Oncol. 2019;93:66-75. https://doi.org/
10.1016/j.oraloncology.2019.04.019.

Kubota K, Moriyama M, Furukawa S, Rafiul HASM, Maruse
Y, Jinno T, Tanaka A, Ohta M, Ishiguro N, Yamauchi M, Saka-
moto M, Maehara T, Hayashida JN, Kawano S, Kiyoshima
T, Nakamura S. CD163+CD204+ tumor-associated mac-
rophages contribute to T cell regulation via interleukin-10 and

SN Computer Science
A SPRINGER NATURE journal


https://doi.org/10.1371/journal.pone.0085951
https://doi.org/10.1515/med-2020-0114
https://doi.org/10.1111/jop.13116
https://doi.org/10.1111/jop.13116
https://doi.org/10.3892/or.2017.5737
https://doi.org/10.3390/cancers14040855
https://doi.org/10.3390/cancers14040855
https://doi.org/10.1002/2211-5463.13250
https://doi.org/10.1002/2211-5463.13250
https://doi.org/10.1080/15384047.2022.2054244
https://doi.org/10.1080/15384047.2022.2054244
https://doi.org/10.3389/fonc.2021.788084
https://doi.org/10.3389/fonc.2021.788084
https://doi.org/10.18632/oncotarget.13195
https://doi.org/10.18632/oncotarget.13195
https://doi.org/10.3390/ijms21176220
https://doi.org/10.3390/ijms21176220
https://doi.org/10.1038/s41388-018-0662-9
https://doi.org/10.3389/fonc.2019.00058
https://doi.org/10.3389/fonc.2019.00058
https://doi.org/10.1016/j.humimm.2022.02.006
https://doi.org/10.1016/j.humimm.2022.02.006
https://doi.org/10.22034/APJCP.2018.19.9.2527
https://doi.org/10.22034/APJCP.2018.19.9.2527
https://doi.org/10.1186/s12885-021-09058-y
https://doi.org/10.1186/s12885-021-09058-y
https://doi.org/10.1007/s13277-013-1549-6
https://doi.org/10.1007/s13277-013-1549-6
https://doi.org/10.3389/fonc.2020.570736
https://doi.org/10.3389/fonc.2020.570736
https://doi.org/10.1093/ajcp/aqz205
https://doi.org/10.7314/apjcp.2013.14.2.1147
https://doi.org/10.7314/apjcp.2013.14.2.1147
https://doi.org/10.3892/etm.2017.4720
https://doi.org/10.1158/1541-7786.MCR-05-0212
https://doi.org/10.1158/1541-7786.MCR-05-0212
https://doi.org/10.1155/2021/3138046
https://doi.org/10.1002/cam4.4163
https://doi.org/10.1002/cam4.4163
https://doi.org/10.1016/j.oraloncology.2019.04.019
https://doi.org/10.1016/j.oraloncology.2019.04.019

114

Page 30 of 31

SN Computer Science (2023) 4:114

119.

120.

121.

122.

123.

124.

125.

126.

127.

128.

129.

130.

131.

PD-L1 production in oral squamous cell carcinoma. Sci Rep.
2017;7(1):1755. https://doi.org/10.1038/s41598-017-01661-z.
He KF, Zhang L, Huang CF, Ma SR, Wang YF, Wang WM,
Zhao ZL, Liu B, Zhao YF, Zhang WF, Sun ZJ. CD163+ tumor-
associated macrophages correlated with poor prognosis and can-
cer stem cells in oral squamous cell carcinoma. Biomed Res Int.
2014;2014: 838632. https://doi.org/10.1155/2014/838632.
Zhang X, Dong Y, Zhao M, Ding L, Yang X, Jing Y, Song Y,
Chen S, Hu Q, Ni Y. ITGB2-mediated metabolic switch in
CAFs promotes OSCC proliferation by oxidation of NADH in
mitochondrial oxidative phosphorylation system. Theranostics.
2020;10(26):12044-59. https://doi.org/10.7150/thno.47901.
LuS,LiN, Peng Z, Lu Z, Tu X, Zhang W, Kang Y. Fc fragment
of immunoglobulin G receptor IIa (FCGR2A) as a new potential
prognostic biomarker of esophageal squamous cell carcinoma.
Chin Med J (Engl). 2021;135(4):482—4. https://doi.org/10.1097/
CM9.0000000000001776.

Dai Y, Chen W, Huang J, Cui T. FCGR2A Could Function as
a Prognostic Marker and Correlate with Immune Infiltration in
Head and Neck Squamous Cell Carcinoma. Biomed Res Int.
2021;2021:8874578. https://doi.org/10.1155/2021/8874578.
Magnes T, Melchardt T, Hufnagl C, Weiss L, Mittermair C, Neu-
reiter D, Klieser E, Rinnerthaler G, Roesch S, Gaggl A, Greil R,
Egle A. The influence of FCGR2A and FCGR3A polymorphisms
on the survival of patients with recurrent or metastatic squamous
cell head and neck cancer treated with cetuximab. Pharmacog-
enomics J. 2018; 18(3):474-479. https://doi.org/10.1038/tpj.
2017.37.

Santos Md, Mercante AMdC, Louro ID, Gongalves AJ, Carvalho
MBd, da Silva EHT, et al. HIF1-Alpha Expression Predicts Sur-
vival of Patients with Squamous Cell Carcinoma of the Oral
Cavity. PLoS ONE. 2012;7(9): e45228. https://doi.org/10.1371/
journal.pone.0045228.

Zhou J, Huang S, Wang L, Yuan X, Dong Q, Zhang D, Wang
X. Clinical and prognostic significance of HIF-1a overex-
pression in oral squamous cell carcinoma: a meta-analysis.
World J Surg Oncol. 2017;15(1):104. https://doi.org/10.1186/
$12957-017-1163-y.

Fillies T, Werkmeister R, van Diest PJ, Brandt B, Joos U, Buerger
H. HIF1-alpha overexpression indicates a good prognosis in early
stage squamous cell carcinomas of the oral floor. BMC Cancer.
2005;5:84. https://doi.org/10.1186/1471-2407-5-84.

Liang J, Zhang Z, Liang L, Shen Y, Ouyang K. HIF-1a regu-
lated tongue squamous cell carcinoma cell growth via regulat-
ing VEGF expression in a xenograft model. Ann Transl Med.
2014;2(9):92. https://doi.org/10.3978/j.issn.2305-5839.2014.08.
01.

Routray S. Caveolin-1 in oral squamous cell carcinoma micro-
environment: an overview. Tumour Biol. 2014;35(10):9487-95.
https://doi.org/10.1007/s13277-014-2482-z.

Jung AC, Ray AM, Ramolu L, Macabre C, Simon F, Noulet
F, Blandin AF, Renner G, Lehmann M, Choulier L, Kessler
H, Abecassis J, Dontenwill M, Martin S. Caveolin-1-negative
head and neck squamous cell carcinoma primary tumors display
increased epithelial to mesenchymal transition and prometastatic
properties. Oncotarget. 2015;6(39):41884-901.https://doi.org/10.
18632/oncotarget.6099.

Xue J, Chen H, Diao L, Chen X, Xia D. Expression of Caveo-
lin-1 in tongue squamous cell carcinoma by quantum dots. Eur
J Histochem. 2010;54(2):¢20. https://doi.org/10.4081/ejh.2010.
e20.

Zhou L, Li H, Cai H, Liu W, Pan E, Yu D, He S. Upregulation
of IGF2BP2 Promotes Oral Squamous Cell Carcinoma Progres-
sion That Is Related to Cell Proliferation, Metastasis and Tumor-
Infiltrating Immune Cells. Front Oncol. 2022;12:809589. https://
doi.org/10.3389/fonc.2022.809589.

SN Computer Science

A SPRINGER NATURE journal

132.

133.

134.

135.

136.

137.

138.

139.

140.

141.

142.

143.

144.

Wang X, Xu H, Zhou Z, Guo S, Chen R. IGF2BP2 maybe a novel
prognostic biomarker in oral squamous cell carcinoma. Biosci
Rep. 2022; 42(2):BSR20212119. https://doi.org/10.1042/BSR20
212119.

Rapone B, Ferrara E. Vascular EndothelialGrowth Factor Expres-
sion in the PathologicalAngiogenesis in Oral Squamous Cell-
Carcinoma. In: Sridharan G, SukumaranA, Al-Ostwani AEQO,
editors. Oral Diseases.Rijeka: IntechOpen; 2020

dos Santos Almeida A, Oliveira DT, Pereira MC, Faustino SE,
Nonogaki S, Carvalho AL, Kowalski LP. Podoplanin and VEGF-
C immunoexpression in oral squamous cell carcinomas: prognos-
tic significance. Anticancer Res. 2013; 33(9):3969-76.

Na J, Zhou W, Yin M, Hu Y, Ma X. GNA13 promotes the pro-
liferation and migration of lung squamous cell carcinoma cells
through regulating the PI3K/AKT signaling pathway. Tissue
Cell. 2022;76:101795. https://doi.org/10.1016/j.tice.2022.
101795.

Liang YN, Liu Y, Meng Q, Li X, Wang F, Yao G, Wang L,
Fu S, Tong D. RBMS3 is a tumor suppressor gene that acts
as a favorable prognostic marker in lung squamous cell carci-
noma. Med Oncol. 2015;32(2):459. https://doi.org/10.1007/
$12032-014-0459-9.

Wang M, Xie T, Wu Y, Yin Q, Xie S, Yao Q, Xiong J, Zhang
Q. Identification of RFCS5 as a novel potential prognostic bio-
marker in lung cancer through bioinformatics analysis. Oncol
Lett. 2018;16(4):4201-210. https://doi.org/10.3892/01.2018.
9221.

Simonik EA, Cai Y, Kimmelshue KN, Brantley-Sieders DM,
Loomans HA, Andl CD, Westlake GM, Youngblood VM, Chen
J, Yarbrough WG, Brown BT, Nagarajan L, Brandt SJ. LIM-
Only Protein 4 (LMO4) and LIM Domain Binding Protein 1
(LDB1) Promote Growth and Metastasis of Human Head and
Neck Cancer (LMO4 and LDB1 in Head and Neck Cancer).
PLoS One. 2016;11(10):e0164804. https://doi.org/10.1371/
journal.pone.0164804.

Kwong RA, Scarlett CJ, Kalish LH, Cole IE, Kench JG, Sum
EY, Musgrove EA, Henshall SM, Lindeman GJ, Biankin
AV, Visvader JE, Sutherland RL. LMO4 expression in squa-
mous cell carcinoma of the anterior tongue. Histopathology.
2011;58(3):477-80. https://doi.org/10.1111/§.1365-2559.2011.
03765.x.

van Caloen G, Machiels JP. Potential role of cyclin-dependent
kinase 4/6 inhibitors in the treatment of squamous cell carci-
noma of the head and neck. Curr Opin Oncol. 2019;31(3):122—
30. https://doi.org/10.1097/CC0O.0000000000000513.

Ku BM, Yi SY, Koh J, Bae YH, Sun JM, Lee SH, Ahn JS, Park
K, Ahn MJ. The CDK4/6 inhibitor LY2835219 has potent activ-
ity in combination with mTOR inhibitor in head and neck squa-
mous cell carcinoma. Oncotarget. 2016;7(12):14803—13.https://
doi.org/10.18632/oncotarget.7543.

Lourenco GJ, Nogueira GAS, Oliveira CBM, Marson FAL,
Lopes-Aguiar L, Costa EFD, Lima TRP, Liutti VT, Leal F, San-
tos VA, Rinck JA, Lima CSP, MLH1, MSH2, MSH3 and EXO1
polymorphisms and head and neck squamous cell carcinoma
risk and prognosis. Journal of Clinical Oncology. 2015;33(15_
suppl):6063-6063. https://doi.org/10.1200/jc0.2015.33.15_
suppl.6063.

Pereira CS, Oliveira MV, Barros LO, Bandeira GA, Santos SH,
Basile JR, Guimardes AL, De Paula AM. Low expression of
MSH2 DNA repair protein is associated with poor prognosis
in head and neck squamous cell carcinoma. J Appl Oral Sci.
2013;21(5):416-21. https://doi.org/10.1590/1679-7757201302
06.

Wang Y, Lu Z, Hu Z, Zheng A, Wang F, Xu Y, et al. The up-
regulation of TANK-binding kinase 1 in head and neck squamous
cell carcinoma. Differentiation. 2017;1(14):46-7.


https://doi.org/10.1038/s41598-017-01661-z
https://doi.org/10.1155/2014/838632
https://doi.org/10.7150/thno.47901
https://doi.org/10.1097/CM9.0000000000001776
https://doi.org/10.1097/CM9.0000000000001776
https://doi.org/10.1155/2021/8874578
https://doi.org/10.1038/tpj.2017.37
https://doi.org/10.1038/tpj.2017.37
https://doi.org/10.1371/journal.pone.0045228
https://doi.org/10.1371/journal.pone.0045228
https://doi.org/10.1186/s12957-017-1163-y
https://doi.org/10.1186/s12957-017-1163-y
https://doi.org/10.1186/1471-2407-5-84
https://doi.org/10.3978/j.issn.2305-5839.2014.08.01
https://doi.org/10.3978/j.issn.2305-5839.2014.08.01
https://doi.org/10.1007/s13277-014-2482-z
https://doi.org/10.18632/oncotarget.6099
https://doi.org/10.18632/oncotarget.6099
https://doi.org/10.4081/ejh.2010.e20
https://doi.org/10.4081/ejh.2010.e20
https://doi.org/10.3389/fonc.2022.809589
https://doi.org/10.3389/fonc.2022.809589
https://doi.org/10.1042/BSR20212119
https://doi.org/10.1042/BSR20212119
https://doi.org/10.1016/j.tice.2022.101795
https://doi.org/10.1016/j.tice.2022.101795
https://doi.org/10.1007/s12032-014-0459-9
https://doi.org/10.1007/s12032-014-0459-9
https://doi.org/10.3892/ol.2018.9221
https://doi.org/10.3892/ol.2018.9221
https://doi.org/10.1371/journal.pone.0164804
https://doi.org/10.1371/journal.pone.0164804
https://doi.org/10.1111/j.1365-2559.2011.03765.x
https://doi.org/10.1111/j.1365-2559.2011.03765.x
https://doi.org/10.1097/CCO.0000000000000513
https://doi.org/10.18632/oncotarget.7543
https://doi.org/10.18632/oncotarget.7543
https://doi.org/10.1200/jco.2015.33.15_suppl.6063
https://doi.org/10.1200/jco.2015.33.15_suppl.6063
https://doi.org/10.1590/1679-775720130206
https://doi.org/10.1590/1679-775720130206

SN Computer Science (2023) 4:114

Page310f31 114

145.

146.

147.

148.

149.

150.

151.

152.

153.

154.

155.

156.

Zhang H, Liu J, Fu X, Yang A. Identification of Key Genes and
Pathways in Tongue Squamous Cell Carcinoma Using Bioinfor-
matics Analysis. Med Sci Monit. 2017;23:5924-32.https://doi.
0rg/10.12659/msm.905035.

Yuan Y, Xie X, Jiang Y, Wei Z, Wang P, Chen F, Li X, Sun C,
Zhao H, Zeng X, Jiang L, Zhou Y, Dan H, Feng M, Liu R, Wang
Z, Chen Q. LRP6 is identified as a potential prognostic marker
for oral squamous cell carcinoma via MALDI-IMS. Cell Death
Dis. 2017; 8(9):e3035. https://doi.org/10.1038/cddis.2017.433.
Shen Z, Hu Y, Zhou C, Yuan J, Xu J, Hao W, Deng H, Ye D.
ESRRG promoter hypermethylation as a diagnostic and prognos-
tic biomarker in laryngeal squamous cell carcinoma. J Clin Lab
Anal. 2019;33(6):22899. https://doi.org/10.1002/jcla.22899.
Fukushima R, Kasamatsu A, Nakashima D, Higo M, Fushimi K,
Kasama H, Endo-Sakamoto Y, Shiiba M, Tanzawa H, Uzawa K.
Overexpression of Translocation Associated Membrane Protein
2 Leading to Cancer-Associated Matrix Metalloproteinase Acti-
vation as a Putative Metastatic Factor for Human Oral Cancer.
J Cancer. 2018;9(18):3326-3333. https://doi.org/10.7150/jca.
25666.

Wang SH, Chen YL, Hsiao JR, Tsai FY, Jiang SS, Lee AY,
Tsai HJ, Chen YW. Insulin-like growth factor binding protein
3 promotes radiosensitivity of oral squamous cell carcinoma
cells via positive feedback on NF-«B/IL-6/ROS signaling. J
Exp Clin Cancer Res. 2021;40(1):95. https://doi.org/10.1186/
s13046-021-01898-7.

Sakata J, Hirosue A, Yoshida R, Matsuoka Y, Kawahara K,
Arita H, Nakashima H, Yamamoto T, Nagata M, Kawaguchi S,
Gohara S, Nagao Y, Yamana K, Toya R, Murakami R, Kuwa-
hara Y, Fukumoto M, Nakayama H.Enhanced Expression of
IGFBP-3 Reduces Radiosensitivity and Is Associated with Poor
Prognosis in Oral Squamous Cell Carcinoma. Cancers (Basel).
2020;12(2):494. https://doi.org/10.3390/cancers12020494.
Hano K, Hatano K, Saigo C, Kito Y, Shibata T, Takeuchi T.
Combination of Clptm1L and TMEM?207 Expression as a Robust
Prognostic Marker in Oral Squamous Cell Carcinoma. Frontiers
in Oral Health. 2021; 2:638213. https://doi.org/10.3389/froh.
2021.638213.

Hou Y, Xue F, Fu Y, Feng G, Wang R, Yuan H. CLPTMI1L
Is a Novel Putative Oncogene Promoting Tumorigen-
esis in Oral Squamous Cell Carcinoma. Cell Transplant.
2021;30:09636897211045970. https://doi.org/10.1177/09636
897211045970.

Iwasawa S, Yamano Y, Takiguchi Y, Tanzawa H, Tatsumi K,
Uzawa K. Upregulation of thioredoxin reductase 1 in human
oral squamous cell carcinoma. Oncol Rep. 2011;25(3):637—-44.
https://doi.org/10.3892/0r.2010.1131.

Feng J, Han B, Yu C, Shen C, Wen Z. Co-expression Network
Identification and Clinical Prognostic Evaluation of Hub Genes
in Head and Neck Squamous Cell Carcinoma. Research Square;
2020. https://doi.org/10.21203/rs.3.r5-77378/v1.

Chien HT, Cheng SD, Chuang WY, Liao CT, Wang HM, Huang
SF. Clinical Implications of FADD Gene Amplification and Pro-
tein Overexpression in Taiwanese Oral Cavity Squamous Cell
Carcinomas. PLoS One. 2016;11(10):e0164870. https://doi.org/
10.1371/journal.pone.0164870.

Gonzalez-Moles MA, Ayén A, Gonzalez-Ruiz I, de Porras-Car-
rique T, Gonzalez-Ruiz L, Ruiz-Avila I, Ramos-Garcia P. Prog-
nostic and Clinicopathological Significance of FADD Upregula-
tion in Head and Neck Squamous Cell Carcinoma: A Systematic
Review and Meta-Analysis. Cancers (Basel). 2020;12(9):2393.
https://doi.org/10.3390/cancers12092393.

157.

158.

159.

160.

161.

162.

163.

164.

165.

166.

Rasamny JJ, Allak A, Krook KA, Jo VY, Policarpio-Nicolas ML,
Sumner HM, Moskaluk CA, Frierson HF Jr, Jameson MJ. Cyclin
D1 and FADD as biomarkers in head and neck squamous cell
carcinoma. Otolaryngol Head Neck Surg. 2012;146(6):923-31.
https://doi.org/10.1177/0194599811435052.

Knitz MW, Darragh LB, Bickett TE, Bhatia S, Bukkapat-
nam S, Gadwa J, Piper M, Corbo S, Nguyen D, Van Court B,
Oweida A, Karam SD. Loss of cancer cell STAT1 improves
response to radiation therapy and promotes T cell activation
in head and neck squamous cell carcinoma. Cancer Immunol
Immunother. 2022;71(5):1049-61. https://doi.org/10.1007/
$00262-021-03059-3.

Xi S, Dyer KF, Kimak M, Zhang Q, Gooding WE, Chaillet JR,
Chai RL, Ferrell RE, Zamboni B, Hunt J, Grandis JR. Decreased
STAT1 expression by promoter methylation in squamous cell
carcinogenesis. J Natl Cancer Inst. 2006;98(3):181-9. https://
doi.org/10.1093/jnci/djj020.

Tomasovic-Loncaric C, Fucic A, Andabak A, Andabak M,
Ceppi M, Bruzzone M, Vrdoljak D, Vucicevic-Boras V. Andro-
gen Receptor as a Biomarker of Oral Squamous Cell Carcinoma
Progression Risk. Anticancer Res. 2019;39(8):4285-289. https://
doi.org/10.21873/anticanres.13593.

Liu X, Qing S, Che K, Li L, Liao X. Androgen receptor promotes
oral squamous cell carcinoma cell migration by increasing EGFR
phosphorylation. Onco Targets Ther. 2019;12:4245-252. https://
doi.org/10.2147/0OTT.S200718.

Kordi-Tamandani D, Sabers E, Jamali S, Rigi Ladiz M. ERK
and RAF1 genes: analysis of methylation and expression pro-
files in patients with oral squamous cell carcinoma. Br J Biomed
Sci. 2014;71(3):100-3. https://doi.org/10.1080/09674845.2014.
11669972.

Mishra R, Nagini S, Rana A. Expression and inactivation of gly-
cogen synthase kinase 3 alpha/beta and their association with the
expression of cyclin D1 and p53 in oral squamous cell carcinoma
progression. Mol Cancer. 2015;14(1):20. https://doi.org/10.1186/
$12943-015-0300-x.

Matsuo FS, Andrade MF, Loyola AM, da Silva SJ, Silva MJB,
Cardoso SV, et al. Pathologic significance of AKT, mTOR,
and GSK3p proteins in oral squamous cell carcinoma-affected
patients. Virchows Arch. 2018;472(6):983-997. https://doi.org/
10.1007/s00428-018-2318-0.

Jain AP, Patel K, Pinto S, Radhakrishnan A, Nanjappa V, Kumar
M, Raja R, Patil AH, Kumari A, Manoharan M, Karunakaran C,
Murugan S, Keshava Prasad TS, Chang X, Mathur PP, Kumar
P, Gupta R, Gupta R, Khanna-Gupta A, Sidransky D, Chatterjee
A, Gowda H. MAP2K1 is a potential therapeutic target in erlo-
tinib resistant head and neck squamous cell carcinoma. Sci Rep.
2019;9(1):18793. https://doi.org/10.1038/s41598-019-55208-5.
Patowary P, Bhattacharyya DK, Barah P. Identifying critical
genes in esophageal squamous cell carcinoma using an ensemble
approach. Inf Med Unlock. 2020;18:100277. https://doi.org/10.
1016/j.imu.2019.100277.

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of
such publishing agreement and applicable law.

SN Computer Science
A SPRINGER NATURE journal


https://doi.org/10.12659/msm.905035
https://doi.org/10.12659/msm.905035
https://doi.org/10.1038/cddis.2017.433
https://doi.org/10.1002/jcla.22899
https://doi.org/10.7150/jca.25666
https://doi.org/10.7150/jca.25666
https://doi.org/10.1186/s13046-021-01898-7
https://doi.org/10.1186/s13046-021-01898-7
https://doi.org/10.3390/cancers12020494
https://doi.org/10.3389/froh.2021.638213
https://doi.org/10.3389/froh.2021.638213
https://doi.org/10.1177/09636897211045970
https://doi.org/10.1177/09636897211045970
https://doi.org/10.3892/or.2010.1131
https://doi.org/10.21203/rs.3.rs-77378/v1
https://doi.org/10.1371/journal.pone.0164870
https://doi.org/10.1371/journal.pone.0164870
https://doi.org/10.3390/cancers12092393
https://doi.org/10.1177/0194599811435052
https://doi.org/10.1007/s00262-021-03059-3
https://doi.org/10.1007/s00262-021-03059-3
https://doi.org/10.1093/jnci/djj020
https://doi.org/10.1093/jnci/djj020
https://doi.org/10.21873/anticanres.13593
https://doi.org/10.21873/anticanres.13593
https://doi.org/10.2147/OTT.S200718
https://doi.org/10.2147/OTT.S200718
https://doi.org/10.1080/09674845.2014.11669972
https://doi.org/10.1080/09674845.2014.11669972
https://doi.org/10.1186/s12943-015-0300-x
https://doi.org/10.1186/s12943-015-0300-x
https://doi.org/10.1007/s00428-018-2318-0
https://doi.org/10.1007/s00428-018-2318-0
https://doi.org/10.1038/s41598-019-55208-5
https://doi.org/10.1016/j.imu.2019.100277
https://doi.org/10.1016/j.imu.2019.100277

	Identification of Potential Biomarkers Using Integrative Approach: A Case Study of ESCC
	Abstract
	Introduction
	Related Work
	Proposed DE Framework
	Analysis
	Preprocessing
	DE Analysis
	DCE Analysis
	Validation
	Enrichment Analysis of Modules
	Candidate Genes
	Biological Analysis
	Literature Trace


	Discussion
	Conclusion
	References




