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Abstract
The Worldwide spread of the Omicron lineage variants has now been confirmed. It is crucial to understand the process of 
cellular life and to discover new drugs need to identify the important proteins in a protein interaction network (PPIN). PPINs 
are often represented by graphs in bioinformatics, which describe cell processes. There are some proteins that have significant 
influences on these tissues, and which play a crucial role in regulating them. The discovery of new drugs is aided by the 
study of significant proteins. These significant proteins can be found by reducing the graph and using graph analysis. Studies 
examining protein interactions in the Omicron lineage (B.1.1.529) and its variants (BA.5, BA.4, BA.3, BA.2, BA.1.1, BA.1) 
are not yet available. Studying Omicron has been intended to find a significant protein. 68 nodes represent 68 proteins and 
52 edges represent the relationship among the protein in the network. A few centrality measures are computed namely page 
rank centrality (PRC), degree centrality (DC), closeness centrality (CC), and betweenness centrality (BC) together with node 
degree and Local clustering coefficient (LCC). We also discover 18 network clusters using Markov clustering. 8 significant 
proteins (candidate gene of Omicron lineage variants) were detected among the 68 proteins, including AHSG, KCNK1, 
KCNQ1, MAPT, NR1H4, PSMC2, PTPN11 and, UBE21 which scored the highest among the Omicron proteins. It is found 
that in the variant of Omicron protein–protein interaction networks, the MAPT protein’s impact is the most significant.
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Introduction

An impartial panel of scientists known as TAG-VE (Tech-
nical Advisory Group on SARS-CoV-2 Virus Evolu-
tion) regularly observes and examines the appraise of the 

SARS-CoV-2 virus to determine if specific mutations or 
combinations of mutations have an impact on the behavior 
of the virus. The B.1.1.529 variants of SARS-CoV-2 were 
the subject of an evaluation by the TAG-VE on November 
26, 2021. South Africa disclosed the B.1.1.529 version on 
November 24, 2021 to World Health Organization (WHO) 
[26] for the first time. The WHO has classified B.1.1.529 as 
a VOC under the name Omicron considering the data that 
a negative shift in COVID-19 epidemiology has occurred. 
Similar to other SARS-CoV-2 variations, there are numerous 
lineages and sublineages in the Omicron variation. Omicron 
presently has 3 main lineages: BA.5, BA.4, and BA.2. Omi-
cron Pango Lineage currently has six different variations 
or sublineages (BA.5, BA.4, BA.3, BA.2, BA.1.1, BA.1). 
Although these lineages are frequently extremely similar 
to one another, there may be variations between lineages 
that influence how the virus behaves. In our research, we 
have created seven PPI networks of Omicron Pango Lineage 
including all the variants. The network has been created on 
STRING, analyzed the network and find the most influential 
proteins from the network. The networks that describe the 
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interactions between the parts of such complex systems are 
easier to analyze than it is to investigate each component 
separately. The placement of some significant or influential 
elements in most networks such as crucial proteins in PPI 
networks is a well-known fact in the analysis of biological 
and social networks. These locations, or vertices, have some 
unique structural characteristics. Such facts are quantified 
using various centrality metrics. The vertices and edges of a 
graph can be ranked from several perspectives based on cen-
trality measurements. To pinpoint “central” nodes in exten-
sive networks, numerous centrality measures (CM) have 
been developed. The user can choose whatever metric best 
fits the study of a certain network because there are several 
options available for ranking influential nodes. The effect of 
the network architecture on how influential nodes are ranked 
by centrality metrics further complicates the selection of an 
appropriate measure. In order to find the centrality metric 
that is most successful at predicting influential proteins, we 
looked at the centrality profiles of the nodes of Omicron 
PPINs. We looked at how a broad range of widely used cen-
trality measurements reflects various topological network 
properties. This study demonstrates the state-of-the-art in 
biological network centrality estimations. In order to identify 
the most significant protein in the network, this research pre-
sents 4 centrality metrics [page rank centrality (PRC), degree 
centrality (DC), closeness centrality (CC), and betweenness 
centrality (BC)] that are added with some significant scores 
[node degree and local clustering coefficient (CCo), and p 
value] on Omicron variant’s PPI networks.

Related Work

Graph structures known as biological networks and social 
networks can be used to describe a variety of complex sys-
tems, including biological and social systems [11]. For 
determining significant functional characteristics of a net-
work [7, 8], selecting an appropriate set of centrality meas-
urements is essential. [18] the paper has been considered in 
relation to a critical analysis of centrality measures in social 
networks. Three straightforward conditions for the behavior 
of centrality measures were used to analyze certain central-
ity measures (BC, CC, DC, and eigenvector centrality). The 
author has been analysis of PPI using Skyline Query on Par-
kinson’s disease [9]. One of the disorders with the highest 
rate of global growth, Parkinson’s disease, was shown to 
have 12 important proteins. The PPI network features have 
been represented by attributes based on centrality measures. 
The target genes for cancer illnesses were discovered by the 
author using protein–protein interaction networks [1]. Hubs 
and centrality measurements were used to examine the pos-
sible genes. They extract the genes with the highest scores in 
both mutation rates and graph centrality in order to identify 

the target genes. The author compared 27 popular central-
ity measurements using yeast PPINs [2]. The measurements 
classify and arrange the networks’ influential nodes. They 
have also used hierarchical clustering and principal compo-
nent analysis (PCA), and they discovered that the topology 
of the network affects which metrics are the most useful. 
The author has provided both historical and contemporary 
research on social network centrality measures in [6] sur-
vey paper. They discussed created centrality measurements 
and mathematical definitions. In addition, they demonstrate 
various centrality measure uses in the fields of education 
research [12], biology [11], traffic [14], transportation [25], 
and security [5, 21]. There are so many applications of cen-
trality measure in different field network [4] such as psy-
chological networks [3, 16], brain networks [15], and dif-
ferential privacy models [17].

Methods

This study used Omicron lineage variants data. The research 
has been completed in different steps like, data collection, 
data cleaning, data validation, creation of PPIN data, central-
ity measure and finally clustered the whole network in dif-
ferent clusters. The clustering is done by the MCL (Markov 
clustering algorithm) [20]. The objective of this research 
work is to get the significant protein or prioritize the protein. 
For this we have focuses on the centrality measure of the 
network. Figure 1 illustrates the research workflow.
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Fig. 1   Flow chart for numerical solution procedure
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Data Collection

We have taken the real dataset of Omicron from Univer-
sal Protein Resource/Swiss-Prot (UniProt/Swiss-Prot) [23] 
database which is reviewed and found in the human body. 
In addition to storing experimental results, computational 
features, and scientific conclusions, Swiss-Prot is a highly 
annotated, non-redundant protein sequence database. Cur-
rently, the UniProt Knowledgebase is comprised of Uni-
ProtKB/Swiss-Prot, which has been reviewed. It provides 
accurate, consistent, and rich annotations for functional 
information about proteins. Initially, we have taken a total 
of 228 proteins: B.1.1.529 (27), BA.5 (30), BA.4 (31), BA.3 
(34), BA.2 (38), BA.1.1 (34), BA.1 (34) and analyzed indi-
vidual Omicron lineage PPIN. The PPIN of Omicron Line-
age Variants are shown in Figs. 2, 3, 4, 5, 6 and 7. Then we 
sum up the data and cleaned the data by removing duplicate 
data entries to create the Omicron PPIN. The data validation 
and PPIN data creation in all the cases are done by STRING 
[22]. There are several sources of information within the 
STRING database, including computational prediction 
methods, experimental data, and public text collections. A 
regular update keeps it up-to-date and it is free to access. In 
addition, it generates network images using a spring model. 
In this model, nodes are considered masses, and edges are 
considered springs. After cleaning the data we gate unique 
68 proteins which create the Omicron PPIN.

Centrality Measure

Here, we will discuss very interesting aspect of network 
measure called centrality. Centrality is basically widely used 
measure of how central a particular node is with respect to 
the network. The network that results from the PPI data is 
thought to be an undirected graph. Each node’s weight in 
the graph is determined by the centrality approach. The BC, 
CC, DC, and PRC are a few centrality techniques that can 
be applied to undirected graphs. Figures 2, 3, 4, 5, 6, 7 and 
14 depicts a protein network as an example of an undirected 
graph. The variant BA.1 and BA.1.1 has the same PPIN only 
the difference in mutation. The edges of the graph reflect 
the functional interaction or relationship that takes place 
between proteins, whereas the nodes in the graph demon-
strate the proteins that affect Omicron’s activity.

Degree Centrality

The first basic centrality measure is the degree centrality 
(DC) [10]. We know that the degree is basically the number 
of edges which are adjacent on a particular node. The DC is 
essentially is a degree of a node but it is normalized.

The DC of a node v is a degree of the node v and divided 
by the maximum degree of a node present in the graph. 
A node’s degree centrality Cd(v) in a network G(V, E) is 
denoted mathematically as follows:

It basically ranges between 0 and 1 and more the degree 
centrality mean higher the likelihood that the node has 

(1)Cd(v) =
deg(v)

max degu∈v(u)
.

Fig. 2   PPIN of B.1.1.529

Fig. 3   PPIN of BA.1
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maximum degree. The Cd(v) can use to identify the more 
prominent or influential node from a network.

Closeness Centrality

The closeness centrality (CC) [19] indicates how close a 
node from the rest of the network. A approach to identify 
nodes that can efficiently spread information throughout a 
graph is through their CC. Average distance between a node 
and all other nodes is measured by its proximity central-
ity. The distances between nodes that have a high proximity 

score are the shortest. A node’s closeness centrality Cc(v) in 
a graph G(V, E) is denoted mathematically as follows:

where number of nodes is given by |V| and the distance 
between two nodes u and v is represented as d(u, v) . Higher 
the value of CC, better would be the quality of the particular 

(2)Cc(v) =
�V� − 1

∑
u∈V−{v}

d(u, v)
.

Fig. 4   PPIN of BA.2

Fig. 5   PPIN of BA.3

Fig. 6   PPIN of BA.4

Fig. 7   PPIN of BA.5
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node. The measure is useful in examining or restricting the 
spread of disease in epidemic modeling.

Betweenness Centrality

Betweenness (BC) [10] is the measure to compute how cen-
tral a node is in between paths of the network or we can say 
to compute how many paths(shortest) of the network passes 
through the node. A node’s Betweenness centrality Cb(v) in 
a network G(V, E) is denoted mathematically as follows:

where the frequency of shortest paths in the network 
between nodes x and y is indicated by �xy and �xy(v) denotes 
the same passing through v . If x = 1 , then �xy = 1 . The BC is 
useful in identifying the super spreaders in analyzing disease 
spreading in epidemiology.

Page Rank

PageRank centrality [13] is an adaptation of Eigen centrality 
that ranks web content using the value of linkages between 
sites. Any type of network, including protein interaction 
networks, can be used with it. Mathematically, the pager-
ank Centrality CPR(v) in a network G(V, E) of a node vi is 
defined as

where d is constant and called damping factor, usually the 
constant value is considered as 0.85.

(3)Cb(v) =
∑

xy∈V−{v}

�xy(v)

�xy

(4)CPR(vi) =
1 − d

|V|
+ d

∑

(vt)∈Inneighbor(vi)

CPR(vt)

outdeg(vt)

Markov Clustering

At the Centre for Mathematics and Computer Science in the 
Netherlands, Stijn van Dongen created the Markov Clus-
ter Algorithm, MCL algorithm [24]. It is an unsupervised 
cluster approach for networks that is extremely quick and 
scalable and is based on the simulation of graph flow. It is 
employed in bioinformatics and other fields. The distance 
matrix derived from the STRING global scores in our study 
serves as the input to MCL. Higher global scores for these 
interacting proteins increase the likelihood that they will 
cluster together. The MCL [7, 8] operates primarily in two 
ways: expanding the operation corresponds to the multiplica-
tion of standard matrices and simulates how a flow spreads 
and becomes more homogeneous. The next is inflation 
which is described logically as a diagonal scaling proceeded 
by a Hadamard power. Flow is compressed by inflation by 
thickening only in areas where current density is high and 
thinning only in areas where current density is low. There is 
no way to know how many clusters there are. With the help 
of the inflation parameter, it is implicitly managed. Higher 
inflation results in more clusters being obtained, which is 
indirectly connected to the clustering’s precision. Here, the 
inflation value has been set at 2.

Results and Discussion

The global properties of Omicron base lineage variants are 
shown in Table 1. All the seven network except BA.1.1.259 
has an average node degree greater than 1. The 3 base lineage 
(BA.1.1.259, BA.1, BA.1.1) has same density 0.0284. The high-
est density is 0.06719 (BA.4) and the lowest density belongs to 
BA.3 (0.00416). The average LCC is pretty good (highest 0.771). 

Table 2   Global properties of 
Omicron network

Avg LCC: avg. local clustering coefficient, p value: PPI enrichment p value

# node # edges Max degree Avg. node degree Density Avg. LCC p value

68 52 7 1.53 0.0228 0.385 0.0963

Table 1   Global properties 
of Omicron lineage variant’s 
network

Variants # node # edge Avg. node degree Max degree Density Avg. LCC p value

B.1.1.529 27 10 0.741 2 0.0284 0.407 0.3370
BA.1 34 18 1.06 3 0.0284 0.627 0.00365
BA.1.1 34 18 1.06 3 0.0284 0.627 0.00365
BA.2 38 25 1.32 4 0.03556 0.535 0.00038
BA.3 34 19 1.12 3 0.00416 0.657 0.00104
BA.4 31 17 1.1 3 0.06719 0.624 0.00271
BA.5 30 17 1.13 3 0.05666 0.711 0.00236

Avg. LCC: average local clustering coefficient, p value: PPI enrichment p value
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Table 3   Centrality measure and some important score of 68 Omicron protein

S. no Protein name Node degree CCo DC CC BC PRC

1 AHSG 4 0 0.06 0.123 0 0.036
2 AKR1B10 1 0 0.015 0.015 0 0.02
3 ALDH7A1 1 0 0.015 0.015 0 0.02
4 ASIC1 0 0 0 0 0 0.003
5 BMPR2 2 0 0.03 0.104 0 0.02
6 CFB 2 0 0.03 0.115 0 0.018
7 CFH 2 0 0.03 0.121 0 0.018
8 CHMP1B 2 0 0.03 0.094 0 0.021
9 CLASP2 1 0 0.015 0.108 0 0.01
10 CNNM2 1 0 0.015 0.077 0 0.012
11 COPB1 2 0 0.03 0.121 0 0.019
12 DDC 0 0 0 0 0 0.003
13 EIF2B1 0 0 0 0 0 0.003
14 EPHB4 0 0 0 0 0 0.003
15 ERAP1 0 0 0 0 0 0.003
16 ERBB2 3 0.333 0.045 0.137 0.333 0.023
17 FABP6 1 0 0.015 0.114 0 0.01
18 FAM20A 0 0 0 0 0 0.003
19 GNPNAT1 0 0 0 0 0 0.003
20 GP1BA 0 0 0 0 0 0.003
21 GPC1 1 0 0.015 0.015 0 0.02
22 GRB7 2 1 0.03 0.126 1 0.016
23 GTF2B 1 0 0.015 0.108 0 0.01
24 HEXA 0 0 0 0 0 0.003
25 HLA-DRB1 2 0 0.03 0.132 0 0.017
26 HSF1 1 0 0.015 0.124 0 0.01
27 IHH 1 0 0.015 0.015 0 0.02
28 IST1 1 0 0.015 0.081 0 0.012
29 ITGB7 1 0 0.015 0.102 0 0.011
30 KCNK1 4 0.333 0.06 0.163 0.333 0.028
31 KCNK16 3 0.667 0.045 0.147 0.667 0.021
32 KCNK17 2 1 0.03 0.129 1 0.015
33 KCNQ1 4 0.167 0.06 0.171 0.167 0.027
34 KPNA2 0 0 0 0 0 0.003
35 MAPT 7 0.048 0.104 0.132 0.048 0.054
36 MX1 1 0 0.015 0.124 0 0.01
37 NDUFB5 2 1 0.03 0.109 1 0.017
38 NDUFV1 2 1 0.03 0.109 1 0.017
39 NIPA1 2 0 0.03 0.089 0 0.022
40 NIPAL1 0 0 0 0 0 0.003
41 NIPAL4 0 0 0 0 0 0.003
42 NR1H4 5 0 0.075 0.14 0 0.044
43 OBP2B 0 0 0 0 0 0.003
44 PDPK1 2 0 0.03 0.093 0 0.017
45 PHF1 2 0 0.03 0.11 0 0.018
46 PPP3CA 0 0 0 0 0 0.003
47 PSMC2 5 0.1 0.075 0.149 0.1 0.039
48 PSMD13 1 0 0.015 0.119 0 0.01
49 PTPN11 4 0.167 0.06 0.149 0.167 0.029
50 RAB2A 1 0 0.015 0.1 0 0.011
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Table 3    (Continued)

S. no Protein name Node degree CCo DC CC BC PRC

51 RARA​ 3 0 0.045 0.132 0 0.025
52 RBM6 0 0 0 0 0 0.003
53 RPS26 3 0.333 0.045 0.161 0.333 0.022
54 RPS6KA3 2 0 0.03 0.109 0 0.017
55 RPSA 2 1 0.03 0.138 1 0.016
56 SLC27A5 1 0 0.015 0.114 0 0.01
57 SLC4A4 0 0 0 0 0 0.003
58 SNRPB 2 1 0.03 0.03 1 0.02
59 SNRPD1 2 1 0.03 0.03 1 0.02
60 SNRPE 2 1 0.03 0.03 1 0.02
61 TERF2IP 0 0 0 0 0 0.003
62 TNFRSF13C 0 0 0 0 0 0.003
63 TRPM1 0 0 0 0 0 0.003
64 UBE2I 5 0 0.075 0.157 0 0.04
65 UGT1A3 1 0 0.015 0.114 0 0.01
66 UGT2B7 0 0 0 0 0 0.003
67 YWHAH 2 0 0.03 0.109 0 0.017
68 ZRANB3 0 0 0 0 0 0.003

Note: Significant proteins: AHSG: alpha 2-HS glycoprotein, KCNK1: potassium channel subfamily K member 1, KCNQ1: potassium voltage-gated 
channel subfamily Q member 1, MAPT: microtubule associated protein tau, NR1H4: nuclear receptor subfamily 1 group H member 4, PSMC2: pro-
teasome 26 S subunit, ATPase 2, PTPN11: tyrosine-protein phosphatase non-receptor type 11, UBE21: UBE2I ubiquitin conjugating enzyme E2 I
The node is considered a part of the clique if it has a value of 1 (in bold)

Fig. 8   Protein vs. node degree

Fig. 9   Protein vs. CCo

Fig. 10   Protein vs. DC

The best network is the BA.2 with the smallest p value (0.00038). 
Table 2 shows the global features of the Omicron PPIN. Node 
degree is 1.53 on average and the density is 0.0228. The infor-
mation in Table 3 contains the centrality scores of 68 proteins, 
which allow us to identify the protein’s relevance. The network 
has a maximum degree of 7 with an average local clustering 
coefficient (LCC) of 0.385. The LCC range from 0 to 1, and they 
represent the density of connections among neighbors. Nodes 
that have higher values belong to densely connected clusters. 
The node is considered a part of the clique if it has a value of 
1. The proteins GRB7, KCNK17, NDUFB5, NDUFV1, RPSA, 
SNRPB, SNRPD1, and SNRPE in Table 3 are containing CCo 
value as 1 as they are part of the clique. Figure 14 is showing the 



	 SN Computer Science (2023) 4:299299  Page 8 of 10

SN Computer Science

PPI network of Omicron and the score of the CM are visualizing 
in Figs. 8, 9, 10, 11, 12 and 13. We have calculated the maximum 
value of each centrality measure and divided it by two to get each 
category’s threshold value. The threshold value will help us to 
signify the important protein in the network. We have highlighted 
the significant protein by getting the intersection of all the impor-
tant proteins of each category (CC, DC, and, PCR). A total of 
8 significant proteins were detected from 68 unique proteins. In 

our research work, we have extracted the 18 network cluster from 
the Omicron main network with the help of the Markov cluster-
ing algorithm shown in Figs. 14 and 15. In Table 4, we can see, 
cluster C1, C2 and C3 has 4 protein in each, C4 to C8 has 4 protein 
in each and rest of the clusters are containing 2 protein in each.  

Conclusion

Centrality analysis are very useful for analyzing large 
biological networks. Using a candidate gene network of 
Omicron as a case study, we investigated and compared 
different centrality measures. According to the findings, 
it is beneficial to explore candidate gene networks using 
methods from other fields of science such as social net-
work analysis. On the 7 base lineage of Omicron vari-
ations, including the 68 unique protein encoded by the 
Omicron candidate gene, graph analysis is done. From the 
Omicron main network, we extracted the Markov cluster-
ing algorithm’s findings i.e., 18 network clusters. The 
primary Omicron network has 68 nodes, each of which 

Fig. 11   Protein vs. CC

Fig. 12   Protein vs. BC

Fig. 13   Protein vs. PR

Fig. 14   Omicron PPI network
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represents a protein. Of the 68 proteins, 8 were found 
to be significant, including AHSG, KCNK1, KCNQ1, 
MAPT, NR1H4, PSMC2, PTPN11, and UBE21, with the 
MAPT protein receiving the highest score. The MAPT 
protein has the most dominating influence on the pro-
tein–protein interaction network of the Omicron candidate 
gene, according to the centrality score. Medical research-
ers as well as the general public will benefit from this 
work, as it will allow them to consider biological knowl-
edge in network analysis of the Omicron virus.

Analysis of networks can benefit greatly from cen-
trality measures. However, they are also required to be 
properly informed, selected, and applied. As part of our 
main research work, we present information about the 
four major centrality measures that have been found to be 
relevant for finding the most significant proteins in the 
Omicron Lineage Variants PPIN. A wide range of new 
and large networks are being created and developed due 
to different applications and different centrality meas-
ures. The majority of studies have tried to demonstrate 

the uniqueness and superiority of their centrality meas-
ures. We still have a lot to learn about making a differ-
ence and applying them properly. This is how we pre-
sented it.

Funding  This is the work of the first author under her doctoral. This 
research received no external funding.

Declarations 

Conflict of interest  On behalf of all the authors, the corresponding au-
thor states that there is no conflict of interest.

Research Involving Human Participants and/or Animals  This article 
does not contain any studies with human participants or animals per-
formed by any of the authors.

References

	 1.	 Arumugam A, Arnold EI. Identification of target genes in cancer 
diseases using protein–protein interaction networks. Netw Model 
Anal Health Inform Bioinform. 2019;8(1):1–13.

	 2.	 Ashtiani M, Salehzadeh-Yazdi A. A systematic survey of central-
ity measures for protein–protein interaction networks. BMC Syst 
Biol. 2018;12(1):1–17.

	 3.	 Bringmann LF, Elmer T. What do centrality measures measure in 
psychological networks? J Abnorm Psychol. 2019;128(8):892.

Fig. 15   PPIN after clustering

Table 4   Generated 18 clusters from MCL algorithm

Cluster Gene count Protein names

C
1

4 KCNK1, KCNK16, 
KCNK17, KCNQ1

C
2

4 ERBB2, GRB7, HLA-
DRB1, PTPN11

C
3

4 FABP6, NR1H4, 
SLC27A5, UGT1A3

C
4

3 PDPK1, RPS6KA3, 
YWHAH

C
5

3 HSF1, MX1, UBE2I
C
6

3 AHSG, BMPR2, ITGB7
C
7

3 SNRPB, SNRPD1, 
SNRPE

C
8

3 CHMP1B, IST1, PHF1
C
9

2 RPS26, RPSA
C
10

2 CLASP2, MAPT
C
11

2 COPB1, RAB2A
C
12

2 PSMC2, PSMD13
C
13

2 GTF2B, RARA​
C
14

2 NDUFB5, NDUFV1
C
15

2 GPC1, IHH
C
16

2 CNNM2, NIPA1
C
17

2 AKR1B10, ALDH7A1
C
18

2 CFB, CFH



	 SN Computer Science (2023) 4:299299  Page 10 of 10

SN Computer Science

	 4.	 Brohée S, van Helden J. Evaluation of clustering algorithms 
for protein–protein interaction networks. BMC Bioinform. 
2006;7(1):1–19.

	 5.	 Carrington PJ. Crime and social network analysis. SAGE Handb 
Soc Netw Anal. 2011:236–255.

	 6.	 Das K, Samanta S, Pal M. Study on centrality measures in social 
networks: a survey. Soc Netw Anal Min. 2018;8(1):1–11.

	 7.	 Das M, Alphonse P, Kamalanathan S. Markov clustering algo-
rithms and their application in analysis of PPI network of malaria 
genes. In: IDAACS, vol. 2. IEEE; 2021. p. 855–60.

	 8.	 Das M, Alphonse P, Kamalanathan S. An analytical study of COVID-19 
dataset using graph-based clustering algorithms. In: Smart intelligent 
computing and applications, vol. 1. Springer; 2022. p. 1–15.

	 9.	 Diansyah MR, Kusuma WA. Analysis of protein–protein inter-
action using skyline query on Parkinson disease. In: ICACSIS. 
IEEE; 2019, p. 175–80.

	10.	 Freeman LC. A set of measures of centrality based on between-
ness. Sociometry (1977);40(1):35–41. https://​doi.​org/​10.​2307/​
30335​43.

	11.	 Ghasemi M, Seidkhani H, Tamimi F, Rahgozar. Centrality meas-
ures in biological networks. Curr Bioinform. 2014;9(4):426–41.

	12.	 Grunspan DZ, Wiggins BL, Goodreau SM. Understanding classrooms 
through social network analysis: a primer for social network analysis in 
education research. CBE-Life Sci Educ. 2014;13(2):167–78.

	13.	 Iván G, Grolmusz V. When the Web meets the cell: using per-
sonalized PageRank for analyzing protein interaction networks. 
Bioinformatics. 2011;27(3):405–7.

	14.	 Jayaweera IMLN, Perera KKKR, Munasinghe J. Centrality meas-
ures to identify traffic congestion on road networks: a case study 
of Sri Lanka. IOSR J. Math. (IOSR-JM) 2017;13(2):13–19

	15.	 Joyce KE, Laurienti PJ, Burdette JH. A new measure of centrality 
for brain networks. PLoS ONE. 2010;5(8): e12200.

	16.	 Khojasteh H, Khanteymoori A, Olyaee MH. Comparing protein-
protein interaction networks of SARS-CoV-2 and (H1N1) influ-
enza using topological features. Sci Rep. 2022;12(1):1–11.

	17.	 Laeuchlia J, Ramírez-Cruzb Y. Analysis of centrality measures under 
differential privacy models. Appl Math Comput. 2022;412: 126546.

	18.	 Landherr A, Friedl B, Heidemann J. A critical review of cen-
trality measures in social networks. Bus Inform Syst Eng. 
2010;2(6):371–85.

	19.	 Sabidussi G. The centrality index of a graph. Psychometrika. 
1966;31(4):581–603.

	20.	 Satuluri V, Parthasarathy S. Scalable graph clustering using 
stochastic flows: applications to community discovery. In: Pro-
ceedings of the 15th ACM SIGKDD International Conference on 
Knowledge Discovery and Data Mining, p. 737–46, 2009.

	21.	 Sparrow MK. The application of network analysis to criminal intelli-
gence: an assessment of the prospects. Soc Netw. 1991;13(3):251–74.

	22.	 Szklarczyk D, Franceschini A, Wyder S, et al. STRING v10: pro-
tein–protein interaction networks, integrated over the tree of life. 
Nucleic Acids Res. 2015;43(D1):D447–52.

	23.	 The UniProt Consortium. UniProt: the universal protein knowl-
edgebase in 2021. Nucl Acids Res. 2021;49(D1):D480-9.

	24.	 van Dongen S. A cluster algorithm for graphs. Inf Syst. 2000.
	25.	 Wang J, Hou X, Li K, Dinga Y. A novel weight neighborhood cen-

trality algorithm for identifying influential spreaders in complex 
networks. Physica A. 2017;475:88–105.

	26.	 World Health Organization. Office of Library and Health Litera-
ture Services. Styles for bibliographic citations: guidelines for 
WHO-produced bibliographies. ONLINE. 1988.

Publisher's Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds 
exclusive rights to this article under a publishing agreement with the 
author(s) or other rightsholder(s); author self-archiving of the accepted 
manuscript version of this article is solely governed by the terms of 
such publishing agreement and applicable law.

https://doi.org/10.2307/3033543
https://doi.org/10.2307/3033543

	Analyzing and Comparing Omicron Lineage Variants Protein–Protein Interaction Network Using Centrality Measure
	Abstract
	Introduction
	Related Work
	Methods
	Data Collection
	Centrality Measure
	Degree Centrality
	Closeness Centrality
	Betweenness Centrality
	Page Rank

	Markov Clustering

	Results and Discussion
	Conclusion
	References




