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Abstract
Artificial intelligence (AI) systems are extensively used today in many fields. In the field of medicine, AI-systems are 
especially used for the segmentation and classification of medical images. As reliance on such AI-systems increases, it is 
important to verify that these systems are dependable and not sensitive to bias or other types of errors that may severely 
affect users and patients. This work investigates the sensitivity of the performance of AI-systems to labeling errors. Such 
investigation is performed by simulating intentional mislabeling of training images according to different values of a new 
parameter called “mislabeling balance” and a “corruption” parameter, and then measuring the accuracy of the AI-systems 
for every value of these parameters. The issues investigated in this work include the amount (percentage) of errors from 
which a substantial adverse effect on the performance of the AI-systems can be observed, and how unreliable labeling can 
be done in the training stage. The goals of this work are to raise ethical concerns regarding the various types of errors that 
can possibly find their way into AI-systems, to demonstrate the effect of training errors, and to encourage development of 
techniques that can cope with the problem of errors, especially for AI-systems that perform sensitive medical-related tasks.
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1 Introduction

Artificial intelligence (AI), which encompasses machine 
learning and deep learning, is viewed today as a leading field 
of development that is considered to affect many aspects of 
daily life including, for example in medicine [1], finance 
[2], and agriculture [3]. As the penetration of AI-systems 
becomes widespread, many systems are bound to rely upon 
it and to depend on its decision-making outcomes [4].

Today, AI-systems are already used in medicine, for 
example, for the recognition of anomalies in computed 
tomography (CT) images [5], and also for screening patients 
according to their illness severity [6]. The usefulness of 
such systems can be appreciated, for example, from \* 
MERGEFORMAT [7] in which it was reported that a deep 
learning convolutional neural network (CNN) was able to 

recognize dermoscopic melanoma better than 58 dermatolo-
gists, 30 of which were specialized doctors. Along with this, 
it is important to make sure that such systems are reliable 
and have a minimal vulnerability to adversarial attacks and 
to accidental or other types of errors. Whereas in non-critical 
systems erroneous results generated by AI-systems may have 
little or practically no effect at all, in critical systems it is 
crucial for the results generated by AI-systems to be correct 
and reliable.

The main aim of this work is to increase awareness to the 
problem of the possibility of deliberately or inadvertently 
causing errors in training data. We also aim to encourage 
the development of tools and methods to prevent or at least 
minimize the effect of such a problem. We presume that 
deliberate corruption may result from hidden agenda, inher-
ent racism or bias, political tendency or from various other 
reasons. By their nature, medical systems and applications 
are considered important and even critical and therefore 
avoiding or minimizing vulnerability to adversarial attacks 
is of particular interest [8].

Vulnerability to adversarial attacks may, for example, be 
evidenced from a study [9] by researchers from Harvard Medi-
cal School in which the researchers showed that adversarial 
examples in which pixels in images were modified in a way 
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that would seem like minimal noise to humans could manipu-
late deep learning systems that classify diabetic retinopathy 
from retinal images, pneumothorax from chest X-ray images, 
and melanoma from skin photos, and cause the systems to 
classify the pictures incorrectly.

In addition to attacks, errors could also stem from noise [10, 
11], improper annotation [12], bias [13–15] and more. The 
omission of certain data types and lack of insertion of enough 
variety of data to enable the production of reliable results are 
also considered as causing errors [16, 17].

In the field of medicine, errors could affect all patients in 
a society or specific groups of patients, for example, accord-
ing to their age, gender or race [18]. Coping with these kinds 
of errors is particularly important in these days of the global 
COVID-19 pandemic, where there is an outbreak of world-
wide racism associated with the pandemic [19]. All of these 
types of errors, which may result from an AI-system that 
makes or assists in making medical diagnostic decisions such 
as the systems investigated in [5–7], may have adverse critical 
effects on health-care patients.

In this work, we show how an AI-system is influenced by 
labeling errors in the training data of the AI-system. Previ-
ous works have attempted to address an aspect of this issue 
regarding training neural networks based on unreliable labels 
[10, 11]. The issues investigated and discussed in the present 
work include the following: (1) the amount (percentage) of 
labeling errors from which a substantial adverse effect on the 
performance of the AI-systems can be observed, and (2) how 
unreliable labeling can be done in the training stage.

It is to be noted that errors in the training stage should not 
be the only matter of concern. Errors in the inference stage 
are of no less importance, and may possibly be of even greater 
significance. It is further to be noted that not only ethical issues 
should concern the public in connection with the analysis of 
medical images [20, 21], but also the interpretation of the 
results and reproducibility [22].

For the investigation of the effect of training stage errors 
on the performance of AI- systems we employed a convo-
lutional neural network (CNN) on various types of datasets. 
First, in order to demonstrate how the investigated mislabeling 
works, we used a common dataset of cats and dogs. Then, 
we used a second CNN to perform a medical diagnostic task 
of distinguishing between malignant and benign skin moles. 
We mislabeled the images according to the gender informa-
tion of the images, in order to demonstrate how bias based 
on gender can deliberately be generated. The second CNN 
serves as an example of a system that performs a critical task 
that, if affected by errors, may have adverse critical effects on 
health-care patients.

2  Description of error types and their 
relation to ethical issues

In the context of this paper, we refer to the term “error” 
in a broad sense to include any incorrect, inaccurate or 
unreliable or biased result, prediction, presentation, or 
classification resulting from the operation of an AI-system.

Although this work concentrates on training errors, as 
mentioned above, we believe it is useful to provide an 
overview of the various types (or sources) of errors that 
can possibly find their way into AI-systems. We categorize 
the various types of possible errors in AI-systems into two 
categories: training errors and inference errors. In respect 
of the category of training errors, some of the types of 
training errors include the following: (1) innocent/acciden-
tal errors, (2) intentionally-made errors, (3) omission-type 
errors, and (4) data errors.

We refer to innocent/accidental errors as errors that are 
made unintentionally, i.e., by mistake such as by a human 
labeler labeling some images incorrectly or tagging some 
elements in training dataset images incorrectly. This type 
of errors can inevitably occur and we consider it as unre-
lated to ethics.

We refer to intentionally-made errors as errors inserted 
on purpose by an adversary, such as by corruption and 
contamination of data or by deliberate mislabeling or 
insertion of incorrect, inaccurate, unreliable or biased data 
in an attack that is aimed to cause the AI-system to operate 
incorrectly or to otherwise influence the outcome of the 
AI-system for whatever reason. Such intentionally-made 
errors naturally create ethical problems. We presume that 
the adversary may insert such errors as a result of hid-
den agenda, inherent racism or bias, political tendency, 
conspiracy beliefs and anarchism, or from various other 
reasons. By inserting such intentionally-made errors, the 
adversary may change the outcome of an AI-system to 
produce results that meet his/her intentions.

There are many possible scenarios in which such cases 
may occur, depending on the application for which the AI-
system is used. In one hypothetical example, an adversary 
may intentionally insert errors to cause incorrect training 
of an AI-system that is used for detecting susceptibility to 
a disease in a population to produce results showing that 
persons of one race are more susceptible to a certain dis-
ease than persons of another race. In such scenario, assum-
ing the adversary has access to training data of the AI-
system, the adversary may intentionally mislabel images 
of the training data such as to associate training images 
of many persons of the one race with genetic informa-
tion and medical imaging results that are known to show 
susceptibility to the disease even though such associa-
tion is incorrect. Following such mislabeling and training 
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thereafter, the AI-system is expected to produce, in the 
inference stage, racially-biased results, and people rely-
ing on such results may unjustly call for social distancing 
and separation between persons of the two different races.

In another hypothetical example, an adversary may inten-
tionally insert errors to cause incorrect training of an AI-
system that is used for mortgage approval to produce results 
that minimize the number of persons of one race whose 
mortgage requests are approved with respect to persons of 
other races and thus to reduce the number of habitants of 
the one race in a neighborhood. In such scenario, assuming 
the adversary has access to training data of the AI system, 
the adversary may choose training instances, for example 
according to typical family names of many of the persons 
of the one race, and then intentionally change attribute val-
ues that are used for classifying the instances to levels that 
cause denial of mortgage requests. Then, the adversary may 
train the AI-system again to prepare it for inference execu-
tion that is expected to produce results that deny mortgage 
requests of many persons of the one race. As AI-systems 
become more and more ubiquitous and their outcomes relied 
upon, the dangers of intentionally-made errors are expected 
to increase.

Regarding omission-type errors, we refer to them as 
errors caused by neglecting or omitting specific data types, 
by not referring to an entire span of possibilities, or by using 
imbalanced training data (class imbalance). For example, 
an AI-system that is intended to perform face recognition is 
bound to make determination mistakes if it does not include, 
in its training dataset, images with attributes of a variety of 
persons of multiple human races and of persons of different 
genders and different ages of the multiple human races and 
if the training dataset is severely imbalanced with respect to 
many of the attributes. This type of errors is directly linked 
with ethical issues although we presume that such errors are 
not intentional (if they are intentional, then such errors are 
considered and referred to as part of the intentionally-made 
errors).

Omission-type errors can occur for various reasons 
including, for example, lack of sufficient diversity of train-
ing data, negligence, lack of awareness, and disregarding a 
failure of an AI-system [17]. We believe that education may 
be useful to prevent or minimize such errors and to raise 
awareness to the possibility of the existence of such errors, 
and we provide hereinafter some suggestions for avoiding 
or at least minimizing the possibility of existence of such 
omission-type errors. A famous example to omission-type 
errors are biased facial-recognition systems [23].

Regarding data errors, we refer to them as errors that 
may be found in the training dataset, which result from 
natural phenomena, such as noise [11] or from instabili-
ties of deep learning systems with respect to image recon-
struction/classifications due to tiny perturbation, such as 

patients small movements [24]. This type of errors can 
inevitably occur and we consider this type as unrelated to 
ethics, but nevertheless, we recommend cautious selection 
of sources for the collection of training data to avoid or at 
least reduce the number of data errors therein.

In respect of the category of inference errors, some of 
the types of inference errors include approach-induced 
errors and technical errors.

We refer to approach-induced errors as errors that are 
system-wide and may be caused by an incorrect or inade-
quate approach that is adopted for solving a problem using 
an AI-associated system. Such approach-induced errors 
may result from:

1. Incorrect or incomplete definition of the problem and/or 
the solution sought

2. Poor adaptation of the problem to a solution based on 
AI-systems

3. Use of an AI-system that is inadequate for solving the 
specific problem

4. A bias inherent in the definition of the problem.

With respect to bias, we note that bias can appear in 
the training phase or in the inference phase, or in both. 
Bias is typically associated with applications that involve 
humans and in the training phase, it can be expressed, for 
example, by mislabeling one or more training data images 
whereas in the inference phase it can be caused as part of 
an underlying algorithm. Bias can be based, for example, 
on gender, race, age, income, or a combination thereof.

In the inference stage bias can be direct or indirect. A 
direct bias may, for example, result from a design decision 
to refer differently to different genders. An indirect bias 
may, for example, result from knowingly or unknowingly 
taking into account a parameter, such as zip code, from 
which differentiation based on income can be made with 
high certainty.

As for technical errors, we refer to them as errors result-
ing from technical problems, or from intentional or unin-
tentional mistakes, inaccuracies or omissions in design, 
algorithms, programming, and implementation, or from 
any combination thereof.

At least some of the above-mentioned errors may take 
one or several forms. For example, a data error may be 
an error caused by noise or an error caused by speckle, 
an intentionally-made error may be an error caused by an 
adversarial patch or an error made by incorrect labeling, 
and so on.

It is to be noted that each of the above-mentioned list of 
training errors and list of inference errors is not necessarily 
exhaustive, and other types of errors may also occur.

In this paper, we concentrate on the category of training 
errors and particularly on intentionally-made errors inserted 
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by an adversary. Furthermore, in the category of training 
errors we focus on labeling errors.

3  Related works

Noisy training data and particularly labeling errors have been 
the subject of many studies. Brodley and Friedl [25] use a 
set of learning algorithms to create classifiers that serve as 
noise filters. They evaluate single algorithm, majority vote, 
and consensus filters and show that filtering significantly 
improves classification accuracy for noise levels up to 30%.

Bekker and Goldberger [11] propose an algorithm for 
training neural networks based solely on noisy data. They 
introduce an extra noise layer by assuming that observed 
labels are created from true labels by passing through a 
noisy channel, and show that they can learn the noise distri-
bution from noisy data without using any clean data. Gold-
berger and Ben-Reuven [26] model noise by an additional 
softmax layer that connects the correct labels to the noisy 
ones. Dgani, Greenspan and Goldberger [10] use a noisy 
channel in their neural-network training strategy which is 
based on unreliable human annotation.

Guan et al. [27] presents an approach for identifying and 
eliminating mislabeled training instances by using unla-
beled instances to aid detection of the mislabeled training 
instances, and Khoshgoftaar et al. \* MERGEFORMAT [28] 
addresses the combined effects of class imbalance and labe-
ling errors.

The works mentioned above deal with noisy data, which 
is usually related to the data collection process [10], \* 
MERGEFORMAT [26]. As such, the works can probably 
be suitable for the type of training errors that we refer to as 
data errors, but not necessarily for the intentionally-made 
errors of the training errors category that are not expected 
to be modeled as noise.

Additionally, in respect of class imbalance when it is 
intentionally-made, that is, when it is part of the intention-
ally-made errors, an adversary may decide to force class 
imbalance or to change important class examples that form 
the basis for oversampling and undersampling so as to 
increase the amount of errors in data instances and there-
fore such class imbalance cannot be treated by data sampling 
techniques as the class imbalance in collected data.

Furthermore, it can also be assumed that in respect of 
intentionally-made errors, the adversary may insert them 
after filters and other algorithms that are intended to improve 
classification accuracy and class balance have already been 
used. Accordingly, the works mentioned above do not solve 
ethical and functional problems associated with some types 
of training errors, and further actions, procedures and tools 
are needed to assist in coping with such ethical and func-
tional problems.

4  Methods

The work was implemented in Python™ with Keras and 
TensorFlow in a Windows 10 environment and was run 
on the  Nvidia®  GeForce® GTX 1060 graphics processing 
unit (GPU).

4.1  CNN construction – dogs‑and‑cats dataset

The dataset was taken from Kaggle (https:// www. kaggle. 
com/ cheta nkv/ dogs- cats- images) and included 25,000 
images of two classes: dogs and cats. The dataset was 
divided into a training set for network training, which 
included 80% of the data (20,000 images in total, 10,000 
for each class), and a test set for testing network results, 
which included 20% of the data (5000 images in total, 
2500 for each class). Our expectation was to reach an accu-
racy higher than 80% for our initial baseline before we 
start to gradually mislabel the images and to re-run the 
model (Fig. 1).

Our network was produced using a classic two convolu-
tional block topology. Each layer had fixed parameters and 
hyper parameters that were set as Keras’s default values. 
The network architecture was as follows (Fig. 2):

The parameters for the network are:
Input Layer
RGB (red, green, blue) images of 202 × 180 size allo-

cated to the training set and the test set.
Hidden Layers

Fig. 1  Examples of images from the Kaggle dataset of: (a) cats, and 
(b) dogs. The numbers at the top left sides of the images are the prob-
abilities that the images are “cat”

https://www.kaggle.com/chetankv/dogs-cats-images
https://www.kaggle.com/chetankv/dogs-cats-images
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• First layer

o Convolution layer – 32 filters of 3 × 3 size, ‘ReLU’ 
activation

o Maxpooling – of 2 × 2 size
o Dropout – 60% (keep probability)

• Second layer

o Convolution layer – 64 filters of 3 × 3 size, ‘ReLU’ 
activation

o Maxpooling – of 2 × 2 size
o Dropout – 80% (Keep probability)

Classification layers:

• Flattening layer
• Compression layer (Dense) 128 × 1 size, ‘ReLU’ activa-

tion
• Compression layer (Dense) 2 × 1 size, ‘Sigmoid’ activa-

tion
• One hot

Random seed: initialized to 2019.

Number of Epochs (an epoch is one cycle through the 
complete training dataset): 20.

Loss function: Binary_Crossentropy.
Optimization method: Adam, learning rate default: 0.01.
We loaded images that passed real-time data augmenta-

tion by the ImageDataGenerator class in the Keras library 
and were looped over in batches. The augmentations per-
formed on the training set were as follows:

• Rescale – normalization by 1/255
• Shear_Range – diagonal shearing of the image up to 20%
• Zoom_Range – increasing/decreasing image size up to 

20%
• Horizontal_Flip – flipping on the horizontal axis
• Width_Shift_Range – left/right image shifting up to 10%
• Height_Shift_Range – up/down image shifting up to 10%
• Rotation_Range – image rotation up to 45 degrees

4.2  CNN construction – melanoma PH2 dataset

In this dataset (https:// www. fc. up. pt/ addi/ ph2% 20dat 
abase. html) there are a total of 200 images, which con-
sist of 40 images classified as malignant Melanoma and 
160 images classified as ‘Common Nevus’ and ‘Atypical 

Fig. 2  Network architecture

https://www.fc.up.pt/addi/ph2%20database.html
https://www.fc.up.pt/addi/ph2%20database.html
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Nevus’ that can be summed up as a ‘Non-Melanoma’ class. 
Some samples of images classified as ‘Melanoma’ and 
‘Non-Melanoma’ are shown in Fig. 3.

Using basic data-augmentation including horizontal and 
vertical flip and image noise, we increased the total num-
ber of images from 200 to 12,800, where 2560 were clas-
sified as ‘Melanoma’ and 10,240 were classified as ‘non-
Melanoma’. We used these images for testing with the 
same network and parameters listed in the dogs-and-cats 
section above and the same balance-corruption method.

4.3  CNN Construction – melanoma ISIC‑ARCHIVE 
dataset

We reached the dataset of ISIC (International Skin Image 
Collaboration) that includes images of skin cancer, with 
particular emphasis on melanoma. This dataset includes 
pictures of malignant and benign skin moles with different 
resolutions and attributes (https:// www. isic- archi ve. com/# 
!/ topWi thHea der/ wideC onten tTop/ main).

As opposed to the PH2 dataset, ISIC-ARCHIVE offers 
a couple of thousands of images with larger meta-data 
information, including gender and age. Using this dataset 
we tried to simulate a possible intentional-error insertion 
situation where images are mislabeled as a result of dis-
crimination, for instance – a gender-based discrimination. 
We chose images with the meta-data’s gender ‘female’ and 
gradually mislabeled the images to see how the accuracy 
of the model is affected.

In this dataset, the original number of male-related 
images was 6255 and the original number of female-
related images was 4727. Using basic data-augmentation 
including horizontal and vertical flip, and rotation at 90°, 
180° and 270°, we increased the total number of female-
related images to 23,635 and the total number of male-
related images to 31,275. Then, 90% of the total number 
of images were taken for training, and 10% of the total 
number of images were taken for testing.

4.4  The balance‑corruption method

After reaching a reasonable functioning model with accu-
racy higher than 80%, we started to mislabel the images of 
our training dataset using two parameters: mislabeling bal-
ance, and corruption.

The mislabeling balance is a parameter that expresses 
from which type of dataset the corruption is to be made. 
For example, when the mislabeling balance value is −1, it 
means that 100% of the images in category A (such as cats 
or benign non-melanoma) are to be used as an image bank 
from which a particular number of labels (defined by the 
corruption parameter) are to be corrupted, and none (0%) of 
the images in category B (such as dogs or malignant mela-
noma) are to be corrupted. When the mislabeling balance 
value is −0.5, it means that 75% of the images in category 
A and 25% of the images in category B are to be used as 
the image bank from which a particular number of labels 
(defined by the corruption parameter) are to be corrupted. 
When the mislabeling balance value is 0, it means that 50% 
of each category are to be used as the image bank from 
which a particular number of labels (defined by the corrup-
tion parameter) are to be corrupted. The definitions of mis-
labeling balance and corruption are summarized in Table 1.

For each mislabeling balance value group, the corruption 
parameter determines the total amount (in percentage val-
ues) of images in the group to be randomly selected and mis-
labeled. Note that the corruption value ultimately yields the 
final percentage of corrupted images. As an example, which 
refers to the cats-and-dogs dataset, when the mislabeling 
balance value is 0 and the corruption value is 10%, it means 
that 10% of the images from the 50% image bank of each 
category are to be corrupted. Therefore, if we have 5000 
cat images and 5000 dog images and we set aside randomly 
2500 cat images and 2500 dog images as image banks for 
corruption, 10% corruption means that we corrupt 250 cat 
images and 250 dog images. When the mislabeling balance 
value is − 1 and the corruption value is 10%, it means that 
10% of the images from the entire (100%) image bank of cats 
are to be corrupted and no dog images are to be corrupted. 

Fig. 3  Examples of images from 
the PH2 dataset: (a) Melanoma, 
(b) Non-Melanoma

https://www.isic-archive.com/#!/topWithHeader/wideContentTop/main
https://www.isic-archive.com/#!/topWithHeader/wideContentTop/main
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Therefore, if we have 10,000 cat images, the entire 10,000 
cat images are set aside for corruption, and 10% corruption 
means that we corrupt 1000 cat images.

We used the balance-corruption method in a somewhat 
different way for the ISIC-ARCHIVE dataset. We wanted 
to test a scenario where only one category (one type of gen-
der) is being mislabeled as a result of malicious pre-intended 
mislabeling. For example, if some benign image is related 
to a female, corruption of this image means a change of the 
classification to malignant (and vice versa). To achieve this, 
we took a portion of the images that are related to this gen-
der category (we used only the female-related category that 
included 21,272 images after augmentation), and then we 
gradually corrupted these female-related images. Corruption 
in this case is still the percentage out of that amount which 
is being manipulated.

As an example, we started by taking only 10% out of the 
21,272 female-related images (that is, 2127 images) and then 
we corrupted 10%, 20%, 30% and 40% out of these 2127 
images (that is, 213, 425, 638, and 851 images, respectively). 
Next, we took 20% out of the 21,272 female-related images 
(that is, 4254 images) and then we corrupted 10%, 20%, 30% 
and 40% out of these 4254 images (that is, 425, 851, 1276, 
and 1702 images, respectively). This continued until we took 
100% of the female-related images.

5  Results

As mentioned above, we aim to promote discussion regard-
ing how to detect and cope with deliberate insertion of 
errors in training data, and particularly mislabeling of train-
ing images due to various reasons, such as hidden agenda, 
inherent racism or bias, or political interest.

We start by showing how such mislabeling can occur. The 
first example is mislabeling a simple dataset of dogs and 
cats. Using the method described above, we show (Fig. 4) 

the dependence of accuracy on corruption for different mis-
labeling balance values.

In Fig. 4 that is related to the dogs-and-cats dataset, 
we can see that in all tested combinations of mislabeling 
balance and corruption, the model maintains a reasonable 
performance up to the 25% corruption region. Further on 
from there, the model’s accuracy drops drastically from the 
82–85% baseline.

While an application that distinguishes between dogs and 
cats is most likely non-critical, and therefore damaging the 
classification of images in the training stage is not expected 
to have severe implications, such damaging may be disas-
trous in a critical application, such as a medical application.

In Fig. 5 that is related to the PH2 dataset, we can see that 
accuracy is more dependent on mislabeling balance, and as 
in the previous section, even a slight corruption of 5% can 
reduce accuracy by up to 9% (from 0.9 to 0.825) depend-
ing on mislabeling balance value. Here, a major reduction 

Table 1  Definition of 
mislabeling balance parameter 
for two category dataset

*The table is related to dogs-and-cats and PH2 datasets

Mislabeling bal-
ance value

Image category (percentage) Num. of images in category A Num. of images 
in category B

 − 1 100% category A
0% category B

10,000 (cats)
10,240 (non-melanoma)

0 (dogs)
0 (melanoma)

 − 1/2 75% category A
25% category B

7500 (cats)
7680 (non-melanoma)

2500 (dogs)
640 (melanoma)

0 50% category A
50% category B

5000 (cats)
5120 (non-melanoma)

5000 (dogs)
1280 (melanoma)

 + 1/2 25% category A
75% category B

2500 (cats)
2560 (non-melanoma)

7500 (dogs)
1920 (melanoma)

 + 1 0% category A
100% category B

0 (cats)
0 (non-melanoma)

10,000 (dogs)
2560 (melanoma)

Fig. 4  Dogs-cats image accuracy vs. corruption for different mislabe-
ling balance values
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occurs at lower percentage values of corruption, most likely 
due to the small number of images in the dataset.

We now focus on corruption according to a gender bias 
in relation to the ISIC-ARCHIVE dataset, that is, for images 
related to one gender we deliberately mislabeled some of the 
non-Melanoma images as Melanoma images.

As shown in Fig. 6 that is related to the ISIC-ARCHIVE 
dataset, when only a small portion of the female-related 
images is corrupted the corruption has little effect on the 
accuracy. This can be observed from the plateau graph when 
we take only 10% out of the female-related images and cor-
rupt up to 40% of those images. This result is most likely 
due to the small amount of images (up to 851 images) that 
were corrupted. When the corruption is done on a larger 
percentage of female-related images, starting from around 

20%, the corruption affects the accuracy dramatically. The 
graphs are close to linearity most probably since we took 
only 4 corruption values, and up to 40% only.

6  Discussion

Among the many types of errors that can find their way into 
an AI-system, intentional corruption of training images is 
one type of errors that should be of particular concern. Such 
intentional corruption may take many forms including, for 
example, mislabeling of images and insertion of false data 
or patches in images.

In the methods of this work, we concentrate on inten-
tionally-made errors in the form of labeling errors caused 
by an adversary. We assume that we cannot predict any of 
the following: the amount of images the adversary decides 
to mislabel; a stage at which mislabeling occurs, namely 
whether the adversary decides to mislabel the images col-
lected or the images after use of filtering or other algorithms 
that are intended to improve classification accuracy and class 
balance; and the distribution of mislabeled images across the 
different classes of the training dataset and throughout the 
entire training dataset, namely whether the adversary misla-
bels different numbers or different percentages of images in 
different classes, and which images of each class are actually 
mislabeled.

In order to demonstrate the effect of intentional mislabe-
ling of training images, in view of such lack of predictability, 
we used a model that analyzes accuracies of the AI system 
in the presence of labeling errors, that is, the performance of 
the AI system when the images that are intentionally misla-
beled form part of the training dataset and the AI system is 
trained with this training dataset. Accordingly, in this model 
each labeling error has the same weight and effect regardless 
of the reason for creating it, and therefore it makes no differ-
ence, for the purpose of this model, whether the adversary 
inserts a labeling error due to bias (e.g., an undesired gender 
attribute value), or due to inherent racism (e.g., an unde-
sired skin color attribute value), or due to any other reason. 
This, therefore, makes the analysis regarding the exemplary 
CNNs mentioned above more generally applicable and more 
general in nature and suitable for dealing with a variety of 
intentionally-made errors associated with different attributes 
of images.

As for the amount and distribution of the labeling errors, 
it can be assumed that the adversary may prefer for his/her 
mislabeling to be undetected and therefore not to overdo the 
corruption and to spread the labeling errors over many parts 
of the training dataset. Therefore, it is important to develop 
and adopt tools and methods that detect even small amounts 
of intentionally-made errors and prevent or at least minimize 
the effect of such errors.

Fig. 5  Melanoma PH2 Dataset image accuracy vs. corruption for dif-
ferent mislabeling balance values

Fig. 6  Accuracy vs. image corruption according to a gender-bias in 
the Melanoma ISIC-ARCHIVE for different mislabeling balance val-
ues
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In all datasets investigated in this work severe reductions 
in accuracy for all mislabeling balance values occurred from 
35% corruption. This means that to maliciously mislabel the 
images, an adversary needs to mislabel at least 35% of the 
images (without such mislabeling being detected) in order to 
get errors that can severely damage the classification system.

Looking at small amounts of corruption, however, we 
can see, for example, that a 5% corruption reduces accuracy 
by approximately 2%. Such a drop in accuracy may be con-
sidered insignificant for non-critical applications (such as 
the application that distinguishes between dogs and cats), 
but for a critical application (such as a medical application) 
such drop in accuracy can be significant, for example as 
mentioned in [29] (where it is argued that even 1% poor-
quality data can impact the performance of the AI system), 
and especially when it is known that there are one billion 
radiologic examinations every year \* MERGEFORMAT 
[30].

One factor that is noted from the results mentioned above 
as influencing the level of accuracy and accuracy sensitivity 
of the AI-system in the presence of training labeling errors 
is the size of the training dataset. The AI-system can bet-
ter cope with errors when the training dataset is large. In 
the particular scenario of the dogs-and-cats dataset, a large 
number of images in the dataset successfully compensated 
for the forced mislabeling. However, this behavior cannot be 
guaranteed if a much smaller dataset is available with only 
a few hundreds of images, or even less. Therefore, when a 
developer claims to use AI in a system developed thereby, 
one of the first issues to look at and evaluate is the size of 
the training dataset the developer uses.

In addition, we showed how easily one can manipulate 
labeling in the training phase. Such manipulation is bound 
to affect the AI-system, and thus it is dangerous to treat an 
AI-system as a “black-box”. Since image labeling may be 
easily outsourced, a developer needs to be aware of the pos-
sibility of labeling manipulation.

In light of our findings, we provide hereinafter some sug-
gestions for preventing/avoiding or at least minimizing the 
possibility the intentionally-made labeling errors. First, we 
recommend that image labeling be performed by at least 
two unrelated entities and their labeling outcomes be com-
pared to identify and correct discrepancies before their use 
in AI training. Second, we recommend that AI developers 
should use collaborations of individuals of many races, reli-
gions, genders, and even nations. We believe that compa-
nies that publish the anonymous profiles of the developers’ 
background can give more confidence to people that use 
AI-systems. Third, methods to spot mislabeling of images 
should be continuously developed. For example, the number 
of epochs and revisions used in a CNN should be monitored 
to ensure that no unwanted reruns or revisions have been 
made after confirmation of a version. Further, for example, 

the output of the AI-system should be tested by several 
independent professionals in a field (this can be viewed as 
practice-based approaches). Additionally, it is important to 
verify the diversity of the data inputted into AI-systems (in 
medical applications – images from different genders, races, 
etc.), and any anomalies should be searched and examined 
for each specific data type (this can be viewed as data-based 
approaches).

7  Conclusions

In this work, we investigated the level of accuracy and sen-
sitivity of an AI-system in the presence of labeling errors 
in the training dataset. The results obtained in this work are 
particularly discussed in connection with intentionally-made 
errors. Such investigation is considered important because 
using AI-systems with errors in production can negatively 
affect decision-making. The investigation was carried out by 
selectively inserting labeling errors in three types of datasets 
(cats-and-dogs, Melanoma PH2, Melanoma ISIC) according 
to different values of a corruption parameter and different 
values of a mislabeling balance parameter, and then measur-
ing the accuracy of the AI-system for every value of these 
two parameters. It was demonstrated that even a slight cor-
ruption can reduce the accuracy depending on mislabeling 
balance parameter value. With the increased use of AI-sys-
tems in various fields, and especially in medical fields, the 
goal of this work is to raise questions regarding the accuracy 
of these AI-systems and to warn against treating AI-systems 
as black-boxes that always produce results that are correct 
and unquestionable.
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