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Abstract
We propound the idea of the partitioned dual Maclaurin symmetric mean (PDMSM) operator stimulated by the partitioned 
Maclaurin symmetric mean, suppose that we can partition overall attributes into some portions and the attributes are inter-
related in the same portion, but the attributes are not interrelated in different portions. We can deal with decision-making 
issues using PDMSM operator in the intuitionistic fuzzy environment. We also analysis features and peculiar instance of the 
PDMSM operator. And, we extend the PDMSM operator to introduce the intuitionistic fuzzy partitioned dual Maclaurin 
symmetric mean operator and the weighted intuitionistic fuzzy partitioned dual Maclaurin symmetric mean operator. Then, 
we analysis several characteristics and peculiar instances of the developed operators. A new multiple attribute decision-
making (MADM) approach grounded on the established weighted intuitionistic fuzzy partitioned dual Maclaurin symmetric 
mean operator is propounded; the MADM method is to choose the optimal alternative from several alternatives. Finally, we 
demonstrate the designed method is more general and effective than existing methods through comparative analysis.

Keywords Fuzzy sets · Intuitionistic fuzzy numbers · Partitioned dual Maclaurin symmetric mean · Multiple attribute 
decision making

1 Introduction

Multiple attribute decision-making (MADM) method is 
to choose the best alternative from viable alternatives; it 
has attracted more and more attention of people and been 
used in many aspects, such as financial risk management, 
location selection and so forth. Owing to the intricacy of 

MADM issues and multiple attribute group decision-making 
(MAGDM) issues, using precise values to depict attribute 
values of alternatives is difficult. On this case, Zadeh [1] 
developed the fuzzy sets (FSs), which utilize the member-
ship degree to estimate alternatives and have been studied 
extensively. However, the FSs have only the membership 
degree and are usual hard to depict much more complex 
fuzzy information. For purpose of surmounting above 
shorting, Atanassov [2] presented the intuitionistic fuzzy 
set (IFS); it is an extensiveness of FSs increasing non-mem-
bership degree and hesitant degree. Further, Xu and Yager 
[3] established the intuitionistic fuzzy numbers (IFNs) and 
operational rules of IFNs. In recent years, the IFNs have 
been diffusely used to cope with MADM issues, Garg et al. 
[4] introduced improved possibility degree method to rank 
intuitionistic fuzzy numbers, Joshi [5] established a new 
bi-parametric exponential information measure based on 
IFS, IFS combined with linguistic sets [6–8] and MAGDM 
issues [9–12]. Molodtsov [13] introduced soft sets, LEE [14] 
introduced bipolar valued fuzzy sets, and Mahmood [15] 
established bipolar valued soft sets; they are also generali-
zations of fuzzy sets and used in decision making [16, 17]. 
In order to resolve decision-making problems (DMPs), the 
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aggregation operators (AOs) are one of the most popular 
tools, which combine all the input individual arguments into 
a single argument, many studies have been made [18–21]. 
The weighted arithmetic operators were introduced by Xu 
[22] and Xu et al. [3, 23] proposed the weighted geometric 
operators based on the IFNs. In these AOs, the attributes are 
independent of each other. However, the relation of attribute 
cannot be ignored in DMPs. So, some operators consider 
that there is correlation between the aggregated arguments. 
In [24], Bonferroni developed the Bonferroni mean (BM); 
it presumes that correlation exists between any two argu-
ments. Xu et al. [23] propounded the intuitionistic fuzzy 
BM (IFBM) operator and studied some desirable properties 
of IFBM operator. Xia et al. [25] put forward the geometric 
Bonferroni mean (GBM) by considering both the Bonferroni 
mean and the geometric mean for IFNs. Dutta et al. [26] 
introduced aggregation operators to fuse Extended Com-
parative LinguistiC Expressions with Symbolic Translation 
(ELICIT) information, namely ELICITBM, ELICITEBM 
and ELICITPBM. The Heronian mean (HM) which can 
capture correlation between two arguments was proposed 
by Sykora [27]. Liu et al. [28] introduced partitioned HM 
operator in linguistic intuitionistic fuzzy environment. Mo 
et al. [29] introduced Archimedean geometric Heronian 
mean operators in dual hesitant fuzzy environment.

The Maclaurin symmetric mean (MSM) was originally 
proposed by Maclaurin [30], which is a popular operator 
with aggregation function, it can capture the relation among 
multiple input arguments and then was extended by Detem-
ple and Robertson [31], while BM and HM capture the rela-
tionship between two input arguments. The MSM operator 
was used to solve DMPs [32–35] with linguistic fuzzy set, 
used in IFS environment [36], used in q-rung interval-valued 
orthopair fuzzy environment [37], and used in dual hesitant 
fuzzy soft set environment [38]. Further, Qin and Liu [19] 
established the intuitionistic fuzzy MSM (IFMSM) and the 
weighted IFMSM (WIFMSM). In [39], Qin and Liu intro-
duced the dual Maclaurin symmetric mean (DMSM) opera-
tor, which considers the interrelationship among multiple 
input arguments; there are some generalizations of DMSM. 
Shi and Xiao [40] established the reducible weighted dual 
Maclaurin symmetric mean (RWDMSM) operator, Qin and 
Liu [39] purposed some operators (the uncertain linguistic 
Choquet dual Maclaurin symmetric mean (ULCDMSM), 
the uncertain linguistic dual Maclaurin symmetric mean 
(ULDMSM), the uncertain linguistic weighted dual 
Maclaurin symmetric mean (ULWDMSM)), Darko et al. 
[41] established operators (dual hesitant fuzzy dual MSM 
and weighted dual hesitant fuzzy dual MSM operators), 
and Wang et al. [42] extended DMSM to interval-valued 

2-tuple linguistic Pythagorean fuzzy numbers (IV2TLP-
FNs); these operators are able to reflect relationship among 
multiple attributes. However, in real decision-making situ-
ations, relation may not exist between attributes. For exam-
ple, selecting a laptop from several laptops, we can consider 
following four attributes: basic requirements (Z1) , customer 
comments (Z2) , price comparison (Z3) , appearance charac-
teristic (Z4) . These four attributes can be divided into two 
partitions: P1 = {Z1, Z4} and P2 = {Z2, Z3} . We can know 
that the attribute Z1 is interrelated to Z4 , they are all in P1 ; 
the attribute Z2 is interrelated to Z3 , they are all in P2 . But, 
there does not exist relationship between the partitions P1 
and P2 . Based on the condition, the partitioned Bonferroni 
mean (PBM) operator was presented by Dutta and Guha 
[43], Liu et al. [44] propounded the partitioned Maclaurin 
symmetric mean (PMSM) operator based on IFNs, these 
operators which suppose that total attributes are split into a 
few parts, and there exists relation between attributes in the 
same part and does not exist relation between attributes of 
diverse parts.

The DMSM operator considers that attributes are existing 
multiple relation. As previous study, it is easily found that 
generalizations of DMSM just only consider the case that 
attributes are relevant. But, in real DMPs, there may be not 
relationship between some attributes. Therefore, it is neces-
sary that introduced the partitioned DMSM (PDMSM) to 
consider there is no relationship between some attributes. 
In this paper, our goals are: (1) to establish the PDMSM 
operator to surmount the drawback of the above discussion; 
(2) to put forward the intuitionistic fuzzy partitioned dual 
Maclaurin symmetric mean (IFPDMSM) operator and the 
weighted intuitionistic fuzzy partitioned dual Maclaurin 
symmetric mean (WIFPDMSM) operator; (3) to consider 
some properties, theorems and peculiar instances of the pur-
posed operators; (4) to design a MADM methodology about 
the presented WIFPDMSM operator; and (5) to explain 
advantages of the established MADM approach.

The rest of the paper is described below. The Sect. 2 
briefly gives notions of IFNs and DMSM. Besides, some 
properties of the DMSM are listed. In Sect. 3, we establish 
the PDMSM operator; we also give the features and particu-
lar case of the PDMSM operator. The Sect. 4 puts forward 
the IFPDMSM operator and the WIFPDMSM operator. The 
properties and peculiar instances of our introduced operators 
are too shown. The Sect. 5 designs a MADM methodol-
ogy grounded on the put forward WIFPDMSM operator. 
Besides, giving an example and comparing the presented 
approach with other approaches to explain the presented 
MADM approach is more advantaged. The Sect. 6 is Con-
clusion and Future Studies.
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2  Preliminaries

Firstly, we tersely reviewed some basal conceptions such as 
definitions, operational laws and ranking method of IFNs. 
Then, the Maclaurin symmetric mean and the dual Maclau-
rin symmetric mean are brushed up on in this section.

2.1  IFSs

Definition 1 [2] Suppose Ỹ  be a domain of discourse and 
y ∈ Ỹ  . Then an intuitionistic fuzzy set Γ on Ỹ  is indicated:

where �Γ and �Γ represent the membership degree (MD) 
and non-membership degree (NMD) to Γ , respectively, and 
0 ⩽ �Γ(y), �Γ(y) ⩽ 1 , 0 ⩽ �Γ(y) + �Γ(y) ⩽ 1.

The pair (�Γ(y), �Γ(y)) is termed as intuitionistic fuzzy 
number (IFN) [22]. An IFN can be signified as � = (�� , ��) 
for convenience, meeting 0 ⩽ �� , �� ⩽ 1 and 0 ⩽ �� + �� ⩽ 1.

Definition 2 [22] Let �1 = (�1, �1) and �2 = (�2, �2) be 
two IFNs. The operational laws of IFNs are represented as 
follows: 

(1) 𝜃1 ⊕ 𝜃2 = (1 − (1 − 𝜌1)(1 − 𝜌2), 𝜏1𝜏2),
(2) 𝜃1 ⊗ 𝜃2 = (𝜌1𝜌2, 1 − (1 − 𝜏1)(1 − 𝜏2)),
(3) ��1 = (1 − (1 − �1)

�, ��
1
) , where � is a real number and 

𝜆 > 0,
(4) ��

1
= (��

1
, 1 − (1 − �1)

�) , where � is a real number and 
𝜆 > 0.

By Definition 2, some operational laws of IFNs can be 
obtained easily and listed as follows: 

(1) 𝜃1 ⊕ 𝜃2 = 𝜃2 ⊕ 𝜃1,
(2) 𝜃1 ⊗ 𝜃2 = 𝜃2 ⊗ 𝜃1,
(3) 𝜆(𝜃1 ⊕ 𝜃2) = 𝜆𝜃1 ⊕ 𝜆𝜃2 , where � is a real number and 

𝜆 > 0,
(4) (𝜃1 ⊗ 𝜃2)

𝜆 = 𝜃𝜆
1
⊗ 𝜃𝜆

2
 , where � is a real number and 

𝜆 > 0,
(5) 𝜆1𝜃1 ⊕ 𝜆2𝜃1 = (𝜆1 + 𝜆2)𝜃1 , where �1, �2 are real num-

bers and 𝜆1, 𝜆2 > 0,
(6) 𝜃

𝜆1
1
⊗ 𝜃

𝜆2
1

= 𝜃
𝜆1+𝜆2
1

 , where �1, �2 are real numbers and 
𝜆1, 𝜆2 > 0.

In order to rank two IFNs, the score function and accuracy 
function are introduced.
Definition 3 [45] If � = (�� , ��) be an IFN, then score func-
tion S of the IFN � is described:

(1)Γ = {⟨y, 𝜌Γ(y), 𝜏Γ(y)⟩�y ∈ Ỹ}

(2)S(�) = �� − ��

where S(�) ∈ [0, 1].

Definition 4 [46] If � = (�� , ��) be an IFN, then accuracy 
function H of the IFN � is shown:

where H(�) ∈ [0, 1].

Definition 5 [3] Suppose �1 = (�1, �1) and �2 = (�2, �2) be 
two IFNs, then 

(1) if S(𝜃1) > S(𝜃2) , then 𝜃1 > 𝜃2,

(2) if S(�1) = S(�2) , then if H(𝜃1) > H(𝜃2) , then 𝜃1 > 𝜃2, if 
H(�1) = H(�2) , then �1 = �2.

2.2  The MSM Operator and DMSM Operator

Definition 6 [30] For given nonnegative real numbers 
zl(l = 1, 2,… , f ) , and b = 1, 2,… , f  . The MSM operator is 
given by:

where (l1, l2,… , lb) contains all the b-tuple combination of 
(1, 2,… , f ) and Cb

f
=

f !

b!(f−b)!
.

Definition 7 [39] For given nonnegative real numbers 
zl(l = 1, 2,… , f ) , and b = 1, 2,… , f  . The DMSM operator 
is described by:

where (l1, l2,… , lb) contains all the b-tuple combination of 
(1, 2,… , f ) and Cb

f
=

f !

b!(f−b)!
.

The DMSM operator has the following properties [39]: 

(1) if zl = z(l = 1, 2,… , f ) , then DMSM
(b)(z1, z2,… , zf ) = z,

(2) if zl ⩽ al(l = 1, 2,… , f ) , then 

(3) minl{zl} ⩽ DMSM
(b)(z1, z2,… , zf ) ⩽ maxl{zl}.

(3)H(�) = �� + ��

(4)

MSM
(b)(z1, z2,… , zf )

=

⎛⎜⎜⎜⎜⎜⎝

∑
1⩽l1<⋯<lb⩽f

�
b∏

q=1

zlq

�

Cb
f

⎞⎟⎟⎟⎟⎟⎠

1

b

(5)

DMSM
(b)(z1, z2,… , zf )

=
1

b

⎛⎜⎜⎝
�

1⩽l1<⋯<lb⩽f

�
b�

q=1

zlq

� 1

Cb
f
⎞⎟⎟⎠

DMSM
(b)(z1, z2,… , zf ) ⩽ DMSM

(b)(a1, a2,… , af ),
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3  The PDMSM Operator

The DMSM operator in the internal structure presents that 
input arguments are correlated to other input arguments. But 
in many real problems, input arguments may be partitioned 
into some parts and input argument be interrelated to other 
input arguments in the same part, interrelation does not exist 
between input arguments in different parts.

Let Zl(l = 1, 2,… , f ) be input arguments,  and 
zl(l = 1, 2,… , f ) be values, where zl is the evaluating value 
of argument Zl , zl ⩾ 0 , 1 ⩽ l ⩽ f  . Suppose that the collection 
Z is divided into c different partitions P1,P2,… ,Pc , meeting 
Pl

⋂
Pq = ∅ , l, q ∈ {1, 2,… , c}, l ≠ q and 

⋃c

t=1
Pt = Z . We 

assume that the arguments are relevant in the identical parti-
tion and the arguments are irrelevant in diverse partitions.

In the following, we introduce the partitioned dual 
Maclaurin symmetric mean operator.

Definition 8 For given nonnegative real numbers 
zl(l = 1, 2,… , f ) , c indicates the number of partitions, 
b = 1, 2,… , ot , ot is the amount of attributes in Pt . The 
PDMSM operator is defined:

where (l1, l2,… , lb) contains all the b-tuple combination of 
(1, 2,… , ot) and Cb

ot
=

ot!

b!(ot−b)!
.

Next, we will verify the characters of the introduced 
PDMSM operator.

P r o p o s i t i o n  1  ( I d e m p o t e n c y )  S u p p o s e 
z1 = z2 = ⋯ = zf = z, then

Proof By Definition 8 and z1 = z2 = ⋯ = zf = z, we know

(6)

PDMSM
(b)(z1, z2,… , zf )

=
1

c

c�
t=1

⎛⎜⎜⎜⎜⎜⎜⎝

∏
1⩽l1<⋯<lb⩽ot

�
b∑

q=1

zlq

� 1

Cbot

b

⎞⎟⎟⎟⎟⎟⎟⎠

PDMSM(b)(z1, z2,… , zf ) = z.

which completes the proof.   ◻

Proposition 2 (Monotonicity) Let yl, zl(l = 1, 2,… , f ) 
be two groups of nonnegative real numbers and yl ⩽ zl , 
l = 1, 2,… , f , then

when the parameter b is fixed.

Proof By the definition of the PDMSM operator and yl ⩽ zl 
for all l, we get 

∑b

q=1
ylq ⩽

∑b

q=1
zlq and

Further, we obtain

which completes the proof.   ◻

PDMSM
(b)(z1, z2,… , zf )

=
1

c

c�
t=1

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∏
1 ⩽ l1 < ⋯

< lb ⩽ ot

�
b∑

q=1

zlq

� 1

Cbot

b

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=
1

c

c�
t=1

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∏
1 ⩽ l1 < ⋯

< lb ⩽ ot

�
b∑

q=1

z

� 1

Cbot

b

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=
1

c

c�
t=1

⎛
⎜⎜⎜⎜⎝

b∑
q=1

z

b

⎞
⎟⎟⎟⎟⎠
= z,

PDMSM(b)(y1, y2,… , yf ) ⩽ PDMSM(b)(z1, z2,… , zf )

1

b

⎛⎜⎜⎝
�

1⩽l1<⋯<lb⩽ot

�
b�

q=1

ylq

� 1

Cbot
⎞⎟⎟⎠

⩽
1

b

⎛⎜⎜⎝
�

1⩽l1<⋯<lb⩽ot

�
b�

q=1

zlq

� 1

Cbot
⎞⎟⎟⎠
.

1

c

c�
t=1

⎛⎜⎜⎜⎝

∏
1⩽l1<⋯<lb⩽ot

�∑b

q=1
ylq

� 1

Cbot

b

⎞⎟⎟⎟⎠

⩽
1

c

c�
t=1

⎛
⎜⎜⎜⎝

∏
1⩽l1<⋯<lb⩽ot

�∑b

q=1
zlq

� 1

Cbot

b

⎞
⎟⎟⎟⎠
.
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Proposition 3 (Boundedness) Let zl(l = 1, 2,… , f ) be a 
collection of nonnegative real numbers, z− = minl{zl} and 
z+ = maxl{zl}, then

Proof Because z− = minl{zl} ⩽ zl, and owing to the Proposi-
tions 1 and 2, we can have

In the same way, we can have

Therefore, z− ⩽ PDMSM
(b)(z1, z2,… , zf ) ⩽ z+.   ◻

Moreover, the effect of b towards the established PDMSM 
operator can be studied.

Theorem  1 For given nonnegative real numbers 
zl(l = 1, 2,… , f ), then PDMSM operator monotonically 
increases with respect to the parameter b.

Proof By [39], we can have the DMSM operator inequality

Therefore, based on Eq. (6), we can obtain

where b = 1, 2,… , mint{ot} .   ◻

Theorem  2 For given nonnegative real numbers 
zl(l = 1, 2,… , f ), then

and

z− ⩽ PDMSM(b)(z1, z2,… , zf ) ⩽ z+.

z− = PDMSM
(b)(z−, z−,… , z−)

⩽ PDMSM
(b)(z1, z2,… , zf ).

PDMSM
(b)(z1, z2,… , zf )

⩽ PDMSM
(b)(z+, z+,… , z+) = z+.

DMSM
(1)(z1, z2,… , zf ) ⩽ DMSM

(2)(z1, z2,… , zf )

⩽ ⋯ ⩽ DMSM
(f )(z1, z2,… , zf ).

PDMSM
(1)(z1, z2,… , zf )

⩽ PDMSM
(2)(z1, z2,… , zf ) ⩽ ⋯

⩽ PDMSM
(min

t
{ot})

(z1, z2,… , zf )

min{PDMSM(b)(z1, z2,… , zf )}

= PDMSM(1)(z1, z2,… , zf ) =
1

c

c�
t=1

⎛⎜⎜⎝

ot�
lq=1

z

1

ot

lq

⎞⎟⎟⎠

when c = 1, the established PDMSM operator reduces to the 
DMSM operator [39], listed as:

4  The PDMSM Operator Based on the IFNs

In the following, we will extend the PDMSM operator to 
propound the partitioned dual Maclaurin symmetric mean 
operator for IFNs and the weighted partitioned dual Maclau-
rin symmetric mean operator for IFNs. The detailed descrip-
tion is shown as follows.

4.1  The IFPDMSM Operator

Definition 9 For given IFNs �l = (�l, �l)(l = 1, 2,… , f ) 
partitioned into c distinct partitions P1,P2,… ,Pc , 
b = 1, 2,… , ot , ot indicates the amount of attributes in Pt . 
The IFPDMSM operator is described:

where (l1, l2,… , lb) contains overall the b-tuple combination 
of (1, 2,… , ot) and Cb

ot
=

ot!

b!(ot−b)!
.

Theorem 3 For given IFNs �l = (�l, �l)(l = 1, 2,… , f ). The 
aggregated result of formula (7) is still an IFN, described 
as follows:

max{PDMSM(b)(z1, z2,… , zf )}

= PDMSM
(min

t
{ot})

(z1, z2,… , zf ).

PDMSM(b)(z1, z2,… , zf )

=

1�
t=1

⎛⎜⎜⎜⎜⎜⎜⎝

∏
1⩽l1<⋯<lb⩽o1

�
b∑

q=1

zlq

� 1

Cbo1

b

⎞⎟⎟⎟⎟⎟⎟⎠

=
1

b

⎛
⎜⎜⎝

�
1⩽l1<⋯<lb⩽f

�
b�

q=1

zlq

� 1

Cb
f
⎞
⎟⎟⎠
.

(7)

IFPDMSM
(b)(𝜃1, 𝜃2,… , 𝜃f )

=
1

c

⎛⎜⎜⎜⎜⎜⎝

c

⊕
t=1

⎛⎜⎜⎜⎜⎜⎝

⊗
1⩽l1<⋯<lb⩽ot

�
b

⊕
q=1

𝜃lq

� 1

Cbot

b

⎞⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎠
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Proof By the operational laws of the IFNs, we can get

and

Then, we obtain

(8)

IFPDMSM
(b)
�
𝜃1, 𝜃2,… , 𝜃f

�

=

⎛⎜⎜⎜⎜⎝
1 −

⎛
⎜⎜⎜⎝

c�
t=1

⎛
⎜⎜⎝
1 −

�
1⩽l1<⋯<lb⩽ot

�
1 −

b�
q=1

�
1 − 𝜌lq

�� 1

Cbot
⎞
⎟⎟⎠

1

b ⎞⎟⎟⎟⎠

1

c

,

⎛
⎜⎜⎜⎝

c�
t=1

⎛
⎜⎜⎝
1 −

�
1⩽l1<⋯<lb⩽ot

�
1 −

b�
q=1

𝜏lq

� 1

Cbot
⎞
⎟⎟⎠

1

b ⎞⎟⎟⎟⎠

1

c ⎞⎟⎟⎟⎟⎠
.

b

⊕
q=1

𝜃lq =

(
1 −

b∏
q=1

(
1 − 𝜌lq

)
,

b∏
q=1

𝜏lq

)

�
b

⊕
q=1

𝜃lq

� 1

Cbot

=

⎛⎜⎜⎝

�
1 −

b�
q=1

(1 − 𝜌lq)

� 1

Cbot

, 1 −

�
1 −

b�
q=1

𝜏lq

� 1

Cbot
⎞⎟⎟⎠
.

and

Therefore, we can get

⊗
1⩽l1<⋯<lb⩽ot

�
b

⊕
q=1

𝜃lq

� 1

Cbot

=

⎛⎜⎜⎜⎜⎜⎝

�

1 ⩽ l1 < ⋯

< lb ⩽ ot

�
1 −

b�
q=1

�
1 − 𝜌lq

�� 1

Cbot

,

1 −
�

1 ⩽ l1 < ⋯

< lb ⩽ ot

�
1 −

b�
q=1

𝜏lq

� 1

Cbot

⎞⎟⎟⎟⎟⎟⎠

1

b

�
⊗

1⩽l1<⋯<lb⩽ot

�
b

⊕
q=1

𝜃lq

� 1

Cbot

�

=

⎛⎜⎜⎜⎜⎜⎜⎝

1 −

⎛⎜⎜⎜⎜⎜⎝

1 −
�

1 ⩽ l1 < ⋯

< lb ⩽ ot

�
1 −

b�
q=1

�
1 − 𝜌lq

�� 1

Cbot

⎞⎟⎟⎟⎟⎟⎠

1

b

,

⎛
⎜⎜⎝
1 −

�
1⩽l1<⋯<lb⩽ot

�
1 −

b�
q=1

𝜏lq

� 1

Cbot
⎞
⎟⎟⎠

1

b ⎞⎟⎟⎟⎠
.
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Next,

and

Because 0 ⩽ �lq ⩽ 1 , 0 ⩽ �lq ⩽ 1 and 0 ⩽ �lq + �lq ⩽ 1 , we 
can have 0 ⩽ �lq ⩽ 1 − �lq ⩽ 1 . Thus,

IFPDMSM
(b)(𝜃1, 𝜃2,… , 𝜃f ) =

⎛
⎜⎜⎜⎜⎝
1 −

⎛
⎜⎜⎜⎝

c�
t=1

⎛
⎜⎜⎝
1 −

�
1⩽l1<⋯<lb⩽ot

�
1 −

b�
q=1

�
1 − 𝜌lq

�� 1

Cbot
⎞
⎟⎟⎠

1

b ⎞⎟⎟⎟⎠

1

c

,

⎛
⎜⎜⎜⎝

c�
t=1

⎛
⎜⎜⎝
1 −

�
1⩽l1<⋯<lb⩽ot

�
1 −

b�
q=1

𝜏lq

� 1

Cbot
⎞
⎟⎟⎠

1

b ⎞⎟⎟⎟⎠

1

c ⎞⎟⎟⎟⎟⎠
.

0 ⩽ 1 −

⎛⎜⎜⎜⎜⎜⎜⎝

c�
t=1

⎛⎜⎜⎜⎜⎜⎝

1 −
�

1 ⩽ l1 < ⋯

< lb ⩽ ot

�
1 −

b�
q=1

�
1 − 𝜌lq

�� 1

Cbot

⎞⎟⎟⎟⎟⎟⎠

1

b ⎞⎟⎟⎟⎟⎟⎟⎠

1

c

⩽ 1

0 ⩽

⎛⎜⎜⎜⎜⎜⎜⎝

c�
t=1

⎛⎜⎜⎜⎜⎜⎝

1 −
�

1 ⩽ l1 < ⋯

< lb ⩽ ot

�
1 −

b�
q=1

𝜏lq

� 1

Cbot

⎞⎟⎟⎟⎟⎟⎠

1

b ⎞⎟⎟⎟⎟⎟⎟⎠

1

c

⩽ 1.

Thus, we complete the proof.   ◻

Also, we can get the IFPDMSM operator has following 
desirable properties.

0 ⩽ 1 −

⎛⎜⎜⎜⎜⎜⎜⎝

c�
t=1

⎛⎜⎜⎜⎜⎜⎝

1 −
�

1 ⩽ l1 < ⋯

< lb ⩽ ot

�
1 −

b�
q=1

�
1 − 𝜌lq

�� 1

Cbot

⎞⎟⎟⎟⎟⎟⎠

1

b ⎞⎟⎟⎟⎟⎟⎟⎠

1

c

+

⎛⎜⎜⎜⎝

c�
t=1

⎛⎜⎜⎝
1 −

�
1⩽l1<⋯<lb⩽ot

�
1 −

b�
q=1

𝜏lq

� 1

Cbot
⎞⎟⎟⎠

1

b ⎞⎟⎟⎟⎠

1

c

⩽ 1 −

⎛⎜⎜⎜⎜⎜⎜⎝

c�
t=1

⎛⎜⎜⎜⎜⎜⎝

1 −
�

1 ⩽ l1 < ⋯

< lb ⩽ ot

�
1 −

b�
q=1

𝜏lq

� 1

Cbot

⎞⎟⎟⎟⎟⎟⎠

1

b ⎞⎟⎟⎟⎟⎟⎟⎠

1

c

+

⎛⎜⎜⎜⎝

c�
t=1

⎛⎜⎜⎝
1 −

�
1⩽l1<⋯<lb⩽ot

�
1 −

b�
q=1

𝜏lq

� 1

Cbot
⎞⎟⎟⎠

1

b ⎞⎟⎟⎟⎠

1

c

= 1.
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Proposition 4 (Idempotency) If �l(l = 1, 2,… , f ) are equal, 
i.e., �l = (�l, �l) = � = (�, �)(l = 1, 2,… , f ). Then,

Proof On the ground of Eq. (8), we can have

  ◻

IFPDMSM
(b)(�1, �2,… , �f ) = �.

IFPDMSM
(b)(𝜃1, 𝜃2,… , 𝜃f )

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 −

⎛
⎜⎜⎜⎜⎜⎜⎝

c�
t=1

⎛
⎜⎜⎜⎜⎜⎝

1 −
�

1 ⩽ l1 < ⋯

< lb ⩽ ot

�
1 −

b�
q=1

�
1 − 𝜌lq

�� 1

Cbot

⎞
⎟⎟⎟⎟⎟⎠

1

b ⎞⎟⎟⎟⎟⎟⎟⎠

1

c

,

⎛
⎜⎜⎜⎜⎜⎜⎝

c�
t=1

⎛
⎜⎜⎜⎜⎜⎝

1 −
�

1 ⩽ l1 < ⋯

< lb ⩽ ot

�
1 −

b�
q=1

𝜏lq

� 1

Cbot

⎞
⎟⎟⎟⎟⎟⎠

1

b ⎞⎟⎟⎟⎟⎟⎟⎠

1

c ⎞⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 −

⎛
⎜⎜⎜⎜⎜⎜⎝

c�
t=1

⎛⎜⎜⎜⎜⎜⎝

1 −
�

1 ⩽ l1 < ⋯

< lb ⩽ ot

�
1 −

b�
q=1

(1 − 𝜌)

� 1

Cbot

⎞⎟⎟⎟⎟⎟⎠

1

b ⎞⎟⎟⎟⎟⎟⎟⎠

1

c

,

⎛
⎜⎜⎜⎜⎜⎜⎝

c�
t=1

⎛⎜⎜⎜⎜⎜⎝

1 −
�

1 ⩽ l1 < ⋯

< lb ⩽ ot

�
1 −

b�
q=1

𝜏

� 1

Cbot

⎞⎟⎟⎟⎟⎟⎠

1

b ⎞⎟⎟⎟⎟⎟⎟⎠

1

c ⎞⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎝
1 −

⎛⎜⎜⎝

c�
t=1

�
1 −

��
1 − (1 − 𝜌)b

� 1

Cbot

�Cb
ot

� 1

b ⎞⎟⎟⎠

1

c

,

⎛⎜⎜⎝

c�
t=1

�
1 −

��
1 − 𝜏b

� 1

Cbot

�Cb
ot

� 1

b ⎞⎟⎟⎠

1

c ⎞⎟⎟⎟⎠

=

⎛⎜⎜⎝
1 −

�
c�

t=1

�
(1 − 𝜌)b

� 1

b

� 1

c

,

�
c�

t=1

�
𝜏b
� 1

b

� 1

c ⎞⎟⎟⎠
= (𝜌, 𝜏) = 𝜃.

Proposition 5 (Commutativity) For given IFNs �l = (�l, �l) 
and �̈�l = (�̈�l, 𝜏l) (l = 1, 2,… , f ). Suppose �̈�l = (�̈�l, 𝜏l) is any 
permutation of �l = (�l, �l) for all l, then
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Proof According to Eq. (8), we can get

Because �̈�l = (�̈�l, 𝜏l) is any permutation of �l = (�l, �l) for 
all l, we have

  ◻

Proposition 6 (Monotonicity) Let �l = (�l, �l) and 
�̈�l = (�̈�l, 𝜏l)(l = 1, 2,… , f ) be arbitrary two collections of 
IFNs, satisfying 𝜌l ⩾ �̈�l, 𝜏l ⩽ 𝜏l for all l, then

IFPDMSM
(b)(𝜃1, 𝜃2,… , 𝜃f )

= IFPDMSM
(b)(�̈�1, �̈�2,… , �̈�f ).

IFPDMSM
(b)
�
𝜃1, 𝜃2,… , 𝜃f

�

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 −

⎛
⎜⎜⎜⎜⎜⎜⎝

c�
t=1

⎛
⎜⎜⎜⎜⎜⎝

1 −
�

1 ⩽ l1 < ⋯

< lb ⩽ ot

�
1 −

b�
q=1

�
1 − 𝜌lq

�� 1

Cbot

⎞
⎟⎟⎟⎟⎟⎠

1

b ⎞⎟⎟⎟⎟⎟⎟⎠

1

c

,

⎛⎜⎜⎜⎜⎜⎜⎝

c�
t=1

⎛
⎜⎜⎜⎜⎜⎝

1 −
�

1 ⩽ l1 < ⋯

< lb ⩽ ot

�
1 −

b�
q=1

𝜏lq

� 1

Cbot

⎞
⎟⎟⎟⎟⎟⎠

1

b ⎞⎟⎟⎟⎟⎟⎟⎠

1

c ⎞⎟⎟⎟⎟⎟⎟⎟⎠

.

IFPDMSM
(b)(�̈�1, �̈�2,… , �̈�f )

=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 −

⎛⎜⎜⎜⎜⎜⎜⎝

c�
t=1

⎛⎜⎜⎜⎜⎜⎝

1 −
�

1 ⩽ l1 < ⋯

< lb ⩽ ot

�
1 −

b�
q=1

�
1 − �̈�lq

�� 1

Cbot

⎞⎟⎟⎟⎟⎟⎠

1

b ⎞⎟⎟⎟⎟⎟⎟⎠

1

c

,

⎛⎜⎜⎜⎜⎜⎜⎝

c�
t=1

⎛⎜⎜⎜⎜⎜⎝

1 −
�

1 ⩽ l1 < ⋯

< lb ⩽ ot

�
1 −

b�
q=1

𝜏lq

� 1

Cbot

⎞⎟⎟⎟⎟⎟⎠

1

b ⎞⎟⎟⎟⎟⎟⎟⎠

1

c ⎞⎟⎟⎟⎟⎟⎟⎟⎠

.

IFPDMSM
(b)(𝜃1, 𝜃2,… , 𝜃f )

= IFPDMSM
(b)(�̈�1, �̈�2,… , �̈�f ).

when the parameter b is fixed.

Proof Suppose that IFPDMSM
(b)(�1, �2,… , �f ) = � = (�, �) 

and IFPDMSM
(b)(�̈�1, �̈�2,… , �̈�f ) = �̈� = (�̈�, 𝜏), then

Because 𝜌l ⩾ �̈�l, 𝜏l ⩽ 𝜏l , then

IFPDMSM
(b)(𝜃1, 𝜃2,… , 𝜃f )

⩾ IFPDMSM
(b)(�̈�1, �̈�2,… , �̈�f )

𝜌 = 1 −

⎛⎜⎜⎜⎜⎜⎜⎝

c�
t=1

⎛⎜⎜⎜⎜⎜⎝

1 −
�

1 ⩽ l1 < ⋯

< lb ⩽ ot

�
1 −

b�
q=1

�
1 − 𝜌lq

�� 1

Cbot

⎞⎟⎟⎟⎟⎟⎠

1

b ⎞⎟⎟⎟⎟⎟⎟⎠

1

c

,

�̈� = 1 −

⎛⎜⎜⎜⎜⎜⎜⎝

c�
t=1

⎛⎜⎜⎜⎜⎜⎝

1 −
�

1 ⩽ l1 < ⋯

< lb ⩽ ot

�
1 −

b�
q=1

�
1 − �̈�lq

�� 1

Cbot

⎞⎟⎟⎟⎟⎟⎠

1

b ⎞⎟⎟⎟⎟⎟⎟⎠

1

c

,

𝜏 =

⎛⎜⎜⎜⎜⎜⎜⎝

c�
t=1

⎛⎜⎜⎜⎜⎜⎝

1 −
�

1 ⩽ l1 < ⋯

< lb ⩽ ot

�
1 −

b�
q=1

𝜏lq

� 1

Cbot

⎞⎟⎟⎟⎟⎟⎠

1

b ⎞⎟⎟⎟⎟⎟⎟⎠

1

c

,

𝜏 =

⎛⎜⎜⎜⎜⎜⎜⎝

c�
t=1

⎛⎜⎜⎜⎜⎜⎝

1 −
�

1 ⩽ l1 < ⋯

< lb ⩽ ot

�
1 −

b�
q=1

𝜏lq

� 1

Cbot

⎞⎟⎟⎟⎟⎟⎠

1

b ⎞⎟⎟⎟⎟⎟⎟⎠

1

c

.
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That is 𝜌 ⩾ �̈� and 𝜏 ⩽ 𝜏 , then 𝜃 ⩾ �̈� . Therefore,

Proposition 7 (Boundedness) For given IFNs 
�l = (�l, �l)(l = 1, 2,… , f )  ,  �− = minl{�l}  a n d 
�+ = maxl{�l} , l = 1, 2,… , f , then

Proof Owing to �− = minl{�l} ⩽ �l, and Propositions  4 
and 6, we have

and

1 −

⎛⎜⎜⎜⎜⎜⎜⎝

c�
t=1

⎛⎜⎜⎜⎜⎜⎝

1 −
�

1 ⩽ l1 < ⋯

< lb ⩽ ot

�
1 −

b�
q=1

�
1 − 𝜌lq

�� 1

Cbot

⎞⎟⎟⎟⎟⎟⎠

1

b ⎞⎟⎟⎟⎟⎟⎟⎠

1

c

⩾ 1 −

⎛⎜⎜⎜⎜⎜⎜⎝

c�
t=1

⎛⎜⎜⎜⎜⎜⎝

1 −
�

1 ⩽ l1 < ⋯

< lb ⩽ ot

�
1 −

b�
q=1

�
1 − �̈�lq

�� 1

Cbot

⎞⎟⎟⎟⎟⎟⎠

1

b ⎞⎟⎟⎟⎟⎟⎟⎠

1

c

,

⎛⎜⎜⎜⎜⎜⎜⎝

c�
t=1

⎛⎜⎜⎜⎜⎜⎝

1 −
�

1 ⩽ l1 < ⋯

< lb ⩽ ot

�
1 −

b�
q=1

𝜏lq

� 1

Cbot

⎞⎟⎟⎟⎟⎟⎠

1

b ⎞⎟⎟⎟⎟⎟⎟⎠

1

c

⩽

⎛⎜⎜⎜⎜⎜⎜⎝

c�
t=1

⎛⎜⎜⎜⎜⎜⎝

1 −
�

1 ⩽ l1 < ⋯

< lb ⩽ ot

�
1 −

b�
q=1

𝜏lq

� 1

Cbot

⎞⎟⎟⎟⎟⎟⎠

1

b ⎞⎟⎟⎟⎟⎟⎟⎠

1

c

.

IFPDMSM
(b)(𝜃1, 𝜃2,… , 𝜃f )

⩾ IFPDMSM
(b)(�̈�1, �̈�2,… , �̈�f ).

�− ⩽ IFPDMSM
(b)(�1, �2,… , �f ) ⩽ �+.

�− = IFPDMSM
(b)(�−, �−,… , �−)

⩽ IFPDMSM
(b)(�1, �2,… , �f )

IFPDMSM
(b)(�1, �2,… , �f )

⩽ IFPDMSM
(b)(�+, �+,… , �+) = �+.

Thus, we have �− ⩽ IFPDMSM
(b)(�1, �2,… , �f ) ⩽ �+.

Furthermore, we study the impact of b for the IFPDMSM 
operator and an example.

Lemma 1 [47] Suppose yl > 0, zl > 0(l = 1, 2,… , f ) meet-
ing 

∑f

l=1
zl = 1, then 

∏f

l=1
y
zl
l
⩽
∑f

l=1
ylzl.

Theorem 4 Let �l = (�l, �l)(l = 1, 2,… , f ) be a group of 
IFNs, and b = 1, 2,… , mint{ot}. The IFPDMSM operator 
monotonically increases with respect to the parameter b.

Proof Based on Theorem 3, we have

Assume that

Next, we prove function G(b) monotonically increases as 
b increases. Based on the dual Maclaurin inequality and 
Lemma 1, we have

IFPDMSM
(b)(𝜃1, 𝜃2,… , 𝜃f )

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 −

⎛
⎜⎜⎜⎜⎜⎜⎝

c�
t=1

⎛
⎜⎜⎜⎜⎜⎝

1 −
�

1 ⩽ l1 < ⋯

< lb ⩽ ot

�
1 −

b�
q=1

�
1 − 𝜌lq

�� 1

Cbot

⎞
⎟⎟⎟⎟⎟⎠

1

b ⎞⎟⎟⎟⎟⎟⎟⎠

1

c

,

⎛⎜⎜⎜⎜⎜⎜⎝

c�
t=1

⎛⎜⎜⎜⎜⎜⎝

1 −
�

1 ⩽ l1 < ⋯

< lb ⩽ ot

�
1 −

b�
q=1

𝜏lq

� 1

Cbot

⎞⎟⎟⎟⎟⎟⎠

1

b ⎞⎟⎟⎟⎟⎟⎟⎠

1

c ⎞⎟⎟⎟⎟⎟⎟⎟⎠

.

G(b) = 1 −

⎛⎜⎜⎜⎜⎜⎜⎝

c�
t=1

⎛⎜⎜⎜⎜⎜⎝

1 −
�

1 ⩽ l1 < ⋯

< lb ⩽ ot

�
1 −

b�
q=1

�
1 − 𝜌lq

�� 1

Cbot

⎞⎟⎟⎟⎟⎟⎠

1

b ⎞⎟⎟⎟⎟⎟⎟⎠

1

c

,

H(b) =

⎛⎜⎜⎜⎜⎜⎜⎝

c�
t=1

⎛⎜⎜⎜⎜⎜⎝

1 −
�

1 ⩽ l1 < ⋯

< lb ⩽ ot

�
1 −

b�
q=1

𝜏lq

� 1

Cbot

⎞⎟⎟⎟⎟⎟⎠

1

b ⎞⎟⎟⎟⎟⎟⎟⎠

1

c

.
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�
1⩽l1<⋯<lb⩽ot

�
1 −

b�
q=1

�
1 − 𝜌lq

�� 1

Cbot

⩽
�

1⩽l1<⋯<lb⩽ot

1 −
b∏

q=1

�
1 − 𝜌lq

�

Cb
ot

⇒ 1 −
�

1 ⩽ l1 < ⋯

< lb ⩽ ot

�
1 −

b�
q=1

�
1 − 𝜌lq

�� 1

Cbot

⩾ 1 −
�

1 ⩽ l1 < ⋯

< lb ⩽ ot

1 −
b∏

q=1

�
1 − 𝜌lq

�

Cb
ot

=
�

1 ⩽ l1 < ⋯

< lb ⩽ ot

b∏
q=1

�
1 − 𝜌lq

�

Cb
ot

⇒
1

b
ln

⎛⎜⎜⎜⎜⎜⎝

1 −
�

1 ⩽ l1 < ⋯

< lb ⩽ ot

�
1 −

b�
q=1

�
1 − 𝜌lq

�� 1

Cbot

⎞⎟⎟⎟⎟⎟⎠

⩾
1

b
ln

⎛⎜⎜⎜⎜⎜⎝

�

1 ⩽ l1 <

< lb ⩽ ot

b∏
q=1

�
1 − 𝜌lq

�

Cb
ot

⎞⎟⎟⎟⎟⎟⎠

⇒

⎛⎜⎜⎜⎜⎜⎝

1 −
�

1 ⩽ l1 < ⋯

< lb ⩽ ot

�
1 −

b�
q=1

�
1 − 𝜌lq

�� 1

Cbot

⎞⎟⎟⎟⎟⎟⎠

1

b

⩾

⎛⎜⎜⎜⎜⎜⎝

�

1 ⩽ l1 < ⋯

< lb ⩽ ot

b∏
q=1

�
1 − 𝜌lq

�

Cb
ot

⎞⎟⎟⎟⎟⎟⎠

1

b

⇒

c�
t=1

⎛
⎜⎜⎜⎜⎜⎝

1 −
�

1 ⩽ l1 < ⋯

< lb ⩽ ot

�
1 −

b�
q=1

�
1 − 𝜌lq

�� 1

Cbot

⎞
⎟⎟⎟⎟⎟⎠

1

b

⩾

c�
t=1

⎛⎜⎜⎜⎜⎜⎝

�

1 ⩽ l1 < ⋯

< lb ⩽ ot

b∏
q=1

�
1 − 𝜌lq

�

Cb
ot

⎞⎟⎟⎟⎟⎟⎠

1

b

.

Therefore,

In the following, we take the proof by contradiction meth-
odology. Assume G(b) is monotonically decreasing as b 
increases, then G(mint{ot}) < ⋯ < G(2) < G(1) and we 
can have

In addition, we assume that ot = o, then we can have

G(b) = 1 −

⎛
⎜⎜⎜⎜⎜⎜⎝

c�
t=1

⎛
⎜⎜⎜⎜⎜⎝

1 −
�

1 ⩽ l1 < ⋯

< lb ⩽ ot

�
1 −

b�
q=1

�
1 − 𝜌lq

�� 1

Cbot

⎞
⎟⎟⎟⎟⎟⎠

1

b ⎞⎟⎟⎟⎟⎟⎟⎠

1

c

⩽ 1 −

⎛⎜⎜⎜⎜⎜⎝

c�
t=1

⎛⎜⎜⎜⎜⎝

�
1⩽l1<⋯<lb⩽ot

b∏
q=1

�
1 − 𝜌lq

�

Cb
ot

⎞⎟⎟⎟⎟⎠

1

b ⎞⎟⎟⎟⎟⎟⎠

1

c

.

G(1) ⩽ 1 −

⎛⎜⎜⎜⎜⎜⎝

c�
t=1

⎛⎜⎜⎜⎜⎜⎝

�

1 ⩽ l1 < ⋯

< lb ⩽ ot

1∏
q=1

�
1 − 𝜌lq

�

C1
ot

⎞⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎠

1

c

= 1 −

⎛⎜⎜⎜⎜⎝

c�
t=1

ot∑
lq=1

�
1 − 𝜌lq

�

ot

⎞⎟⎟⎟⎟⎠

1

c

.
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According to the assumption G(o) < G(1) , we can get

Obviously, 
�∏o

lq=1

�
1 − 𝜌lq

�� 1

o

>

∑o

lq=1

�
1−𝜌lq

�

o
 is contradic-

tion to the Lemma 1. Thus, as the b increases, function G(b) 
is monotonically increasing. In the same way, we can prove 
function H(b) is monotonically decreasing as the b increases.

In accordance with the previous analysis, we can have

Therefore, the IFPDMSM operator monotonically increases 
with respect to the parameter b.

Theorem 5 Let �l = (�l, �l)(l = 1, 2,… , f ) be a group of 
IFNs, and b = 1, 2,… , mint{ot}. Then

G(min
t
{ot}) = G(o) = 1 −

⎛
⎜⎜⎜⎜⎜⎜⎝

c�
t=1

⎛
⎜⎜⎜⎜⎜⎝

1 −
�

1 ⩽ l1 < ⋯

< lb ⩽ o

�
1 −

o�
q=1

�
1 − 𝜌lq

�� 1

Coo

⎞
⎟⎟⎟⎟⎟⎠

1

o ⎞⎟⎟⎟⎟⎟⎟⎠

1

c

= 1 −

⎛
⎜⎜⎝

c�
t=1

�
o�

q=1

�
1 − 𝜌lq

�� 1

o ⎞⎟⎟⎠

1

c

.

G(o) = 1 −

⎛
⎜⎜⎜⎝

c�
t=1

⎛
⎜⎜⎝

o�
lq=1

�
1 − 𝜌lq

�⎞⎟⎟⎠

1

o ⎞⎟⎟⎟⎠

1

c

< G(1)

⩽ 1 −

⎛⎜⎜⎜⎜⎝

c�
t=1

ot∑
lq=1

�
1 − 𝜌lq

�

ot

⎞⎟⎟⎟⎟⎠

1

c

= 1 −

⎛⎜⎜⎜⎜⎝

c�
t=1

o∑
lq=1

�
1 − 𝜌lq

�

o

⎞⎟⎟⎟⎟⎠

1

c

⇒

⎛⎜⎜⎝

o�
lq=1

�
1 − 𝜌lq

�⎞⎟⎟⎠

1

o

>

o∑
lq=1

�
1 − 𝜌lq

�

o
.

IFPDMSM
(b)(𝜃1, 𝜃2,… , 𝜃f )

< IFPDMSM
(b+1)(𝜃1, 𝜃2,… , 𝜃f ).

and

E x a m p l e  1  L e t 
�1 = (0.5, 0.3), �2 = (0.4, 0.4), �3 = (0.6, 0.2), �4 = (0.7, 0.2) 
and �5 = (0.3, 0.4) be five IFNs. Suppose these five IFNs 
are partitioned into two groups P1 = {�1, �3, �5} and 
P2 = {�2, �4} . Here we use the IFPDMSM to aggregate these 
five IFNs. In general, we let b = 2 , then

Similarly,

min{IFPDMSM
(b)(�1, �2,… , �f )}

= IFPDMSM
(1)(�1, �2,… , �f )

=

⎛
⎜⎜⎜⎝
1 −

⎛
⎜⎜⎝

c�
t=1

⎛
⎜⎜⎝
1 −

ot�
lq=1

�
�lq

� 1

ot

⎞
⎟⎟⎠

⎞
⎟⎟⎠

1

c

,

⎛⎜⎜⎝

c�
t=1

⎛⎜⎜⎝
1 −

ot�
lq=1

�
1 − �lq

� 1

ot

⎞⎟⎟⎠

⎞⎟⎟⎠

1

c ⎞⎟⎟⎟⎠

max{IFPDMSM
(b)(�1, �2,… , �f )}

= IFPDMSM
(min

t
{ot})

(�1, �2,… , �f ).

⎛⎜⎜⎜⎝

2�
t=1

⎛⎜⎜⎝
1 −

�
1⩽l1<l2⩽ot

�
1 −

2�
q=1

𝜏lq

� 1

C2ot
⎞⎟⎟⎠

1

2 ⎞⎟⎟⎟⎠

1

2

=

��
1 − (1 − 0.3 × 0.2)

1

3 × (1 − 0.3 × 0.4)
1

3

× (1 − 0.2 × 0.4)
1

3

� 1

2

× (1 − (1 − 0.4 × 0.2))
1

2

� 1

2

= 0.2888.
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T h e r e f o r e , 
IFPDMSM

(2)(�1, �2, �3, �4, �5) = (0.5265, 0.2888).

4.2  The WIFPDMSM Operator

In Definition 9, the IFPDMSM operator does not view the 
importance of each input element. But, input elements 
always have diverse significance in practical DMPs, so we 
should consider that the weight of elements may be different. 
Following, We introduce the WIFPDMSM operator for IFNs 
which considers the importance of elements.

Definition 10 For given IFNs �l = (�l, �l)(l = 1, 2,… , f ) 
partitioned into c distinct partitions P1,P2,… ,Pc and the 

1 −

⎛
⎜⎜⎜⎜⎜⎜⎝

2�
t=1

⎛
⎜⎜⎜⎜⎜⎝

1 −
�

1 ⩽ l1
< l2 ⩽ ot

�
1 −

2�
q=1

�
1 − 𝜌lq

�� 1

C2ot

⎞
⎟⎟⎟⎟⎟⎠

1

2 ⎞⎟⎟⎟⎟⎟⎟⎠

1

2

= 0.5265.

weight of IFN �l(l = 1, 2,… , f ) is �l , meeting �l ∈ [0, 1] 
and 

∑f

l=1
�l = 1 , b = 1, 2,… , ot , ot signifies the number 

of attributes in Pt . Then the WIFPDMSM operator of the 
�l(l = 1, 2,… , f ) is defined as:

where (l1, l2,… , lb) contains all the b-tuple combination of 
(1, 2,… , ot) and Cb

ot
=

ot!

b!(ot−b)!
.

Theorem 6 For given IFNs �l = (�l, �l)(l = 1, 2,… , f ), the 
weight of IFN �l(l = 1, 2,… , f ) is �l, meeting �l ∈ [0, 1] and ∑f

l=1
�l = 1. The aggregated result of formula(9) is too an 

IFN, listed:

(9)

WIFPDMSM
(b)(𝜃1, 𝜃2,… , 𝜃f )

=
1

c

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c

⊕
t=1

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⊗

1 ⩽ l1 < ⋯

< lb ⩽ ot

�
b

⊕
q=1

�
𝜔lq

𝜃lq

�� 1

Cbot

b

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(10)

WIFPDMSM
(b)(𝜃1, 𝜃2,… , 𝜃f )

=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 −

⎛⎜⎜⎜⎜⎜⎜⎝

c�
t=1

⎛⎜⎜⎜⎜⎜⎝

1 −
�

1 ⩽ l1 < ⋯

< lb ⩽ ot

�
1 −

b�
q=1

�
1 − 𝜌lq

�𝜔lq

� 1

Cbot

⎞⎟⎟⎟⎟⎟⎠

1

b ⎞⎟⎟⎟⎟⎟⎟⎠

1

c

,

⎛⎜⎜⎜⎜⎜⎜⎝

c�
t=1

⎛⎜⎜⎜⎜⎜⎝

1 −
�

1 ⩽ l1 < ⋯

< lb ⩽ ot

�
1 −

b�
q=1

𝜏
𝜔lq

lq

� 1

Cbot

⎞⎟⎟⎟⎟⎟⎠

1

b ⎞⎟⎟⎟⎟⎟⎟⎠

1

c ⎞⎟⎟⎟⎟⎟⎟⎟⎠

.

Table 1  Decision matrix Λ 
given by the decision maker

Z1 Z2 Z3 Z4 Z5 Z6

Y1 (0.5,0.3) (0.6,0.3) (0.6,0.2) (0.4,0.4) (0.6,0.3) (0.4,0.3)
Y2 (0.6,0.3) (0.3,0.4) (0.7,0.2) (0.6,0.3) (0.5,0.2) (0.6,0.4)
Y3 (0.6,0.3) (0.5,0.2) (0.4,0.4) (0.5,0.3) (0.4,0.2) (0.3,0.3)
Y4 (0.6,0.2) (0.7,0.3) (0.6,0.2) (0.6,0.3) (0.8,0.2) (0.7,0.2)
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Likewise, we can analyze the WIFPDMSM operator has 
some desirable properties.

Proposition 8 (Commutativity) For given IFNs �l = (�l, �l) 
and �̈�l = (�̈�l, 𝜏l) (l = 1, 2,… , f ). Suppose �̈�l = (�̈�l, 𝜏l) is any 
permutation of �l = (�l, �l) for all l, then

Proposition 9 (Monotonicity) For given IFNs �l = (�l, �l) 
and �̈�l = (�̈�l, 𝜏l) (l = 1, 2,… , f ), satisfying the condition 
𝜌l ⩾ �̈�l, 𝜏l ⩽ 𝜏l, then

Furthermore, we discuss the effect of parameter b about 
the WIFPDMSM operator and particular case.

Theorem 7 Let �l = (�l, �l)(l = 1, 2,… , f ) be a collection 
of IFNs, b = 1, 2,… , mint{ot}. The WIFPDMSM operator 
monotonically increases with respect to the b.

Theorem 8 Let �l = (�l, �l)(l = 1, 2,… , f ) be a set of IFNs, 
b = 1, 2,… , mint{ot}. Then

and

when c = 1, we can get

WIFPDMSM
(b)(𝜃1, 𝜃2,… , 𝜃f )

= WIFPDMSM
(b)(�̈�1, �̈�2,… , �̈�f ).

WIFPDMSM
(b)(𝜃1, 𝜃2,… , 𝜃f )

⩾ WIFPDMSM
(b)(�̈�1, �̈�2,… , �̈�f ).

min{WIFPDMSM
(b)(�1, �2,… , �f )}

= WIFPDMSM
(1)(�1, �2,… , �f )

=

⎛⎜⎜⎜⎝
1 −

⎛⎜⎜⎝

c�
t=1

⎛⎜⎜⎝
1 −

ot�
lq=1

�
1 −

�
1 − �lq

��lq
� 1

ot

⎞⎟⎟⎠

⎞⎟⎟⎠

1

c

,

⎛⎜⎜⎝

c�
t=1

⎛⎜⎜⎝
1 −

ot�
lq=1

�
1 − �

�lq

lq

� 1

ot

⎞⎟⎟⎠

⎞⎟⎟⎠

1

c ⎞⎟⎟⎟⎠

max{WIFPDMSM
(b)(�1, �2,… , �f )}

= WIFPDMSM
(min

t
{ot})

(�1, �2,… , �f ).

Table 2  Ranking results by our developed method for parameter

Parameter b, c Score value S(�̈�l)(l = 1, 2, 3, 4) Sorting

b = 1, c = 2 S(�̈�1) = −0.706, S(�̈�2) = −0.707, Y4 ≻ Y1 ≻ Y2 ≻ Y3

S(�̈�3) = −0.727, S(�̈�4) = −0.625

b = 2, c = 2 S(�̈�1) = −0.697, S(�̈�2) = −0.692, Y4 ≻ Y2 ≻ Y1 ≻ Y3

S(�̈�3) = −0.717, S(�̈�4) = −0.616

b = 3, c = 2 S(�̈�1) = −0.694, S(�̈�2) = −0.687, Y4 ≻ Y2 ≻ Y1 ≻ Y3

S(�̈�3) = −0.712, S(�̈�4) = −0.613

b = 1, c = 1 S(�̈�1) = −0.720, S(�̈�2) = −0.710, Y4 ≻ Y2 ≻ Y1 ≻ Y3

S(�̈�3) = −0.730, S(�̈�4) = −0.635

b = 2, c = 1 S(�̈�1) = −0.704, S(�̈�2) = −0.697, Y4 ≻ Y2 ≻ Y1 ≻ Y3

S(�̈�3) = −0.720, S(�̈�4) = −0.622

b = 3, c = 1 S(�̈�1) = −0.070, S(�̈�2) = −0.053, Y4 ≻ Y2 ≻ Y1 ≻ Y3

S(�̈�3) = −0.093, S(�̈�4) = −0.050

Fig. 1  Ranking results by our developed method for c = 2, b = 1, 2, 3

Fig. 2  Ranking results by our developed method for c = 1, b = 1, 2, 3
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WIFPDMSM
(b)(𝜃1, 𝜃2,… , 𝜃f )

=

⎛⎜⎜⎜⎜⎜⎜⎝

1 −

⎛⎜⎜⎜⎜⎜⎝

1 −
�

1 ⩽ l1 < ⋯

< lb ⩽ f

�
1 −

b�
q=1

�
1 − 𝜌lq

�𝜔lq

� 1

Cb
f

⎞⎟⎟⎟⎟⎟⎠

1

b

,

⎛
⎜⎜⎝
1 −

�
1⩽l1<⋯<lb⩽f

�
1 −

b�
q=1

𝜏
𝜔lq

lq

� 1

Cb
f
⎞
⎟⎟⎠

1

b ⎞⎟⎟⎟⎠
.

5  MADM Approach Based on

Following, we will apply an established MADM methodol-
ogy to solve real decision-making problem. Suppose 
Y = {Y1, Y2,… , Yn} be  a  g roup of  a l ternat ives , 
Z = {Z1, Z2,… , Zf } be  a  set  of  a t t r ibutes ,  le t 
� = (�1,�2,… ,�f ) is weight vector of attributes and ∑f

l=1
�l = 1 , 0 ⩽ �l ⩽ 1(l = 1, 2,… , f ) . Decision maker can 

use the IFNs to evaluate the alternative Yl with respect to 
attribute Zq and represent it as �lq = (�lq , �lq ) , where 
�lq , �lq ∈ [0, 1] and 0 ⩽ �lq + �lq ⩽ 1 , we can get a decision 
matrix Λ = [�lq]n×f  , 1 ⩽ l ⩽ n, 1 ⩽ q ⩽ f  . Suppose that 
Z = {Z1, Z2,… , Zf } is partitioned into c distinct groups 
P1,P2,… ,Pc , there has relationship between attributes of 
the identical group and does not have relationship between 
attributes of disparate groups. The steps of the propounded 
method are listed:

Step 1 In DMPs, attributes can be cut into two types, one 
is benefit attribute, and the other is cost attribute. In order to 
eliminate the effect of different attribute types, we can trans-
form the decision matrix Λ = [�lq]n×f  into the normalization 
matrix Λ̈ = [�̈�lq]n×f  , 1 ⩽ l ⩽ n, 1 ⩽ q ⩽ f  . We use the follow-
ing formula to obtain the normalization matrix Λ̈ = [�̈�lq]n×f

�̈�lq = (�̈�lq , 𝜏lq ) =

{
(𝜌lq , 𝜏lq ), for the benefit attributes

(𝜏lq , 𝜌lq ), for the cost attributes

Table 3  New decision matrix Λ� 
got by the decision maker

Z1 Z2 Z3 Z4 Z5 Z6

Y1 (0.5, 0.3) (0.6, 0.3) (0.6, 0.2) (0.4, 0.4) (0.6, 0.3) (0.4, 0.3)
Y2 (0.6, 0.3) (0.3, 0.4) (0.7, 0.2) (0.6, 0.3) (0.5, 0.2) (0.6, 0.4)
Y

′

3
(0.5, 0.4) (0.3, 0.3) (0.3, 0.5) (0.4, 0.4) (0.3, 0.3) (0.2, 0.5)

Y4 (0.6, 0.2) (0.7, 0.3) (0.6, 0.2) (0.6, 0.3) (0.8, 0.2) (0.7, 0.2)

Table 4  Sorting of diverse 
methodologies of Example 2

Methodologies Score values Sorting

Xu and Yager [3] S(�̈�1) = 0.220, S(�̈�2) = 0.214, Y4 ≻ Y1 ≻ Y2 ≻ Y3

S(�̈�3) = 0.144, S(�̈�4) = 0.425

Qin and Liu (b = 2) [19] S(�̈�1) = −0.701, S(�̈�2) = −0.694, Y4 ≻ Y2 ≻ Y1 ≻ Y3

S(�̈�3) = −0.718, S(�̈�4) = −0.619

Xia et al. (q = p = 1) [25] S(�̈�1) = 0.887, S(�̈�2) = 0.890, Y4 ≻ Y2 ≻ Y1 ≻ Y3

S(�̈�3) = 0.873, S(�̈�4) = 0.923

Shi and Xiao* (b = 2) [40] S(�̈�1) = 0.222, S(�̈�2) = 0.248, Y4 ≻ Y2 ≻ Y1 ≻ Y3

S(�̈�3) = 0.164, S(�̈�4) = 0.433

Shi and Xiao** (b = 2) [40] S(�̈�1) = 0.219, S(�̈�2) = 0.246, Y4 ≻ Y2 ≻ Y1 ≻ Y3

S(�̈�3) = 0.163, S(�̈�4) = 0.434

The developed approach (b = 2, c = 2) S(�̈�1) = −0.697, S(�̈�2) = −0.692, Y4 ≻ Y2 ≻ Y1 ≻ Y3

S(�̈�3) = −0.717, S(�̈�4) = −0.616

Fig. 3  Sorting of diverse methodologies of Example 2
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where 1 ⩽ l ⩽ n, 1 ⩽ q ⩽ f .
Step 2 Use the proposed WIFPDMSM operator to get

where �̈�l is the preference value of alternative Yl , where 
l = 1, 2,… , n.

Step 3 Compute values S(�̈�l) and H(�̈�l) of the aggregated 
result �̈�l(l = 1, 2,… , n).

Step 4 According to the comparative way, making a com-
paring between the computed values S(�̈�1), S(�̈�2),… , S(�̈�n) 
and accuracy values H(�̈�1),H(�̈�2), … ,H(�̈�n) , then ranking 
all alternatives to choose the greatest one(s).

5.1  Problem Description

Example 2 In the north, there are often droughts in summer, 
which has some effect on the crops and causes the loss of 
many farmers. In order to cut the loss of farmers as soon as 
possible, the local government asked a company to build a 
dam. After the company goes through many surveys , there 
are four possible locations Y1, Y2, Y3, Y4 and decision maker 
assesses the four possible locations from six attributes, i.e., 
the cost of location (Z1) , the size of location (Z2) , the sur-
rounding environment (Z3) , the labor cost (Z4) , the material 
cost (Z5) and the transportation condition (Z6) . Let the 
weights of attr ibutes Z1, Z2, Z3, Z4,Z5 and Z6 be 
0.2, 0.2, 0.2, 0.1, 0.1 and 0.2, respectively, the weight vector 
is (0.2, 0.2, 0.2, 0.1, 0.1, 0.2)T . Furthermore, suppose that the 
attributes Z1, Z2, Z3, Z4, Z5 and Z6 are cut into two groups P1 
and P2 , where P1 = {Z1, Z4, Z5} and P2 = {Z2, Z3, Z6} . The 
decision maker evaluates the location Yl(l = 1, 2, 3, 4) with 
respect to the attribute Zq(q = 1, 2, 3, 4, 5, 6) by the IFNs. 
Therefore, the decision matrix Λ = [�lq]4×6 can be obtained, 
where �lq = (�lq , �lq ) , 1 ⩽ l ⩽ 4, 1 ⩽ q ⩽ 6 , which is shown 
as follows (Table 1).

(11)�̈�l = (�̈�l, 𝜏l) = WIFPDMSM
(b)(�̈�l1 , �̈�l2 ,… , �̈�lf )

5.2  Decision‑Making Process About the Designed 
Method

Step 1Standardize the matrix Λ . Because total attributes are 
beneficial, standardization does not need.

Step  2  Aggrega te  a l l  pe r fo r mance  va lue 
�̈�lq(1 ⩽ l ⩽ 4, 1 ⩽ q ⩽ 6) . And founded on Eq. (11), we get 
the aggregated result �̈�l for each alternative Yl(l = 1, 2, 3, 4) . 
(Without loss of generality, here we take b = 2, c = 2)

Step 3 Compute value S(�̈�l) and H(�̈�l) of the overall prefer-
ence value �̈�l(l = 1, 2, 3, 4) , presented below:

Step 4 In accordance with the Step 3, the sorting result is 
Y4 ≻ Y2 ≻ Y1 ≻ Y3 . Therefore, the greatest alternative is Y4.

Furthermore, we can use the parameter b to describe the 
preference of decision maker in real situations. So, decision 
maker need to choose the suitable value based on preference. 
The decision maker is either optimistic or pessimistic when 
values of the parameter b are different [44]. We discuss the 
effect of the different value of the parameter b about the 
developed method. In Table 2 and Figs. 1 and 2, we can 
obtain the results by the propounded method.

From Table 2 and Figs. 1 and 2., we can get: with the 
parameter b changing based on the subjective preference 
of decision maker, the sorting results are slightly different, 

�̈�1 = (0.116, 0.813),

�̈�2 = (0.127, 0.820),

�̈�3 = (0.095, 0.811),

�̈�4 = (0.167, 0.783).

S(�̈�1) = −0.697, S(�̈�2) = −0.692,

S(�̈�3) = −0.717, S(�̈�4) = −0.616,

H(�̈�1) = 0.929,H(�̈�2) = 0.947,

H(�̈�3) = 0.906,H(�̈�4) = 0.950.

Table 5  The characteristics of the distinct approaches

Approaches Depict fuzzy informa-
tion using NMD

Capture relationship for each two 
attributes of the identical group

Capture relationship for attrib-
utes of the identical group

Consider the 
parts for the 
attributes

Xu and Yager [3] Yes No No No
Qin and Liu [19] Yes Yes Yes No
Xia et al. [25] Yes Yes No No
Shi and Xiao* [40] Yes Yes Yes No
Shi and Xiao** [40] Yes Yes Yes No
The developed approach Yes Yes Yes Yes
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which denotes that the WIFPDMSM operator can reflect the 
preference of decision maker, but the optimal alternative is 
all Y4 . And we can get score value increases based on the 
developed operator when the value of b increases and the 
value of c is fixed.

5.3  Validation Test

We examine the effectiveness of the developed approach 
through Wang and Triantaphylou introduced three test cri-
terion, the specific content of three test criterion is in [48].

Firstly, to verify the effectiveness of the developed meth-
odology by Test Criterion 1 [48]. The new decision matrix 
is got by decision maker through replacing alternative Y3 by 
a worse alternative Y ′

3
 , shown in Table 3.

We use the established methodology to resolve the new 
decision-making problem. The outcome of each alternative 
is calculated as

So, the score value of each alternative is computed as

Founded on the above discussion, the sorting is 
Y4 ≻ Y2 ≻ Y1 ≻ Y3 , the optimal alternative is still alterna-
tive Y4 in the new decision-making problem, which is similar 
with the result obtained by the original problem. So the opti-
mal alternative is not changed when the non-optimal alterna-
tive is replaced with another worse alternative.

Next, we examine the effectiveness of our presented 
methodology utilizing Test Criterion 2,3 [48]. Firstly, the 
initial decision issue decomposes as the three smaller prob-
lems {Y1, Y2, Y4}, {Y1, Y3, Y4}, {Y2, Y3, Y4}. Then, we use the 
developed method in this paper to solve the three smaller 
problems, respectively, the corresponding sorting results 
are obtained as Y4 ≻ Y2 ≻ Y1, Y4 ≻ Y1 ≻ Y3, Y4 ≻ Y2 ≻ Y3. 
Accordingly, the combination ranking is Y4 ≻ Y2 ≻ Y1 ≻ Y3 , 
which is identical with sorting of the initial decision issue 
and meets the transitivity property. Thus, the proposed 
approach satisfies the Test criterion 2 and Test criterion 3.

5.4  Comparison Analysis

In the following, in order to confirm the validity of the pro-
pounded methodology, we compare the presented method-
ology with other methods, such as Xu and Yager’s MADM 
approach [3] using the IFWG operator, Qin and Liu’s 
MADM methodology [19] utilizing the WIFMSM opera-
tor, Xia et al.’s MADM approach [25] using the WIFGBM 

�̈�1 = (0.116, 0.813), �̈�2 = (0.127, 0.820),

�̈�3 = (0.064, 0.860), �̈�4 = (0.167, 0.783).

S(�̈�1) = −0.697, S(�̈�2) = −0.692,

S(�̈�3) = −0.796, S(�̈�4) = −0.616.

operator, Shi and Xiao’s MADM method [40] utilizing the 
IFRWDMSM and the IFRWMSM operator based on Exam-
ple 2, and the result of each method is shown in Table 4 
and Fig. 3 (* denotes the method [40] grounded on the 
IFRWDMSM operator, ** denotes the method [40] based 
on the IFRWMSM operator). In Table 4 and Fig. 3., we can 
get that the decision outcomes through applying different 
approaches have subtle difference. But, the most satisfied 
option is all Y4 . Furthermore, we analyze why the developed 
method outperforms other methods, listed as follows:

(1) MADM methodology utilizes the WIFMSM operator 
propounded by Qin and Liu [19], MADM method uti-
lizes the WIFGBM operator established by Xia et al. 
[25], MADM approach utilizes the IFRWDMSM and 
the IFRWMSM operator introduced by Shi and Xiao 
[40], but our developed method uses the propounded 
WIFPDMSM operator. From Table 4, we can see that 
the sortings of Qin and Liu’s MADM methodology 
[19], Xia et al.’s MADM method [25] and Shi and 
Xiao’s MADM approach [40] are same to the designed 
MADM method based on the WIFPDMSM operator, 
namely Y4 ≻ Y2 ≻ Y1 ≻ Y3 . The proposed method con-
siders the interrelationship betwixt attributes in the 
identical group; there are other methods capture corre-
lation between attributes except the Xia et al.’s MADM 
method [25] which captures the correlation for any two 
attributes. In Example 2, attributes Z1, Z4 and Z5 are 
related to each other and attributes Z2, Z3 and Z6 are so 
too, but there is no interrelationship between the groups 
{Z1, Z4, Z5} and {Z2, Z3, Z6} . Obviously, our method 
based on the introduced WIFPDMSM operator effec-
tively settles Example 2, which views the relationship 
betwixt any two members of the identical set, it averts 
the influence of irrelevant members. Qin and Liu’s 
MADM approach [19], Xia et al.’s MADM approach 
[25] and Shi and Xiao’s MADM approach [40] consider 
correlation between attributes, but these attributes are 
independent each other, for example among the attrib-
utes Z1 and Z2 , among the attributes Z1 and Z3 , among 
the attributes Z1 and Z6 , among the attributes Z4 and 
Z2 , among the attributes Z4 and Z3 , among the attrib-
utes Z4 and Z6 , among the attributes Z5 and Z2 , among 
the attributes Z5 and Z3 , among the attributes Z5 and 
Z6 . Thus, the developed methodology grounded on the 
WIFPDMSM operator contrasting with Qin and Liu’s 
MADM methodology [19], Xia et al.’s MADM method 
[25] and Shi and Xiao’s MADM method [40] is more 
general.

(2) The sorting of MADM approach [3] grounded on the 
IFWG operator introduced by Xu and Yager is slightly 
different from the sorting of the established method, 
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because Xu and Yager’s MADM approach uses ordi-
nary weighted geometric operator, which does not view 
relationship for the attributes. In Example 2, attributes 
Z1, Z4 and Z5 are relevant and attributes Z2, Z3 and Z6 are 
relevant. Therefore, the developed method successfully 
settles Example 2.

(3) In real DMPs, some attributes may be independent each 
other. Thus, the developed method is more suitably 
used in practical MADM issues by contrasting with 
the methods [19, 25, 40]. And in real DMPs, relation-
ship of attribute may be not ignored. Therefore, the 
designed method is more generally used in practical 
MADM issues by contrasting with the approach [3].

By previous analysis, the characteristics of the put forward 
methodology contrast with other methodologies, results are 
listed in Table 5 (* denotes the method [40] grounded on the 
IFRWDMSM operator, ** denotes the method [40] based on 
the IFRWMSM operator). From it, we can obtain: (1) Xu 
and Yager’s MADM approach [3] does not consider cor-
relation between attributes, Xia et al.’s MADM approach 
[25] capture relationship between any two attributes, Qin 
and Liu’s MADM methodology [19], Shi and Xiao’s MADM 
approach [40] and the propounded method consider inter-
relationship for the attributes; (2) the developed MADM 
method partitions overall attributes into some parts and the 
attributes are interrelated in the same part, but the attributes 
are not interrelated in different parts, while Qin and Liu’s 
MADM methodology [19], Xia et al.’s MADM methodology 
[25] and Shi and Xiao’s MADM approach [40] don’t split 
attributes into several portions; (3) the proposed approach 
and Xia et al.’s MADM approach [25] consider the interrela-
tion between attributes. Our proposed MADM method views 
interrelationship betwixt members of the identical parts, 
but Xia et al.’s MADM methodology [25] just finds relation 
betwixt any two members; (4) our introduced approach can 
surmount the disadvantage of Qin and Liu’s MADM meth-
odology [19], Xia et al.’s MADM approach [25] and Shi and 
Xiao’s MADM approach [40], where the four approaches 
do not cut the attributes into some partitions, and Xu and 
Yager’s MADM approach [3] does not capture the interre-
lationship between attributes. In conclusion, the propounded 
methodology is more ordinary and appropriate than other 
methods [3, 19, 25, 40].

6  Conclusion and Future Studies

The DMSM operator considers that attributes are existing 
multiple relation. We easily find that the generalizations of 
the DMSM just only consider the case that attributes are 

relevant. But, in real DMPs, there may be not relation-
ship between attributes So this paper has put forward the 
PDMSM operator. The purposed PDMSM operator has been 
expanded to the IFPDMSM and the WIFPDMSM opera-
tor for intuitionistic fuzzy environment. A few features and 
particular instances of the established operators have been 
analyzed. In accordance with the propounded WIFPDMSM 
operator, a new MADM approach has been designed for 
intuitionistic fuzzy environment. The established method 
breaks attributes into some portions, considering attributes 
of the identical portion are interrelated, while attributes of 
diverse portions are independent each other. We have applied 
an example to contrast our established MADM approach 
with the ones of [3, 19, 25, 40], comparative results show 
our introduced MADM methodology is more effective 
than Qin and Liu’s MADM methodology [19], Xia et al.’s 
MADM approach [25], Shi and Xiao’s MADM approach 
[40], and Xu and Yager’s MADM approach [3] in which 
does not capture the interrelationship between attributes to 
deal with MADM problems with intuitionistic fuzzy envi-
ronment. In our future study, the presented operators will 
be utilized to fuzzy linguistic, which is admissive to utilize 
multiple linguistic fuzzy sets in fuzzy linguistic, it has been 
wide utilized in DMPs because which allows decision mak-
ers to use linguistic fuzzy set to voice their preferences. And 
the introduced operators can be used in proportional hesitant 
fuzzy 2-tuple linguistic term set [49] to deal with DMPs. 
The study is in intuitionistic fuzzy environment, spherical 
fuzzy sets, Pythagorean fuzzy sets and q-rung orthopair 
fuzzy sets are extension of IFS, and the introduced operator 
PDMSM can be used for spherical fuzzy sets [50, 51] which 
introduced operations of spherical fuzzy sets and Pythago-
rean fuzzy sets [52] which introduced operators and q-rung 
orthopair fuzzy sets [53, 54] which introduced a new type 
and ranking of q-rung orthopair fuzzy sets to solve DMPS. 
The established operator PDMSM can combine with TOP-
SIS method [55, 56] which established similarity and dis-
tance of Complex Interval-Valued q-Rung Orthopair Fuzzy 
Sets and consider the unknown weights of the attributes to 
solve DMPS. These are future works.
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