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Abstract
In the preset study, we introduce the new class of convex fuzzy-interval-valued functions which is called log-h-convex 
fuzzy-interval-valued functions (log-h-convex FIVFs) by means of fuzzy order relation. We have also investigated some 
properties of log-h-convex FIVFs. Using this class, we present Jensen and Hermite–Hadamard inequalities (HH-inequalities). 
Moreover, some useful examples are presented to verify HH-inequalities for log-h-convex FIVFs. Several new and known 
special results are also discussed which can be viewed as an application of this concept.

Keywords  Fuzzy-interval-valued functions · Log-h-convex · Hermite–Hadamard inequality · Hemite–Hadamard–Fejér 
inequality · Jensen’s inequality

1  Introduction

The theory of convexity in pure and applied sciences has 
become a rich source of inspiration. In several branches of 
mathematical and engineering sciences, this theory had not 
only inspired new and profound results, but also offers a 
coherent and general basis for studying a wide range of prob-
lems. Many new notions of convexity have been developed 
and investigated for convex functions and convex sets. Vari-
ous integral inequalities for convex functions and their vari-
ant forms are being constructed using unique and imagina-
tive concepts and methodologies. Every function is convex 
if and only if it fulfills the HH-inequality, which is a type of 
integral inequality. Hermite presented this inequality, which 

was independently introduced by Hadamard, see [24, 25, 
31]. It can be expressed in the following way:

Let Ψ ∶ K → ℝ be a convex function on a convex set K 
and �, � ∈ K with � ≤ � . Then,

Fejér [21] introduced HH-Fejér inequality which is major 
generalizations of HH-inequality. It can be expressed as 
follows:

Let Ψ ∶ K → ℝ be a convex function on a convex set K 
and �, � ∈ K  with � ≤ � and ∇ ∶ [�, �] → ℝ,∇(�) ≥ 0, 
symmetric with respect to �+�

2
, then

If ∇(x) = 1 , then (1) is obtained from (2). Similarly, sev-
eral inequalities can be obtained from (2) by taking different 
values of symmetric function ∇(x).
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It is commonly known that log-convex functions play 
a significant role in convex theory since they allow us to 
derive more precise inequalities than convex functions.

Noor et al. [35] presented following HH-inequality for 
log-h-convex functions.

Let Ψ ∶ K → ℝ be a convex function on a convex set K 
and �, � ∈ K with � ≤ � . Then,

If Ψ is concave, then (3) is reversed.
Some writers recently studied the different classes of log-

convex and generalized log-convex functions see [16–20, 36, 
38, 43, 46] and the references therein.

One of these inequalities for convex functions is the 
Jensen inequality [1, 27], which may be written as follows.

Let �j ∈ [0, 1] , uj ∈ [�, �], (j = 1, 2, 3,… k, k ≥ 2) and Ψ 
be a convex function, then

with 
∑k

j=1
�j = 1. If Ψ is concave, then (4) is reversed.

Moore [32] explored the fundamental principles of inter-
val analysis, and Kulish and Miranker [29] looked into the 
fundamental properties and defined the partial order rela-
tion between intervals. Recently, Guo et al. [23] proposed 
the definition of log-h-convex interval-valued functions (in 
short, log-h-convex-IVF) and proved the following HH-
inequality for log-h-convex IVFs:

Let Ψ ∶ [�, 𝜈] ⊂ ℝ → �
+

C
 be a log-h-convex-IVF given 

by Ψ(�) =
[
Ψ∗(�),Ψ

∗(�)
]
 for all � ∈ [�, �] . If Ψ is Riemann 

integrable, then

We encourage readers to go more into the literature on 
generalized convex functions and HH-inequality, particu-
larly [2, 4–6, 8, 9, 13, 20, 40, 49–55] and the references 
therein.

The theory of fuzzy sets and systems has progressed in 
a variety of ways from its introduction five decades ago, as 
seen in [48]. As a result, it is useful in the study of a variety of 
problems in pure mathematics and applied sciences, such as 
operation research, computer science, management sciences, 
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.

artificial intelligence, control engineering, and decision sci-
ences [26, 28, 30].

The concepts of convexity and generalized convexity are 
very crucial in fuzzy optimization. The definition of fuzzy 
mapping was firstly introduced by Chang and Zadeh [10]. 
Since then, fuzzy mapping has been widely researched by 
several scholars. In 1992, Nanda and Kar [33] suggested an 
idea of convex fuzzy mapping, showing that a fuzzy map-
ping is convex if and only if a convex set is its epigraph. By 
considering the definition of ordering suggested by Goets-
chael-Voxman [22], Yan-Xu [47] addressed the convexity and 
quasicovexity of fuzzy mappings. The class of fuzzy preinvex 
functions and fuzzy log-preinvex was presented by Noor [34], 
and some properties of fuzzy preinvex fuzzy functions were 
obtained. For fuzzy mapping of one variable, Syau [41] intro-
duced the concepts of pseudoconvexity, invexity and pseu-
doinvexity by using the concept of differentiability and the 
results provided by Goetschel and Voxman [22]. A new notion 
of noncovex fuzzy mapping, which is known as B-vex fuzzy 
mapping, was proposed and explored by Syau [42]. The appli-
cation to convex fuzzy programing was considered by Wang 
and Wu [44] by defining the fuzzy subdifferential of a fuzzy 
mapping. Wu-Xu [45] presented the notions of fuzzy pseudo-
convex, fuzzy pseudoinvex, fuzzy invex and fuzzy preinvex 
mapping from “n” dimensional Euclidean space to the set of 
fuzzy numbers depending upon the Wang-Wu [44] definitions 
of differentiability of fuzzy mapping. Moreover, several prop-
erties were investigated. Refer to [3, 7, 22, 26, 28, 30] for more 
studies on convexity and nonconvexity for fuzzy mappings.

There are some integrals that deal with FIVFs, with 
FIVFs as the integrands. For example, Oseuna-Gomez et al. 
[37] and Costa et al. [12] built Jensen’s integral inequality 
for FIVFs. Costa and Floures used the same approach to 
show Minkowski and Beckenbach’s inequalities, where the 
integrands are FIVFs. Inspired by [11, 12, 23, 37], we gen-
eralize integral inequality (1), (2), and (3) by constructing 
fuzzy-interval integral inequality for convex fuzzy-interval-
valued functions (convex FIVF), where the integrands are 
convex FIVFs, utilizing this notion on fuzzy-interval space.

Motivated and inspired by the above literature, we 
consider new class of convex FIVFs, which is called log-
h-convex FIVFs. By using this class, we discuss integral ine-
qualities (2) and (3) by constructing fuzzy-interval integral 
inequalities, which are known as fuzzy-interval HH-integral 
inequality and HH-Fejér integral inequality. For log-h-con-
vex FIVFs, some Jensen inequalities are also introduced.

2 � Preliminaries

In this section, we recall some basic preliminary notions, 
definitions and results. With the help of these results, some 
new basic definitions and results are also discussed.
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We begin by recalling the basic notations and definitions. 
We define interval as,

where �∗ ≤ �∗.

We write len 
[
�∗,�

∗
]
= �∗ − �∗ . If len 

[
�∗,�

∗
]
= 0 , 

then 
[
�∗,�

∗
]
 is called degenerate. In this article, all inter-

vals will be non-degenerate intervals. The collection 
of all closed and bounded intervals of ℝ is denoted and 
defined as KC =

{
[�∗,�

∗] ∶ �∗,�
∗ ∈ ℝ and �∗ ≤ �∗

}
. 

If �∗ ≥ 0 , then 
[
�∗,�

∗
]
 is called positive interval. The 

set of all positive interval is denoted by K+

C
 and defined as 

K+

C
=
{[
�∗,�

∗
]
∶
[
�∗,�

∗
]
∈ KC and �∗ ≥ 0

}
.

We’ll now look at some of the properties of intervals 
using arithmetic operations. Let 

[
�∗, �

∗
]
,
[
�∗, �

∗
]
∈ �C and 

� ∈ ℝ , then we have

For 
[
�∗, �

∗
]
,
[
�∗, �

∗
]
∈ KC, the inclusion “ ⊆ ” is defined by [

𝜚∗, 𝜚
∗
]
⊆
[
�∗, �

∗
]
 if and only if �∗ ≤ �∗ , �∗ ≤ �∗.

Remark 2.1  The relation “ ≤I  ” defined on �C  by [
�∗, �

∗
] ≤I

[
�∗, �

∗
]
 if and only if �∗ ≤ �∗, �

∗ ≤ �∗, for all [
�∗, �

∗
]
,
[
�∗, �

∗
]
∈ �C, it is an order relation, see [29]. For 

given 
[
�∗, �

∗
]
,
[
�∗, �

∗
]
∈ �C, we say that 

[
�∗, �

∗
] ≤I

[
�∗, �

∗
]
 

if and only if �∗ ≤ �∗, �
∗ ≤ �∗ or 𝜚∗ ≤ �∗, 𝜚

∗ < �∗.

Moore [32] initially proposed the concept of Riemann 
integral for IVF, which is defined as follows:

Theorem 2.2  [32] If Ψ ∶ [�, 𝜈] ⊂ ℝ → �C is an IVF on 
such that Ψ(�) =

[
Ψ∗,Ψ

∗
]
. Then, Ψ is Riemann integrable 

over [�, �] if and only if Ψ∗ and Ψ∗ both are Riemann inte-
grable over [�, �] such that

Let ℝ be the set of real numbers. A mapping 
� ∶ ℝ → [0, 1] called the membership function distinguishes 
a fuzzy subset set � of ℝ . This representation is found to be 

[
�∗,�

∗
]
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}
,
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,
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∗, �∗�∗
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]

𝜌.
[
𝜚∗, 𝜚

∗
]
=

{ [
𝜌𝜚∗, 𝜌𝜚

∗
]

if 𝜌 ≥ 0,[
𝜌𝜚∗, 𝜌𝜚∗

]
if 𝜌 < 0.

(6)

(IR)

�

∫
�

Ψ(�)d�

=
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(R)

�

∫
�

Ψ∗(�)d�, (R)

�

∫
�

Ψ∗(�)d�

⎤⎥⎥⎦
.

acceptable in this study. 𝔽 (ℝ) also stand for the collection of 
all fuzzy subsets of ℝ.

A real fuzzy interval � is a fuzzy set in ℝ with the follow-
ing properties:

(1)	 � is normal, i.e., there exists � ∈ ℝ such that �(�) = 1;

(2)	 � is upper semi continuous, i.e., for given � ∈ ℝ, for 
every � ∈ ℝ there exist 𝜀 > 0 there exist 𝛿 > 0 such 
that 𝜁(�) − 𝜁(y) < 𝜀 for all y ∈ ℝ with |� − y| < 𝛿.

(3)	 � is fuzzy convex, i.e., �((1 − �)� + �y) ≥ min(�(�), �(y)), ∀ 
�, y ∈ ℝ and � ∈ [0, 1];

(4)	 � is compactly supported, i.e., cl{� ∈ ℝ��(�)⟩0} is 
compact.

The collection of all real fuzzy intervals is denoted by �0.
Let � ∈ �0 be real fuzzy interval, if and only if, �-levels 

[�]� is a nonempty compact convex set of ℝ . This is repre-
sented by

from these definitions, we have

where

Thus, a real fuzzy interval � can be identified by a para-
metrized triples

These two end point functions �∗(�) and �∗(�) are used to 
characterize a real fuzzy interval as a result.

Proposition 2.3  [11] Let � ,Θ ∈ �0 . Then, fuzzy order rela-
tion “ ≼ ” given on �0 by 𝜁≼Θ if and only if [�]� ≤I [Θ]

� for all 
� ∈ (0, 1], it is partial order relation.

We’ll now look at some of the properties of fuzzy inter-
vals using arithmetic operations. Let � ,Θ ∈ �0 and � ∈ ℝ , 
then we have

For � ∈ �0 such that 𝜁 = Θ+̃𝜓 , we have the existence 
of the Hukuhara difference of � and Θ , which we call the 

[�]� = {� ∈ ℝ|� (�) ≥ �},

[�]� =
[
�∗(�), �

∗(�)
]
,

�∗(�) = inf {� ∈ ℝ|� (�) ≥ �},

�∗(�) = sup {� ∈ ℝ|� (�) ≥ �}.

{(
�∗(�), �

∗(�), �
)
∶ � ∈ [0, 1]

}
.

(7)
[
𝜁+̃Θ

]�
= [𝜁]� + [Θ]� ,

(8)[𝜁 ×̃Θ]� = [𝜁]� × [Θ]� ,

(9)[�.� ]� = �.[�]�
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H-difference of � and Θ and denoted by 𝜁−̃Θ . If H-difference 
exists, then

Theorem 2.4  [14, 39] The space �0 dealing with a supre-
mum metric, i.e., for � ,Θ ∈ �0.

it is a complete metric space, where H denotes the well-
known Hausdorff metric on space of intervals.

Definition 2.5  [11] A fuzzy-interval-valued map 
Ψ ∶ K ⊂ ℝ → 𝔽0 is called FIVF. For each � ∈ (0, 1], whose 
�-levels define the family of IVFs Ψ𝛽 ∶ K ⊂ ℝ → �C 
are given by Ψ�(�) =

[
Ψ∗(�, �),Ψ

∗(�, �)
]
 for all � ∈ K. 

Here, for each � ∈ (0, 1], the end point real functions 
Ψ∗(., �),Ψ

∗(., �) ∶ K → ℝ are called lower and upper func-
tions of Ψ.

The following conclusions can be drawn from the preced-
ing literature review [11, 14, 28, 32]:

Definition 2.6  Let Ψ ∶ [�, 𝜈] ⊂ ℝ → 𝔽0 be a FIVF. Then, 
fuzzy integral of Ψ over [�, �] denoted by (FR)

�∫
�

Ψ(�)d� , 

and  it is given level-wise by

for all � ∈ (0, 1], where ℛ([𝓊,�],�) denotes the collection of 
Riemannian integrable functions of IVFs. Ψ is FR-integrable 
over [�, �] if (FR)

�∫
�

Ψ(�)d� ∈ �0. Note that, if both end 

point functions are Lebesgue-integrable, then Ψ is fuzzy 
Aumann-integrable function over [�, �] , see [28, 32].

Theorem 2.7  Let Ψ ∶ [�, 𝜈] ⊂ ℝ → 𝔽0 be a FIVF, whose 
�-levels define the family of IVFs Ψ𝛽 ∶ [�, 𝜈] ⊂ ℝ → �C 
are given by Ψ�(�) =

[
Ψ∗(�, �),Ψ

∗(�, �)
]
 for all � ∈ [�, �] 

and for all � ∈ (0, 1]. Then, Ψ is FR-integrable over [�, �] 
if and only if Ψ∗(�, �) and Ψ∗(�, �) both are R-integrable 
over [�, �] . Moreover, if Ψ is FR-integrable over [�, �], then

(10)
(𝜓)∗(𝛽) = (𝜁−̃Θ)

∗
(𝛽) = 𝜁∗(𝛽) − Θ∗(𝛽),

(𝜓)∗(𝛽) = (𝜁−̃Θ)∗(𝛽) = 𝜁∗(𝛽) − Θ∗(𝛽).

D(� ,Θ) = sup
0≤�≤1

H
(
[�]� , [Θ]�

)
,

(11)

⎡⎢⎢⎣
(FR)

�

∫
𝓊

Ψ(𝓏)d𝓏

⎤⎥⎥⎦

�

= (IR)

�

∫
𝓊

Ψ�(𝓏)d𝓏

=

⎧⎪⎨⎪⎩

�

∫
𝓊

Ψ(𝓏, �)d𝓏 ∶ Ψ(𝓏, �) ∈ ℛ([𝓊,�],�)

⎫⎪⎬⎪⎭
,

for all � ∈ (0, 1]. For all � ∈ (0, 1], ℱℛ([𝓊,�],�) denotes the 
collection of all FR-integrable FIVFs over [�, �].

Theorem 2.8  Let Ψ ∶ [�, 𝜈] ⊂ ℝ → 𝔽0 be a FIVF, whose �
-levels define the family of IVFs Ψ𝛽 ∶ [�, 𝜈] ⊂ ℝ → �C are 
given by Ψ�(�) =

[
Ψ∗(�, �),Ψ

∗(�, �)
]
 for all � ∈ [�, �] and 

for all � ∈ (0, 1]. Then, Ψ is (FR)-integrable over [�, �] if 
and only if Ψ∗(�, �) and Ψ∗(�, �) both are R-integrable over 
[�, �] . Moreover, if Ψ is (FR)-integrable over [�, �], then

for all � ∈ (0, 1].

Definition 2.9  [38] A function Ψ ∶ K → ℝ is said to be log-
convex function if

∀�, y ∈ K, � ∈ [0, 1], where Ψ(�) ≥ 0. If (14) is reversed, 
then Ψ is called log-concave.

Definition 2.10  [35] A function Ψ ∶ K → ℝ is said to be 
log-h-convex function if

∀�, y ∈ K, � ∈ [0, 1], where Ψ(�) ≥ 0. If (15) is reversed, 
then Ψ is called log-h-concave.

A function h ∶ L → ℝ is called super multiplicative if for 
all z , y ∈ L , we have

(12)

⎡
⎢⎢⎣
(FR)

�

∫
�

Ψ(�)d�

⎤
⎥⎥⎦

�

=

⎡⎢⎢⎣
(R)

�

∫
�

Ψ∗(�, �)d�, (R)

�

∫
�

Ψ∗(�, �)d�

⎤⎥⎥⎦

= (IR)

�

∫
�

Ψ�(�)d�,

(13)

⎡⎢⎢⎣
(FR)

�

∫
�

Ψ(�)d�

⎤⎥⎥⎦

�

=

⎡⎢⎢⎣
(R)

�

∫
�

Ψ∗(�, �)d�, (R)

�

∫
�

Ψ∗(�, �)d�

⎤⎥⎥⎦

= (IR)

�

∫
�

Ψ�(�)d�,

(14)Ψ(�� + (1 − �)y) ≤ Ψ(�)� × Ψ(y)1−� ,

(15)Ψ(�� + (1 − �)y) ≤ Ψ(�)h(�) × Ψ(y)h(1−�),

(16)h(zy) ≥ h(�)h(y).
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If (16) is reversed, then h is known as sub multiplicative. 
If the equality hold in (16), then h is called multiplicative.

Definition 2.11   Let  K  be  a  convex set  and 
h ∶ [0, 1] ⊆ K → ℝ

+ such that h ≢ 0 .  Then, FIVF 
Ψ ∶ K → �0 is said to be:

•	 log-h-convex on K if

for all �, y ∈ K, � ∈ [0, 1], where Ψ(�)≽0̃.

•	 log-h-concave on K if inequality (17) is reversed.
•	 Affine log-h-convex on K if

for all �, y ∈ K, � ∈ [0, 1], where Ψ(�)≽0̃.
Remark 2.12  If h(�) = �s, then (17) reduces to:

If h(�) = �, then (17) reduces to:

If h(�) ≡ 1, then (17) reduces to:

Note that, Remarks (i) and (iii) are also new ones.

And Ψ𝛽 ∶ K ⊂ ℝ → �
+

C
⊂ �C represent the family of 

IVFs through �-levels are define by

Theorem  2.13  Let K  be convex set and non-nega-
tive real valued function h ∶ [0, 1] ⊆ K → ℝ such that 
h ≢ 0, Let Ψ ∶ K → �0 be a FIVF with Ψ(�)≽0̃ , and 
Ψ𝛽 ∶ K ⊂ ℝ → �

+

C
⊂ �C represent the family of IVFs 

through �-levels are given by

for all  � ∈ K and for all � ∈ (0, 1] . Then, Ψ is log-h-convex 
on K, if and only if, for all � ∈ (0, 1], Ψ∗(�, �) and Ψ∗(�, �) 
are log-h-convex.

Proof  Let Ψ is log-h-convex FIVF on K. Then, for all 
�, y ∈ K and � ∈ (0, 1], we have

Therefore, from (22) and Proposition 2.3, we have

(17)Ψ(𝜉� + (1 − 𝜉)y)≼Ψ(�)h(𝜉)×̃Ψ(y)h(1−𝜉),

(18)Ψ(𝜉� + (1 − 𝜉)y) = Ψ(�)h(𝜉)×̃Ψ(y)h(1−𝜉),

(19)Ψ(𝜉� + (1 − 𝜉)y)≼Ψ(�)𝜉
s

×̃Ψ(y)(1−𝜉)
s

.

(20)Ψ(𝜉� + (1 − 𝜉)y)≼Ψ(�)𝜉×̃Ψ(y)1−𝜉 .

(21)Ψ(𝜉� + (1 − 𝜉)y)≼Ψ(�)×̃Ψ(y).

(22)Ψ�(�) =
[
Ψ∗(�, �),Ψ

∗(�, �)
]
,

Ψ(𝜉� + (1 − 𝜉)y)≼Ψ(�)h(𝜉)×̃Ψ(y)h(1−𝜉).

It follows that

and

hence, the result has been proved.

Conversely, suppose that Ψ∗(�, �) and Ψ∗(�, �) both are 
log-h-convex functions. Then, from definition and above 
(23), it follows that Ψ(�) is log-h-convex FIVF.

Example 2.14  We consider h(�) ≡ �(� ≥ 1) , for � ∈ [0, 1] 
and the FIVF Ψ ∶ [1, 4] → �0 is given by,

T h e n ,  f o r  e a c h  � ∈ (0, 1],  w e  h a v e 
Ψ�(�) =

[
�ez

2

, (2 − �)ez
2] . Since Ψ∗(�, �) and Ψ∗(�, �) are 

log-h-convex functions for each � ∈ (0, 1] then, by Theo-
rem 2.13, Ψ(�) is log-h-convex FIVF.

Theorem 2.15  Let K  be convex set, non-negative real 
valued function h ∶ [0, 1] ⊆ K → ℝ such that h ≢ 0 . Let 
Ψ ∶ K → �0 be a FIVF, and Ψ𝛽 ∶ K ⊂ ℝ → �

+

C
⊂ �C rep-

resent the family of IVFs through �-levels are given by
Ψ�(�) =

[
Ψ∗(�, �),Ψ

∗(�, �)
]
,

for all � ∈ K and for all � ∈ (0, 1] . Then, Ψ is log-h-con-
cave on K, if and only if, for all � ∈ [0, 1], Ψ∗(�, �) and 
Ψ∗(�, �) are log-h-concave.

Proof  The proof is similar to that of Theorem 6.

Example 2.16  We consider h(�) = �, for � ∈ [0, 1] and the 
FIVFs Ψ ∶ [�, �] = [0, 1] → �0 is given by,

Then, for each � ∈ [0, 1], we have

(23)

[
Ψ∗(�� + (1 − �)y, �),Ψ∗(�� + (1 − �)y, �)

]

≤I

[
Ψ∗(�, �)

h(�),Ψ∗(�, �)h(�)
]

×
[
Ψ∗(y, �)

h(1−�),Ψ∗(y, �)h(1−�)
]
.

Ψ∗(�� + (1 − �)y, �) ≤ Ψ∗(�, �)
h(�)Ψ∗(y, �)

h(1−�),

Ψ∗(�� + (1 − �)y, �) ≤ Ψ∗(�, �)h(�)Ψ∗(y, �)h(1−�),

Ψ(�)(�) =

⎧⎪⎨⎪⎩

�

ez
2 � ∈

�
0, ez

2�
2ez

2
−�

ez
2 � ∈

�
ez

2

, 2ez
2�

0 otherwise,

Ψ(�)(�) =

⎧⎪⎨⎪⎩

�

�
, � ∈ [0,�],

2�−�

�
, � ∈ (�, 2�],

0, otherwise,

Ψ�(�) = [��, (2 − �)�].
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Since Ψ∗(�, �) = �z , and Ψ∗(�, �) = (2 − �)z log-h-con-
vex functions, for each � ∈ [0, 1] then, by Theorem 2.15, 
Ψ(�) is log-h-concave FIVF.

3 � Main Results

First of all, we prove that the following Hermite–Had-
amard-type inequality for log-h-convex FIVF.

Theorem 3.1  Let Ψ ∶ [�, �] → �0 be a log-h-convex FIVF 
with non-negative real valued function h ∶ [0, 1] → ℝ and 
h
(

1

2

) ≢ 0, and for all � ∈ [0, 1] , Ψ𝛽 ∶ K ⊂ ℝ → �
+

C
⊂ �C 

represent the family of IVFs through �-levels. If 
Ψ ∈ ℱℛ([𝓊,�],�), then

If Ψ is log-h-concave FIVF then

Proof  Let Ψ ∶ [�, �] → �0, log-h-convex FIVF. Then, by 
Theorem 2.13 and by hypothesis, we have

Therefore, for every � ∈ [0, 1] , we have

From (25), we have

(24)

Ψ

�
� + 𝜈

2

� 1

2h( 1
2 )≼ exp

⎡
⎢⎢⎣

1

𝜈 −�
(FR)

𝜈

�
�

lnΨ(�)d�

⎤⎥⎥⎦

≼[Ψ(�)×̃Ψ(𝜈)]

1∫
0

h(𝜉)d𝜉

.

Ψ

�
� + 𝜈

2

� 1

2h( 1
2 )≽ exp

⎡
⎢⎢⎣

1

𝜈 −�
(FR)

𝜈

�
�

lnΨ(�)d�

⎤⎥⎥⎦

≽[Ψ(�)×̃Ψ(𝜈)]

1∫
0

h(𝜉)d𝜉

.

Ψ

(
� + 𝜈

2

)
≼[Ψ(𝜉� + (1 − 𝜉)𝜈)]

h
(

1

2

)
×̃[Ψ((1 − 𝜉)� + 𝜉𝜈)]

h
(

1

2

)
.

(25)

Ψ∗

(
� + �

2
, �
) ≤ [

Ψ∗(�� + (1 − �)�, �)
]h( 1

2

)

×
[
Ψ∗((1 − �)� + ��, �)

]h( 1

2

)

Ψ∗
(
� + �

2
, �
) ≤ [

Ψ∗(�� + (1 − �)�, �)
]h( 1

2

)

×
[
Ψ∗((1 − �)� + ��, �)

]h( 1

2

)
.

Then,

1

h

(
1

2

)
1

�
0

lnΨ∗

(
� + �

2
, �

)
d�

≤
1

�
0

lnΨ∗(�� + (1 − �)�, �)d�

+

1

�
0

lnΨ∗((1 − �)� + ��, �)d�

1

h

(
1

2

)
1

�
0

lnΨ∗
(
� + �

2
, �

)
d�

≤
1

�
0

lnΨ∗(�� + (1 − �)�, �)d�

+

1

�
0

lnΨ∗((1 − �)� + ��, �)d�.

It follows that

which implies that

That is

1

h
(

1

2

) lnΨ∗

(
� + �

2
, �
) ≤ lnΨ∗(�� + (1 − �)�, �)

+ lnΨ∗((1 − �)� + ��, �),

1

h
(

1

2

) lnΨ∗
(
� + �

2
, �
) ≤ lnΨ∗(�� + (1 − �)�, �)

+ lnΨ∗((1 − �)� + ��, �),

1

2h
(

1

2

) lnΨ∗

(
� + �

2
, �
) ≤ 1

� −�

�

�
�

lnΨ∗(�, �)d�,

1

2h
(

1

2

) lnΨ∗
(
� + �

2
, �
) ≤ 1

� −�

�

�
�

lnΨ∗(�, �)d�,

Ψ∗

�
� + �

2
, �
� 1

2h( 1
2 ) ≤ exp

⎛
⎜⎜⎝

1

� −�

�

�
�

lnΨ∗(�, �)d�

⎞
⎟⎟⎠
,

Ψ∗
�
� + �

2
, �
� 1

2h( 1
2 ) ≤ exp

⎛⎜⎜⎝
1

� −�

�

�
�

lnΨ∗(�, �)d�

⎞⎟⎟⎠
,
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Thus,

In a similar way as above, we have

Combining (26) and (27), we have

the required result.

Remark 3.2  If h(�) = �s , then (24) reduces to:

If h(�) = � , then (24) reduces to:

If h(�) ≡ 1 , then (24) reduces to:

�
Ψ∗

�
� + �

2
, �
� 1

2h( 1
2 ) ,Ψ∗

�
� + �

2
, �
� 1

2h( 1
2 )

�

≤I

⎡
⎢⎢⎢⎢⎣

exp

�
1

�−�

�∫
�

lnΨ∗(�, �)d�

�
,

exp

�
1

�−�

�∫
�

lnΨ∗(�, �)d�

�
⎤
⎥⎥⎥⎥⎦
.

(26)Ψ

�
� + 𝜈

2

� 1

2h( 1
2 )≼ exp

⎡
⎢⎢⎣

1

𝜈 −�
(FR)

𝜈

∫
�

lnΨ(�)d�

⎤
⎥⎥⎦
.

(27)

exp

⎡⎢⎢⎣
1

𝜈 −�
(FR)

𝜈

�
�

lnΨ(�)d�

⎤
⎥⎥⎦

≼[Ψ(�)×̃Ψ(𝜈)]

1∫
0

h(𝜉)d𝜉

.

Ψ

�
� + 𝜈

2

� 1

2h( 1
2 )≼ exp

⎡
⎢⎢⎣

1

𝜈 −�
(FR)

𝜈

�
�

lnΨ(�)d�

⎤⎥⎥⎦

≼[Ψ(�)×̃Ψ(𝜈)]

1∫
0

h(𝜉)d𝜉

.

Ψ

�
� + 𝜈

2

�2s−1

≼ exp

⎡
⎢⎢⎣

1

𝜈 −�
(FR)

𝜈

∫
�

lnΨ(�)d�

⎤⎥⎥⎦
≼[Ψ(�)×̃Ψ(𝜈)]

1

s+1 .

Ψ

�
� + 𝜈

2

�
≼ exp

⎡
⎢⎢⎣

1

𝜈 −�
(FR)

𝜈

∫
�

lnΨ(�)d�

⎤⎥⎥⎦
≼
√
Ψ(�)×̃Ψ(𝜈).

Ψ

�
� + 𝜈

2

� 1

2

≼ exp

⎡
⎢⎢⎣

1

𝜈 −�
(FR)

𝜈

∫
�

lnΨ(�)d�

⎤⎥⎥⎦
≼Ψ(�)×̃Ψ(𝜈).

If Ψ∗(�, �) = Ψ∗(�, �) with � = 1 , then (24) reduces to, 
see [35]:

If Ψ∗(�, �) = Ψ∗(�, �) with � = 1 and h(�) = �s , then (24) 
reduces to, see [35]:

If Ψ∗(�, �) = Ψ∗(�, �) with � = 1 and h(�) = � , then (24) 
reduces to, see [15]:

If Ψ∗(�, �) = Ψ∗(�, �) with � = 1 and h(�) ≡ 1 then (24) 
reduces to, see [35]:

Note that, Remarks (i)–(iii) are also new ones.

Example 3.3  We consider h(�) = �, for � ∈ [0, 1] , 
and the FIVF Ψ ∶ [�, �] = [1, 4] → �0 is given by, 
Ψ�(�) =

[
�ez

2

, (2 − �)ez
2]
, as in Example 2.14, then 

Ψ(�) is log-h-convex FIVF. Since, Ψ∗(�, �) = �ez
2 and 

Ψ∗(�, �) = (2 − �)ez
2 then, we have

for all � ∈ [0, 1]. That means

Ψ

�
� + 𝜈

2

� 1

2h( 1
2 ) ≤ exp

⎡
⎢⎢⎣

1

𝜈 −�
(R)

𝜈

�
�

lnΨ(�)d�

⎤
⎥⎥⎦

≤ [Ψ(�)×̃Ψ(𝜈)]

1∫
0

h(𝜉)d𝜉

.

Ψ

�
� + 𝜈

2

�2s−1 ≤ exp

⎡
⎢⎢⎣

1

𝜈 −�
(R)

𝜈

�
�

lnΨ(�)d�

⎤
⎥⎥⎦

≤ [Ψ(�)×̃Ψ(𝜈)]
1

s+1 .

Ψ

�
� + 𝜈

2

� ≤ exp

⎡
⎢⎢⎣

1

𝜈 −�
(R)

𝜈

�
�

lnΨ(�)d�

⎤⎥⎥⎦
≤ √

Ψ(�)×̃Ψ(𝜈).

Ψ

�
� + 𝜈

2

� 1

2 ≤ exp

⎡
⎢⎢⎣

1

𝜈 −�
(R)

𝜈

�
�

lnΨ(�)d�

⎤⎥⎥⎦
≤ Ψ(�)×̃Ψ(𝜈).

Ψ∗

�
� + �

2
, �
� 1

2h( 1
2 ) =

�
�e

�
5

2

�2� 1

2h( 1
2 )

= �e
25

4 ,

exp

⎛⎜⎜⎝
1

� −�

�

∫
�

lnΨ∗(�, �)d�

⎞⎟⎟⎠
= exp

⎛⎜⎜⎝
1

3

4

∫
1

ln
�
�ez

2
�
d�

⎞⎟⎟⎠
= eln (�)+7,

[
Ψ∗(�, �) × Ψ∗(�, �)

] 1∫
0

h(�)d�

=
[
(�e)

(
4�e16

)] 1

2 = 2�e
17

2 ,
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Now, we find the following inequality

for all � ∈ [0, 1], such that

From which, it follows that

that is

for all � ∈ [0, 1]. Hence,

Now, we discuss second and first HH-Fejér inequality for 
log-ℎ-convex FIVF, respectively.

�e
25

4 ≤ eln (�)+7 ≤ 2�e
17

2 .

Ψ∗
�
� + �

2
, �
� 1

2h( 1
2 ) ≤ exp

⎡
⎢⎢⎣

1

� −�

�

�
�

lnΨ∗(�, �)d�

⎤
⎥⎥⎦

≤ �
Ψ∗(�, �) + Ψ∗(�, �)

� 1∫
0

h(�)d�

.

Ψ∗
(
� + �

2
, �
) 1

2h( 1
2 ) =

[
(2 − �)e

(
5

2

)2] 1

2h( 1
2 )

= (2 − �)e
25

4 ,

exp

⎛⎜⎜⎝
1

� −�

�

∫
�

lnΨ∗(�, �)d�

⎞
⎟⎟⎠

= exp

⎛⎜⎜⎝
1

3

4

∫
1

ln
�
(2 − �)ez

2
�
d�

⎞⎟⎟⎠
= eln (2−�)+7,

[
Ψ∗(�, �) × Ψ∗(�, �)

] 1∫
0

h(�)d�

=
[
(2 − �)e.4(2 − �)e16

] 1

2 = 2(2 − �)e
17

2 .

(2 − �)e
25

4 ≤ eln(2−�)+7 ≤ 2(2 − �)e
17

2 ,

[
�e

25

4 , (2 − �)e
25

4

] ≤I

[
eln(�)+7, eln(2−�)+7

]

≤I

[
2�e

17

2 , 2(2 − �)e
17

2

]
,

Ψ

�
� + 𝜈

2

� 1

2h( 1
2 )≼ exp

⎡
⎢⎢⎣

1

𝜈 −�
(FR)

𝜈

�
�

Ψ(�)d�

⎤⎥⎥⎦

≼[Ψ(�)×̃Ψ(𝜈)]

1∫
0

h(𝜉)d𝜉

.

Theorem  3.4  Let Ψ ∶ [�, �] → �0 be a log-h-con-
vex FIVF with u < 𝜈  and h ∶ [0, 1] → ℝ

+, for all 
� ∈ [0, 1] , Ψ𝛽 ∶ K ⊂ ℝ → �

+

C
⊂ �C represent the fam-

ily of IVFs through �-levels. If Ψ ∈ ℱℛ([𝓊,�],�) and 
∇ ∶ [�, �] → ℝ,∇(�) ≥ 0, symmetric with respect to �+�

2
, 

then

If Ψ is log-h-concave FIVF then

Proof  Let Ψ be a log-h-convex FIVF. Then, by Theo-
rem 2.13, for each � ∈ [0, 1], we have

And

After adding (29) and (30), and integrating over [0, 1], 
we get

(28)

1

𝜈 −�
(FR)

𝜈

∫
�

[lnΨ(�)]∇(�)d�

≼ ln [Ψ(�)×̃Ψ(𝜈)]

1

∫
0

h(𝜉)∇((1 − 𝜉)� + 𝜉𝜈)d𝜉.

1

𝜈 −�
(FR)

𝜈

∫
�

[lnΨ(�)]∇(�)d�

≽ ln [Ψ(�)×̃Ψ(𝜈)]

1

∫
0

h(𝜉)∇((1 − 𝜉)� + 𝜉𝜈)d𝜉.

(29)

[lnΨ∗(�� + (1 − �)�, �)]∇(�� + (1 − �)�)

≤
(

h(�) lnΨ∗(�, �)+

h(1 − �) lnΨ∗(�, �)

)
∇(�� + (1 − �)�),

[lnΨ∗(�� + (1 − �)�, �)]∇(�� + (1 − �)�)

≤
(

h(�) lnΨ∗(�, �)+

h(1 − �) lnΨ∗(�, �)

)
∇(�� + (1 − �)�).

(30)

[
lnΨ∗((1 − �)� + ��, �)

]
∇((1 − �)� + ��)

≤
(
h(1 − �) lnΨ∗(�, �)+

h(�) lnΨ∗(�, �)

)
∇((1 − �)� + ��),

[
lnΨ∗((1 − �)� + ��, �)

]
∇((1 − �)� + ��)

≤
(
h(1 − �) lnΨ∗(�, �)+

h(�) lnΨ∗(�, �)

)
∇((1 − �)� + ��).
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Since ∇ is symmetric, then

Since

1

�
0

�
lnΨ∗(�� + (1 − �)�, �)

�
∇(�� + (1 − �)�)d�

+

1

�
0

lnΨ∗((1 − �)� + ��, �)∇((1 − �)� + ��)d�

≤
1

�
0

⎡⎢⎢⎢⎣

lnΨ∗(�, �)

�
h(�)∇(�� + (1 − �)�)

+h(1 − �)∇((1 − �)� + ��)

�

+ lnΨ∗(�, �)

�
h(1 − �)∇(�� + (1 − �)�)

+h(�)∇((1 − �)� + ��)

�
⎤⎥⎥⎥⎦
d�,

1

�
0

�
lnΨ∗((1 − �)� + ��, �)

�
∇((1 − �)� + ��)d�

+

1

�
0

lnΨ∗(�� + (1 − �)�, �)∇(�� + (1 − �)�)d�

≤
1

�
0

⎡
⎢⎢⎢⎣

lnΨ∗(�, �)

�
h(�)∇(�� + (1 − �)�)

+h(1 − �)∇((1 − �)� + ��)

�

+ lnΨ∗(�, �)

�
h(1 − �)∇(�� + (1 − �)�)

+h(�)∇((1 − �)� + ��)

�
⎤
⎥⎥⎥⎦
d�.

= 2 lnΨ∗(�, �)

1

∫
0

h(�)∇(�� + (1 − �)�) d�

+ 2 lnΨ∗(�, �)

1

∫
0

h(�)∇((1 − �)� + ��) d�,

= 2 lnΨ∗(�, �)

1

∫
0

h(�)∇(�� + (1 − �)�) d�

+ 2 lnΨ∗(�, �)

1

∫
0

h(�)∇((1 − �)� + ��) d�.

(31)

=2 ln

[
Ψ∗(�, �)

×Ψ∗(�, �)

] 1

∫
0

h(�)∇

(
(1 − �)u

+��

)
d�

=2 ln

[
Ψ∗(�, �)

×Ψ∗(�, �)

] 1

∫
0

h(�)∇

(
(1 − �)u

+��

)
d�.

From (31) and (32), we have

that is

hence

(32)

1

∫
0

[
lnΨ∗(�� + (1 − �)�, �)

]
∇(�� + (1 − �)�)d�

=

1

∫
0

[
lnΨ∗((1 − �)� + ��, �)

]
∇

(
(1 − �)�+

��

)
d�

=
1

� −�

�

∫
�

[
lnΨ∗(�, �)

]
∇(�)d�

1

∫
0

[
lnΨ∗((1 − �)� + ��, �)

]
∇((1 − �)� + ��)d�

=

1

∫
0

[
lnΨ∗(�� + (1 − �)�, �)

]
∇

(
��+

(1 − �)�

)
d�

=
1

� −�

�

∫
�

[
lnΨ∗(�, �)

]
∇(�)d�.

1

� −�

�

�
�

[
lnΨ∗(�, �)

]
∇(�)d�

≤ ln
[
Ψ∗(�, �) × Ψ∗(�, �)

] 1

�
0

h(�)∇

(
(1 − �)u

+��

)
d�,

1

� −�

�

�
�

[
lnΨ∗(�, �)

]
∇(�)d�

≤ ln
[
Ψ∗(�, �) × Ψ∗(�, �)

] 1

�
0

h(�)∇

(
(1 − �)u

+��

)
d�,

⎡⎢⎢⎢⎢⎣

1

�−�

�∫
�

�
lnΨ∗(�, �)

�
∇(�)d�,

1

�−�

�∫
�

[lnΨ∗(�, �)]∇(�)d�

⎤⎥⎥⎥⎥⎦

≤I

[
ln[Ψ∗(�, �) × Ψ∗(�, �)], ln[Ψ

∗(�, �)

× Ψ∗(�, �)]]

1

�
0

h(�)∇((1 − �)� + ��) d�,
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This concludes the proof.

Theorem 3.5  Let Ψ ∶ [�, �] → �0 be a log−h-convex FIVF 
with  u < 𝜈  and  h ∶ [0, 1] → ℝ

+,  for all  � ∈ [0, 1] , 
Ψ𝛽 ∶ K ⊂ ℝ → �

+

C
⊂ �C represent the family of IVFs 

t h r o u g h  � - l e v e l s .  I f  Ψ ∈ ℱℛ([𝓊,�],�)  a n d 
∇ ∶ [�, �] → ℝ,∇(�) ≥ 0, symmetric with respect to �+�

2
, 

and 
𝜈∫
�

∇(�)d� > 0 , then

If Ψ is log-h-concave FIVF then

Proof  Since Ψ is a log-h-convex, then by Theorem 2.13, for 
� ∈ [0, 1], we have

By multiplying (34) by ∇((1 − �)� + ��) = ∇(�� + (1 − �)�) 
and integrate it by � over [0, 1], we obtain

1

𝜈 −�
(FR)

𝜈

∫
�

[lnΨ(�)]∇(�)d�

≼ ln [Ψ(�)×̃Ψ(𝜈)]

1

∫
0

h(𝜉)∇((1 − 𝜉)� + 𝜉𝜈)d𝜉.

(33)lnΨ
(
� + 𝜈

2

)
≼

2h
(

1

2

)

∫ 𝜈

�
∇(�)d�

(FR)

𝜈

�
�

[lnΨ(�)]∇(�)d�.

lnΨ
(
� + 𝜈

2

)
≽

2h
(

1

2

)

∫ 𝜈

�
∇(�)d�

(FR)

𝜈

�
�

[lnΨ(�)]∇(�)d�.

(34)

1

h
(

1

2

) lnΨ∗

(
� + �

2
, �
) ≤ lnΨ∗(�� + (1 − �)�, �)

+ lnΨ∗((1 − �)� + ��, �)

1

h
(

1

2

) lnΨ∗
(
� + �

2
, �
) ≤ lnΨ∗(�� + (1 − �)�, �)

+ lnΨ∗((1 − �)� + ��, �),

Since
(35)

1

h
(

1

2

)
[
lnΨ∗

(
� + �

2
, �
)] 1

�
0

∇((1 − �)� + ��)d�

≤ 1∫
0

[
lnΨ∗(�� + (1 − �)�, �)

]
∇

(
��+

(1 − �)�

)
d�

+

1

�
0

[
lnΨ∗((1 − �)� + ��, �)

]
∇((1 − �)� + ��)d�,

1

h
(

1

2

)
[
lnΨ∗

(
� + �

2
, �
)] 1

�
0

∇((1 − �)� + ��)d�

≤
1

�
0

[
lnΨ∗(�� + (1 − �)�, �)

]
∇

(
��+

(1 − �)�

)
d�

+

1

�
0

[
lnΨ∗((1 − �)� + ��, �)

]
∇((1 − �)� + ��)d�,

(36)

1

∫
0

[
lnΨ∗(�� + (1 − �)�, �)

]
∇(�� + (1 − �)�)d�

=

1

∫
0

[
lnΨ∗((1 − �)� + ��, �)

]
∇

(
(1 − �)u

+��

)
d�

=
1

� −�

�

∫
�

[
lnΨ∗(�, �)

]
∇(�)d�,

1

∫
0

[
lnΨ∗(�� + (1 − �)�, �)

]
∇(�� + (1 − �)�)d�

=

1

∫
0

[
lnΨ∗((1 − �)� + ��, �)

]
∇

(
(1 − �)u

+��

)
d�

=
1

� −�

�

∫
�

[
lnΨ∗(�, �)

]
∇(�)d�,
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From (35) and (36), we have

From which, we have

that is

then we complete the proof.

Remark 3.6  If h(�) = �s with s ∈ (0, 1), then from Theorems 
3.4 and 3.5, we get result for log-s-convex FIVFs.

If h(�) = � then from Theorems 3.4 and 3.5, we obtain 
result for log-convex FIVFs.

If Ψ∗(�, �) = Ψ∗(�, �) with � = 1 , then from Theorems 
3.4 and 3.5, we obtain HH-Fejér inequality for log-ℎ-convex 
function.

Example 3.7  We consider h(�) = �, for � ∈ [0, 1] and the 
FIVFs Ψ ∶ [�, �] = [1, 8] → �0 is given by,

Then, for each � ∈ [0, 1], we have

Since Ψ∗(�, �) = 2�z , Ψ∗(�, �) = 2(2 − �)z log-h-convex 
functions, for each � ∈ [0, 1] then, by Theorem 2.13 Ψ(�) is 
log-h-convex FIVF. If

lnΨ∗

(
� + �

2
, �
) ≤ 2h

(
1

2

)

∫ �

�
∇(�)d�

�

�
�

[
lnΨ∗(�, �)

]
∇(�)d�,

lnΨ∗
(
� + �

2
, �
) ≤ 2h

(
1

2

)

∫ �

�
∇(�)d�

�

�
�

[
lnΨ∗(�, �)

]
∇(�)d�.

�
lnΨ∗

�
� + �

2
, �
�
, lnΨ∗

�
� + �

2
, �
��

≤I

2h
�

1

2

�

∫ �

�
∇(�)d�

⎡
⎢⎢⎢⎢⎣

�∫
�

�
lnΨ∗(�, �)

�
∇(�)d�,

�∫
�

[lnΨ∗(�, �)]∇(�)d�

⎤
⎥⎥⎥⎥⎦
,

lnΨ
(
� + 𝜈

2

)
≼

2h
(

1

2

)

∫ 𝜈

�
∇(�)d�

(FR)

𝜈

�
�

[lnΨ(�)]∇(�)d�,

Ψ(�)(�) =

⎧⎪⎨⎪⎩

�

2�
, � ∈ [0, 2�],

4�−�

2�
, � ∈ (2�, 4�],

0, otherwise,

Ψ�(�) = [2��, 2(2 − �)�].

∇(�) =

⎧⎪⎨⎪⎩

� − 1, � ∈

�
1,

9

2

�

8 − �, � ∈

�
9

2
, 8
�
,

then, we have

And

(37)

1

� −�

�

∫
�

[
lnΨ∗(�, �)

]
∇(�)d�

=
1

7

8

∫
1

[
lnΨ∗(�, �)

]
∇(�)d�

=
1

7

9

2

∫
1

[
lnΨ∗(�, �)

]
∇(�)d�

+
1

7

8

∫
9

2

lnΨ∗(�, �)∇(�)d�,

1

� −�

�

∫
�

[
lnΨ∗(�, �)

]
∇(�)d�

=
1

7

8

∫
1

[
lnΨ∗(�, �)

]
∇(�)d�

=
1

7

9

2

∫
1

[
lnΨ∗(�, �)

]
∇(�)d�

+
1

7

8

∫
9

2

[
lnΨ∗(�, �)

]
∇(�)d�,

=
1

7

9

2

∫
1

[ln (2��)](� − 1)d�

+
1

7

8

∫
9

2

[ln (2��)](8 − �)d�

=
7

4
ln (2�) +

5

2
,

=
1

7

9

2

∫
1

[ln (2(2 − �)�)](� − 1)d�

+
1

7

8

∫
9

2

[ln (2(2 − �)�)](8 − �)d�

=
7

4
ln (2(2 − �)) +

5

2
,
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From (37) and (38), we have

for all � ∈ (0, 1].

Hence, Theorem 3.4 is verified.
For Theorem 3.5, we have

(38)

ln

�
Ψ∗(�, �)

×Ψ∗(�, �)

� 1

∫
0

h(�)∇(u + ��(�, u)) d�

ln

�
Ψ∗(�, �)

×Ψ∗(�, �)

� 1

∫
0

h(�)∇(u + ��(�, u)) d�

=
�
ln
�
32�2

��⎡⎢⎢⎢⎣

1

2

∫
0

7�2d� +

1

∫
1

2

�(7 − 7�)d�

⎤
⎥⎥⎥⎦

=
7

8

�
ln
�
32�2

��

=
�
ln
�
32(2 − �)2

��⎡⎢⎢⎢⎣

1

2

∫
0

7�2d� +

1

∫
1

2

�(7 − 7�)d�

⎤
⎥⎥⎥⎦

=
7

8

�
ln
�
32(2 − �)2

��

[
7

4
ln (2�) +

5

2
,
7

4
ln (2(2 − �)) +

5

2

]

≤I

[
7

8

[
ln
(
32�2

)]
,
7

8

[
ln
(
32(2 − �)2

)]]
,

(39)
lnΨ∗

(
� + �

2
, �
)
= ln (9�),

lnΨ∗
(
� + �

2
, �
)
= ln (9(2 − �)),

�

∫
�

∇(�)d� =

9

2

∫
1

(� − 1)d� +

8

∫
9

2

(8 − �)d� =
49

4
,

(40)

2h
(

1

2

)

∫ �

�
∇(�)d�

�

�
�

[
lnΨ∗(�, �)

]
∇(�)d�

= ln (2�) + 1.54

2h
(

1

2

)

∫ �

�
∇(�)d�

�

�
�

[
lnΨ∗(�, �)

]
∇(�)d�

= ln (2(2 − �)) + 1.54

From (39) and (40), we have

Hence, Theorem 3.5 is verified.

Now, we prove the Jensen’s inequality for log-h-convex 
FIVF.

T h e o r e m   3 . 8   L e t  �j ∈ ℝ
+  ,  uj ∈ [�, �], 

(j = 1, 2, 3,… k, k ≥ 2) and Ψ ∶ [�, �] → �0 be a log h
-convex FIVF with non-negative real valued function 
h ∶ [0, 1] → ℝ , for all � ∈ [0, 1] , Ψ𝛽 ∶ K ⊂ ℝ → �

+

C
 rep-

resent the family of IVFs through �-levels. If h is multiplica-
tive function then,

If Ψ is log-h-concave FIVF then

where Wk =
∑k

j=1
�j. If Ψ is log-h-concave then, (41) is 

reversed.

Proof  When k = 2 , (41) is true. Consider (16) is true for 
k = n − 1, then by Theorem 2.13, we have

Now, let us prove that (41) holds for k = n.

Therefore, for every � ∈ [0, 1] , we have

[ln (9�), ln (9(2 − �))]

≤
I
[ln (2�) + 1.54, ln (2(2 − �)) + 1.54].

(41)Ψ

(
1

Wk

k∑
j=1

𝜔jzj

)
≼

k∏
j=1

[
Ψ
(
zj
)]h( 𝜔j

Wk

)
,

Ψ

(
1

Wk

k∑
j=1

𝜔jzj

)
≽

k∏
j=1

[
Ψ
(
zj
)]h( 𝜔j

Wk

)
,

Ψ

(
1

Wn−1

n−1∑
j=1

𝜔jzj

)
≼

n−1∏
j=1

[
Ψ
(
zj
)]h( 𝜔j

Wn−1

)
,

Ψ

�
1

Wn

n�
j=1

�jzj

�

= Ψ

⎛
⎜⎜⎜⎝

1

Wn−2

n−2∑
j=1

�jzj +
�n−1+�n

Wn

�
�n−1

�n−1+�n

zn−1

�

+
�n

�n−1+�n

zn

⎞
⎟⎟⎟⎠
.
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From which, we have

that is,

Ψ∗

�
1

Wn

n�
j=1

�jzj, �

�

Ψ∗

�
1

Wn

n�
j=1

�jzj, �

�

≤ Ψ∗

⎛⎜⎜⎜⎝

1

Wn

n−2∑
j=1

�jzj +
�n−1+�n

Wn

�
�n−1

�n−1+�n

zn−1

�

+
�n

�n−1+�n

zn, �

⎞⎟⎟⎟⎠
,

≤ Ψ∗

⎛⎜⎜⎜⎝

1

Wn

n−2∑
j=1

�jzj +
�n−1+�n

Wn

�
�n−1

�n−1+�n

zn−1

�

+
�n

�n−1+�n

zn, �

⎞⎟⎟⎟⎠
,

≤
n−2�
j=1

�
Ψ∗

�
zj, �

��h� �j

Wn

�

×

�
Ψ∗

� �n−1

�n−1+�n

zn−1

+
�n

�n−1+�n

zn, �

��h
�

�n−1+�n

Wn

�

,

≤
n−2�
j=1

�
Ψ∗

�
zj, �

��h� �j

Wn

�

×

�
Ψ∗

� �n−1

�n−1+�n

zn−1

+
�n

�n−1+�n

zn, �

��h
�

�n−1+�n

Wn

�

,

≤
n−2�
j=1

�
Ψ∗

�
zj, �

��h� �j

Wn

�
×
�
Ψ∗

�
zn−1, �

��h� �n−1

Wn

�

×
�
Ψ∗

�
zn, �

��h� �n

Wn

�
,

≤
n−2�
j=1

�
Ψ∗

�
zj, �

��h� �j

Wn

�
×
�
Ψ∗

�
zn−1, �

��h� �n−1

Wn

�

×
�
Ψ∗

�
zn, �

��h� �n

Wn

�
,

=

n�
j=1

�
Ψ∗

�
zj, �

��h� �j

Wn

�
,

=

n�
j=1

�
Ψ∗

�
zj, �

��h� �j

Wn

�
,

[
Ψ∗

(
1

Wn

n∑
j=1

�jzj, �

)
, Ψ∗

(
1

Wn

n∑
j=1

�jzj, �

)]

≤I

[
n∏
j=1

[
Ψ∗

(
zj, �

)]h( �j

Wn

)
,

n∏
j=1

[
Ψ∗

(
zj, �

)]h( �j

Wn

)]
,

Ψ

(
1

Wn

n∑
j=1

𝜔jzj

)
≼

n∏
j=1

[
Ψ
(
zj
)]h( 𝜔j

Wn

)
,

and the result follows.

If �1 = �2 = �3 = ⋯ = �k = 1, then Theorem 3.8 reduces 
to the following:

Corollary 3.9  Let uj ∈ [�, �], 
(
j = 1, 2, 3,… k,

k ≥ 2

)
 and 

Ψ ∶ [�, �] → �0 be a log-h-convex FIVF with non-negative 
real valued function h ∶ [0, 1] → ℝ . For all � ∈ [0, 1] , 
Ψ𝛽 ∶ K ⊂ ℝ → �

+

C
⊂ �C represent the family of IVFs 

through �-levels. If h is multiplicative function, then

If Ψ is a log-h-concave, then (42) is reversed.

T h e o r e m   3 . 1 0   L e t  �j ∈ ℝ
+  ,  uj ∈ [�, �], 

(j = 1, 2, 3,… k, k ≥ 2) and Ψ ∶ [�, �] → �0 be a log-h
-convex FIVF with non-negative real valued function 
h ∶ [0, 1] → ℝ . For all � ∈ [0, 1] , Ψ𝛽 ∶ K ⊂ ℝ → �

+

C
⊂ �C 

represent the family of IVFs through �-levels. If 
(L,U) ⊆ [�, 𝜈]h is multiplicative function then,

If Ψ is log-h-concave FIVF, then

where Wk =
∑k

j=1
�j. If Ψ is log-h-concave, then (43) is 

reversed.

Proof  Consider = z1, zj = z2, (j = 1, 2, 3,… k) , U = z3 in 
(43). Then, for each � ∈ [0, 1] , then by Theorem 2.13, we 
have

Above inequality can be written as,

(42)Ψ

(
1

k

k∑
j=1

zj

)
≼

k∏
j=1

[
Ψ
(
zj
)]h( 1

k

)
,

(43)

k∏
j=1

[
Ψ
(
zj
)]h( 𝜔j

Wk

)
≼

k∏
j=1

(
[Ψ(L)]

h
(

U−zj

U−L

)
h
(

𝜔j

Wk

)
× [Ψ(U)]

h
(

zj−L

M−L

)
h
(

𝜔j

Wk

))
,

k∏
j=1

[
Ψ
(
zj
)]h( 𝜔j

Wk

)
≽

k∏
j=1

(
[Ψ(L)]

h
(

U−zj

U−L

)
h
(

𝜔j

Wk

)
× [Ψ(U)]

h
(

zj−L

M−L

)
h
(

𝜔j

Wk

))
,

Ψ∗

(
zj, �

) ≤ [
Ψ∗(L, �)

]h( U−zj

U−L

)
×
[
Ψ∗(U, �)

]h( zj−L

M−L

)
,

Ψ∗
(
zj, �

) ≤ [
Ψ∗(L, �)

]h( U−zj

U−L

)
×
[
Ψ∗(U, �)

]h( zj−L

M−L

)
.

(44)

Ψ∗

(
zj, �

)h( �j

Wk

)
≤ [

Ψ∗(L, �)
]h( U−zj

U−L

)
h
(

�j

Wk

)

×
[
Ψ∗(U, �)

]h( zj−L

M−L

)
h
(

�j

Wk

)

Ψ∗
(
zj, �

)h( �j

Wk

)
≤ [

Ψ∗(L, �)
]h( U−zj

U−L

)
h
(

�j

Wk

)

×
[
Ψ∗(U, �)

]h( zj−L

M−L

)
h
(

�j

Wk

)
.
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Taking multiplication of all inequalities (44) for 
j = 1, 2, 3,… k, we have

that is

Thus,

k�
j=1

Ψ∗

�
zj, �

�h� �j

Wk

�

≤
k�

j=1

⎛⎜⎜⎝

�
Ψ∗(L, �)

�h� U−zj

U−L

�
h
�

�j

Wk

�

×
�
Ψ∗(U, �)

�h� zj−L

M−L

�
h
�

�j

Wk

�
⎞⎟⎟⎠
,

k�
j=1

Ψ∗
�
zj, �

�h� �j

Wk

�

≤
k�

j=1

⎛⎜⎜⎝
[Ψ∗(L, �)]

h
�

U−zj

U−L

�
h
�

�j

Wk

�

×[Ψ∗(U, �)]
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�
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�
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�
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this completes the proof.

Remark 3.1.1  If Ψ∗(�, �) = Ψ∗(�, �) with � = 1 , then from 
Theorem 3.8 and Theorem 3, we obtain result for h-convex 
function, see [23].

If Ψ∗(�, �) = Ψ∗(�, �) with � = 1 and h(�) = �s , then 
from Theorem 3.8 and Theorem 3, we obtain result for s
-convex FIVF, see [43].

If Ψ∗(�, �) = Ψ∗(�, �) with � = 1 and h(�) = � , then from 
Theorem 3.8 and Theorem 3, we obtain result for convex 
FIVF, see [23].

4 � Conclusion and Future Plan

Hermite–Hadamard and Jensen’s inequalities are hold for 
this new class of convex FIVFs. Moreover, we have dis-
cussed some special cases which can be obtained by main 
results. In future, we intend to discuss generalized log-h
-convex functions. We hope that this notion will assist 
other authors in fulfilling their tasks in various disciplines 
of study.
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