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Abstract
Bipolar fuzzy sets are used to describe the positive and negative of the uncertainty of objects, and the bipolar fuzzy graphs 
are used to characterize the structural relationship between uncertain concepts in which the vertices and edges are assigned 
positive and negative membership function values to feature the opposite uncertainty elevation. The dominating set is the 
control set of vertices in the graph structure and it occupies a critical position in graph analysis. This paper mainly contributes 
to extending the concept of domination in the fuzzy graph to the bipolar frameworks and obtaining the related expanded 
concepts of a variety of bipolar fuzzy graphs. Meanwhile, the approaches to obtain the specific dominating sets are presented. 
Finally, a numeral example on city data in Yunnan Province is presented to explain the computing of domination in bipolar 
fuzzy graph in the specific application.
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1 Introduction

Fuzzy sets are used to describe the uncertainty of things, 
and are widely used in fuzzy reasoning, fuzzy intelligent 
decision-making systems and other fields, and thus have 
received widespread attention (see Bera and Pal [1] and [2], 
Islam and Pal [3], Samanta1 et al. [4], Amanathulla et al. 
[5], Pal et al. [6], Prabakaran et al. [7], Bagherinia et al. [8], 
Gonzalez et al. [9], and Maldonado et al. [10]). On the other 
hand, graphs are an effective tool to describe the structured 
data. Edges are used to measure the hierarchical and subor-
dinate relationships between concepts, and the entire data 
set can be stored as graphs. Knowledge graphs and ontology 

graphs are typical examples. Therefore, fuzzy graphs are 
defined and used to represent the structure of fuzzy data, 
and are applied in various engineering applications which 
involve uncertainty issues.

Recently, bipolar fuzzy graphs have raised much attention 
from researchers. Akram et al. [11] aggregated the decisions 
of all experts by means of the performance of alternatives, 
traits of the attributes and the tricks of bipolar fuzzy N-soft 
weighted average operator. Fahmi and Amin [12] con-
structed several bipolar neutrosophic fuzzy (BNF) operators 
in terms of prioritized muirhead mean aggregation opera-
tions. Ozcelik and Nalkiran [13] introduced TrBF-EDAS 
which is a tool to evaluate the alternatives in any system in 
which there is fuzzy bipolar information. Yiarayong [14] 
generalized the concept of interval-valued bipolar fuzzy sets 
and defined interval-valued bipolar fuzzy subsemigroups 
and interval-valued bipolar fuzzy left ideals over semi-
groups. Cornejo et al. [15] obtained a characterization of 
the solvability of bipolar max-product fuzzy equations with 
the standard negation. Xiang et al. [16] performed a work 
in terms of permutation fuzzy entropy to analyze the brain 
complexity of bipolar disorder patients. Sindhu et al. [17] 
introduced the aggregation operators for the novel extension 
of PcFSs which was named as bipolar picture fuzzy sets. 
Shirzadi et al. [18] developed a fuzzy programming by bipo-
lar approach. Sarwar et al. [19] applied Bipolar fuzzy soft 
information in hypergraph setting. Muhiuddin and Al-Kadi 
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[20] introduced the notion of bipolar fuzzy implicative ideals 
of a BCK-algebra and determined several properties.

Since bipolar fuzzy sets can be used to represent the uncer-
tain attributes of both positive and negative sides of things, 
they are widely used in fuzzy decision-making systems. To 
structurally express the fuzzy attributes with bipolar features, 
a bipolar fuzzy graph is defined, and the concepts of path, 
connectivity, and topological indices of the fuzzy graph are 
also defined successively (for more details on graph, fuzzy 
graph in various settings, see Santiago et al. [21], Ali et al. 
[22], Bozhenyuk et al. [23], Das et al. [24], Akram et al. [25], 
Das et al. [26], Kalathian et al. [27], Gao et al. [28] and [29], 
and Gong and Hua [30]). Although the bipolar fuzzy graph 
framework is successfully applied in some fields, its fuzzy 
characteristics and related attributes still need to be studied in 
most settings. Inspired by these facts, this paper does further 
research on bipolar fuzzy graphs.

The main contribution of this work is to study the domina-
tion of bipolar fuzzy graphs. Since there are various frame-
work settings for fuzzy graphs, we need to discuss bipolar fuzzy 
graphs in different settings separately, and to summarize and 
classify the different definitions of the existing domination sets.

The organization of the rest sections are arranged as fol-
lows. First, we review the concept of bipolar fuzzy graph 
settings, including bipolar fuzzy incidence graph setting and 
bipolar intuitionistic fuzzy graph setting. Then, in the third 
section, we mainly extend the dominating set and domina-
tion number to these bipolar graph settings. Specially, there 
are more than one definition of domination in normal bipolar 
graph setting, and we introduce them in detail.

2  Definitions in Bipolar Fuzzy Graph Setting

Let V be a universal set (i.e., it denotes the vertex set of 
fuzzy graph without membership function values). The set 
A = {(v,�P

A
(v),�N

A
(v)) ∶ v ∈ V} is a bipolar fuzzy set in V 

if two maps satisfy �P
A
∶ V → [0, 1] and �N

A
∶ V → [−1, 0] . 

Generalized bipolar fuzzy graph was introduced by Yang 
et  al. [31]. If A = {(v,�P

A
(v),�N

A
(v)) ∶ v ∈ V} is a bipolar 

fuzzy set on an underlying set V and B = (�P
B
,�N

B
) is a bipo-

lar fuzzy set in Ṽ2 where �P
B
(v, v�) ≤ min{�P

A
(v),�P

A
(v�)} , 

�N
B
(v, v�) ≥ max{�N

A
(v),�N

A
(v�)} for any (v, v�) ∈ Ṽ2 , and 

�P
B
(v, v�) = �N

B
(v, v�) = 0 for any (v, v�) ∈ Ṽ2 − E , then 

G = (V ,A,B) is a bipolar fuzzy graph (BFG) of the graph 
G ∗= (V ,E) (the corresponding originally graph is called a crisp 
graph of fuzzy graph). In what follows, we always use ∧ and ∨ instead 
of minimum and maximum operations, respectively. More related 
concepts were introduced by Mathew et al. [32], Akram [33], Akram 
and Karunambigal [34], Karunambigai et al. [35], Akram and Farooq 
[36], Singh and Kumar [37], and Yang et al. [31].

Verty recently, Poulik and Ghorai [38] revised the con-
cepts of order, neighborhood, neighborhood degree, irregu-
lar and subdigraph of bipolar fuzzy graphs which were first 
defined by Akram [38]. The order of a bipolar fuzzy graph 
G = (V ,A,B) is denoted by

The size of a bipolar fuzzy graph is formulated by

For a subset vertex set S ⊆ V  , the fuzzy cardinality of S 
is denoted by

The open neighborhood of a vertex v in bipolar fuzzy 
graph G = (V ,A,B) is

The close neighborhood of a vertex v is denoted by 
N[v] = N(v) ∪ {v} . The open neighborhood degree of a ver-
tex v in bipolar fuzzy graph is then determined by

A fuzzy incidence graph G = (�, �,Ψ) is defined as fol-
lows: � ∶ V → [0, 1] , � ∶ E → [0, 1] , Ψ ∶ V × E → [0, 1] , 
and these membership functions satisfy Ψ(v, e) ≤ �(v) ∧ �(e) 
and for any v ∈ V  and e ∈ E  . Gong and Hua [39] 
extended the definition of fuzzy incidence to bipolar 
fuzzy incidence graph which is described as follows. Let 
G = (V ,E) be a graph, �P ∶ V → [0, 1] , �N ∶ V → [−1, 0] , 
�P ∶ E → [0, 1] , �N ∶ E → [−1, 0] , ΨP ∶ V × E → [0, 1] , 
ΨN ∶ V × E → [−1, 0] .  If  ΨP(v, e) ≤ �P(v) ∧ �P(e) and 
ΨN(v, e) ≥ �N(v) ∨ �N(e) for any v ∈ V  and e ∈ E , then 
(ΨP,ΨN) is called a bipolar fuzzy incidence of G. Change 
an other word, let G = (V ,E) be a graph, and (�P, �N , �P, �N) 
be a bipolar fuzzy subgraph of G. If (ΨP,ΨN) is a bipolar 
fuzzy incidence of G, then G = (�P, �N , �P, �N ,ΨP,ΨN) is 
called a bipolar fuzzy incidence graph of G.

An intuitionistic fuzzy set A in V is formulated by

O(G) = (OP(G),ON(G)) =

(
∑

v∈V

�P
A
(v),

∑

v∈V

�N
A
(v)

)

S(G) = (SP(G), SN(G)) =

(
∑

(v,v�)∈Ṽ2

𝜇P
B
(v, v�),

∑

(v,v�)∈Ṽ2

𝜇N
B
(v, v�)

)

|S| =
(
∑

v∈S

�P
A
(v),

∑

v∈S

�N
A
(v)

)

N(v) = {v� ∈ V ∶ 𝜇P
B
(v, v�) > 0 or 𝜇N

B
(v, v�) < 0}

d(v) = (dP(v), dN(v)) =

(
∑

(v,v�)∈Ṽ2

𝜇P
B
(v, v�),

∑

(v,v�)∈Ṽ2

𝜇N
B
(v, v�)

)

A = {(v,�A(v), �A(v)) ∶ v ∈ V}
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where functions �A, �A ∶ V → [0, 1] represent the degree 
of membership and degree of non-membership of the ele-
ments v in V and satisfies �A(v) + �A(v) ≤ 1 for any v ∈ V  . 
Moreover, value �A(v) = 1 − (�A(v) + �A(v)) is called the 
intuitionistic fuzzy set index or hesitation margin of v in 
A, where �A(v) is the degree of indeterminacy of v in the 
intuitionistic fuzzy set.

The intuitionistic fuzzy relation R on the set X × Y  is an 
intuitionistic fuzzy set with the following version:

where �R, �R ∶ X × Y → [0, 1] which satisfies �
R
(x, y) + �

R

(x, y) ≤ 1 for any (x, y) ∈ X × Y  . Atanassov and Gargov [40] 
introduced the operation on intuitionistic fuzzy variables.

Shannon and Atanassov [41] and [42] introduced 
intuitionistic fuzzy graph as G = (V ,A,B) , where 
A = (V ,�A, �A) is an intuitionistic fuzzy set on vertex set V, 
B = (V × V ,�B, �B) is an intuitionistic fuzzy set on V × V  
such that �B(v, v

�) ≤ �A(v) ∧ �A(v
�) , �B(v, v�) ≤ �A(v) ∨ �A(v

�) 
and the property �B(v, v

�) + �B(v, v
�) ≤ 1 holds for any 

v, v� ∈ V  . Note that an intuitionistic fuzzy graph can be re-
written as G = (V ,E) , where E = (V × V ,�, �) is intuition-
istic fuzzy edges with �(v, v�) + �(v, v�) ≤ 1 holds for any 
v, v� ∈ V .

Ezhilmaran and Sankar [43] introduced bipolar intuition-
istic fuzzy set and bipolar intuitionistic fuzzy graph. A bipo-
lar intuitionistic fuzzy set on universal set V is denoted by

where the positive membership degree �P
A
∶ V → [0, 1] 

expresses the satisfaction degree of element v to the prop-
erty corresponding to a bipolar intuitionistic fuzzy set 
A; the negative membership degree �N

A
∶ V → [−1, 0] 

denotes the satisfaction degree of an element v to the cer-
tain implicit counter property corresponding to a bipo-
lar intuitionistic fuzzy set; the positive non-membership 
degree �P

A
∶ V → [0, 1] is used to imply the satisfaction 

degree of v to the property corresponding to A; the nega-
tive non-membership degree �N

A
∶ V → [−1, 0] denotes 

the satisfaction degree of v to certain implicit coun-
ter property corresponding to a bipolar intuitionistic 
fuzzy set A. Furthermore, we have 0 ≤ �P

A
(v) + �P

A
(v) ≤ 1 

and −1 ≤ �N
A
(v) + �N

A
(v) ≤ 0 for any v ∈ V  . A mapping 

B = (�P

B
,�N

B
, �P

B
, �N

B
) ∶ V × V → ([0, 1] × [−1, 0] × [0, 1] × [−1, 0]) 

a bipolar intuitionistic fuzzy relation such that 
�P
B
(v, v�) ∈ [0, 1] , �N

B
(v, v�) ∈ [−1, 0] , �P

B
(v, v�) ∈ [0, 1] and 

�N
B
(v, v�) ∈ [−1, 0] (there are all symmetric functions).
A bipolar intuitionistic fuzzy graph G = (V ,A,B) with 

A = (�P
A
,�N

A
, �P

A
, �N

A
) and B = (�P

B
,�N

B
, �P

B
, �N

B
) is a bipolar 

intuitionistic fuzzy relation such that

R = {((x, y),�R(x, y), �R(x, y))|(x, y) ∈ X × Y}

A = {(v,�P
A
(v),�N

A
(v), �P

A
(v), �N

A
(v)) ∶ v ∈ V}

�P

B
(v, v�) + �P

B
(v, v�) ≤ 1 and �N

B
(v, v�) + �N

B
(v, v�) ≥ −1 for any 

(v, v�) ∈ V × V  ,  a n d  �P

B
(v, v�) = �N

B
(v, v�) = 0, �P

B
(v, v�)

= 1, �N
B
(v, v�) = −1 for any (v, v�) ∈ V × V − E . Based on 

these definitions, Sankar and Ezhilmaran [44] introduced 
more concepts on bipolar intuitionistic fuzzy graphs, and 
Alnaser et al. [45] defined the concepts of incidence intui-
tionistic bipolar fuzzy matrix and line intuitionistic bipolar 
fuzzy graph.

3  Dominating Set and Domination Number 
of Fuzzy Graphs

Recall that in classical graph setting, dominating set D is 
a subset of V such that for any x ∈ V − D , there is a vertex 
y ∈ D satisfying xy ∈ E . Accordingly, the domination num-
ber of G is denoted by �(G) which is the minimum cardinal-
ity of all dominating sets of G. When it comes to the fuzzy 
graphs, the definition of dominating set is determined by the 
various definition of fuzzy edges. In this section, we aim to 
extend these domination related concepts to bipolar fuzzy 
graph settings.

3.1  Effective Edge‑Based Domination in Bipolar 
Fuzzy Graphs

In fuzzy graph G = (V ,A,B) , the edge vv' is called effective 
if �B(v, v

�) = �A(v) ∧ �A(v
�) . Then, a fuzzy graph G is strong 

if all edges in E are effective, and G is complete if for all 
v, v� ∈ V  , we have �B(v, v

�) = �A(v) ∧ �A(v
�) . Somasunda-

ram and Somasundaram [46] introduced the domination of 
fuzzy graphs in terms of effective edges, that is, D ⊆ V  is a 
dominating set of G if for every v ∈ V − D , there is a v� ∈ D 
such that vv′ is an effective edge. The domination number of 
fuzzy graph G is the minimum fuzzy cardinality of dominat-
ing sets. Formally,

In bipolar graph setting, the edge vv' is called effective 
if �P

B
(v, v�) = �P

A
(v) ∧ �P

A
(v�) or �N

B
(v, v�) = �N

A
(v) ∨ �N

A
(v�) 

(Here, we need explain more. According to the revised defi-
nitions on bipolar fuzzy graphs by Poulik and Ghorai [38], 
the neighborhood-related concepts only need one member-
ship function hold, for example, the open neighborhood of 

�P

B
(v, v�) ≤ �P

A
(v) ∧ �P

A
(v�),

�N

B
(v, v�) ≥ �N

A
(v) ∨ �N

A
(v�),

�P
B
(v, v�) ≥ �P

A
(v) ∨ �P

A
(v�),

�N
B
(v, v�) ≤ �N

A
(v) ∧ �N

A
(v�),

�(G) = min

{
∑

v∈D

�A(v)|D is a dominating set

}
.
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a vertex v inquires one of its positive relation membership 
value and negative relation membership value not equal 
to zero, which is not necessary to satisfy both of them not 
equal to zero. Similarly, here for effective edge in bipolar 
graph, it is sufficient only one of �P

B
(v, v�) = �P

A
(v) ∧ �P

A
(v�) 

and �N
B
(v, v�) = �N

A
(v) ∨ �N

A
(v�) to be satisfied). Then, 

a bipolar fuzzy graph G is strong if all edges in E are 
effective, and G is complete if for all v, v� ∈ V  , we have 
�P
B
(v, v�) = �P

A
(v) ∧ �P

A
(v�) or �N

B
(v, v�) = �N

A
(v) ∨ �N

A
(v�) . 

D ⊆ V  is a dominating set of bipolar fuzzy G if for every 
v ∈ V − D , there is a v� ∈ D such that vv′ is an effective edge. 
We call this kind of dominating set as the first class dominat-
ing set of bipolar fuzzy graph. The domination number of 
bipolar fuzzy graph G is formulated by

We call �1(G) the first class of domination number of 
bipolar fuzzy graph.

3.2  Valid Edge‑Based Domination in Bipolar Fuzzy 
Graphs

In terms of neighborhood definitions by Poulik and Ghorai 
[38], we introduce the bipolar fuzzy bipartite graph. A bipo-
lar fuzzy graph G = (V ,A,B) is said to be bipartite if its ver-
tex set V can be partitioned into two non-empty sets V1 and V2 
such that �P

B
(v, v�) = �N

B
(v, v�) = 0 if v, v� ∈ V1 or v, v� ∈ V2 . 

If �P
B
(v, v�) = �P

A
(v) ∧ �P

A
(v�) and �N

B
(v, v�) = �N

A
(v) ∨ �N

A
(v�) 

for any v ∈ V1 and v� ∈ V2 , then G is called complete bipolar 
fuzzy bipartite graph.

For a fuzzy graph G = (V ,A,B) , Afsharmanesh and Bor-
zooei [47] introduced the validity of edge uv ∈ E by

(Note that in some literatures (see Samanta et al. [48], 
and Mahapatra et al. [49] and [50]) on the coloring of fuzzy 
graph, the above formulation is called the strength of edge.) 
The edge uv is valid if I(v, v�) ≥ 1

2
 , and otherwise call inva-

lid. Furthermore, valid edge-based domination concepts 
are defined by Afsharmanesh and Borzooei [47]: D ⊆ V  
is a dominating set of G if for every v ∈ V − D , there is a 
v� ∈ D such that vv′ is a valid edge. The domination number 
of fuzzy graph G is the minimum fuzzy cardinality of valid 
edge-based dominating sets.

�1(G) = min

{
∑

v∈D

�P

A
(v) +

|||||

∑

v∈D

�N

A
(v)

|||||
|D is a first class dominating set}.

I(v, v�) =
�B(v, v

�)

�A(v) ∧ �A(v
�)
.

Now, we extend it in bipolar fuzzy setting. The validity of 
edge uv ∈ E in bipolar graph G is denoted by

The edge uv is valid if IP(v, v�) ≥ 1

2
 or IN(v, v�) ≥ 1

2
 , and 

otherwise call invalid. D ⊆ V  is a dominating set of bipolar 
fuzzy G if for every v ∈ V − D , there is a v� ∈ D such that 
vv′ is a valid edge. We call this kind of dominating set as 
the second-class dominating set of bipolar fuzzy graph. The 
domination number of bipolar fuzzy graph G is formulated 
by

�2(G)

= min

�
∑
v∈D

�P

A
(v) +

�����

∑
v∈D

�N

A
(v)

�����
�D is a second class dominating set

�
,.

We call �2(G) the second class of domination number of 
bipolar fuzzy graph.

Example 1. Let G = (V ,A,B) be a bipolar fuzzy 
g raph  w i t h  V = {v1, v2, v3, v4, v5} and  E = {v1v2,

v2v3, v3v4, v4v5, v5v1, v2v4} . The values of membership func-
tion are presented in Fig. 1, and by simple computing, we 
confirm that v1v5, v2v3, v3v4, v4v2 are valid edges, v1v2, v4v5 
are invalid. The critical dominating sets (a dominating 
set D is critical if deleting any vertex v from D, D − {v} 
is not a dominating set) are D1 = {v1, v2} , D2 = {v1, v3} , 
D3 = {v1, v4} , D4 = {v5, v2} , D5 = {v5, v3} , D6 = {v5, v4}.

In light of their membership function values, we get

I(v, v�) = (IP(v, v�), IN(v, v�)) = (
�P
B
(v, v�)

�P
A
(v) ∧ �P

A
(v�)

,
�N
B
(v, v�)

�N
A
(v) ∨ �N

A
(v�)

).

∑

v∈D1

�P
A
(v) +

||||||

∑

v∈D1

�N
A
(v)

||||||
= 1.1,

∑

v∈D2

�P
A
(v) +

||||||

∑

v∈D2

�N
A
(v)

||||||
= 1.8,

∑

v∈D3

�P
A
(v) +

||||||

∑

v∈D3

�N
A
(v)

||||||
= 1.4,

Fig. 1  A bipolar fuzzy graph and its valid edges
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Therefore, we check that D1 = {v1, v2} is the minimum 
dominating set and �2(G) = 1.1.

For a bipolar fuzzy graph G, if G is complete, then any 
ver tex  is  a  dominat ing set ,  and thus  �2(G)

= min{�P

A
(v) +

|||�
N

A
(v)

||| |v ∈ V} . On the contrary, if all the 
edges in G are invalid, then the unique dominating set con-
tains all vertices and �2(G) =

∑
v∈V

(�P
A
(v) +

����
N
A
(v)

���) . Moreo-

ver, if G is a complete bipolar fuzzy bipartite graph, then we 
have (it vertex set partitioned into V1 and V2)

min
v∈V1

(�P

A
(v) +

|||�
N

A
(v)

|||) +min
v∈V2

(�P

A
(v) +

|||�
N

A
(v)

|||)}.
.

3.3  Valid Edge‑Based Domination Set in Bipolar 
Fuzzy Incidence Graphs

For a fuzzy incidence graph G = (�, �,Ψ) , the pair (v, e) is 
effective if Ψ(v, e) = �(v) ∧ �(e) , and G is complete if all 
edges are effective. Afsharmanesh and Borzooei [47] con-
tributed in the following concepts. The incidence edge vv′ of 
G is an incidence valid edge if I(v, v�) = �(vv�)

�(v)∧�(v�)
≥

1

2
 , 

Ψ(v, vv�) ≥
�(vv�)

2
 and Ψ(v�, v�v) ≥ �(vv�)

2
 . Otherwise, it is called 

an incidence invalid edge. The open incidence valid neigh-
borhood of vertex v ∈ V  is denoted by

Accordingly, the close incidence valid neighborhood of 
vertex v ∈ V  is NIV[v] = NIV(v) ∪ {v} . For ∅ ≠ D ⊆ V  , 

NIV(D) =
∑

v∈D NIV(v)
 and NIV[D] = NIV(D) ∪ D . The inci-

dence valid neighborhood degree of vertex v is denoted by 
∑

v�∈NIV(v)
�(v�)

 . D ⊆ V  is an incidence dominating set of G 

if for every v ∈ V − D , there is a v� ∈ D such that vv′ is an 
incidence valid edge. The domination number of fuzzy inci-
dence graph G is the minimum fuzzy cardinality of inci-
dence valid edge-based incidence dominating sets.

∑

v∈D4

�P
A
(v) +

||||||

∑

v∈D4

�N
A
(v)

||||||
= 1.7,

∑

v∈D5

�P
A
(v) +

||||||

∑

v∈D5

�N
A
(v)

||||||
= 2.4,

∑

v∈D6

�P
A
(v) +

||||||

∑

v∈D6

�N
A
(v)

||||||
= 2.

�2(G) = min{
∑

v∈V1

(�P
A
(v) +

|||�
N
A
(v)

|||),
∑

v∈V2

(�P
A
(v) +

|||�
N
A
(v)

|||),

NIV (v) = {v� ∈ V|vv� is an incidence valid edge}.

Next, we extend the concepts to bipolar setting. Let 
G = (�P, �N , �P, �N ,ΨP,ΨN) be a bipolar fuzzy incidence 
graph. The pair (v, e) is effective if ΨP(v, e) = �P(v) ∧ �P(e) 
and ΨN(v, e) = �N(v) ∨ �N(e) , and G is said to be complete 
if all edges are effective. The incidence edge vv′ of bipolar 
fuzzy incidence graph G is an incidence valid edge if 
(i)IP(v, v�) = �P(vv�)

�P(v)∧�P(v�)
≥

1

2
 , ΨP(v, vv�) ≥

�P(vv�)

2
 , ΨP(v�, v�v)

≥
�P(vv�)

2
 ; or (ii)IN(v, v�) = �N (vv�)

�N (v)∨�N (v�)
≥

1

2
 , ΨN(v, vv�) ≤

�N (vv�)

2
 , 

ΨN(v�, v�v) ≤
�N (vv�)

2
 . Otherwise, it is called a bipolar inci-

dence invalid edge. The open bipolar incidence valid neigh-
borhood of vertex v ∈ V  is denoted by

Accordingly, the close bipolar incidence valid neighbor-
hood of vertex v ∈ V is denoted by NBIV[v] = NBIV(v) ∪ {v} . 
For ∅ ≠ D ⊆ V  , 

NBIV(D) =
∑

v∈D NBIV(v)
 and NBIV[D]

= NBIV(D) ∪ D . The bipolar incidence valid neighborhood 
degree of vertex v is denoted by ∑

v�∈NBIV(v)
�(v�)

 . D ⊆ V  is a 

bipolar incidence dominating set of G if for every v ∈ V − D , 
there is a v� ∈ D such that vv′ is a bipolar incidence valid 
edge. The domination number of bipolar fuzzy incidence 
graph G is formulated by.

�
BI
(G) = min{

∑
v∈D �P(v)

+��
∑

v∈D �N(v)�� �D is a bipolar incidence dominating set}
.

Clearly, if G is a complete bipolar fuzzy incidence graph, 
then �BI(G) = min

v∈V{�
P(v) + ||�N(v)|| |.

Example 2. A bipolar fuzzy incidence graph G is pre-
sented in Fig. 2. It is shown that V = {v1, v2, v3, v4, v5, v6} , 
E = {v1v2, v2v3, v3v4, v4v1, v5v1, v5v4, v5v6, v6v2, v6v3}  , 

NBIV(v) = {v� ∈ V|vv� is a bipolar incidence valid edge}.

Fig. 2  A bipolar fuzzy incidence graph
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�P(v1) = 0.8 , �N(v1) = −0.9 , �P(v2) = 0.6 , �N(v2) = −0.5 , 
�P(v3) = 0.4 , �N(v3) = −0.4 , �P(v4) = 0.7 , �N(v4) = −0.6 , 
�P(v5) = 0.9 , �N(v5) = −0.7 , �P(v6) = 0.4 , �N(v6) = −0.5 , 
�P(v1v2) = 0.6 , �N(v1v2) = −0.5 , �P(v2v3) = 0.4 , �N(v2v3)
= −0.2 , �P(v3v4) = 0.4 , �N(v3v4) = −0.4 , �P(v4v1) = 0.6 , 
�N(v4v1) = −0.6  ,  �P(v5v1) = 0.8  ,  �N(v5v1) = −0.6  , 
�P(v5v4) = 0.7  ,  �N(v5v4) = −0.6  ,  �P(v5v6) = 0.3  , 
�N(v5v6) = −0.3  ,  �P(v6v2) = 0.4  ,  �N(v6v2) = −0.3  , 
�P(v6v3) = 0.4 , �N(v6v3) = −0.3,

ΨP(v1, v1v2) = 0.5 ,  ΨN(v1, v1v2) = −0.5 ,  ΨP(v2, v2v1)

= 0.4  ,  ΨN(v2, v2v1) = −0.3 ,  ΨP(v2, v2v3) = 0.3  , 
ΨN(v2, v2v3) = −0.2 , ΨP(v3, v3v2)= 0.1 , ΨN(v3, v3v2) = −0.1 , 
ΨP(v3, v3v4) = 0.2 , ΨN(v3, v3v4) = −0.1 , ΨP(v4, v4v3) = 0.3 , 
ΨN(v4, v4v3) = −0.4 , ΨP(v4, v4v1) = 0.4 , ΨN(v4, v4v1) = −0.5 , 
ΨP(v1, v1v4) = 0.5 , ΨN(v1, v1v4) = −0.5 , ΨP(v5, v5v1) = 0.3 , 
ΨN(v5, v5v1) = −0.1 , ΨP(v1, v1v5) = 0.2 , ΨN(v1, v1v5) = −0.2 , 
ΨP(v5, v5v4) = 0.5 , ΨN(v5, v5v4) = −0.6 , ΨP(v4, v4v5) = 0.6 , 
ΨN(v4, v4v5) = −0.6,
ΨP(v5, v5v6) = 0.1 ,  ΨN(v5, v5v6) = −0.1 ,  ΨP(v6, v6v5)

= 0.1 ,  ΨN(v6, v6v5) = −0.1 ,  ΨP(v6, v6v2) = 0.1 ,  ΨN

(v6, v6v2) = −0.2 , ΨP(v2, v2v6) = 0.1 , ΨN(v2, v2v6) = −0.1, 
ΨP(v6, v6v3) = 0.3 , ΨN(v6, v6v3) = −0.2 , ΨP(v3, v3v6)= 0.2 , 
and ΨN(v3, v3v6) = −0.1.

By the definition of bipolar incidence valid edge, we infer 
that v1v2, v2v3, v3v4, v4v1, v5v4, v6v3 are incidence valid edges 
and v5v1, v5v6, v6v2 are bipolar incidence invalid edges. Thus, 
all the critical bipolar incidence dominating sets (a bipolar 
incidence dominating set D is critical if deleting any vertex 
v from D, D − {v} is not a bipolar incidence dominating 
set) are D1 = {v1, v3, v5} , D1 = {v1, v5, v6} , D3 = {v2, v4, v6} , 
D4 = {v2, v5, v6} , and furthermore.

∑
v∈D1

�P(v) +
���
∑

v∈D1
�N(v)

��� = 4.1
,

∑
v∈D2

�P(v) +
���
∑

v∈D2
�N(v)

��� = 4.2
,

∑
v∈D3

�P(v) +
���
∑

v∈D3
�N(v)

��� = 3.3
,

∑
v∈D4

�P(v) +
���
∑

v∈D4
�N(v)

��� = 3.6
.

Therefore, we conclude that �BI(G) = 3.3.

Theorem 1. Let G = (�P, �N , �P, �N ,ΨP,ΨN) be a bipolar 
fuzzy incidence graph. Then,

�
BI
(G) ≤

∑
v∈V (�

P(v) + ���N(v)��)
−max

v∈V{
∑

v�∈N
BIV

(v) (�
P(v�) + ���N(v�)��)}.

Proof. The result follows from the fact that for any v ∈ V  , 
V − NBIV(v) is a bipolar incidence dominating set of G.

A vertex v ∈ V  in a bipolar fuzzy incidence graph G is 
called an isolated vertex if NBIV(v) = � . For a given vertex 
subset S ⊆ V  , we say v ∈ S is an isolated vertex in S if 
NBIV(v) ∩ S = � .  All  ver t ices in V  are isolated 

⇔ �BI(G) =
∑

v∈V (�
P(v) + ���N(v)��)

 . On the contrary, if G has 

no isolated vertex, then �BI(G) ≤
∑

v∈V (�P(v)+��N (v)�)
2

 . In addi-
tion, the characteristics of critical bipolar incidence domi-
nating set can be stated in the following theorem (an exten-
sion of Theorem 3.27 and Theorem 3.28 in Afsharmanesh 
and Borzooei [47]).

Theorem 2. A bipolar incidence dominating set D in bipolar 
fuzzy incidence graph G. We have the following facts.

• D is critical if and only if for arbitrary v ∈ D , v is isolated 
in D or there is v� ∈ V − D satisfying NBIV(v

�) ∩ S = {v}.
• If D is critical and G has no isolated vertices, then V − D 

is a bipolar incidence dominating set.

A vertex subset I ⊆ V  is called a bipolar incidence inde-
pendence set if there is no bipolar incidence valid edge 
between any two vertices in I, i.e., for any v ∈ I , v is a isolated 
vertex in I. A bipolar incidence independent set I of bipolar 
fuzzy incidence graph G is maximal if for any v ∈ V − I , the 
set I ∪ {v} is not bipolar incidence independent.

Theorem 3. Let G = (�P, �N , �P, �N ,ΨP,ΨN) be a bipolar 
fuzzy incidence graph. I ⊆ V  is a maximal bipolar incidence 
independence set if and only if I is a critical bipolar incident 
d o m i n a t i n g  s e t .  Fu r t h e r m o r e ,  w e  h a v e 

�BI(G) = min{
∑

v∈I �
P(v) + ��

∑
v∈I �

N(v)�� �I
is a maximal bipolar incidence independence set}.

Let G = (�P, �N , �P, �N ,ΨP,ΨN) be a bipolar fuzzy inci-
dence graph, S be a non-empty subset of its vertex set and 
u ∈ S . The vertex v is a bipolar incidence valid private 
neighbor of u w.r.t. S if NBIV[v] ∩ S = {u} . Denote

by the bipolar valid private neighbor set of u w.r.t. S. 
Clearly, u is an isolated vertex in G[S] if u ∈ BIPNBIV(u, S) . 
If BIPNBIV(u, S) ≠ � for any u ∈ S , then S is a bipolar inci-
dence irredundant set. If S ∪ {u} is not a bipolar incidence 
irredundant set for any u ∈ V�S , then S is a maximal bipolar 
incidence irredundant set. The bipolar incidence irredun-
dance number is denoted by.

i�BI(G) = min{
∑

v∈I �
P(v) + ��

∑
v∈I �

N(v)�� �I
is a maximal bipolar incidence irredundant set}.
Moreover, the upper bipolar incidence irredundance num-

ber is denoted by
I�BI(G) = max{

∑
v∈I �

P(v) + ��
∑

v∈I �
N(v)�� �I

is a maximal bipolar incidence irredundant set}
.

The following conclusion can be viewed as the extension 
of Theorem 3.35 and Theorem 3.36 in Afsharmanesh and 
Borzooei [47], and we skip the detailed proof.

BIPNBIV(u, S) =NBIV[u] −
⋃

v∈S�{u}
NBIV[v]

=NBIV[u] − NBIV[S − {u}]
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Theorem 4. A bipolar incidence dominating set in the 
bipolar fuzzy incidence graph is a minimal bipolar incidence 
dominating set if and only if it is a bipolar incidence irre-
dundant set. Furthermore, any minimal bipolar incidence 
dominating set in the bipolar fuzzy incidence graph G is a 
maximal bipolar incidence irredundant set in G.

3.4  Domination in Bipolar Intuitionistic Fuzzy 
Graphs

Bozhenyuk et al. [23] introduced the domination set of 
intuitionistic fuzzy graph, and let us review this trick first. 
Let G = (V ,A,B) be an intuitionistic fuzzy graph with 
A = (V ,�A, �A) and B = (V × V ,�B, �B) . A vertex subset 
X ⊆ V  is an intuitionistic dominating vertex set of G with 
the intuitionistic degree of domination.

�(X) = ∧
v�∈V−X ∨v∈X(�B

(v, v�), �
B
(v, v�)),

where the operations ∧ and ∨ are specially formulated by

= ((�B(v1, v
�
1
) ∧ �B(v2, v

�
2
)), (�B(v1, v

�
1
) ∨ �B(v2, v

�
2
))).,

= ((�B(v1, v
�
1
) ∨ �B(v2, v

�
2
)), (�B(v1, v

�
1
) ∧ �B(v2, v

�
2
))).

Assume that (�B(v, v), �B(v, v)) = (1, 0) for any v ∈ V  . 
Hence, the expression �(X) can be re-written as.

�(X) = ∧
v�∈V ∨v∈X(�B

(v, v�), �
B
(v, v�)).

As sume  t ha t  �(X1) = (�B(v1, v
�
1
), �B(v1, v

�
1
))  and 

�(X2) = (�B(v2, v
�
2
), �B(v2, v

�
2
)) , then 𝛽(X1) < 𝛽(X2) implies 

𝜇B(v1, v
�
1
) < 𝜇B(v2, v

�
2
) and 𝜂B(v1, v�1) > 𝜂B(v2, v

�
2
) . A subset 

X ⊆ V  is a minimal intuitionistic dominating vertex subset 
with degree �(X) if 𝛽(X�) < 𝛽(X) for any subset X′ ⊆ X . Let 
Yk = {Xk1,Xk2,⋯ ,Xkl} be the family of all minimal intui-
tionistic dominating vertex subset with k vertices, 
�(Xki) = �ki for i = 1,⋯ , l and �0

k
= ∨

i=1,⋯,l �ki
 . Then, an 

intuitionistic fuzzy set D = {(1, �0
1
), (2, �0

2
),⋯ , (n, �0

n
)} is a 

domination set of intuitionistic fuzzy graph G.
The purpose of this subsection is to extend the Boz-

henyuk’s domination set concept to bipolar setting. Let 
G = (V ,A,B) be a bipolar intuitionistic fuzzy graph with 
A = (�P

A
,�N

A
, �P

A
, �N

A
) and B = (�P

B
,�N

B
, �P

B
, �N

B
) . A vertex sub-

set X ⊆ V  is a bipolar intuitionistic dominating vertex set of 
G with the bipolar intuitionistic degree of domination

�(X) = ∧
v�∈V−X ∨v∈X(�

P

B
(v, v�),�N

B
(v, v�), �P

B
(v, v�), �N

B
(v, v�)),

(�B(v1, v
�
1
), �B(v1, v

�
1
)) ∧ (�B(v2, v

�
2
), �B(v2, v

�
2
)),

= (min{�B(v1, v
�
1
),�B(v2, v

�
2
)}, max{�B(v1, v

�
1
), �B(v2, v

�
2
)}),

(�B(v1, v
�
1
), �B(v1, v

�
1
)) ∨ (�B(v2, v

�
2
), �B(v2, v

�
2
))

= (max{�B(v1, v
�
1
),�B(v2, v

�
2
)}, min{�B(v1, v

�
1
), �B(v2, v

�
2
)})

where the operations ∧ and ∨ are specially formulated by

(�N
B
(v1, v

�
1
) ∧ �N

B
(v2, v

�
2
))),

(�N
B
(v1, v

�
1
) ∨ �N

B
(v2, v

�
2
))).

Assume that (�P

B
(v, v),�N

B
(v, v), �P

B
(v, v), �N

B
(v, v))=(1, 0, 0, 1) for 

any v ∈ V  . Hence, the expression �(X) can be re-stated by
�(X) = ∧

v�∈V ∨v∈X(�
P

B
(v, v�),�N

B
(v, v�), �P

B
(v, v�), �N

B
(v, v�)).

Assume that �(X1) = (�P

B
(v1, v

�
1
),�N

B
(v1, v

�
1
), �P

B
(v1, v

�
1
), �N

B
(v1, v

�
1
)) and 

�(X2) = (�P
B
(v2, v

�
2
),�N

B
(v2, v

�
2
), �P

B
(v2, v

�
2
), �N

B
(v2, v

�
2
)) , then 

𝛽(X1) < 𝛽(X2)  i m p l i e s  𝜇P
B
(v1, v

�
1
) < 𝜇P

B
(v2, v

�
2
)  , 

𝜇N
B
(v1, v

�
1
) > 𝜇N

B
(v2, v

�
2
)  ,  𝜂P

B
(v1, v

�
1
) > 𝜂P

B
(v2, v

�
2
)  a n d 

𝜂N
B
(v1, v

�
1
) < 𝜂N

B
(v2, v

�
2
) . A subset X ⊆ V  is a minimal bipolar 

intuitionistic dominating vertex subset with degree �(X) if 
𝛽(X�) < 𝛽(X)  f o r  a n y  s u b s e t  X′ ⊂ X  .  L e t 
Yk = {Xk1,Xk2,⋯ ,Xkl} be the family of all minimal bipolar 
intuitionistic dominating vertex subset with k vertices, 
�(Xki) = �ki for i = 1,⋯ , l and �0

k
= ∨

i=1,⋯,l �ki
 . Then an 

intuitionistic fuzzy set D = {(1, �0
1
), (2, �0

2
),⋯ , (n, �0

n
)} is a 

domination set of bipolar intuitionistic fuzzy graph G.
Let G be a crisp graph (classical graph). We get

(�P

B
(v, v�),�N

B
(v, v�), �P

B
(v, v�), �N

B
(v, v�))

=

{
(1,−1, 0, 0), if vv� ∈ E

(0, 0, 1,−1), if vv� ∉ E

,

(�P

B
(v1, v

�
1
),�N

B
(v1, v

�
1
), �P

B
(v1, v

�
1
), �N

B
(v1, v

�
1
))

∧(�P

B
(v2, v

�
2
),�N

B
(v2, v

�
2
), �P

B
(v2, v

�
2
), �N

B
(v2, v

�
2
))

= (min{�P

B
(v

1
, v

�
1
),�P

B
(v

2
, v

�
2
)}, max{�N

B
(v

1
, v

�
1
),�N

B
(v

2
, v

�
2
)},

max{�P
B
(v

1
, v

�
1
), �P

B
(v

2
, v

�
2
)},

min{�N
B
(v1, v

�
1
), �N

B
(v2, v

�
2
)})

= ((�P

B
(v1, v

�
1
) ∧ �P

B
(v2, v

�
2
)), (�N

B
(v1, v

�
1
) ∨ �N

B
(v2, v

�
2
)),

(�P
B
(v1, v

�
1
) ∨ �P

B
(v2, v

�
2
)),

(�P

B
(v1, v

�
1
),�N

B
(v1, v

�
1
), �P

B
(v1, v

�
1
), �N

B
(v1, v

�
1
))

∨ (�P

B
(v2, v

�
2
),�N

B
(v2, v

�
2
), �P

B
(v2, v

�
2
), �N

B
(v2, v

�
2
))

= (max{�P

B
(v

1
, v

�
1
),�P

B
(v

2
, v

�
2
)}, min{�N

B
(v

1
, v

�
1
),�N

B
(v

2
, v

�
2
)},

min{�P
B
(v

1
, v

�
1
), �P

B
(v

2
, v

�
2
)},

max{�N
B
(v1, v

�
1
), �N

B
(v2, v

�
2
)})

= ((�P

B
(v1, v

�
1
) ∨ �P

B
(v2, v

�
2
)), (�N

B
(v1, v

�
1
)

∧ �N

B
(v2, v

�
2
)), (�P

B
(v1, v

�
1
) ∧ �P

B
(v2, v

�
2
)),
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𝛽(X) =

⎧
⎪
⎨
⎪
⎩

(1,−1, 0, 0), if X ⊆ V is a dominating set of crisp graph G

(0, 0, 1,−1), otherwise
.

Example 3. A bipolar intuitionistic fuzzy graph is presented 
in Fig. 3. If set X1 = {v1, v2} , then we have

∨v∈X1
(�P

B
(v, v3),�

N

B
(v, v3), �

P

B
(v, v3), �

N

B
(v, v3)) = (0.4,−0.6, 0.4,−0.4)

,

∨v∈X1
(�P

B
(v, v4),�

N

B
(v, v4), �

P

B
(v, v4), �

N

B
(v, v4)) = (0.2,−0.3, 0.3,−0.2)

,

∨v∈X1
(�P

B
(v, v5),�

N

B
(v, v5), �

P

B
(v, v5), �

N

B
(v, v5)) = (0.6,−0.4, 0.2,−0.5)

,

and hence the bipolar intuitionistic degree is 
�(X1) = (0.2,−0.3, 0.4,−0.5) .  I f  we  se t  X2 = {v1} 
and X3 = {v2} , then we get �(X2) = (0, 0, 1,−1) and 
�(X3) = (0, 0, 1,−1) . Clearly, in terms of its definition X1 , 
X2 and X3 are all minimal bipolar intuitionistic dominating 
vertex subsets.

To determine the bipolar intuitionistic fuzzy set D of 
bipolar intuitionistic fuzzy graph G, we need compute more 
intermediate results:

�({v1}) = (0, 0, 1,−1),
�({v2}) = (0, 0, 1,−1),
�({v3}) = (0, 0, 1,−1),
�({v4}) = (0, 0, 1,−1),
�({v5}) = (0, 0, 1,−1),
�({v1, v2}) = (0.2,−0.3, 0.4,−0.5),
�({v1, v3}) = (0, 0, 1,−1),
�({v1, v4}) = (0, 0, 1,−1),
�({v1, v5}) = (0.2,−0.1, 0.4,−0.4),
�({v2, v3}) = (0.2,−0.3, 0.4,−0.5),
�({v2, v4}) = (0.2,−0.3, 0.5,−0.5),
�({v2, v5}) = (0.2,−0.3, 0.5,−0.5),
�({v3, v4}) = (0, 0, 1,−1),
�({v3, v5}) = (0, 0, 1,−1),
�({v4, v5}) = (0, 0, 1,−1),
�({v3, v4, v5}) = (0.4,−0.4, 0.3,−0.5),
�({v2, v4, v5}) = (0.2,−0.3, 0.5,−0.5),
�({v2, v3, v5}) = (0.2,−0.3, 0.4,−0.5),
�({v2, v3, v4}) = (0.4,−0.4, 0.3,−0.5),

�({v1, v4, v5}) = (0.4,−0.4, 0.4,−0.4),
�({v1, v3, v5}) = (0.2,−0.1, 0.3,−0.2),
�({v1, v3, v4}) = (0, 0, 1,−1),
�({v1, v2, v5}) = (0.2,−0.3, 0.4,−0.4),
�({v1, v2, v4}) = (0.4,−0.4, 0.4,−0.5),
�({v1, v2, v3}) = (0.2,−0.3, 0.3,−0.5),
�({v2, v3, v4, v5}) = (0.4,−0.6, 0.3,−0.2),
�({v1, v3, v4, v5}) = (0.6,−0.4, 0.2,−0.2),
�({v1, v2, v4, v5}) = (0.4,−0.6, 0.4,−0.4),
�({v1, v2, v3, v5}) = (0.2,−0.3, 0.3,−0.2),
�({v1, v2, v3, v4}) = (0.6,−0.4, 0.2,−0.5),
�({v1, v2, v3, v4, v5}) = (1,−1, 0, 0).
Thus, the bipolar minimal bipolar intuitionistic domi-

nating vertex subsets are {v1} , {v2} , {v3} , {v4} , {v5} , 
{v1, v2} , {v1, v5} , {v2, v3} , {v2, v4} , {v2, v5} , {v3, v4, v5} , and 
{v1, v2, v3, v4, v5} . Hence,

Y1 = {{v1}, {v2}, {v3}, {v4}, {v5}},
Y2 = {{v1, v2}, {v1, v5}, {v2, v3}, {v2, v4}, {v2, v5}},

Y3 = {{v3, v4, v5}},

Y4 = {�},

Y5 = {{v1, v2, v3, v4, v5}}.

Accordingly, define �(�) = (0, 0, 1,−1) , we get.
�0

1
= �({v1}) ∨ �({v2}) ∨ �({v3}) ∨ �({v4}) ∨ �({v5})

= (0, 0, 1,−1), �0

2
= �({v1, v2}) ∨ �({v1, v5}) ∨ �({v2, v3}) ∨

�({v2, v4}) ∨ �({v2, v5})

= (0.2,−0.3, 0.4,−0.4),

�0
3
= �({v2, v3, v4}) = (0.4,−0.4, 0.3,−0.5),

�0
4
= �(�) = (0, 0, 1,−1),

�0
5
= �({v1, v2, v3, v4, v5}) = (1,−1, 0, 0).

Finally, we conclude that.
D = {(1, �0

1
), (2, �0

2
), (3, �0

3
), (4, �0

4
), (5, �0

5
)}

= {(1, 0, 0, 1,−1), (2, 0.2,−0, 3, 0.4,−0.4),

(3, 0.4,−0.4, 0.3,−0.5),

(4, 0, 0, 1,−1), (5, 1,−1, 0, 0)}.

4  A Numerical Experiment

Yunnan Province is one of the provinces with frequent 
earthquakes in China. There are two well-known geological 
plate fault zones “Xiaojiang Fault Zone:” and “Honghe Fault 
Zone” located in Yunnan Province. This has caused areas 
along the fault zone to become a high-risk area for earth-
quakes, such as “Dali”, “Tonghai”, “Lijiang”, “Honghe”, 
“Ludian” and so on. In recent 10 years, earthquakes above 
5-level scale that occurred in Yunnan are shown in Table 1.

Therefore, the Yunnan Provincial Natural Resources 
Bureau established the Emergency Disaster Department, 
which specializes in the emergency management of natural Fig. 3  A bipolar intuitionistic fuzzy graph
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disasters including earthquake relief. Now, suppose we need 
to choose several cities from Yunnan Province to build earth-
quake-resistant warehouses that can store food, machinery 
and sanitary materials, and can use land transportation. Fast 

transportation between cities in the event of an earthquake 
above the scale becomes essential in the earthquake rescue 
and relief. We use bipolar fuzzy graph domination set theory 
to select these cities. The map of various cities in Yunnan 
Province is shown in Fig. 4.

Based on Fig. 4, we can get the following structure in 
Fig. 5, where each vertex represents a prefecture-level city, 
and there is an edge between two cities if and only if they 
are adjacent.

The correspondence between cities and vertices is pre-
sented in Table 2.

It should be noted that the cities represented by the verti-
ces in Fig. 5 are prefecture-level cities, and prefecture-level 
cities are in charge of many small cities, and we will not use 
other vertices to represent them. In other words, we use a 
vertex to represent the central city of a district, while ignor-
ing the surrounding counties.

We need to use a bipolar membership function to express 
the uncertainty to blur the graph. These uncertainties include 
the different conditions of cities in the construction of emer-
gency warehouses, such as distance between cities, quality, 
safety, roadblocks, and traffic. The existence of and other 
aspects are different. For cost-saving considerations, the city 

Table 1  Earthquakes of magnitude 5 and above in Yunnan Province 
in the past 10 years

Date Location Earth-
quake 
level

March 10, 2011 Yingjiang 5.8
September 7, 2012 Yiliang 5.6
August 31, 2013 Diqing Tibetan Autonomous Prefec-

ture
5.9

April 5, 2014 Yongshan County, Zhaotong City 5.3
May 30, 2014 Yingjiang County, Dehong Dai and 

Jingpo Autonomous Prefecture
6.1

August 3, 2014 Ludian County, Zhaotong City 6.5
August 17, 2014 Yongshan County, Zhaotong City 5.0
March 27, 2017 Yangbi County, Dali Prefecture 5.1
August 13, 2018 Tonghai County 5.0
May 21, 2021 Yangbi County, Dali Prefecture 6.4

Fig. 4  City distribution map of 
Yunnan Province (copy from 
the internet)
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where the emergency center is located should choose the 
least number and the most ideal city, so that the remaining 
cities are adjacent to at least one of them through suitable 
roads, so that the stored items can be transferred as soon as 
possible in the event of an incident. Therefore, we use the 
concept of dominance to select cities in the fuzzy graph. 
Cities to be chosen to build emergency warehouses should 
consider the following criteria.

1. The city is of high grade, with sufficient resources and 
manpower to dispatch, and the level of management per-
sonnel is high.

2. The city is not on the “Xiaojiang Fault Zone” and 
“Honghe Fault Zone”, that is, the city itself is relatively 
safe.

3. Convenient transportation in the city.

4. Take account of various urban agglomerations. Accord-
ing to the national overall plan, the entire Yunnan can 
be divided into 6 major urban agglomerations: Central 
Yunnan, Northeast Yunnan, Southwest Yunnan, West 
Yunnan, Northwest Yunnan, and Southeast Yunnan. The 
choice of cities needs to take these six urban agglomera-
tions into account.

Correspondingly, we invite an expert group to assign a 
pair of values in the intervals [0, 1] × [−1, 0] to each city, 
to score the city. For each of the items mentioned above, 
there is a function from V to [0, 1] × [−1, 0] , denoted as 
s1 = (sP

1
, sN

1
),s2 = (sP

2
, sN

2
),s3 = (sP

3
, sN

3
) and s4 = (sP

4
, sN

4
) , 

respectively. Consider the bipolar membership function 
�P, �N on V as the average of these scores. We set a weight-
ing coefficient for each item, respectively, 0.3, 0.2, 0.3 and 
0.2. Therefore, for any v ∈ V  , we use the following weight-
ing formula to calculate the positive and negative scores:

The specific values are shown in Table 3 (in fact, Diqing, 
Nujiang, Lijiang, Dali, Baoshan, Chuxiong, Lincang, Yuxi, 
Honghe, and even the provincial capital Kunming are all on 
the seismic fault zone).

The following factors are considered for each edge to 
determine the bipolar membership of roads between cities.

1. The length of road
2. Road quality, including infrastructure, safety, condition 

of mountain roads along the way, and convenience facili-
ties along the route.

For each of the above, we have a function from E to 
[0, 1] × [−1, 0] , denoted by e1 = (eP

1
, eN

1
) and e2 = (eP

2
, eN

2
) , 

respectively. The weighted average of these two functions 
(since Yunnan is a mountainous province, most of the moun-
tain roads are steep, so relative to the length of the road, 
the quality of the road plays a decisive role. Therefore, the 
proportion of the first and second terms is set to 0.3 and 0.7) 
form the membership function eP, eN ∶ E → [0, 1] × [−1, 0] 
of the edge in the bipolar fuzzy graph. which is

For any uv ∈ E(G) , suppose �P(uv) = min{eP(uv), �P(u),

�P(v)} a n d  �N (uv) = max{eN (uv), �N (u), �N (v)} .  S i n c e 
�P(uv) ≤ �P(u) ∧ �P(v) and �N(uv) ≥ �N(u) ∨ �N(v) , it conforms 
to the relationship between the membership functions 

�P = 0.3sP
1
+ 0.2sP

2
+ 0.3sP

3
+ 0.2sP

4

�N = 0.3sN
1
+ 0.2sN

2
+ 0.3sN

3
+ 0.2sN

4

eP = 0.3eP
1
+ 0.7eP

2

eN = 0.3eN
1
+ 0.7eN

2

Fig. 5  Graph corresponding to Fig. 4

Table 2  Vertex and city 
comparison

Vertex City

v1 Diqing
v2 Nujiang
v3 Lijiang
v4 Dali
v5 Baoshan
v6 Dehong
v7 Chuxiong
v8 Lincang
v9 Pu’er
v10 Xshuangbanna
v11 Yuxi
v12 Honghe
v13 Wenshan
v14 Kunming
v15 Qujing
v16 Zhaotong
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of the vertices and edges of the fuzzy graph, that is, 
G = (V , �P, �N , �P, �N) is a bipolar fuzzy graph. The data of 
the edge membership function are shown in Table 4.

According to the definition, all the above edges are 
valid edges of G = (V , �P, �N , �P, �N) . Now, suppose that a 
city meets the conditions required to build an earthquake-
resistant warehouse and can enter another city through suit-
able roads (Table 5). If the city entrances and exits become 
crowded, especially during a crisis, when road traffic 
increases, the city cannot be considered Candidates to build 
warehouses. Therefore, construct a bipolar incidence graph 
to describe the uncertainty of the quality of urban entrances 
and exits through the functions ΨP ∶ V × E → [0, 1] and 
ΨN ∶ V × E → [−1, 0] as follows:

Therefore, G = (V , �P, �N , �P, �N ,ΨP,ΨN) is a bipolar 
fuzzy incidence graph. By calculating, it can be known that 
except for v12v14 , v11v14 and v14v16 , the others are all valid 
edges. We list the domination sets determined by several 
approaches in Table 6.

It can be seen from Table 6 that for the example of earth-
quake-resistant warehouse construction in Yunnan Province, the 
same calculation results can be obtained using the three methods 
given in this article. We believe that the reason is that there are 
two hanging points in the figure, leading to and being selected at 
the same time. In addition, we believe that this choice is reason-
able for this particular application. Intuitively, Kunming is the 
capital city of Yunnan Province and should be selected, but in 
fact, it is located on the fault zone and is not suitable for material 
storage. We have given the calculation results of the method to 
exclude Kunming. In summary, the earthquake-resistant ware-
houses in Yunnan Province should be built in the four cities of 
“Diqing”, “Baoshan”, “Pu’er” and “Qujing”.

5  Discussion

For intuitionistic fuzzy graph, Bozhenyuk et al. [23] deter-
mined that the intuitionistic dominating sets have property 
(0, 1, ) ≤ �0

1
≤ �0

2
≤ ⋯ ≤ �0

n
≤ (1, 0) . When it comes to 

bipolar setting, if we expand it directly, then it will become 
(0, 0, 1,−1) ≤ �0

1
≤ �0

2
≤ ⋯ ≤ �0

n
≤ (1,−1, 0, 0) . However, 

it is obvious that for bipolar intuitionistic fuzzy graph and 
bipolar intuitionistic dominating set, this property is not hold 
any more. In Bozhenyuk et al. [23], the authors gave more 
discussions, algorithm and numerical examples on how to 
compute the domination set in intuitionistic fuzzy graph, and 
unfortunately, these statement can be extended to bipolar 
setting.

The main reason for this phenomenon is that the defi-
nition of minimal bipolar intuitionistic dominating vertex 
subset is too strict, and the deeper reason in the defini-
tion of 𝛽(X1) < 𝛽(X2) is too harsh. Recall that in Bozhe-
nyuk et  al. [23], for �(X1) = (�B(v1, v

�
1
), �B(v1, v

�
1
)) and 

�(X2) = (�B(v2, v
�
2
), �B(v2, v

�
2
)) , 𝛽(X1) < 𝛽(X2)  i m p l i e s 

𝜇B(v1, v
�
1
) < 𝜇B(v2, v

�
2
)  and  𝜂B(v1, v

�
1
) > 𝜂B(v2, v

�
2
)  .  I n 

Table 3  Score of each city

Vertex (sP
1
, sN

1
) (sP

2
, sN

2
) (sP

3
, sN

3
) (sP

4
, sN

4
) (�P, �N )

v1 (0.2,-0.7) (0.3,-0.7) (0.1,-0.9) (0.1,-0.9) (0.17,-0.8)
v2 (0.3,-0.7) (0.3,-0.6) (0.1,-0.9) (0.1,-0.9) (0.2,-0.78)
v3 (0.7,-0.4) (0.2,-0.7) (0.7,-0.2) (0.9,-0.1) (0.64,-0.34)
v4 (0.6,-0.4) (0.1,-0.9) (0.7,-0.3) (0.9,-0.2) (0.59,-0.43)
v5 (0.4,-0,5) (0.3,-0.6) (0.6,-0.4) (0.7,-0.4) (0.5,-0.47)
v6 (0.4,-0.6) (0.6,-0.5) (0.2,-0.8) (0.2,-0.7) (0.34,-0.68)
v7 (0.3,-0.8) (0.3,-0.6) (0.2,-0.9) (0.5,-0.7) (0.31,-0.77)
v8 (0.2,-0.8) (0.3,-0.6) (0.1,-0.9) (0.1,-0.9) (0.17,-0.81)
v9 (0.3,-0.7) (0.7,-0.4) (0.2,-0.9) (0.2,-0.9) (0.33,-0.74)
v10 (0.6,-0.4) (0.8,-0.3) (0.6,-0.4) (0.8,-0.1) (0.68,-0.32)
v11 (0.5,-0.3) (0.3,-0.4) (0.6,-0.5) (0.5,-0.5) (0.49,-0.42)
v12 (0.5,-0.3) (0.2,-0,8) (0.5,-0.6) (0.5,-0.7) (0.44,-0.57)
v13 (0.2,-0.9) (0.6,-0.5) (0.1,-0.9) (0.1,-0.9) (0.23,-0.82)
v14 (0.9,-0.05) (0.4,-0.4) (0.9,-0.1) (1,-0.1) (0.82,-0.145)
v15 (0.8,-0.2) (0.9,-0.1) (0.8,-0.3) (0.9,-0.1) (0.84,-0.19)
v16 (0.3,-0.8) (0.7,-0.5) (0.2,-0.9) (0.2,-0.9) (0.33,-0.79)

Table 4  Calculation of edge membership function of bipolar fuzzy 
graph in Fig. 5

Edge (eP
1
, eN

1
) (eP

2
, eN

2
) (eP, eN ) (�P, �N )

v1v2 (0.9,-0.1) (0.2,-0.9) (0.41,-0.3) (0.17,-0.3)
v1v3 (0.9,-0.1) (0.4,-0.6) (0.55,-0.45) (0.17,-0.38)
v2v5 (0.9,-0.1) (0.3,-0.7) (0.48,-0.52) (0.2,-0.47)
v3v4 (0.9,-0.1) (0.9,-0.1) (0.9,-0.1) (0.59,-0.1)
v4v5 (0.9,-0.1) (0.5,-0.4) (0.62,-0.31) (0.5,-0.31)
v5v6 (0.9,-0.1) (0.2,-0.7) (0.41,-0.52) (0.34,-0.47)
v5v8 (0.9,-0.1) (0.1,-0.8) (0.34,-0.59) (0.17,-0.47)
v4v9 (0.9,-0.1) (0.5,-0.7) (0.62,-0.52) (0.33,-0.43)
v4v7 (0.9,-0.1) (0.5,-0.8) (0.62,-0.59) (0.31,-0.43)
v3v7 (0.9,-0.1) (0.5,-0.7) (0.62,-0.52) (0.31,-0.34)
v8v9 (0.9,-0.1) (0.2,-0.9) (0.41,-0.66) (0.17,-0.66)
v9v10 (0.9,-0.1) (0.5,-0.6) (0.62,-0.45) (0.33,-0.32)
v9v7 (0.9,-0.1) (0.1,-0.9) (0.34,-0.66) (0.31,-0.66)
v9v11 (0.9,-0.1) (0.4,-0.8) (0.55,-0.59) (0.33,-0.42)
v7v11 (0.9,-0.1) (0.4,-0.8) (0.55,-0.59) (0.31,-0.42)
v9v12 (0.9,-0.1) (0.4,-0.7) (0.55,-0.52) (0.33,-0.52)
v7v14 (0.9,-0.1) (0.6,-0.6) (0.69,-0.54) (0.31,-0.145)
v11v12 (0.9,-0.1) (0.3,-0.8) (0.48,-0.59) (0.44,-0.42)
v12v14 (0.9,-0.1) (0.5,-0.6) (0.62,-0.45) (0.44,-0.145)
v11v14 (0.9,-0.1) (0.6,-0.5) (0.69,-0.38) (0.49,-0.145)
v12v13 (0.9,-0.1) (0.2,-0.8) (0.41,-0.59) (0.23,-0.57)
v12v15 (0.9,-0.1) (0.4,-0.5) (0.55,-0.38) (0.44,-0.19)
v13v15 (0.9,-0.1) (0.5,-0.5) (0.62,-0.38) (0.23,-0.19)
v14v15 (0.9,-0.1) (0.9,-0.1) (0.9,-0.1) (0.82,-0.145)
v14v16 (0.2,-0.9) (0.1,-0.9) (0.13,-0.9) (0.13,-0.145)
v15v16 (0.9,-0.1) (0.4,-0.5) (0.55,-0.38) (0.33,-0.19)



 International Journal of Computational Intelligence Systems          (2021) 14:162 

1 3

  162  Page 12 of 14

this paper, we directly extend it to bipolar setting, for 
�(X1) = (�P

B
(v1, v

�
1
),�N

B
(v1, v

�
1
), �P

B
(v1, v

�
1
), �N

B
(v1, v

�
1
))  a n d 

�(X2) = (�P

B
(v2, v

�
2
),�N

B
(v2, v

�
2
), �P

B
(v2, v

�
2
), �N

B
(v2, v

�
2
)) ,  𝛽(X1) < 𝛽(X2) 

implies 𝜇P
B
(v1, v

�
1
) < 𝜇P

B
(v2, v

�
2
) ,  𝜇N

B
(v1, v

�
1
) > 𝜇N

B
(v2, v

�
2
) , 

𝜂P
B
(v1, v

�
1
) > 𝜂P

B
(v2, v

�
2
) and 𝜂N

B
(v1, v

�
1
) < 𝜂N

B
(v2, v

�
2
) . Then, 

X ⊆ V  is a minimal bipolar intuitionistic dominating ver-
tex subset with degree �(X) if 𝛽(X�) < 𝛽(X) for any subset 
X′ ⊂ X . Here, we see that to meet 𝛽(X�) < 𝛽(X) , the cor-
responding value of four membership functions should 
be strict “ < ” or “ > ”. It leads that to be that a minimal 
bipolar intuitionistic dominating vertex subset is a difficult 

condition. As depicted in above example, when k = 4, there 
is no subset with four vertices meeting this demand.

To solve this problem, the definition of 𝛽(X�) < 𝛽(X) may 
be revised in the future. An alternative solution is described 
as follows.

Possible modified definition: Assume �(X1) =

(�P

B
(v1, v

�
1
),�N

B
(v1, v

�
1
), �P

B
(v1, v

�
1
), �N

B
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�
1
))  a n d  �(X2)

= (�P

B
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2
),�N

B
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�
2
), �P

B
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�
2
), �N

B
(v2, v

�
2
)) . Then, �(X1)

< 𝛽(X2) if the following two conditions are established:
(1) �P

B
(v1, v

�
1
) ≤ �P

B
(v2, v

�
2
) , �N

B
(v1, v

�
1
) ≥ �N

B
(v2, v

�
2
) or 

�P
B
(v1, v

�
1
) ≥ �P

B
(v2, v

�
2
) or �N

B
(v1, v

�
1
) ≤ �N

B
(v2, v

�
2
).

(2)𝜇P
B
(v1, v

�
1
) < 𝜇P

B
(v2, v

�
2
) or 𝜇N

B
(v1, v

�
1
) > 𝜇N

B
(v2, v

�
2
) or 

𝜂P
B
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�
1
) > 𝜂P

B
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2
) or 𝜂N

B
(v1, v

�
1
) < 𝜂N

B
(v2, v

�
2
).

The definition of this replacement needs to be discussed 
in the future work.

6  Conclusion

In this paper, we mainly study the dominating sets in vari-
ous kinds of bipolar graphs, including traditional bipolar 
fuzzy graph, bipolar fuzzy incidence graph and bipolar intui-
tionistic fuzzy graph. In particular, in normal bipolar fuzzy 
graph framework, we consider two kinds of dominating set 
and domination number: effective edge based and valid edge 
based. The tricks on how to compute these dominating sets 
are presented and several related features are determined.
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Table 5  Computing the values of ΨP and ΨN

v
i
v
j (ΨP(v

i
, v

i
v
j
),ΨN (v

i
, v

i
v
j
)) (ΨP(v

j
, v

j
v
i
),ΨN (v

j
, v

j
v
i
))

v1v2 (0.1,-0.3) (0.1,-0.3)
v1v3 (0.1,-0.3) (0.15,-0.3)
v2v5 (0.1,-0.4) (0.1,-0.45)
v3v4 (0.55,-0.1) (0.55,-0.1)
v4v5 (0.4,-0.2) (0.2,-0.3)
v5v6 (0.15,-0.4) (0.1,-0.45)
v5v8 (0.15,-0.45) (0.1,-0.4)
v4v9 (0.32,-0.3) (0.1,-0.4)
v4v7 (0.3,-0.25) (0.1,-0.4)
v3v7 (0.3,-0.2) (0.1,-0.3)
v8v9 (0.1,-0.4) (0.1,-0.5)
v9v10 (0.1,-0.3) (0.3,-0.2)
v9v7 (0.1,-0.4) (0.1,-0.4)
v9v11 (0.1,-0.4) (0.3,-0.3)
v7v11 (0.1,-0.4) (0.2,-0.3)
v9v12 (0.1,-0.5) (0.1,-0.4)
v7v14 (0.1,-0.14) (0.3,-0.1)
v11v12 (0.1,-0.3) (0.1,-0.4)
v12v14 (0.1,-0.1) (0.42,-0.05)
v11v14 (0.1,-0.1) (0.45,-0.05)
v12v13 (0.1,-0.55) (0.15,-0.4)
v12v15 (0.1,-0.15) (0.2,-0.1)
v13v15 (0.1,-0.15) (0.15,-0.15)
v14v15 (0.8,-0.1) (0.7,-0.1)
v14v16 (0.05,-0.05) (0.05,-0.05)
v15v16 (0.1,-0.15) (0.1,-0.15)

Table 6  Calculation results of bipolar fuzzy graph domination set

Tricks Valid edges Domination set Domi-
nation 
number

Using �1(G) All {v1, v5, v9, v15} 4.04
Using �2(G) All {v1, v5, v9, v15} 4.04
Using �BI(G) Except v12v14

,v11v14 and v14v16
{v1, v5, v9, v15} 4.04

http://creativecommons.org/licenses/by/4.0/
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