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Abstract
In this research, we explored a method of multi-scale feature mapping to pre-screen radiographs quickly and accurately in 
the aided diagnosis of pneumoconiosis staging. We utilized an open dataset and a self-collected dataset as research data-
sets. We proposed a multi-scale feature mapping model based on deep learning feature extraction technology for detecting 
pulmonary fibrosis and a discrimination method for pneumoconiosis staging. The diagnostic accuracy was evaluated using 
under the curve (AUC) of the receiver operating characteristic (ROC) curve. The AUC value of our model was 0.84, which 
showed the best performance compared with previous work on datasets. The diagnosis results indicated that our method was 
highly consistent with that of clinical experts on real patient. Furthermore, the AUC value obtained through categories I–IV 
on the testing dataset demonstrated that categories I (AUC = 0.86) and IV (AUC = 0.82) obtained the best performance and 
achieved the level of clinician categorization. Our research could be applied to the pre-screening and diagnosis of pneumo-
coniosis in the clinic.

Keywords Pneumoconiosis · Pulmonary fibrosis · Computer-aided diagnosis · Computer-aided detection · Deep learning · 
Multi-scale feature mapping

1 Introduction

Pneumoconiosis is an occupational disease that mainly 
develops through the long-term inhalation of large amounts 
of industrial dust into the lungs, causing diffusive fibrosis 
in lung tissues during occupational activities. According 
to occupational disease statistics from 2012 to 2019 from 
the Chinese Ministry of Health, as shown in Table 1, pneu-
moconiosis accounts for more than 80% of all occupational 
disease cases, with an ever-high cumulative number of diag-
nosed cases.

The latest diagnostic criteria of pneumoconiosis are based 
on high kilo-voltage (HKV) chest X-rays and digital radiog-
raphy (DR) [1] combined with a comprehensive analysis of 
the patient’s dust exposure history, clinical manifestations 
and assisted examinations. Currently, the diagnosis of pneu-
moconiosis mainly depends on the experience of radiolo-
gists, which is limited and complex.

With the development of artificial intelligence technology 
and medical image research, medical image-aided diagno-
sis/detection technology has been gradually applied in the 
clinic and pneumoconiosis can be prevented through pre-
screening. In this study, we use multi-scale feature mapping 
technology based on deep learning to pre-screen radiographs 
quickly and accurately in the aided diagnosis of pneumoco-
niosis. The main contributions of this study are as follows:

1. We designed a multi-scale feature mapping model for 
detecting pulmonary fibrosis, this model cannot only detect 
fibrosis, but also locate the prediction boxes. The results on 
testing dataset and validation dataset showed that the mode 
is better than two other researchers for recognition of pul-
monary fibrosis.

2. We analysed the diagnostic standard of pneumoco-
niosis staging and designed the discrimination method of 
pneumoconiosis staging, which used the threshold value 
of the pixel ratio of the area of small opacities to the lung 
zone. This study monitored the discrimination parameters 
through the simulation experiment of DR of real patients, the 
results indicated that the discrimination method was feasible 
and consistent with that of the expert, the method could be 
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applied in clinic and the diagnosis accuracy is higher than 
average level of clinicians.

The rest of this paper is organized as follows: in Sect. 2, 
the related works are reviewed; in Sect. 3, the detail of the 
proposed method is described; in Sect. 4, the experimental 
details and the advanced performance obtained experimen-
tally on the dataset are presented; in Sect. 5, conclusions 
are drawn.

2  Related Work

Deep learning has been widely used to detect lesions on 
medical images and has achieved the detection accuracy 
of clinical experts in many cases. Searching for or locating 
abnormal or suspected areas via CAD to attract the atten-
tion of clinicians will increase the detection rate of lesions 
while reducing the number of false negatives that may be 
caused by subjectivity. As the main basis of pneumoconio-
sis diagnosis, DR is a type of digital medical image that is 
more suitable for computer acquisition and research than 
HKV chest X-rays. Pathologically, pneumoconiosis is mostly 
divided into two types: fibrosis and non-fibrosis. Approxi-
mately 90–95% of silicosis and coal worker pneumoconiosis 
cases are pulmonary fibrosis types. Thus, in this study, we 
focused on the pathological manifestations most common 
to silicosis and coal worker pneumoconiosis for CAD of 
pulmonary fibrosis.

The study of the CAD of pneumoconiosis began in the 
1970s. Savol [2] adopted the AdaBoost algorithm on the 
chest X-rays of coal mine workers to detect small opaci-
ties of pneumoconiosis. Yu et al. [3] proposed a scheme 
of CAD for pneumoconiosis based on chest radiographs 
and showed that their automatic detection scheme was 
more accurate and convenient and could be a great help 
in the clinical screening of pneumoconiosis. Later, they 
improved the algorithm to detect pneumoconiosis by 

obtaining the feature vector of DR through the grey-level 
histogram co-occurrence matrix (GLCM). Zhu [4, 5] com-
bined a decision tree (DT) and a support vector machine 
(SVM) to classify the DR of 85 healthy individuals and 
40 patients and the pneumoconiosis recognition accuracy 
achieved the clinical expert level. Cai et al. [6] extracted 
features from 66 chest radiographs to distinguish between 
healthy individuals and pneumoconiosis patients and used 
another 29 images to evaluate the diagnostic performance 
of the classifier, achieving an overall accuracy of 79.3%. 
Haifeng [7] proposed a method to automatically recognize 
different stages of pneumoconiosis through the CAD of 
DR and adopted the back propagation (BP) neural network 
(NN) classifier to classify the feature vector based on the 
features and artificial discrimination of the density of the 
lung field opacity on chest radiographs, achieving a clas-
sification rate of 100% and an average correctness rate of 
68.3%. Jin [8] focused on the object between the ribs to 
achieve the CAD of pneumoconiosis using chest X-rays. 
A total of 150 chest X-ray images were tested and the 
results showed that the correct classification rate, true pos-
itive rate and true negative rate were 91%, 96% and 86%, 
respectively; thereby, demonstrating the clinical applica-
tion of assisting radiologists in diagnosis. Okumura [9] 
developed a CAD system of a rule-based artificial neural 
network (ANN) for detecting the presence or absence of 
pneumoconiosis on chest X-rays. The results showed that 
the method was significantly better than the ANN method 
or the rule-based method alone, indicating that the method 
could help radiologists classify pneumoconiosis.

Because the diagnostic standard of pneumoconiosis 
involves factors such as the lung field and the pulmonary 
opacity density, it is necessary to quantify the stages of 
fibrosis. Therefore, we studied the object detection strat-
egy to explore the accurate identification of different 
scales of opacity of pulmonary fibrosis and pneumoco-
niosis staging methods.

We designed a multi-scale feature mapping model, with 
the entire radiograph as the input and an eight-layer fully 
convolutional neural network (FCNN) [10, 11] for feature 
extraction to achieve end-to-end detection. To reduce the 
costs of time and storage for training, we performed uni-
form dense sampling at different locations of the radio-
graph using different scales and aspect ratios, as well as 
classification and regression on the feature mapping layer 
after the convolution layer. We adopted the non-maximum 
suppression (NMS) algorithm to select the candidate box 
of fibrosis opacity with the highest confidence as the final 
detection result. Finally, we quantitatively estimated the 
sum of the detection windows for identified pulmonary 
fibrosis with the lung field for automatic pneumoconiosis 
classification.

Table 1  Statistics of occupational diseases and pneumoconiosis from 
2012 to 2019 in China

Year Occupational 
diseases

Pneumoconiosis Rate (%)

2012 27,420 24,206 88.28
2013 26,393 23,152 87.72
2014 29,972 26,873 89.66
2015 29,180 26,081 89.38
2016 31,789 28,088 88.36
2017 26,756 22,701 84.84
2018 23,497 19,468 82.85
2019 19,428 15,898 81.83
Total 214,435 186,467 86.96
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3  Methods

3.1  Multi‑scale Feature Mapping Model

The model contains two modules. One is a basic module 
for feature extraction and the other is a multi-scale feature 
mapping module for lung fibrosis detection (Fig. 1). The 
two modules share computing resources and implement 
end-to-end lesion detection. The feature extraction module 
is a network composed of eight convolutional layers and the 
multi-scale feature mapping module utilizes different convo-
lution layers to perform object detection at different scales, 
while each layer locates objects at a certain scale due to the 
distinct receptive fields in the different convolution layers 
with different pulmonary fibrosis opacity sizes [12].

The higher convolution layers of the model are used to 
detect the multi-scale object by gradually reducing the fea-
ture mapping size. Each feature mapping layer uses a set 
of convolution kernels to predict a fixed object, while the 
convolutional feature layer predicts some fixed-size object 
bounding boxes and scores the boxes. Finally, the final detec-
tion box is generated using the NMS algorithm [13–15]. For 
an m × n feature mapping layer, there are two basic elements: 
a 1 × 1 convolution kernel that predicts the parameters of 
the potential object and the offset of the predicted bounding 
box, which is generated from the initial bounding box. When 
applied to each location of the m × n feature layer, the con-
volution kernel generates an output value. For each feature 
mapping layer, the output value of the predicted bounding 
box is calculated using the offset from the initial bounding 
box. For each feature mapping element, the offset relative 
to the initial bounding box is predicted and the score of the 
box belonging to a certain category is also predicted. Spe-
cifically, for any given location, k initial bounding boxes are 
set according to the scale and aspect ratio of the bounding 

box. The scores of the initial bounding box belonging to c 
categories and the four offsets relative to the initial bound-
ing box are calculated. Therefore, for an m × n feature map, 
the model calculates (c + 4) × k × m × n predicted bounding 
boxes (Fig. 2).

The spatial resolution of the lower layers gradually 
decreases, which leads to the loss of some spatial informa-
tion, but a smaller receptive field can be better matched to 
small opacities. Although higher network layers lose the 
spatial information of some opacities, they have a larger 
receptive field that can be matched to large opacities (Fig. 3). 
When fused, the object detectors of the feature mapping lay-
ers across multiple scales form an effective detector.

3.2  Loss Function

In the training process, it is usually necessary to determine 
the initial bounding box corresponding to the real object. For 
each real bounding box, the initial bounding box is selected 
based on its position, aspect ratio and intersection over union 
(IOU) and then the initial bounding box and the ground-
truth (GT) bounding box are matched by optimizing the IOU 
value. In this study, once the matched IOU value exceeded 
the threshold, it was estimated as a real object. Meanwhile, 
to simplify the training process, the trained network was 
allowed to predict multiple overlapping initial bounding 
boxes with high scores instead of a single maximum overlap-
ping bounding box [16]. The parameter W of the multi-scale 
feature mapping model was trained from a series of samples, 
i.e. S = {(Xi, Yi)}

N
i=1

 , in which Xi is the labelled sample box, 
Yi = (yi, bi) , where yi ∈ {0, 1, ...,K} is the sample label; and 
bi = (bx

i
, b

y

i
, bw

i
, bh

i
) represents the centre point (x, y) and the 

width and height (w, h) of the coordinate. The loss function 
is defined as follows:

Fig. 1  The detection model of multi-scale feature mapping
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where N is the number of feature mapping layers; �n is the 
weight of the loss function ln ; and S = {S1, S2, ..., SN} is the 
sample of feature mapping layer m, i.e. the error of the mth 
detection layer selected by the scale. After the object classi-
fication and the coordinates of the predicted bounding boxes 
are jointly trained, the detection results of each feature map-
ping layer are combined. The final loss function contains 
two objects:

where  p(X) = (p0(X), ..., pK(X)) i s  t he  p robab i l -
ity value of object classification; � is the balance 

(1)L(W) =

N∑
n=1

∑
i∈Sn

�nl
n(Xi, Yi|W),

(2)l(X, Y|W) = Lobj(p(X), y) + 𝜆Lloc(b, b̂),

parameter and is generally set to 1 through cross-validation; 
Lobj(p(X), y) = − log py(X) is the cross-entropy function (for 
calculating the classification); and b̂i = (b̂x

i
, b̂

y

i
, b̂w

i
, b̂h

i
) is the 

coordinate offsets of the predicted box. Thus, the coordinate 
loss function is as follows:

where i is the coordinates of the predicted object box and j 
is the coordinates of the ground-truth box. The coordinate 
loss function calculates the coordinate errors between the 
predicted object box and the ground-truth box through 
smoothL1() and b̂m

j
 is calculated using the following 

equation:

(3)Lloc(b, b̂) =

N∑
i∈Pos

∑
m∈(x,y,w,h)

smoothL1(b
m
i
− b̂m

j
),

Fig. 2  Multi-scale object detection method

Fig. 3  Multi-scale feature mapping module
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3.3  Subdivision of the Lung Field

Automatic segmentation of the lung field is a very impor-
tant step and the quality of segmentation directly affects 
the accuracy of the automatic diagnosis of pneumoconiosis 
staging. According to the diagnostic standard [1], each lung 
field is divided into three zones, namely, a high lung field, 
a middle lung field and a low lung field; therefore, there are 
six lung zones in the left and right lobes combined. In Fig. 4, 

(4)b̂m
j
=

⎧
⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

b̂x
j
=
�
bx
j
− dx

i

�
∕dw

i

b̂
y

j

�
b
y

j
− d

y

i

�
∕dh

i

b̂w
j
= log

�
bw
j

dw
i

�

b̂h
j
= log

�
bh
j

dh
i

�
.

the left is the original DR and the middle is the segmentation 
of the lung field, which was trained through U-Net [17]. The 
right is the segmentation overlying DR. We first calculated 
the vertical distance between the apex of the lungs and the 
diaphragm from the lung field segmented in the original DR 
and then we calculated the contour lines based on the hori-
zon of the lung zones, as shown in Fig. 4b.

3.4  Discriminant of Pneumoconiosis Staging

3.4.1  Small Opacity and Large Opacity

According to the shape, small opacities were divided 
into two types (circular and irregular) and four levels, 
j = (1, 2, 3, 4) . We used p or s to refer to the diameters 
(width) not exceeding 1.5 mm as j = 1, q or t to refer to 
the diameters (width) between 1.5 mm and 3 mm as j = 2, r 
and u to refer to the diameter (width) between 3 and 10 mm 
as j = 3 and opacities with a diameter (width) of more than 
10 mm were called large opacities as j = 4.

Fig. 4  a Segmentation of the 
lung field and b subdivision of 
the lung fields
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3.4.2  Small Opacity Density

The diagnosis of pneumoconiosis requires first determin-
ing its opacity density based on the shape of the opacity 
and then calculating the overall density, which is the highest 
density of all lung zones. Finally, the pneumoconiosis stag-
ing is comprehensively determined based on the number of 
zones that have opacities. Therefore, assuming there were 
i ∈ (1, 2, ...6) lung zones. We adopted the threshold evalu-
ation method to determine small opacity densities by cal-
culating the ratio k of the small opacity pixels with varying 
densities to the pixels of the lung zone where the opacities 
resided to represent the small opacity density level of each 
lung zone. The following equation was used:

where 
∑

B
j

i
 is the sum of pixels of the ith lung zone belong-

ing to opacity level j; Ni is the pixel value of the ith lung 
zone; and kj

i
 is the discriminant value indicating that the 

small opacity density of the ith lung zone belongs to j.

3.4.3  Discriminant Method of Pneumoconiosis Staging

Radiologists use two factors to determine the pneumoco-
niosis staging: first, the distribution range of small fibrotic 
opacities refers to the number of lung zones containing 
small opacities with a level 1 density or above; otherwise, 
the zones containing opacities with a level lower than 1 den-
sity are not counted in the distribution range of the lesion. 
Second, the area of small opacities needs to take up at least 
two-thirds of the lung zone; otherwise, it is not counted in 
the distribution zone of the lesion. Therefore, the kj

i
 thresh-

old was set to 0.67 and the discriminative parameters of 
pneumoconiosis staging included the highest opacity density 
level J with a k value above 0.67 and the number of lung 
zones with a given opacity (Table 2).

(5)k
j

i
=

∑
B
j

i

Ni

,

4  Experiment and Results

4.1  Experimental Datasets

The pneumoconiosis DR datasets include two parts: the pub-
lic Chest X-ray14 dataset and the dataset collected by the 
Anhui Prevention and Treatment Center for Occupational 
Diseases.

4.1.1  Chest X‑ray14

Chest X-ray14 [18, 19] is a chest X-ray database built by 
the National Institutes of Health (NIH) Clinical Center. It 
contains 11,210 anterior chest X-ray images from more than 
30,000 individual patients and text labels are given for one 
or more out of 14 diseases through natural language process-
ing (NLP) based on the corresponding radiology report (in 
some cases, one image may have multiple disease labels). 
The database can be freely accessed and downloaded by 
researchers from all over the world for use in research on 
the aided diagnosis of clinical diseases. The statistics of the 
database are shown in Table 3.

We chose 1686 images with lung fibrosis and each image 
was labelled with a rectangular box showing the lung fibrotic 
zone.

4.1.2  Self‑Collected Dataset

The other dataset includes 250 pneumoconiosis DR samples 
collected by the Anhui Prevention and Treatment Center of 
Occupational Diseases; of which, 50 were from patients 
diagnosed with category I pneumoconiosis, 40 were from 

Table 2  Discriminative parameters of pneumoconiosis staging

j is the level of opacity density

Category j = Max (j) Number of 
lung zones with 
k
j

i
 ≥ 0.67

Category I j = 1  ≤ 2
Category II j = 1  ≥ 2
Category III j = 2  ≥ 4

j = 3  ≤ 4
Category IV j = 3  ≥ 4

j = 4

Table 3  Chest X-ray 14 dataset Category X-ray14

Atelectasis 11,535
Cardiomegaly 2772
Effusion 13,307
Infiltration 19,871
Mass 5746
Nodule 6323
Pneumonia 1353
Pneumothorax 5298
Consolidation 4667
Oedema 2303
Emphysema 2516
Fibrosis 1686
Pleural thickening 3385
Hernia 227
Normal 60,412
Total 112,120
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patients diagnosed with category II pneumoconiosis, 50 
were from patients diagnosed with category III pneumoco-
niosis and 50 were from patients diagnosed with category 
IV pneumoconiosis. Another 60 unannotated DRs were used 
as the validation dataset. These DRs were verified by radi-
ologists and some diagnoses had already been confirmed, 
showing that the dataset has extremely high accuracy and 
reliability. The details are shown in Table 4.

4.2  Experimental Model Settings

Based on the imaging standards of DR, the DR is 
1024 × 1024 with a 356 mm × 356 mm view field, so the 
spatial resolution of the standard DR is 0.348 mm between 
two adjacent pixels. Therefore, a small opacity with a diam-
eter (width) of 1.5 mm (j = 1) could be formed by 4 × 4 pix-
els, a small opacity with a diameter (width) of 3 mm (j = 2) 
could be formed by 8 × 8 pixels and a small opacity with 
a diameter (width) of 10 mm (j = 3) could be formed by 
28 × 28 pixels. Once the number of pixels in the diameter 
and width directions of the detected object box exceeded 28 
pixels, we discriminated that a large opacity (j = 4) was pre-
sent in the box and category IV pneumoconiosis was directly 
diagnosed, while for the other categories, DR required fur-
ther examination. Accordingly, in the experimental model, 
the four scales of the feature mapping layers, 256 × 256, 
128 × 128, 64 × 64 and 16 × 16 and the corresponding con-
volution layers conv4, conv5, conv6 and conv7, respectively, 
were used to predict the position and classification scores 
and feature extraction was performed with 1 × 1 convolution 
kernels. The model was trained using the stochastic gradient 
descent (SGD) algorithm with the following parameters: the 
learning rate was 0.001, the momentum was 0.9, the weight 
delay was 0.0005, the batch size was 32 and the number of 
iterations was 10,000. The parameters of the feature map-
ping layer were randomly initialized.

4.3  Aspect Ratio of Detection Boxes

Given the common features of the lesion area, the param-
eters were shared among all feature layers and detection was 
performed using the lower and upper mapping layers, e.g. 
using 8 × 8 and 4 × 4 feature maps, respectively, to reduce the 
computational workload. In the model, the feature mapping 
layers have different receptive fields and the initial bounding 
box does not need match the receptive fields of each layer. 

Assuming that m feature mapping layers are used for predic-
tion, the aspect ratio of the initial bounding box of each layer 
can be calculated from the following equation:

where smin is 0.2 and smax is 0.9, representing that the scale 
factor of the lowest layer is 0.2 and that of the highest layer 
is 0.9 and the scales of the other layers vary between these 
two values. These values were selected empirically. For 
example, we found that opacities with a diameter below 
1.5 mm were approximately 4 × 4 pixels, while opacities 
with a diameter above 10 mm were approximately 28 × 28 
pixels. Therefore, we used five different aspect ratios 
( {1 ∶ 1, 1 ∶ 2, 1 ∶ 3, 2 ∶ 1, 3 ∶ 1} ) for the initial bounding 
box. The length and width were calculated using the fol-
lowing equations:

The coordinates of the centre point of the ith row and the 
jth column of the initial bounding box were set to (
i+0.5

m
,
j+0.5

m

)
 , where m is the size of the m × m feature map. 

By fusing all the predicted values of all the initial bounding 
boxes with different scales and aspect ratios, we obtained a 
series of prediction scores including various input sizes and 
shapes.

4.4  Results and Evaluation of Multi‑scale Detection

According to the above calculations, opacities with a diame-
ter or length and width over 28 pixels were judged to be large 
opacities and the opacities with other object boxes were all 
discriminated as small opacities. Therefore, we chose four 
dimensions: 16 × 16, 64 × 64, 128 × 128 and 256 × 256. Of 
them, the 16 × 16 size was used to predict large opacities 
with a diameter (width) over 10 mm and the 64 × 64 dimen-
sion was used to predict small opacities with a diameter 
(width) of 3–8 mm. The number of predicted object boxes 
for each feature mapping layer and the scale of the predicted 
opacities are shown in Table 5. The number of object boxes 
predicted through conv4 accounted for 75.9% of the total.

(6)sk = smin +
smax − smin

m − 1
(k − 1), k ∈ [1,m],

(7)wk = sk ×
√
ar, hk = sk∕

√
ar.

Table 4  Self-collected dataset

Category I Category 
II

Category 
III

Category 
IV

Unanno-
tated

Total

50 40 50 50 60 250

Table 5  Number of predicted object boxes

Layer Size of 
feature 
mapping

Predicted 
diameter (wide 
diameter)

Number of 
predicted 
boxes

Ratio (%)

Conv4 256 × 256  ≤ 1.5 mm 262,144 75.9
Conv5 128 × 128 [1.5 mm, 3 mm] 65,536 18.9
Conv6 64 × 64 [3 mm, 8 mm] 16,384 4.7
Conv8 16 × 16  ≥ 10 mm 1024 0.2
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To evaluate the performance of the model in predicted 
bounding boxes, using the training dataset of 1686 DRs, 
we experimentally compared our proposed method with the 
ANN–based aided diagnosis method by Okumura et al. [9] 
and the energy texture feature–based DT algorithm by Zhu 
et al. [5] (Fig. 5). The values of area under the curve (AUC) 
of the receiver operating characteristic (ROC) curve with our 
proposed method, the Okumura method and the Zhu method 
were 0.84, 0.74 and 0.72, respectively, which indicated that 
our proposed method performed better than the others.

To further evaluate the performance of the proposed 
model, we conducted model experiments using the training 
dataset (1686 DR), the testing dataset (190 DR) and the vali-
dation dataset (60 DR). We plotted the trends of the accuracy 
values for the training and validation datasets and the trends 
of the loss function for the testing dataset separately with 

12,000 iterations. As shown in Fig. 6, as the number of itera-
tions increased, the convergence of accuracy improved and 
the accuracies of the training dataset and validation dataset 
were 92% and 78%, respectively, while the loss function 
value of the testing dataset slightly fluctuated when reaching 
5% ± 1%. The experimental results also indicate that after 
4000 iterations, the accuracy of the validation dataset stabi-
lized and did not improve significantly, which was related to 
the limited size of the testing dataset.

4.5  Results of the CAD of Pneumoconiosis Staging

To assess the clinical accuracy of the proposed method, 
we randomly applied the discriminant method of pulmo-
nary fibrosis to 10 diagnosed DR patients (Fig. 7) from a 
self-collected dataset while hiding the patient information 
by monitoring the experimental parameters and setting the 
overlap threshold of the prediction and the GT box to 0.67. 
The discriminant parameters of four scales feature mapping 
(256 × 256, 128 × 128, 64 × 64, 16 × 16)on six lung zones and 
the diagnosis of the CAD based on the proposed method are 
shown in Table 6.

The CAD for pneumoconiosis staging indicated that 
the diagnosis was highly consistent with radiologists. To 
evaluate the proposed method for different pneumoconiosis 
stages, we compared the AUC values for four pneumoco-
niosis stages of 190 diagnosed DRs from a self-collected 
dataset. As shown in Fig. 8, the AUC value of our proposed 
method with category I was 0.864. The AUC value of cat-
egory IV was 0.82, followed by category II and category III, 
with AUC values of 0.81 and 0.65, respectively. The better 
classification performance was for category I(no pneumo-
coniosis) and category IV.

In this study, the multi-scale feature mapping module 
for lung fibrosis detection demonstrated remarkable per-
formance. In the case of large opacities or no opacity, the 
proposed method performed better, while categories II and 
III required not only the detection of pulmonary opacities Fig. 5  Comparison of the performance of the three models

Fig. 6  Trend of loss function 
and accuracy
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but also calculation through the discriminant method, in 
which the corresponding pixel statistics had errors, lead-
ing to errors between the CAD and the radiologist. The 

experimental results indicate that the proposed method can 
achieve diagnosis at the level of radiologists and can be used 
to pre-screen pneumoconiosis in clinical applications.

Fig. 7  10 real patients’ X rays (No.1–10)

Table 6  The discriminant 
parameters in six different lung 
zones for four scales and the 
result of CAD

No 256 × 256 128 × 128 64 × 64 16 × 16 CAD Diagnosis 
by Radiolo-
gist

1 0.3 0.05 0 0 0 0 0 0 j = 1, lung zones = 3, Category II Category II
0.68 0.78 0.45 0.43 0 0 0 0
0.70 0.56 0.60 0 0 0 0 0

2 0.67 0.85 0.70 0.80 0.21 0.85 0 0.72 j = 4, lung zones = 3, Category IV Category IV
0.90 0.80 0.82 0.72 0.69 0.78 0.69 0.82
0.70 0.69 0.87 0.80 0.58 0.64 0 0

3 0.82 0.88 0.90 0.76 0.69 0.68 0 0 j = 3, lung zones = 6, Category IV Category IV
0.85 0.95 0.85 0.88 0.86 0.90 0 0
0.87 0.85 0.78 0.81 0.66 0.66 0 0

4 0.54 0.23 0.55 0.02 0 0 0 0 j = 2, lung zones = 3, Category III Category III
0.67 0.88 0.78 0.69 0 0 0 0
0.66 0.9 0.54 0.68 0 0 0 0

5 0.67 0.78 0.68 0.66 0 0 0 0 j = 1, lung zones = 4, Category II Category II
0.88 0.90 0.23 0.37 0 0 0 0
0.60 0.02 0.49 0 0.32 0 0 0

6 0.80 0.90 0.76 0.85 0.22 0.32 0 0 j = 2, lung zones = 4, Category III Category III
0.90 0.78 0.83 0.68 0.25 0.4 0 0
0.85 0.72 0.64 0.32 0.22 0.21 0 0

7 0.70 0.67 0.72 0.69 0.21 0 0 0 j = 2, lung zones = 4, Category III Category III
0.80 0.65 0.68 0.67 0 0 0 0
0.72 0.73 0.65 0.60 0 0 0 0

8 0.78 0.69 0.78 0.96 0.78 0.88 0 0 j = 3, lung zones = 6, Category IV Category IV
0.88 0.90 0.95 0.92 0.89 0.78 0 0
0.78 0.89 0.83 0.82 0.80 0.79 0 0

9 0.68 0.72 0.62 0.68 0 0 0 0 j = 2, lung zones = 2 Category II Category II
0.96 0.82 0.64 0.68 0 0 0 0
0.64 0.68 0.52 0.49 0 0 0 0

10 0.67 0.12 0 0 0 0 0 0 j = 1, lung zones = 1, Category 0 Category 0
0.65 0.48 0 0 0 0 0 0
0.21 0.01 0 0 0 0 0 0
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5  Conclusion

In this research, we utilized the open Chest X-ray14 dataset 
and chest radiographs collected by the Anhui Prevention 
and Treatment Center for Occupational Disease as research 
datasets. We proposed a multi-scale feature mapping model 
based on deep learning feature extraction technology for 
detecting pulmonary fibrosis and a discrimination method 
for pneumoconiosis staging by calculating the threshold 
value of the pixel ratio of the opacity density to lung fields. 
The experiment demonstrated that the result of CAD was 
highly consistent with that of clinical experts on real patient 
which could be applied to the pre-screening and diagnosis 
of pneumoconiosis in the clinic. Our research relied on a 
large number of labelled datasets, which directly affected 
the accuracy of the model. To reduce the image annotation 
of radiologists, this problem will be solved in future studies. 
This research mainly focused on the staging of pneumoco-
niosis, while other lung diseases in DR, such as pneumotho-
rax and pleural effusion, were not involved. Future research 
should focus on other pulmonary diseases in DR.
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