
Vol.:(0123456789)1 3

International Journal of Computational Intelligence Systems (2022) 15:45
https://doi.org/10.1007/s44196-022-00102-8

RESEARCH ARTICLE

DeepRS: A Library of Recommendation Algorithms Based on Deep
Learning

Hongwei Tao1 · Xiaoxu Niu1 · Lianyou Fu1 · Shuze Yuan1 · Xiao Wang1 · Jiaxue Zhang1 · Yinghui Hu1

Received: 9 February 2022 / Accepted: 27 June 2022
© The Author(s) 2022

Abstract
In recent years, recommendation systems have become more complex with increasing research on user preferences. Recom-
mendation algorithm based on deep learning has attracted a lot of attention from researchers in academia and industry, and
many new algorithm models are proposed every year. Researchers often need to implement the proposed model to compare
the results, which is a great challenge. Even if some papers provide source code, there are a variety of programming languages
or deep learning frameworks, and it is not easy to compare the results in the different frameworks. In view of the lack of
easily extensible deep learning-based recommendation algorithm libraries, based on the common analysis of deep learn-
ing algorithms in attention factorization machine (AFM), neural factorization machine (NFM), deep factorization machine
(DeepFM) and deep cross-network (DCN), a recommendation algorithm library based on deep learning (DeepRS for short)
is designed and implemented. It consists of three levels: framework level, abstract level and algorithm level. The framework
level adopts the Tensorflow open source framework, which provides interfaces, such as automatic differentiation, tensor
computing, GPU computing, and numerical optimization algorithms. The abstraction level uses the interface of the frame-
work level to realize the embedding layer (EL), the full connection layer (FCL), the multi-layer perceptron layer (MLPL),
the prediction layer (PL), the factorization machine layer (FML), the attention network layer (ANL), the cross-layer (CL)
and the cross-network layer (CNL). The algorithm level implements the deep learning-based recommendation algorithms,
such as AFM, NFM, DeepFM and DCN, on the basis of the abstraction level and the framework level. Experiments show
that the proposed algorithm library has good scalability, ease of use and correctness.

Keywords Recommendation algorithm library · Deep learning · Tensorflow · Abstraction layer

Abbreviations
AFM Attention factorization machine
NFM Neural factorization machine
DeepFM Deep factorization machine
DCN Deep and cross networks
DeepRS Recommendation algorithm library based on

deep learning
EL Embedding layer
FCL Full connection layer
MLPL Multi-layer perceptron layer
PL Prediction layer
FML Factorization machine layer
ANL Attention network layer
CL Cross layer
CNL Cross-network layer
DNN Deep neural networks
AUC Area under curve
MLP Multi-layer perceptron
LF Latent Factor

 * Hongwei Tao
 hongweitao@zzuli.edu.cn

 Xiaoxu Niu
 541812030214@zzuli.edu.cn

 Lianyou Fu
 fly13233761631@163.com

 Shuze Yuan
 541507120151@zzuli.edu.cn

 Xiao Wang
 pandaxiaoxi@gmail.com

 Jiaxue Zhang
 541803010252@zzuli.edu.cn

 Yinghui Hu
 hyingh6@163.com

1 College of Computer and Communication Engineering,
Zhengzhou University of Light Industry, Zhengzhou 450002,
China

http://orcid.org/0000-0001-6109-4037
http://crossmark.crossref.org/dialog/?doi=10.1007/s44196-022-00102-8&domain=pdf

 International Journal of Computational Intelligence Systems (2022) 15:45

1 3

 45 Page 2 of 12

1 Introduction

The rapid development of information technology, com-
puter technology and sensor technology affects all walks
of life and permeates every aspect of people’s lives.
Convenient social platforms and search engines not only
provide convenience, but also generate huge amounts of
information. Both consumers and content providers are
paying more and more attention to how to extract target
content from massive multi-source heterogeneous data. In
this context, the recommendation systems are currently
a successful solution [1]. Recommendation system is an
information filtering tool, which processes the data gener-
ated by the user’s daily behavior, analyzes the user’s pref-
erences for different entities or content with the obtained
results, and recommends the relevant entities or content
of interest according to the user’s preferences [2]. In gen-
eral, the recommendation system can filter a large amount
of information effectively and recommend resources that
meet users’ needs. It has been widely used in many fields,
such as commodity purchase and audio–visual recommen-
dation [2, 3].

Recommendation algorithm is the core of recommenda-
tion system. The basic characteristics of traditional col-
laborative or content-based filtering algorithm models are
artificial construction, inability to train end-to-end, poor
recommendation quality, unable to deal with sparse data
and cold start problems, as well as the failure to balance
different evaluation indexes in recommendation quality.
With the wide application of deep learning in computer
vision, speech recognition and many other fields, academia
and industry are racing to apply deep learning to a wider
range of applications [4], because it can solve many com-
plex problems, and provide good results, among which the
recommendation system is one of its application fields.
The introduction of deep learning into the recommenda-
tion system has greatly revolutionized the recommendation
system architecture and brought more opportunities to rec-
reate user experience to achieve higher customer satisfac-
tion [5]. The recommendation system algorithm based on
deep learning over- comes the limitations of the traditional
algorithm model and realizes high-quality recommenda-
tion. It can not only automatically capture the nonlinear
and non-trivial relationship between users and products,
and encode more complex abstractions into higher-level
data, but also find the complex relationship within the data
itself from a large number of accessible data sources (such
as pictures, texts, etc.) [6, 7].

However, the large number of recommendation algo-
rithm models based on deep learning also poses great
challenges for researchers and practitioners, because they
need to reproduce the results of the existing models to

evaluate the merits of the new algorithm models. Although
some authors provide source code for reproducing, they
use a variety of programming languages and deep learn-
ing frameworks, not to mention that most authors do not
provide source code, which makes it difficult to understand
and reproduce the model. Therefore, there is an urgent
need for recommending algorithm libraries to solve the
above problems. Most of the existing algorithm librar-
ies are based on traditional recommendation algorithms,
such as Mymedialite [8], Librec [9], etc. They regard the
recommendation algorithm as a single whole. To make
innovative modifications to the algorithm, researchers
may need to re-implement the whole framework from
scratch. Moreover, the models in these libraries cannot
be trained end-to-end, and even some algorithm libraries
are not written in Python, the first language of machine
learning, so they cannot be well integrated into the exist-
ing recommendation services. At present, there is also an
algorithm library based on deep learning—OpenRec [10],
but it only provides the interfaces of the recommenda-
tion system model based on deep learning and have a few
abstract components, so it does not have good scalability.

To deal with these challenges, this paper proposes a
recommendation algorithm library based on deep learn-
ing—DeepRS. DeepRS is an extensible algorithm library
consisting of a framework level, an abstract level, and
an algorithm level. The framework level adopts the open
source framework Tensorflow, which provides inter-
faces, such as automatic differential, tensor calculation,
GPU calculation and numerical optimization algorithm.
Abstract level uses the interfaces of the framework level
to implement eight abstract components, and algorithm
level realizes AFM [11], NFM [12], DeepFM [13], DCN
[14] and other deep recommendation algorithms based on
the abstract level and framework level. DeepRS enriches
the recommendation algorithm toolbox, fills the gap in the
recommendation algorithm library based on deep learning,
makes it easier to reproduce the results of the recommen-
dation model, and lowers the threshold of developing the
recommendation model based on deep learning.

The rest of this paper is organized as follows. Sec-
tion 2 introduces the related work. Section 3 introduces
the architecture design and related algorithms of DeepRS,
and describes in detail the design of framework layer,
abstraction layer and algorithm layer in the algorithm
package. Section 4 presents the experimental analysis of
the rationality of the algorithm package, introduces vari-
ous experimental environment settings and the training
error and accuracy of NFM, AFM, DeepFM and DCN in
these experimental environments. The comparative study
is presented in Sect. 5. The paper is ended with the conclu-
sion and future work in the last section.

International Journal of Computational Intelligence Systems (2022) 15:45

1 3

Page 3 of 12 45

2 Related Work

This section first introduces the traditional recommen-
dation methods, then describes the deep learning-based
recommendation methods, and finally gives the libraries
related to the recommendation methods.

Traditional recommendation methods are mainly
divided into three categories: collaborative filtering rec-
ommendation method, content-based recommendation
method and hybrid recommendation method [2, 15]. Col-
laborative filtering recommendation method finds user
preferences by mining users’ historical behavior data,
groups users based on different preferences, and recom-
mends products with similar tastes [16]. This method is
easy to use and simple. It can only calculate the similarity
between users according to the historical scoring data of
users. However, in many cases, it often encounters the
problem of sparse matrix caused by insufficient scoring
data and the cold start problem of new users without pro-
ject scoring data [17, 18]. The content-based recommen-
dation method is mainly based on the feature information
between users and projects. The relationship between users
will not affect the recommendation results, so there are no
problems of cold start and sparse matrix [19, 20]. How-
ever, the recommendation results of this kind of methods
are low in novelty, and they face the problem of feature
extraction [21]. Hybrid recommendation method combines
the characteristics of the first two traditional recommen-
dation methods and can achieve good recommendation
results, but it still faces some challenges and difficulties
in processing multi-source heterogeneous auxiliary infor-
mation, such as text and image [22, 23].

In recent years, deep learning has developed rapidly
in the field of recommendation system. Recommenda-
tion methods based on deep learning technology can not
only learn the potential feature representation of users or
projects, but also learn the complex nonlinear interaction
characteristics between users and projects [5–7]. They can
deeply analyze user preferences, solve some problems in
traditional recommendation methods, and better realize
recommendation [24]. According to the neural network,
the recommendation methods based on deep learning are
mainly divided into four categories: the recommendation
methods based on deep neural network, the recommenda-
tion methods based on convolutional neural network, the
recommendation methods based on cyclic neural network
and short-term memory neural network, and the recom-
mendation methods based on graph neural network [15].

MyMediaLite is a recommendation library written in
C# and runs on the.NET platform. It addresses two com-
mon scenarios in collaborative filtering: rating prediction
and item prediction from positive-only implicit feedback

[8]. LibRec is a Java library for recommender systems. It
mainly identifies and implements the baselines that rarely
use personalized information and traditional recommenda-
tion algorithms based on user–item interaction and context
information [9]. The LibRec framework consists of three
major components: generic interfaces, data structures and
recommendation algorithms [9]. OpenRec is an open and
modular Python framework for neural network-inspired
recommendation algorithms. Each recommender is mod-
eled as a computational graph [10]. It aims to simplify
the process of extending and adapting the most advanced
neural recommender to heterogeneous recommender
scenarios. PREA is also implemented in Java. It mainly
supports traditional recommendation algorithms, such as
memory-based neighborhood algorithms, matrix factoriza-
tion methods [25]. All performance critical codes of the
library fastFM are written in C and wrapped in Cython.
Fastfm supports random gradient descent and coordinate
descent optimization routines as well as Markov chain
Monte Carlo for Bayesian reasoning. Its solvers can be
used for regression, classification and ranking problems
[26]. Surprise is a Python library for recommender sys-
tems. It implements classical algorithms, such as the
main similarity-based algorithms, and algorithms based
on matrix factorization, such as singular value decomposi-
tion and non-negative matrix factorization [27]. Recom-
menderlab is a recommendation system library based on R
language. It mainly focuses on collaborative filtering rec-
ommendation algorithm. The code of the recommendation
system developed based on this framework will be very
concise, but the flexibility of recommenderlab in practical
application is slightly insufficient [28].

3 Recommendation Algorithm Library
Design

The deep learning-based recommendation algorithm
library DeepRS uses Python as the development language
and PyPI as the third-party warehouse for development. Its

Fig. 1 Architecture diagram of DeepRS

 International Journal of Computational Intelligence Systems (2022) 15:45

1 3

 45 Page 4 of 12

architecture is shown in Fig. 1. It consists of three levels:
framework level, abstraction level and algorithm level. The
framework level is built on Tensorflow, so the recommen-
dation system can easily take advantage of modern hard-
ware such as GPU and expand to distribute computing
environment. The framework level provides automatic dif-
ferentiation, tensor calculation, GPU calculation, numeri-
cal optimization algorithm and other interfaces, which is
the cornerstone of the DeepRS. The abstract level uses the
interfaces in the framework level to implement the interfaces
of EL, FCL, MLPL, PL, FML, ANL, CL and CNL. On the
basis of the abstract level and framework level, the algorithm
level realizes AFM, NFM, DeepFM, DCN and other deep
learning-based recommendation algorithms.

3.1 Framework Level

Tensorflow is one of the most frequently used machine
learning frameworks. It is an open source software library
using data flow graph for numerical calculation. It can easily
assign a single node to different computing devices to com-
plete asynchronous parallel computing. It is very suitable
for large-scale machine learning applications. It also allows
deep neural network computing to be deployed to any num-
ber of CPUs and GPUs on servers and PCs using only one
Tensorflow API. The framework level is the cornerstone of
DeepRS and needs to implement various computing inter-
faces. DeepRS directly uses Tensorflow as the framework
level to provide relevant inter- faces for upper-level services.

3.2 Abstract Level

The abstract level represents the reusable components in the
recommendation algorithm. It includes embedding layer, full
connection layer, multi-layer perceptron layer, prediction
layer, factorization machine layer, attention network layer,
cross-layer and cross-network layer.

3.2.1 Embedded Layer

The embedding layer is essentially a network layer that
removes the activation functions in the full connection layer,
but does not perform nonlinear function mapping on the
output. Its function is to process the high-dimensional sparse
feature vectors encoded by one-hot to ensure that the depth
recommendation model can find the optimal value. Its rep-
resentation is shown in Eq. (1).

The parameters to be estimated is M ∈ Rm×n(n << m) ,
where xT ∈ Rm×1 and xTM ∈ R1×n represent the one-hot

(1)x ↦ xTM

encoded vector of the category feature and the embedded vec-
tor after mapping of category feature respectively, m is the total
number of category features, and n is the size of the embedded
vector space.

3.2.2 Full Connection Layer

The full connection layer is essentially a nonlinear transforma-
tion with the output of affine function as the input. Its main
role is to learn the representation of the input. Its expression
is shown in Eq. (2).

The parameters to be estimated are W (l) ∈ Rn×m , b(l) ∈ Rn×1 .
Among them, l represents the l-th fully connected layer, f is
the activation function, W (l) and b(l) are referred to as the l
-th layer weight matrix and bias, respectively, and a(l) ∈ Rm×1
is the input of the l-th layer. m and n represent the number
of neurons in layer l-th layer and the number of neurons in
(l + 1)-th layer, respectively. Generally, the activation function
f is a nonlinear function. If it is a linear function, no matter
how many full connection layers are superimposed, the final
learned function is still linear, so it is not desirable. The com-
mon activation functions consist of sigmoid function, ReLU
function, tanh function, etc.

3.2.3 Multi‑Layer Perceptron Layer

The multi-layer perceptron layer is essentially a network
composed of multiple fully connected layers. Its main
purpose is to abstractly represent complex inputs, such as
video and images, in the learning machine. The expression
of MLPL is shown in Eq. (3):

The parameters to be estimated are W (l) and b(l),W (l) and
b(l) are called the weight matrix and bias of the l-th layer
respectively.L is the depth of the multi-layer perceptron
layer, f is the activation function, a(l) and a(l+1) represent the
input and output of the l-th layer. The input of the multi-
layer perceptron layer is x , the output is yMLP(x) , and the
output dimension is determined by the number of hidden
units of the last layer in the MLPL.

(2)a(l+1) = f
(
W (l)a(l) + b(l)

)

(3)

a(1) = x

a(2) = f
(
W (1)a(1) + b(1)

)

⋯⋯

a(L−1) = f
(
W (L−2)a(L−2) + b(L−2)

)

yMLP(x) = f
(
W (L−1)a(L−1) + b(L−1)

)

International Journal of Computational Intelligence Systems (2022) 15:45

1 3

Page 5 of 12 45

3.2.4 Prediction Layer

The prediction layer essentially a function transformation of
the input data of the last layer in the model, and the appro-
priate function transformation can make the model easier to
learn. Its expression is shown in Eq. (4).

Among them,x, b ∈ Rn represents the input and bias
parameters of the last layer in the deep learning model
respectively, and f is the transformation function. Common
transformation functions include softmax function, sigmoid
function, linear function, and so on.

3.2.5 Factorization Machine Layer

The factorization machine layer is essentially a factoriza-
tion machine whose main purpose is to automatically learn
feature interaction functions in the recommendation system.
In addition to the linear interaction between features, it can
also use the inner product of potential vectors representing
features to model paired interactive features. Its expression
is shown in Eq. (5):

The parameter to be estimated in the formula is
w0 ∈ R, w = (w1, ...,wn) ∈ Rn , where wi reflects the impor-
tance of first-order features, x = (x1, ..., xn) ∈ Rn is the input.
vi and vj denote separately the i-th row vector with k factors
and the j-th row vector with k factors, and k is a hyper-
parameter that defines the dimension of the factor.

⟨
vi, vj

⟩
 is

the dot product of two vectors of length k , which is defined
as follows:

⟨
vi, vj

⟩
 is used to represent the importance of the second-

order interaction features.

3.2.6 Attention Network Layer

The attention network layer is essentially a multi-layer per-
ceptron, whose primary purpose is to identify the impor-
tance of different feature interactions in the recommendation
system. Its expression is shown in Eq. (7).

T h e p a r a m e t e r s t o b e e s t i m a t e d a r e
W ∈ Rt×k, b ∈ Rt×1, h ∈ Rt×1 , where, t represents the number

(4)ypredict(x) = f (x + b)

(5)y(x) = w0 +

n∑

i=1

wixi +

n∑

i=1

n∑

j=i+1

⟨
vi, vj

⟩
xixj

(6)
⟨
vi, vj

⟩
=

k∑

f=1

vi,f × vj,f

(7)a
�

i,j
= hTReLU

(
W
(
vi ⊗ vj

)
+ b

)

of hidden units in the attention network layer, commonly
known as attention factor, and k represents the length of
input vector. vi ∈ Rt×1 and vj ∈ Rt×1 are separately the sample
values of the i-th sample and the j-th sample, and vi ⊗ vj is
the Hadamard product of vi and vj.

3.2.7 Cross‑Layer

The crossing layer is essentially a residual layer that uses
an identical mapping activation function, and its primary
purpose is to learn crossing characteristics. Its expression
is shown in Eq. (8).

where x0 ∈ Rd is the input vector of cross-layer,xl, xl+1 ∈ Rd
are separately the input and output vectors of the l-th layer,
wl,bl ∈ Rd represents the weight and bias parameters of the
l-th layer, respectively, and f is a Rd

→ Rd mapping function
that fits residual xl+1 − xl.

3.2.8 Cross‑Network Layer

Cross-network layer is a network composed of multiple
cross-layers. Its main purpose is to efficiently learn explicit
cross features. Its expression is shown in Eq. (9):

where x0, x1, ..., xl+1 ∈ Rd,xl is the input vector of the l-th
cross-layer, and xl+1 is the output vector of the l-th cross-
layer. wl, bl ∈ Rd denotes the weight bias parameters of the
l-th cross-layer, which are trainable.

3.3 Algorithm Level

This subsection introduces several implemented recommen-
dation algorithms in DeepRS: AFM, NFM, DeepFM, and
DCN. The network topology and formulas of these algo-
rithms, as well as the regularization and optimization meth-
ods used are also described.

3.3.1 AFM Algorithm

The full name of AFM is attentional factorization machine,
which is made up of embedding layer, attention network
layer and prediction layer. AFM is a universal machine

(8)xl+1 = f
(
x0, xl

)
= x0x

T
l
wl + bl + xl

(9)

x1 = f
(
x0, x0

)
= x0x

T
0
w0 + b0 + x0

x2 = f
(
x0, x1

)
= x0x

T
1
w1 + b1 + x1

⋯

xl+1 = f
(
x0, xl

)
= x0x

T
l
wl + bl + xl

 International Journal of Computational Intelligence Systems (2022) 15:45

1 3

 45 Page 6 of 12

learner that learns any real-valued feature vectors. Its net-
work topology is shown in Fig. 2.

The expression of AFM model is shown in Eq. (10).

x = (x1, ..., xn) ∈ Rn is the input sparse vector. The xi = 0
in the input vector means that the i-th feature does not exist
in this sample. The first and second terms are the linear
regression part, which are used to learn the weights between
low-order features and the bias of modeling data. The third
term is an attention layer-based pooling operation network,
which mainly models second-order feature interactions and
assigns different weights to the corresponding interactions,
whose expression is Eq. (11).

After the sparse data of the input layer pass
through the embedding layer, an embedding vector set
Vx =

{
x1v1, ..., xnvn

}
 is obtained, where vi represents the

embedding vector of the i-th feature. Since the input vector
in the recommendation scene is very sparse, that is, most of
the features are 0, the actual embedding vector set is very
small, and only contains non-zero feature items, that is,
Vx =

{
xivi|xi ≠ 0 ∧ xi ∈ x

}
 . The parameters to be solved in

this model are Θ =
{
w0,

{
wi, vi

}
, p, h,W, b

}
 . AFM model

can be applied to a variety of recommendation tasks, such
as regression, classification and sorting tasks. For differ-
ent tasks, the AFM model uses different loss functions.
Log likelihood loss or hinge loss function is usually used

(10)yAFM(x) = w0 +

n∑

i=1

wixi+f (x)

(11)f (x) = pT
n�

i=1

n�

j=i+1

hTReLU
�
W
�
vi ⊗ vj

�
xixj + b

�

∑
(i,j)∈{1,...,n}2

exp
�
hTReLU

�
W
�
vi ⊗ vj

�
xixj + b

��
�
vi ⊗ vj

�
xixj

in classification task, square loss or mean loss function is
applied in regression task, and paired personalized rank-
ing loss or contrast maximum spacing loss function is com-
monly used in sorting task [29]. The main focus here is on
the regression task of explicitly feeding back of the real tar-
get value, and the L2 norm is used to prevent overfitting of
the model, as shown in Eq. (12).

Among, X represents the training set, x represents an
instance of the training set, W represents the weight matrix
of the attention layer, and � is used to control the intensity
of regularization. The objective function is optimized using
a random gradient descent algorithm, as shown in Eq. (13).

where � is the trainable model parameter, � is the learning
rate, and � is the regularization parameter. The core idea is
to iteratively update parameters until the function converges.
In the process of iteration, a training sample x is randomly
selected each time to update in the direction of negative gra-
dient of model parameters.

(12)loss =
∑

x∈X

(
yAFM(x) − y(x)

)2
+ �||W||2

(13)� ← �−� × 2
(
yAFM(x) − y(x)

)dyAFM(x)
d�

− ��
d||W||2

d�

Fig. 2 Network topology of the AFM Algorithm

International Journal of Computational Intelligence Systems (2022) 15:45

1 3

Page 7 of 12 45

3.3.2 NFM Algorithm

The full name of NFM is neural factorization machine, which
is composed of embedding layer, multi-layer perceptron layer,
full connection layer and prediction layer. Its main function
is to learn the high-order interaction between sparse data in
recommendation scenes. It is also a universal machine learner
that can learn any real-valued eigenvectors. Its network topol-
ogy is shown in Fig. 3.

The expression of the NFM model is as shown in Eq. (14).

Compare the expression of AFM algorithm, special empha-
sis should be placed on the third term, which is a multi-layer
forward neural network of stacked multi-layer full connec-
tion layers. The third term is used to capture the relationships
between higher-order features. In Eq. (14), L is the depth of
multi-layer perceptron layer, and Wl, bl, �l(1 ≤ l ≤ L) represent
the weight matrix, bias vector and activation function of l-th
layer respectively. Vector h represents the weight of the predic-
tion layer (the last layer). Parameters to be solved in this model
are Θ =

{
w0,

{
wi, vi

}
, h,

{
Wl, bl

}}
 . Here we focus on the

binary classification task recommended by implicit feedback.
Therefore, the expression shown in Eq. (15) is optimized, and
other tasks are processed in the same way.

(14)

yNFM(x) = w0 +

n∑

i=1

wixi + hT𝜎L
(
WL

(
...𝜎1

(
W1fBI

(
Vx

)
+ b1

)
...
)
+ bL

)

fBI
(
Vx

)
=

n∑

i=1

n∑

j=i+1

xivi ⊗ xjvj

(15)

loss = −
∑

x∈X

(
y(x) log

(
yNFM(x)

)
+ (1 − y(x)) log

((
1 − yNFM(x)

)))

In Eq. (15), X is the training set, x is an instance of the train-
ing set. The above objective function is also optimized by the
random gradient descent, as shown in Eq. (16).

where � is the trainable model parameter and � is the learning
rate. The automatic differentiation interface provided by the
framework layer can automatically calculate the gradient of the
trainable parameters. Considering the problem of data sparse
in the recommendation system based on deep learning, batch
Adagrad algorithm is adopted as the optimizer rather than the
naive SGD algorithm, because the learning speed of Adagrad
algorithm can be adaptive in the training stage, resulting in
its faster convergence speed. At the same time, dropout tech-
niques are used in pooling operations to deal with over-fitting
of models [30].

3.3.3 DeepFM Algorithm

DeepFM is a neural network based on factorization machine.
It is composed of embedding layer, factorization machine
layer, multi-layer perceptron layer, full connection layer and
prediction layer. Its main function is to learn feature interac-
tions and nonlinear representations between sparse data in the
recommendation scenario. The DeepFM model consists of FM
components and deep neural networks (DNN) components that
share the same input. yFM(x) and yDNN(x) are the output of
FM component and DNN component respectively. The FM
component is an FM layer stacked on the embedding layer and
input layer, which mainly models data bias, feature weight and
second-order feature interaction. The DNN component is a
multi-layer perceptron layer and full connection layer stacked

(16)� ← � + � ×

(
f (x)

yNFM(x)
−

1 − f (x)

1 − yNFM(x)

)
dyNFM(x)

d�

Fig. 3 Network topology of NFM Algorithm

0 0 0 1 ...0.31

V2 V4 V6 ...

Bi-Interaction Pooling Layer

Layer 1

Layer 3

Layer 2

y

FM Layer

Sparse Features

Embedding layer

Hidden Layer

Output Units

Fig. 4 Network topology of DeepFM Algorithm

 International Journal of Computational Intelligence Systems (2022) 15:45

1 3

 45 Page 8 of 12

on the embedded layer, which mainly models high-order fea-
ture interaction. Its network topology is shown in Fig. 4.

The expression of the DeepFM model is shown in Eq. (17):

where f is a function used in the prediction layer. The sig-
moid function is used in the dichotomization task and the
linear function in the regression task.x =

(
x1, ..., xn

)
∈ Rn is

the input vector. For the categorical features in the original
data, it is directly encoded by one-hot, but if it is a continu-
ous real-valued feature, it can be represented by discretiza-
tion or directly by itself.

The expression of the FM component is given in Eq. (18).

vi represents the i-th embedding vector, which is the
parameter learned through the embedding layer, and k is the
factor dimension of the embedding vector. wi reflects the
importance of first-order features. See factorization machine
layer in subsection 3.2.5 for details.

The expression for the DNN component is shown in
Eq. (19).

L represents the depth of multiple perceptron layers and �
is the activation function. Except for layer 0, and a(l),W (l), b(l)
respectively represent the output, model weight and bias of
the l -layer.a(0) ∈ R1×(m×k) is a row vector concatenated from
the set of embedded vectors. The embedded vector set does
not include items with a value of 0. yMLP(x) represents the
output of the multilayer perceptron layer. Here, only the
binary classification task using log likelihood loss function
is described, as shown in Eq. (20).

The random gradient descent is used for optimization, as
shown in Eq. (21).

(17)yDeepFM(x) = f
(
yFM(x) + yDNN(x)

)

(18)yFM(x) = w0 +

n∑

i=1

wixi +

n∑

i=1

n∑

j=i+1

⟨
vi ⊗ vj

⟩
xixj

(19)

a(0) =
[
v0x0, v1x1, ..., vixi, ..., vnxn

](
x0 ≠ 0, xi ≠ 0, xn ≠ 0

)

a(1) = �(W (0)a(0)+b(0))

...

a(L−1) = �(W (L−2)a(L−2)+b(L−2))

yMLP(x) = �(W (L−1)a(L−1)+b(L−1))

yDNN(x) = wyMLP(x) + b

(20)

loss = −
1

N

N∑

i=1

(
yi log

(
yDeepFM

(
xi
))

+
(
1 − yi

)
log

(
1 − yDeepFM

(
xi
)))

In Eq. (20), xi and yi respectively represent the values of
the characteristics and target variables of the i-th sample
in the training set,N indicate the number of samples of the
training set. In Eq. (21), � is the trainable model parameter,
and � is the learning rate. The derivatives of other param-
eters in the model can be calculated automatically using
the interface in the framework layer directly. In terms of
preventing over-fitting, dropout technology is used in DNN
and component L2 regularization in embedded layer. Use
the early stopping strategy to choose the optimal number of
iterations during the learning process [31].

3.3.4 DCN Algorithm

DCN is a deep crossover network. It consists of embedding
layer, cross-network layer, multi-layer perceptron layer, full
connection layer and prediction layer. Its main purpose is to
learn the abstract representation of features and the feature
interaction within the specified order. Its network topology
is shown in Fig. 5.

The expression of the DCN model is the formula as
Eq. (22).

where xdense ∈ Ra represents the real-valued feature col-
umn vector, xsparse ∈ Rb represents the category feature
column vector, x ∈ Ra+b is the column vector spliced by

(21)

� ← � + � ×

(
yi

yDeepFM
(
xi
) −

1 − yi

1 − yDeepFM
(
xi
)
)
dyDeepFM

(
xi
)

d�

(22)

x = [xdense, xsparse]

x1 = yembeeded(x)

xout =
[
yCNL

(
x1
)
, yMLP

(
x1
)]

yDCN(x) = ypredict
(
yFCL

(
xout

))

Fig. 5 Network topology of DCN Algorithm

International Journal of Computational Intelligence Systems (2022) 15:45

1 3

Page 9 of 12 45

the real-valued feature column vector and category feature
column vector, yembededd, yCNL, yMLP, yFCL, ypredict represents
embedded layer component, cross-network layer compo-
nent, multi-layer perceptron layer component, full con-
nection layer component and prediction layer component
respectively. x1 is the output of embedded layer components,
and xout is column vectors joined together by the output of
cross-network layer component and multi-layer perception
layer component.

Here, only the binary classification task using the log
likelihood loss function is described, as shown in Eq. (23).
The random gradient descent algorithm is used to optimize
the parameter value, as shown in Eq. (24).

In Eq. (23) and Eq. (24), xi and yi respectively represent
the values of the characteristics and target variables of the
i-th sample in the training set, N indicate the number of
samples of the training set, � is the regularization parameter
of L2 , Wl is the weight matrix of the l-th layer in the DCN
model, and yDCN is the output of Eq. (22), � is a trainable
model parameter, � is used to control the learning rate of the
gradient descent method.

4 Experiments

DeepRS is developed in Windows 10, with VScode as the
integrated development tool, Tensorflow as the framework
level, Python as the development language and PyPI as the
third-party warehouse. AFM, NFM, DeepFM and DCN
algorithms are evaluated using the public dataset MovieLens
[32]. This movie rating data set is widely used to evaluate

(23)

loss = − 1
N

N
∑

i=1

(

yi log
(

yDCN
(

xi
))

+
(

1 − yi
)

log
(

1 − yDCN
(

xi
)))

+ �
∑

l
||Wl||

2

(24)� ← � + � ×

(
yi

yDCN
(
xi
) −

1 − yi

1 − yDCN
(
xi
)
)
dyDCN

(
xi
)

d�

collaborative filtering algorithms. It contains 20,000,263
ratings and 465,564 tag applications across 27,278 movies.

The dataset MovieLens is randomly divided into two
parts: 80% for training and 20% for validation. The training
set is used to learn the model, and the validation set is used

Table 1 Default values of AFM, DFM, DeepFM and DCN algorithms

Algorithm name Learning rate Number of
iterations

Batch size Embedded
vector size

Attention
factor

Drop rate Number of hidden units in
multi-layer perceptron layer

Cross layer

AFM 0.1 200 256 8 8 0 – –
NFM 0.1 200 256 256 – 0.3 (128,128) –
DeepFM 0.1 200 256 8 – 0 (258,256) –
DCN 0.1 200 256 8 – – (128,128,64) 3

Fig. 6 AUC and Logloss of AFM algorithm

Fig. 7 AUC and Logloss of NFM algorithm

 International Journal of Computational Intelligence Systems (2022) 15:45

1 3

 45 Page 10 of 12

for tuning the hyper-parameters. Log loss and area under
curve (AUC) are widely used for classification tasks with
explicit feedback recommendations. Therefore, AUC is used
as the evaluation index, and Log loss is used as the loss func-
tion. Table 1 gives the main parameter settings of each algo-
rithm. The learning process of AFM, NFM, DeepFM, and
DCN models is described in Fig. 6, Fig. 7, Fig. 8 and Fig. 9.
Among them, the left ordinate axis is the cross entropy, the
right ordinate axis is the accuracy rate, and the horizon-
tal axis represents the number of iterations of the model.
Metric-train and metric-val separately represent the accuracy

of the model in the training set and validation set, and loss
train and loss val are the cross entropy of the model in the
training set and validation set respectively.

Figure 6 shows that with the increase of the number of
iterations of AFM, the loss value of the training set gradually
decreases to 0.36 and reaches a stable level, and the accuracy
of the validation set gradually increases to around 0.785 and
reaches a plateau, indicating that this model is neither over-
fitting nor under-fitting. Figure 7 shows that the loss value
of the training set gradually decreases with the increase of
the number of iterations of NFM, and the accuracy of the
validation set gradually decreases, indicating that the model
is in overfitting. Figure 8 shows that with the increase of the
number of iterations of DeepFM, the accuracy of the training
set gradually increases to 1 and reaches a stable level, but the
accuracy of the validation set gradually decreases to around
0.75, indicating that DeepFM is in overfitting. Figure 9
shows that as the number of iterations of DCN increases,
the cross entropy of the training set gradually decreases to
0 and reaches a stable level, but the cross entropy of the
validation set gradually increases to around 0.95, indicating
that the model is in overfitting.

The average value of oscillation in a certain range after
the training convergence of different algorithms in Mov-
ieLens data set is taken as the evaluation index. It can be
seen from Table 2 that AFM algorithm has stronger perfor-
mance ability and interpretability. The other three algorithms
(NFM, DeepFM and DCN) all have overfitting problems,
but in different practical applications, they can be solved by
adjusting parameters, reducing the capacity of the model
or adding more samples. In practical algorithm application,
researchers or practitioners can directly call the encapsulated
recommendation algorithm library based on deep learning
to compare its prediction accuracy and loss value, so as to
conveniently select the optimal recommendation algorithm,
directly solve the core algorithm problems of recommenda-
tion system development and other applications.

Fig. 8 AUC and Logloss of DeepFM algorithm

Fig. 9 AUC and Logloss of DCN algorithm

Table 2 Performance comparison

Algorithm model Average value of train-
ing results

Average value of
validation results

AUC Logloss AUC Logloss

AFM 0.868 0.378 0.785 0.520
NFM 0.990 0.100 0.725 1.750
DeepFM 0.998 0.009 0.740 1.825
DCN 0.999 0.005 0.750 1.170

International Journal of Computational Intelligence Systems (2022) 15:45

1 3

Page 11 of 12 45

5 Comparative Study

Existing recommendation algorithm libraries are limited in
two aspects: lack of abstract level modularity support and
lack of reliable backend support [10]. Furthermore, dif-
ferent recommendation algorithm libraries adopt different
programming languages and implement different recom-
mendation algorithms. Therefore, in the rest of this sec-
tion, we compare DeepRS with Mymedialite [8], Librec
[9], PREA [25], fastFM [26], Surprise [27], OpenRec [10],
Recommenderlab [28] from four aspects: programming lan-
guage, backend, implemented recommendation algorithm
and abstraction level modularity. The comparison results are
shown in the Table 3. It can be found from Table 3 that the
programming languages used in the recommended algorithm
libraries include C, C#, R, Java and Python, and only Sur-
prise, OpenRec and DeepRS have reliable backend support.
Most of the libraries are designed for traditional recommen-
dation algorithms. OpenRec and DeepRS are designed for
recommendation algorithms based on deep learning. How-
ever the abstract level modularity of OpenRec only contains
two modules: MLP and LF, while DeepRS includes eight
modules: EL, FCL, MLP, PL, FML, ANL, CL, and CNL.
Therefore, DeepRS has better scalability than OpenRec.

6 Conclusion and Future Work

Nowadays, deep learning technology is widely used in
the field of recommendation. The emergence of more and
more recommendation algorithm models provides great
convenience for the application and research of recommen-
dation system. According to the specific nature of the rec-
ommendation data, selecting the appropriate recommen-
dation algorithm can not only save time, but also improve
the recommendation quality. Aiming at the sparsity and
diversity of recommendation data, a deep learning-based

recommendation algorithm library DeepRS is designed
as a tool for recommendation task modeling, which is
convenient for researchers and practitioners. Experiments
also verify the ease of use, feasibility and accuracy of the
algorithm package. Comparative study shows that DeepRS
has more reusable components and is more scalable than
existing recommendation algorithm packages. However,
there is still a distance from the real scene, DeepRS only
contains four recommendation algorithms based on deep
learning. In future, DeepRS will be further improved
through detailed API documents to make it more operable.
At the same time, we are constantly adding new recom-
mendation algorithms based on deep learning to DeepRS.

Acknowledgements The authors express great thanks to the financial
support from the department of science and technology of Henan Prov-
ince and the Zhengzhou University of Light Industry.

Author contributions All the authors equally contributed to this work.

Funding This work was financially supported by the Doctoral Research
Fund of Zhengzhou University of Light Industry (2016BSJJ037);
and the Science and Technology Project of Henan Province
(202102210351,212102210076).

Data availability The dataset used in this research is openly accessible
via: https:// movie lens. org.

Declarations

Conflict of interests The authors declare that they have no conflicts
of interest.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article's Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article's Creative Commons licence and your intended use is not

Table 3 Comparing DeepRS to existing library for recommender systems

Library Program-
ming
language

Backend Implemented recommendation algorithms Abstract level modularity

fastFM C × Traditional algorithms ×
Mymedialite C# × Traditional algorithms ×
Librec Java × Traditional algorithms ×
PREA Java × Traditional algorithms ×
Recommenderlab R × Traditional algorithms ×
Surprise Python SciKits Traditional algorithms ×
OpenRec Python Tensorflow Algorithms based on deep learning Multi-LayerPerceptron (MLP), Latent Factor (LF)
DeepRS Python Tensorflow Algorithms based on deep learning EL, FCL, MLPL, PL, FML, ANL, CL, CNL

https://movielens.org

 International Journal of Computational Intelligence Systems (2022) 15:45

1 3

 45 Page 12 of 12

permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

 1. Bobadilla, J., Ortega, F., Hernando, A., Gutirrez, A.: Recom-
mender systems survey. Knowl. Syst. 46(2013), 109–132 (2013)

 2. Alhijawi, B., Kilani, Y.: The recommender system: a survey. Int.
J. Adv. Intell. Parad. 15(3), 229–251 (2020)

 3. Yera, R., Martinez, L.: Fuzzy tools in recommender systems: A
survey. Int. J. Comp. Intell. Syst. 10(2017), 776–803 (2017)

 4. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature
521(7553), 436–444 (2015)

 5. Zhang, S.A., Yao, L.N., Sun, A., Tay, Y.: Deep learning based rec-
ommender system: A survey and new perspectives. ACM Comp,
Surv. 52(1), 1–38 (2019)

 6. Batmaz, Z., Yurekli, A., Bilge, A., Kaleli, C.: A review on deep
learning for recommender systems: challenges and remedies. Art.
Intell. Rev. 52, 1–37 (2019)

 7. Dau, A., Salim, N.: Recommendation system based on deep learn-
ing methods: a systematic review and new directions. Art. Intell.
Rev. 53, 2709–2748 (2020)

 8. Gantner, Z., Rendle, S., Freudenthaler, C., Schmidt-Thieme, L.:
MyMediaLite: A free recommender system library. In: Proceed-
ings of the fifth ACM conference on Recommender systems.
ACM, pp. 305–308 (2011)

 9. Guo, G.B., Zhang, J., Sun, Z., Yorke-Smith, N.: LibRec: A Java
library for recommender systems. In: Proceedings of the 23rd
Conference on User Modelling, Adaptation and Personalization.
Spinger, pp. 1–4 (2015)

 10. Yang, L.Q., Bagdasaryan, E., Gruenstein, J., Hsieh, C.-K., Estrin,
D.: Openrec: A modular framework for extensible and adaptable
recommendation algorithms. IN: Proceedings of the Eleventh
ACM International Conference on Web Search and Data Mining.
ACM, pp. 664–672 (2018)

 11. Xiao, J., Ye, H., He, X.N., Zhang, H.W., Wu, F., Chua, T.-S.:
Attentional factorization machines: learning the weight of fea-
ture interactions via attention networks. In: Proceedings of the
Twenty-Sixth International Joint Conference on Artificial Intel-
ligence. AAAI, pp. 3119–3125 (2017)

 12. He, X.N., Chua, T.-S.: Neural factorization machines for sparse
predictive analytics. In: Proceedings of the 40th International
ACM SIGIR Conference on Research and Development in Infor-
mation Retrieval. ACM, pp. 40–48 (2017)

 13. Guo, H.F., Tang, R.M., Ye, Y.M., Li, Z.G., He, X.Q.: DeepFM: A
factorization-machine based neural network for CTR prediction.
In: Proceedings of the Twenty-Sixth International Joint Confer-
ence on Artificial Intelligence. AAAI, pp. 2782–2788 (2017)

 14. Wang, R.X., Fu, B., Fu, G., Wang, M.L.: Deep & cross network
for Ad click predictions. In: Proceedings of the 23rd ACM SIG-
KDD International Conference on Knowledge Discovery and Data
Mining. ACM, pp. 1–7 (2017)

 15. Zhou, W.Z., Cao, D., Xu, Y.F., Liu, B.: A survey of recommenda-
tion systems. J. Hebei Univ. Sci. Techn. 41(1), 76–87 (2020)

 16. Su, X.Y., Khoshgoftaar, T.M.: A survey of collaborative filtering
techniques. Adv. Art. Int. 2009, 1–19 (2009)

 17. Zhao, J.Y., Zhuang, F.Z., Ao, X., et al.: Survey of collaborative
filtering recommender systems. J. Cyb. Secur. 6(5), 17–34 (2021)

 18. Khojamli, H., Razmara, J.: Survey of similarity functions on
neighborhood-based collaborative filtering. Expert Syst. Appl.
185, 115482 (2021)

 19. Pereira, N., Varma, S.: Survey on content based recommendation
system. Int. J. Comp. Sci. Inf. Techn. 7(1), 281–284 (2016)

 20. Perez-Almaguer, Y., Yera, R., Alzahrani, A.A., Martnez, L.: Con-
tent-based group recom- mender systems: A general taxonomy
and further improvements. Exp. Syst. With Appl. 184, 115444
(2021)

 21. Shu, J.B., Shen, X.X., Liu, H., Yi, B.L., Zhang, Z.L.: A content-
based recommendation algorithm for learning resources. Mult.
Syst. 24(1), 163–173 (2018)

 22. Qian, Y.F., Zhang, Y., Ma, X., Yu, H., Peng, L.M.: EARS: Emo-
tionaware recommender system based on hybrid information
fusion. Inf. Fus. 46, 141–146 (2019)

 23. Cano, E., Morisio, M.: Hybrid recommender systems: a systematic
literature review. Int. Data An. 21(6), 1487–1524 (2017)

 24. Khan, Z.Y., Niu, Z.D., Sandiwarno, S., Prince, R.: Deep learning
techniques for rating predi- ction: a survey of the state-of-the-art.
Art. Int. Rev. 54(1), 95–135 (2021)

 25. Lee, J., Sun, M.X., Lebanon, G.: PREA: personalized recommen-
dation algorithms toolkit. J. Mach. Learn. Res. 13(1), 2699–2703
(2012)

 26. Bayer, I.: fastFM: A library for factorization machines. J. Mach.
Learn. Res. 17(1), 6393–6397 (2016)

 27. Hug, N.: Surprise: a python library for recommender systems. J.
Op. So. Softw. 5(52), 2174 (2020)

 28. Hahsler, M.: recommenderlab: A framework for developing and
testing recommendation algorithms. R package version 0.2–6,
Tech. Rep. 1–40 (2015). Available: https:// git- hub. com/ mhahs
ler/ recom mende rlab

 29. Zhou, Z.H.: Machine learing. Tsinghua University Press, Beijing
(2016)

 30. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhut-
dinov, R.: Dropout: a simple way to prevent neural networks from
overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)

 31. Wang, X., He, X.N., Cao, Y.X., Liu, M., Chua, T.-S.: KGAT:
knowledge graph attention network for recommendation. In: Pro-
ceedings of the 25th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining. ACM, pp. 950–958 (2019)

 32. Harper, F.M., Konstan, J.A.: The movielens datasets: history and
context. ACM Trans. Int. Int. Syst. 5(4), 1–19 (2015)

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

http://creativecommons.org/licenses/by/4.0/
https://git-hub.com/mhahsler/recommenderlab
https://git-hub.com/mhahsler/recommenderlab

	DeepRS: A Library of Recommendation Algorithms Based on Deep Learning
	Abstract
	1 Introduction
	2 Related Work
	3 Recommendation Algorithm Library Design
	3.1 Framework Level
	3.2 Abstract Level
	3.2.1 Embedded Layer
	3.2.2 Full Connection Layer
	3.2.3 Multi-Layer Perceptron Layer
	3.2.4 Prediction Layer
	3.2.5 Factorization Machine Layer
	3.2.6 Attention Network Layer
	3.2.7 Cross-Layer
	3.2.8 Cross-Network Layer

	3.3 Algorithm Level
	3.3.1 AFM Algorithm
	3.3.2 NFM Algorithm
	3.3.3 DeepFM Algorithm
	3.3.4 DCN Algorithm

	4 Experiments
	5 Comparative Study
	6 Conclusion and Future Work
	Acknowledgements
	References

