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Abstract
In recent years, recommendation systems have become more complex with increasing research on user preferences. Recom-
mendation algorithm based on deep learning has attracted a lot of attention from researchers in academia and industry, and 
many new algorithm models are proposed every year. Researchers often need to implement the proposed model to compare 
the results, which is a great challenge. Even if some papers provide source code, there are a variety of programming languages 
or deep learning frameworks, and it is not easy to compare the results in the different frameworks. In view of the lack of 
easily extensible deep learning-based recommendation algorithm libraries, based on the common analysis of deep learn-
ing algorithms in attention factorization machine (AFM), neural factorization machine (NFM), deep factorization machine 
(DeepFM) and deep cross-network (DCN), a recommendation algorithm library based on deep learning (DeepRS for short) 
is designed and implemented. It consists of three levels: framework level, abstract level and algorithm level. The framework 
level adopts the Tensorflow open source framework, which provides interfaces, such as automatic differentiation, tensor 
computing, GPU computing, and numerical optimization algorithms. The abstraction level uses the interface of the frame-
work level to realize the embedding layer (EL), the full connection layer (FCL), the multi-layer perceptron layer (MLPL), 
the prediction layer (PL), the factorization machine layer (FML), the attention network layer (ANL), the cross-layer (CL) 
and the cross-network layer (CNL). The algorithm level implements the deep learning-based recommendation algorithms, 
such as AFM, NFM, DeepFM and DCN, on the basis of the abstraction level and the framework level. Experiments show 
that the proposed algorithm library has good scalability, ease of use and correctness.
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Abbreviations
AFM  Attention factorization machine
NFM  Neural factorization machine
DeepFM  Deep factorization machine
DCN  Deep and cross networks
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1 Introduction

The rapid development of information technology, com-
puter technology and sensor technology affects all walks 
of life and permeates every aspect of people’s lives. 
Convenient social platforms and search engines not only 
provide convenience, but also generate huge amounts of 
information. Both consumers and content providers are 
paying more and more attention to how to extract target 
content from massive multi-source heterogeneous data. In 
this context, the recommendation systems are currently 
a successful solution [1]. Recommendation system is an 
information filtering tool, which processes the data gener-
ated by the user’s daily behavior, analyzes the user’s pref-
erences for different entities or content with the obtained 
results, and recommends the relevant entities or content 
of interest according to the user’s preferences [2]. In gen-
eral, the recommendation system can filter a large amount 
of information effectively and recommend resources that 
meet users’ needs. It has been widely used in many fields, 
such as commodity purchase and audio–visual recommen-
dation [2, 3].

Recommendation algorithm is the core of recommenda-
tion system. The basic characteristics of traditional col-
laborative or content-based filtering algorithm models are 
artificial construction, inability to train end-to-end, poor 
recommendation quality, unable to deal with sparse data 
and cold start problems, as well as the failure to balance 
different evaluation indexes in recommendation quality. 
With the wide application of deep learning in computer 
vision, speech recognition and many other fields, academia 
and industry are racing to apply deep learning to a wider 
range of applications [4], because it can solve many com-
plex problems, and provide good results, among which the 
recommendation system is one of its application fields. 
The introduction of deep learning into the recommenda-
tion system has greatly revolutionized the recommendation 
system architecture and brought more opportunities to rec-
reate user experience to achieve higher customer satisfac-
tion [5]. The recommendation system algorithm based on 
deep learning over- comes the limitations of the traditional 
algorithm model and realizes high-quality recommenda-
tion. It can not only automatically capture the nonlinear 
and non-trivial relationship between users and products, 
and encode more complex abstractions into higher-level 
data, but also find the complex relationship within the data 
itself from a large number of accessible data sources (such 
as pictures, texts, etc.) [6, 7].

However, the large number of recommendation algo-
rithm models based on deep learning also poses great 
challenges for researchers and practitioners, because they 
need to reproduce the results of the existing models to 

evaluate the merits of the new algorithm models. Although 
some authors provide source code for reproducing, they 
use a variety of programming languages and deep learn-
ing frameworks, not to mention that most authors do not 
provide source code, which makes it difficult to understand 
and reproduce the model. Therefore, there is an urgent 
need for recommending algorithm libraries to solve the 
above problems. Most of the existing algorithm librar-
ies are based on traditional recommendation algorithms, 
such as Mymedialite [8], Librec [9], etc. They regard the 
recommendation algorithm as a single whole. To make 
innovative modifications to the algorithm, researchers 
may need to re-implement the whole framework from 
scratch. Moreover, the models in these libraries cannot 
be trained end-to-end, and even some algorithm libraries 
are not written in Python, the first language of machine 
learning, so they cannot be well integrated into the exist-
ing recommendation services. At present, there is also an 
algorithm library based on deep learning—OpenRec [10], 
but it only provides the interfaces of the recommenda-
tion system model based on deep learning and have a few 
abstract components, so it does not have good scalability.

To deal with these challenges, this paper proposes a 
recommendation algorithm library based on deep learn-
ing—DeepRS. DeepRS is an extensible algorithm library 
consisting of a framework level, an abstract level, and 
an algorithm level. The framework level adopts the open 
source framework Tensorflow, which provides inter-
faces, such as automatic differential, tensor calculation, 
GPU calculation and numerical optimization algorithm. 
Abstract level uses the interfaces of the framework level 
to implement eight abstract components, and algorithm 
level realizes AFM [11], NFM [12], DeepFM [13], DCN 
[14] and other deep recommendation algorithms based on 
the abstract level and framework level. DeepRS enriches 
the recommendation algorithm toolbox, fills the gap in the 
recommendation algorithm library based on deep learning, 
makes it easier to reproduce the results of the recommen-
dation model, and lowers the threshold of developing the 
recommendation model based on deep learning.

The rest of this paper is organized as follows. Sec-
tion 2 introduces the related work. Section 3 introduces 
the architecture design and related algorithms of DeepRS, 
and describes in detail the design of framework layer, 
abstraction layer and algorithm layer in the algorithm 
package. Section 4 presents the experimental analysis of 
the rationality of the algorithm package, introduces vari-
ous experimental environment settings and the training 
error and accuracy of NFM, AFM, DeepFM and DCN in 
these experimental environments. The comparative study 
is presented in Sect. 5. The paper is ended with the conclu-
sion and future work in the last section.
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2  Related Work

This section first introduces the traditional recommen-
dation methods, then describes the deep learning-based 
recommendation methods, and finally gives the libraries 
related to the recommendation methods.

Traditional recommendation methods are mainly 
divided into three categories: collaborative filtering rec-
ommendation method, content-based recommendation 
method and hybrid recommendation method [2, 15]. Col-
laborative filtering recommendation method finds user 
preferences by mining users’ historical behavior data, 
groups users based on different preferences, and recom-
mends products with similar tastes [16]. This method is 
easy to use and simple. It can only calculate the similarity 
between users according to the historical scoring data of 
users. However, in many cases, it often encounters the 
problem of sparse matrix caused by insufficient scoring 
data and the cold start problem of new users without pro-
ject scoring data [17, 18]. The content-based recommen-
dation method is mainly based on the feature information 
between users and projects. The relationship between users 
will not affect the recommendation results, so there are no 
problems of cold start and sparse matrix [19, 20]. How-
ever, the recommendation results of this kind of methods 
are low in novelty, and they face the problem of feature 
extraction [21]. Hybrid recommendation method combines 
the characteristics of the first two traditional recommen-
dation methods and can achieve good recommendation 
results, but it still faces some challenges and difficulties 
in processing multi-source heterogeneous auxiliary infor-
mation, such as text and image [22, 23].

In recent years, deep learning has developed rapidly 
in the field of recommendation system. Recommenda-
tion methods based on deep learning technology can not 
only learn the potential feature representation of users or 
projects, but also learn the complex nonlinear interaction 
characteristics between users and projects [5–7]. They can 
deeply analyze user preferences, solve some problems in 
traditional recommendation methods, and better realize 
recommendation [24]. According to the neural network, 
the recommendation methods based on deep learning are 
mainly divided into four categories: the recommendation 
methods based on deep neural network, the recommenda-
tion methods based on convolutional neural network, the 
recommendation methods based on cyclic neural network 
and short-term memory neural network, and the recom-
mendation methods based on graph neural network [15].

MyMediaLite is a recommendation library written in 
C# and runs on the.NET platform. It addresses two com-
mon scenarios in collaborative filtering: rating prediction 
and item prediction from positive-only implicit feedback 

[8]. LibRec is a Java library for recommender systems. It 
mainly identifies and implements the baselines that rarely 
use personalized information and traditional recommenda-
tion algorithms based on user–item interaction and context 
information [9]. The LibRec framework consists of three 
major components: generic interfaces, data structures and 
recommendation algorithms [9]. OpenRec is an open and 
modular Python framework for neural network-inspired 
recommendation algorithms. Each recommender is mod-
eled as a computational graph [10]. It aims to simplify 
the process of extending and adapting the most advanced 
neural recommender to heterogeneous recommender 
scenarios. PREA is also implemented in Java. It mainly 
supports traditional recommendation algorithms, such as 
memory-based neighborhood algorithms, matrix factoriza-
tion methods [25]. All performance critical codes of the 
library fastFM are written in C and wrapped in Cython. 
Fastfm supports random gradient descent and coordinate 
descent optimization routines as well as Markov chain 
Monte Carlo for Bayesian reasoning. Its solvers can be 
used for regression, classification and ranking problems 
[26]. Surprise is a Python library for recommender sys-
tems. It implements classical algorithms, such as the 
main similarity-based algorithms, and algorithms based 
on matrix factorization, such as singular value decomposi-
tion and non-negative matrix factorization [27]. Recom-
menderlab is a recommendation system library based on R 
language. It mainly focuses on collaborative filtering rec-
ommendation algorithm. The code of the recommendation 
system developed based on this framework will be very 
concise, but the flexibility of recommenderlab in practical 
application is slightly insufficient [28].

3  Recommendation Algorithm Library 
Design

The deep learning-based recommendation algorithm 
library DeepRS uses Python as the development language 
and PyPI as the third-party warehouse for development. Its 

Fig. 1  Architecture diagram of DeepRS
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architecture is shown in Fig. 1. It consists of three levels: 
framework level, abstraction level and algorithm level. The 
framework level is built on Tensorflow, so the recommen-
dation system can easily take advantage of modern hard-
ware such as GPU and expand to distribute computing 
environment. The framework level provides automatic dif-
ferentiation, tensor calculation, GPU calculation, numeri-
cal optimization algorithm and other interfaces, which is 
the cornerstone of the DeepRS. The abstract level uses the 
interfaces in the framework level to implement the interfaces 
of EL, FCL, MLPL, PL, FML, ANL, CL and CNL. On the 
basis of the abstract level and framework level, the algorithm 
level realizes AFM, NFM, DeepFM, DCN and other deep 
learning-based recommendation algorithms.

3.1  Framework Level

Tensorflow is one of the most frequently used machine 
learning frameworks. It is an open source software library 
using data flow graph for numerical calculation. It can easily 
assign a single node to different computing devices to com-
plete asynchronous parallel computing. It is very suitable 
for large-scale machine learning applications. It also allows 
deep neural network computing to be deployed to any num-
ber of CPUs and GPUs on servers and PCs using only one 
Tensorflow API. The framework level is the cornerstone of 
DeepRS and needs to implement various computing inter-
faces. DeepRS directly uses Tensorflow as the framework 
level to provide relevant inter- faces for upper-level services.

3.2  Abstract Level

The abstract level represents the reusable components in the 
recommendation algorithm. It includes embedding layer, full 
connection layer, multi-layer perceptron layer, prediction 
layer, factorization machine layer, attention network layer, 
cross-layer and cross-network layer.

3.2.1  Embedded Layer

The embedding layer is essentially a network layer that 
removes the activation functions in the full connection layer, 
but does not perform nonlinear function mapping on the 
output. Its function is to process the high-dimensional sparse 
feature vectors encoded by one-hot to ensure that the depth 
recommendation model can find the optimal value. Its rep-
resentation is shown in Eq. (1).

The parameters to be estimated is M ∈ Rm×n(n << m) , 
where xT ∈ Rm×1 and xTM ∈ R1×n represent the one-hot 

(1)x ↦ xTM

encoded vector of the category feature and the embedded vec-
tor after mapping of category feature respectively, m is the total 
number of category features, and n is the size of the embedded 
vector space.

3.2.2  Full Connection Layer

The full connection layer is essentially a nonlinear transforma-
tion with the output of affine function as the input. Its main 
role is to learn the representation of the input. Its expression 
is shown in Eq. (2).

The parameters to be estimated are W (l) ∈ Rn×m , b(l) ∈ Rn×1 . 
Among them, l represents the l-th fully connected layer, f  is 
the activation function, W (l) and b(l) are referred to as the l
-th layer weight matrix and bias, respectively, and a(l) ∈ Rm×1 
is the input of the l-th layer. m and n represent the number 
of neurons in layer l-th layer and the number of neurons in 
(l + 1)-th layer, respectively. Generally, the activation function 
f  is a nonlinear function. If it is a linear function, no matter 
how many full connection layers are superimposed, the final 
learned function is still linear, so it is not desirable. The com-
mon activation functions consist of sigmoid function, ReLU 
function, tanh function, etc.

3.2.3  Multi‑Layer Perceptron Layer

The multi-layer perceptron layer is essentially a network 
composed of multiple fully connected layers. Its main 
purpose is to abstractly represent complex inputs, such as 
video and images, in the learning machine. The expression 
of MLPL is shown in Eq. (3):

The parameters to be estimated are W (l) and b(l),W (l) and 
b(l) are called the weight matrix and bias of the l-th layer 
respectively.L is the depth of the multi-layer perceptron 
layer, f  is the activation function, a(l) and a(l+1) represent the 
input and output of the l-th layer. The input of the multi-
layer perceptron layer is x , the output is yMLP(x) , and the 
output dimension is determined by the number of hidden 
units of the last layer in the MLPL.

(2)a(l+1) = f
(
W (l)a(l) + b(l)

)

(3)

a(1) = x

a(2) = f
(
W (1)a(1) + b(1)

)

⋯⋯

a(L−1) = f
(
W (L−2)a(L−2) + b(L−2)

)

yMLP(x) = f
(
W (L−1)a(L−1) + b(L−1)

)



International Journal of Computational Intelligence Systems           (2022) 15:45  

1 3

Page 5 of 12    45 

3.2.4  Prediction Layer

The prediction layer essentially a function transformation of 
the input data of the last layer in the model, and the appro-
priate function transformation can make the model easier to 
learn. Its expression is shown in Eq. (4).

Among them,x, b ∈ Rn represents the input and bias 
parameters of the last layer in the deep learning model 
respectively, and f  is the transformation function. Common 
transformation functions include softmax function, sigmoid 
function, linear function, and so on.

3.2.5  Factorization Machine Layer

The factorization machine layer is essentially a factoriza-
tion machine whose main purpose is to automatically learn 
feature interaction functions in the recommendation system. 
In addition to the linear interaction between features, it can 
also use the inner product of potential vectors representing 
features to model paired interactive features. Its expression 
is shown in Eq. (5):

The parameter to be estimated in the formula is 
w0 ∈ R, w = (w1, ...,wn) ∈ Rn , where wi reflects the impor-
tance of first-order features, x = (x1, ..., xn) ∈ Rn is the input. 
vi and vj denote separately the i-th row vector with k factors 
and the j-th row vector with k factors, and k is a hyper-
parameter that defines the dimension of the factor. 

⟨
vi, vj

⟩
 is 

the dot product of two vectors of length k , which is defined 
as follows:

⟨
vi, vj

⟩
 is used to represent the importance of the second-

order interaction features.

3.2.6  Attention Network Layer

The attention network layer is essentially a multi-layer per-
ceptron, whose primary purpose is to identify the impor-
tance of different feature interactions in the recommendation 
system. Its expression is shown in Eq. (7).

T h e  p a r a m e t e r s  t o  b e  e s t i m a t e d  a r e 
W ∈ Rt×k, b ∈ Rt×1, h ∈ Rt×1 , where, t represents the number 

(4)ypredict(x) = f (x + b)

(5)y(x) = w0 +

n∑

i=1

wixi +

n∑

i=1

n∑

j=i+1

⟨
vi, vj

⟩
xixj

(6)
⟨
vi, vj

⟩
=

k∑

f=1

vi,f × vj,f

(7)a
�

i,j
= hTReLU

(
W
(
vi ⊗ vj

)
+ b

)

of hidden units in the attention network layer, commonly 
known as attention factor, and k represents the length of 
input vector. vi ∈ Rt×1 and vj ∈ Rt×1 are separately the sample 
values of the i-th sample and the j-th sample, and vi ⊗ vj is 
the Hadamard product of vi and vj.

3.2.7  Cross‑Layer

The crossing layer is essentially a residual layer that uses 
an identical mapping activation function, and its primary 
purpose is to learn crossing characteristics. Its expression 
is shown in Eq. (8).

where x0 ∈ Rd is the input vector of cross-layer,xl, xl+1 ∈ Rd 
are separately the input and output vectors of the l-th layer, 
wl,bl ∈ Rd represents the weight and bias parameters of the 
l-th layer, respectively, and f  is a Rd

→ Rd mapping function 
that fits residual xl+1 − xl.

3.2.8  Cross‑Network Layer

Cross-network layer is a network composed of multiple 
cross-layers. Its main purpose is to efficiently learn explicit 
cross features. Its expression is shown in Eq. (9):

where x0, x1, ..., xl+1 ∈ Rd,xl is the input vector of the l-th 
cross-layer, and xl+1 is the output vector of the l-th cross-
layer. wl, bl ∈ Rd denotes the weight bias parameters of the 
l-th cross-layer, which are trainable.

3.3  Algorithm Level

This subsection introduces several implemented recommen-
dation algorithms in DeepRS: AFM, NFM, DeepFM, and 
DCN. The network topology and formulas of these algo-
rithms, as well as the regularization and optimization meth-
ods used are also described.

3.3.1  AFM Algorithm

The full name of AFM is attentional factorization machine, 
which is made up of embedding layer, attention network 
layer and prediction layer. AFM is a universal machine 

(8)xl+1 = f
(
x0, xl

)
= x0x

T
l
wl + bl + xl

(9)

x1 = f
(
x0, x0

)
= x0x

T
0
w0 + b0 + x0

x2 = f
(
x0, x1

)
= x0x

T
1
w1 + b1 + x1

⋯

xl+1 = f
(
x0, xl

)
= x0x

T
l
wl + bl + xl
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learner that learns any real-valued feature vectors. Its net-
work topology is shown in Fig. 2.

The expression of AFM model is shown in Eq. (10).

x = (x1, ..., xn) ∈ Rn is the input sparse vector. The xi = 0 
in the input vector means that the i-th feature does not exist 
in this sample. The first and second terms are the linear 
regression part, which are used to learn the weights between 
low-order features and the bias of modeling data. The third 
term is an attention layer-based pooling operation network, 
which mainly models second-order feature interactions and 
assigns different weights to the corresponding interactions, 
whose expression is Eq. (11).

After the sparse data of the input layer pass 
through the embedding layer, an embedding vector set 
Vx =

{
x1v1, ..., xnvn

}
 is obtained, where vi represents the 

embedding vector of the i-th feature. Since the input vector 
in the recommendation scene is very sparse, that is, most of 
the features are 0, the actual embedding vector set is very 
small, and only contains non-zero feature items, that is, 
Vx =

{
xivi|xi ≠ 0 ∧ xi ∈ x

}
 . The parameters to be solved in 

this model are Θ =
{
w0,

{
wi, vi

}
, p, h,W, b

}
 . AFM model 

can be applied to a variety of recommendation tasks, such 
as regression, classification and sorting tasks. For differ-
ent tasks, the AFM model uses different loss functions. 
Log likelihood loss or hinge loss function is usually used 

(10)yAFM(x) = w0 +

n∑

i=1

wixi+f (x)

(11)f (x) = pT
n�

i=1

n�

j=i+1

hTReLU
�
W
�
vi ⊗ vj

�
xixj + b

�

∑
(i,j)∈{1,...,n}2

exp
�
hTReLU

�
W
�
vi ⊗ vj

�
xixj + b

��
�
vi ⊗ vj

�
xixj

in classification task, square loss or mean loss function is 
applied in regression task, and paired personalized rank-
ing loss or contrast maximum spacing loss function is com-
monly used in sorting task [29]. The main focus here is on 
the regression task of explicitly feeding back of the real tar-
get value, and the L2 norm is used to prevent overfitting of 
the model, as shown in Eq. (12).

Among, X represents the training set, x represents an 
instance of the training set, W  represents the weight matrix 
of the attention layer, and � is used to control the intensity 
of regularization. The objective function is optimized using 
a random gradient descent algorithm, as shown in Eq. (13).

where � is the trainable model parameter, � is the learning 
rate, and � is the regularization parameter. The core idea is 
to iteratively update parameters until the function converges. 
In the process of iteration, a training sample x is randomly 
selected each time to update in the direction of negative gra-
dient of model parameters.

(12)loss =
∑

x∈X

(
yAFM(x) − y(x)

)2
+ �||W||2

(13)� ← �−� × 2
(
yAFM(x) − y(x)

)dyAFM(x)
d�

− ��
d||W||2

d�

Fig. 2  Network topology of the AFM Algorithm
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3.3.2  NFM Algorithm

The full name of NFM is neural factorization machine, which 
is composed of embedding layer, multi-layer perceptron layer, 
full connection layer and prediction layer. Its main function 
is to learn the high-order interaction between sparse data in 
recommendation scenes. It is also a universal machine learner 
that can learn any real-valued eigenvectors. Its network topol-
ogy is shown in Fig. 3.

The expression of the NFM model is as shown in Eq. (14).

Compare the expression of AFM algorithm, special empha-
sis should be placed on the third term, which is a multi-layer 
forward neural network of stacked multi-layer full connec-
tion layers. The third term is used to capture the relationships 
between higher-order features. In Eq. (14), L is the depth of 
multi-layer perceptron layer, and Wl, bl, �l(1 ≤ l ≤ L) represent 
the weight matrix, bias vector and activation function of l-th 
layer respectively. Vector h represents the weight of the predic-
tion layer (the last layer). Parameters to be solved in this model 
are Θ =

{
w0,

{
wi, vi

}
, h,

{
Wl, bl

}}
 . Here we focus on the 

binary classification task recommended by implicit feedback. 
Therefore, the expression shown in Eq. (15) is optimized, and 
other tasks are processed in the same way.

(14)

yNFM(x) = w0 +

n∑

i=1

wixi + hT𝜎L
(
WL

(
...𝜎1

(
W1fBI

(
Vx

)
+ b1

)
...
)
+ bL

)

fBI
(
Vx

)
=

n∑

i=1

n∑

j=i+1

xivi ⊗ xjvj

(15)

loss = −
∑

x∈X

(
y(x) log

(
yNFM(x)

)
+ (1 − y(x)) log

((
1 − yNFM(x)

)))

In Eq. (15), X is the training set, x is an instance of the train-
ing set. The above objective function is also optimized by the 
random gradient descent, as shown in Eq. (16).

where � is the trainable model parameter and � is the learning 
rate. The automatic differentiation interface provided by the 
framework layer can automatically calculate the gradient of the 
trainable parameters. Considering the problem of data sparse 
in the recommendation system based on deep learning, batch 
Adagrad algorithm is adopted as the optimizer rather than the 
naive SGD algorithm, because the learning speed of Adagrad 
algorithm can be adaptive in the training stage, resulting in 
its faster convergence speed. At the same time, dropout tech-
niques are used in pooling operations to deal with over-fitting 
of models [30].

3.3.3  DeepFM Algorithm

DeepFM is a neural network based on factorization machine. 
It is composed of embedding layer, factorization machine 
layer, multi-layer perceptron layer, full connection layer and 
prediction layer. Its main function is to learn feature interac-
tions and nonlinear representations between sparse data in the 
recommendation scenario. The DeepFM model consists of FM 
components and deep neural networks (DNN) components that 
share the same input. yFM(x) and yDNN(x) are the output of 
FM component and DNN component respectively. The FM 
component is an FM layer stacked on the embedding layer and 
input layer, which mainly models data bias, feature weight and 
second-order feature interaction. The DNN component is a 
multi-layer perceptron layer and full connection layer stacked 

(16)� ← � + � ×

(
f (x)

yNFM(x)
−

1 − f (x)

1 − yNFM(x)

)
dyNFM(x)

d�

Fig. 3  Network topology of NFM Algorithm

0 0 0 1 ...0.31

V2 V4 V6 ...

Bi-Interaction Pooling Layer

Layer 1

Layer 3

Layer 2

y

FM Layer

Sparse Features

Embedding layer

Hidden Layer

Output Units

Fig. 4  Network topology of DeepFM Algorithm
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on the embedded layer, which mainly models high-order fea-
ture interaction. Its network topology is shown in Fig. 4.

The expression of the DeepFM model is shown in Eq. (17):

where f  is a function used in the prediction layer. The sig-
moid function is used in the dichotomization task and the 
linear function in the regression task.x =

(
x1, ..., xn

)
∈ Rn is 

the input vector. For the categorical features in the original 
data, it is directly encoded by one-hot, but if it is a continu-
ous real-valued feature, it can be represented by discretiza-
tion or directly by itself.

The expression of the FM component is given in Eq. (18).

vi represents the i-th embedding vector, which is the 
parameter learned through the embedding layer, and k is the 
factor dimension of the embedding vector. wi reflects the 
importance of first-order features. See factorization machine 
layer in subsection 3.2.5 for details.

The expression for the DNN component is shown in 
Eq. (19).

L represents the depth of multiple perceptron layers and � 
is the activation function. Except for layer 0, and a(l),W (l), b(l) 
respectively represent the output, model weight and bias of 
the l -layer.a(0) ∈ R1×(m×k) is a row vector concatenated from 
the set of embedded vectors. The embedded vector set does 
not include items with a value of 0. yMLP(x) represents the 
output of the multilayer perceptron layer. Here, only the 
binary classification task using log likelihood loss function 
is described, as shown in Eq. (20).

The random gradient descent is used for optimization, as 
shown in Eq. (21).

(17)yDeepFM(x) = f
(
yFM(x) + yDNN(x)

)

(18)yFM(x) = w0 +

n∑

i=1

wixi +

n∑

i=1

n∑

j=i+1

⟨
vi ⊗ vj

⟩
xixj

(19)

a(0) =
[
v0x0, v1x1, ..., vixi, ..., vnxn

](
x0 ≠ 0, xi ≠ 0, xn ≠ 0

)

a(1) = �(W (0)a(0)+b(0))

...

a(L−1) = �(W (L−2)a(L−2)+b(L−2))

yMLP(x) = �(W (L−1)a(L−1)+b(L−1))

yDNN(x) = wyMLP(x) + b

(20)

loss = −
1

N

N∑

i=1

(
yi log

(
yDeepFM

(
xi
))

+
(
1 − yi

)
log

(
1 − yDeepFM

(
xi
)))

In Eq. (20), xi and yi respectively represent the values of 
the characteristics and target variables of the i-th sample 
in the training set,N indicate the number of samples of the 
training set. In Eq. (21), � is the trainable model parameter, 
and � is the learning rate. The derivatives of other param-
eters in the model can be calculated automatically using 
the interface in the framework layer directly. In terms of 
preventing over-fitting, dropout technology is used in DNN 
and component L2 regularization in embedded layer. Use 
the early stopping strategy to choose the optimal number of 
iterations during the learning process [31].

3.3.4  DCN Algorithm

DCN is a deep crossover network. It consists of embedding 
layer, cross-network layer, multi-layer perceptron layer, full 
connection layer and prediction layer. Its main purpose is to 
learn the abstract representation of features and the feature 
interaction within the specified order. Its network topology 
is shown in Fig. 5.

The expression of the DCN model is the formula as 
Eq. (22).

where xdense ∈ Ra represents the real-valued feature col-
umn vector, xsparse ∈ Rb represents the category feature 
column vector, x ∈ Ra+b is the column vector spliced by 

(21)

� ← � + � ×

(
yi

yDeepFM
(
xi
) −

1 − yi

1 − yDeepFM
(
xi
)
)
dyDeepFM

(
xi
)

d�

(22)

x = [xdense, xsparse]

x1 = yembeeded(x)

xout =
[
yCNL

(
x1
)
, yMLP

(
x1
)]

yDCN(x) = ypredict
(
yFCL

(
xout

))

Fig. 5  Network topology of DCN Algorithm
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the real-valued feature column vector and category feature 
column vector, yembededd, yCNL, yMLP, yFCL, ypredict represents 
embedded layer component, cross-network layer compo-
nent, multi-layer perceptron layer component, full con-
nection layer component and prediction layer component 
respectively. x1 is the output of embedded layer components, 
and xout is column vectors joined together by the output of 
cross-network layer component and multi-layer perception 
layer component.

Here, only the binary classification task using the log 
likelihood loss function is described, as shown in Eq. (23). 
The random gradient descent algorithm is used to optimize 
the parameter value, as shown in Eq. (24).

In Eq. (23) and Eq. (24), xi and yi respectively represent 
the values of the characteristics and target variables of the 
i-th sample in the training set, N  indicate the number of 
samples of the training set, � is the regularization parameter 
of L2 , Wl is the weight matrix of the l-th layer in the DCN 
model, and yDCN is the output of Eq. (22), � is a trainable 
model parameter, � is used to control the learning rate of the 
gradient descent method.

4  Experiments

DeepRS is developed in Windows 10, with VScode as the 
integrated development tool, Tensorflow as the framework 
level, Python as the development language and PyPI as the 
third-party warehouse. AFM, NFM, DeepFM and DCN 
algorithms are evaluated using the public dataset MovieLens 
[32]. This movie rating data set is widely used to evaluate 

(23)

loss = − 1
N

N
∑

i=1

(

yi log
(

yDCN
(

xi
))

+
(

1 − yi
)

log
(

1 − yDCN
(

xi
)))

+ �
∑

l
||Wl||

2

(24)� ← � + � ×

(
yi

yDCN
(
xi
) −

1 − yi

1 − yDCN
(
xi
)
)
dyDCN

(
xi
)

d�

collaborative filtering algorithms. It contains 20,000,263 
ratings and 465,564 tag applications across 27,278 movies.

The dataset MovieLens is randomly divided into two 
parts: 80% for training and 20% for validation. The training 
set is used to learn the model, and the validation set is used 

Table 1  Default values of AFM, DFM, DeepFM and DCN algorithms

Algorithm name Learning rate Number of 
iterations

Batch size Embedded 
vector size

Attention 
factor

Drop rate Number of hidden units in 
multi-layer perceptron layer

Cross layer

AFM 0.1 200 256 8 8 0 – –
NFM 0.1 200 256 256 – 0.3 (128,128) –
DeepFM 0.1 200 256 8 – 0 (258,256) –
DCN 0.1 200 256 8 – – (128,128,64) 3

Fig. 6  AUC and Logloss of AFM algorithm

Fig. 7  AUC and Logloss of NFM algorithm
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for tuning the hyper-parameters. Log loss and area under 
curve (AUC) are widely used for classification tasks with 
explicit feedback recommendations. Therefore, AUC is used 
as the evaluation index, and Log loss is used as the loss func-
tion. Table 1 gives the main parameter settings of each algo-
rithm. The learning process of AFM, NFM, DeepFM, and 
DCN models is described in Fig. 6, Fig. 7, Fig. 8 and Fig. 9. 
Among them, the left ordinate axis is the cross entropy, the 
right ordinate axis is the accuracy rate, and the horizon-
tal axis represents the number of iterations of the model. 
Metric-train and metric-val separately represent the accuracy 

of the model in the training set and validation set, and loss 
train and loss val are the cross entropy of the model in the 
training set and validation set respectively.

Figure 6 shows that with the increase of the number of 
iterations of AFM, the loss value of the training set gradually 
decreases to 0.36 and reaches a stable level, and the accuracy 
of the validation set gradually increases to around 0.785 and 
reaches a plateau, indicating that this model is neither over-
fitting nor under-fitting. Figure 7 shows that the loss value 
of the training set gradually decreases with the increase of 
the number of iterations of NFM, and the accuracy of the 
validation set gradually decreases, indicating that the model 
is in overfitting. Figure 8 shows that with the increase of the 
number of iterations of DeepFM, the accuracy of the training 
set gradually increases to 1 and reaches a stable level, but the 
accuracy of the validation set gradually decreases to around 
0.75, indicating that DeepFM is in overfitting. Figure 9 
shows that as the number of iterations of DCN increases, 
the cross entropy of the training set gradually decreases to 
0 and reaches a stable level, but the cross entropy of the 
validation set gradually increases to around 0.95, indicating 
that the model is in overfitting.

The average value of oscillation in a certain range after 
the training convergence of different algorithms in Mov-
ieLens data set is taken as the evaluation index. It can be 
seen from Table 2 that AFM algorithm has stronger perfor-
mance ability and interpretability. The other three algorithms 
(NFM, DeepFM and DCN) all have overfitting problems, 
but in different practical applications, they can be solved by 
adjusting parameters, reducing the capacity of the model 
or adding more samples. In practical algorithm application, 
researchers or practitioners can directly call the encapsulated 
recommendation algorithm library based on deep learning 
to compare its prediction accuracy and loss value, so as to 
conveniently select the optimal recommendation algorithm, 
directly solve the core algorithm problems of recommenda-
tion system development and other applications.

Fig. 8  AUC and Logloss of DeepFM algorithm

Fig. 9  AUC and Logloss of DCN algorithm

Table 2  Performance comparison

Algorithm model Average value of train-
ing results

Average value of 
validation results

AUC Logloss AUC Logloss

AFM 0.868 0.378 0.785 0.520
NFM 0.990 0.100 0.725 1.750
DeepFM 0.998 0.009 0.740 1.825
DCN 0.999 0.005 0.750 1.170
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5  Comparative Study

Existing recommendation algorithm libraries are limited in 
two aspects: lack of abstract level modularity support and 
lack of reliable backend support [10]. Furthermore, dif-
ferent recommendation algorithm libraries adopt different 
programming languages and implement different recom-
mendation algorithms. Therefore, in the rest of this sec-
tion, we compare DeepRS with Mymedialite [8], Librec 
[9], PREA [25], fastFM [26], Surprise [27], OpenRec [10], 
Recommenderlab [28] from four aspects: programming lan-
guage, backend, implemented recommendation algorithm 
and abstraction level modularity. The comparison results are 
shown in the Table 3. It can be found from Table 3 that the 
programming languages used in the recommended algorithm 
libraries include C, C#, R, Java and Python, and only Sur-
prise, OpenRec and DeepRS have reliable backend support. 
Most of the libraries are designed for traditional recommen-
dation algorithms. OpenRec and DeepRS are designed for 
recommendation algorithms based on deep learning. How-
ever the abstract level modularity of OpenRec only contains 
two modules: MLP and LF, while DeepRS includes eight 
modules: EL, FCL, MLP, PL, FML, ANL, CL, and CNL. 
Therefore, DeepRS has better scalability than OpenRec.

6  Conclusion and Future Work

Nowadays, deep learning technology is widely used in 
the field of recommendation. The emergence of more and 
more recommendation algorithm models provides great 
convenience for the application and research of recommen-
dation system. According to the specific nature of the rec-
ommendation data, selecting the appropriate recommen-
dation algorithm can not only save time, but also improve 
the recommendation quality. Aiming at the sparsity and 
diversity of recommendation data, a deep learning-based 

recommendation algorithm library DeepRS is designed 
as a tool for recommendation task modeling, which is 
convenient for researchers and practitioners. Experiments 
also verify the ease of use, feasibility and accuracy of the 
algorithm package. Comparative study shows that DeepRS 
has more reusable components and is more scalable than 
existing recommendation algorithm packages. However, 
there is still a distance from the real scene, DeepRS only 
contains four recommendation algorithms based on deep 
learning. In future, DeepRS will be further improved 
through detailed API documents to make it more operable. 
At the same time, we are constantly adding new recom-
mendation algorithms based on deep learning to DeepRS.
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ming 
language
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Librec Java  × Traditional algorithms  × 
PREA Java  × Traditional algorithms  × 
Recommenderlab R  × Traditional algorithms  × 
Surprise Python SciKits Traditional algorithms  × 
OpenRec Python Tensorflow Algorithms based on deep learning Multi-LayerPerceptron (MLP), Latent Factor (LF)
DeepRS Python Tensorflow Algorithms based on deep learning EL, FCL, MLPL, PL, FML, ANL, CL, CNL
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