
International Journal of Computational Intelligence Systems (2022) 15:97
https://doi.org/10.1007/s44196-022-00143-z

RESEARCH ART ICLE

Clausal Forms in MaxSAT andMinSAT

Chu Min Li1,2 · Felip Manyà3 · Joan Ramon Soler3 · Amanda Vidal3

Received: 27 May 2022 / Accepted: 7 September 2022
© The Author(s) 2022

Abstract
We tackle the problem of reducing non-clausal MaxSAT and MinSAT to clausal MaxSAT and MinSAT. Our motivation
is twofold: (i) the clausal form transformations used in SAT are unsound for MaxSAT and MinSAT, because they do not
preserve the minimum or maximum number of unsatisfied clauses, and (ii) the state-of-the-art MaxSAT and MinSAT solvers
require as input a multiset of clauses. The main contribution of this paper is the definition of three different cost-preserving
transformations. Two transformations extend the usual equivalence preserving transformation used in SAT to MaxSAT and
MinSAT. The third one extends the well-known Tseitin transformation. Furthermore, we report on an empirical comparison
of the performance of the proposed transformations when solved with a state-of-the-art MaxSAT solver.

Keywords Maximum satisfiability problem · Minimum satisfiability problem · Clausal forms

Abbreviations
SAT Satisfiability
MaxSAT Maximum satisfiability
MinSAT Minimum satisfiability
PMaxSAT Partial maximum satisfiability
PMinSAT Partial minimum satisfiability
WPMaxSAT Weighted partial maximum satisfiability
WPMinSAT Weighted partial minimum satisfiability
CNF Conjunctive normal form

B Amanda Vidal
amanda@iiia.csic.es

Chu Min Li
chu-min.li@u-picardie.fr

Felip Manyà
felip@iiia.csic.es

Joan Ramon Soler
jramonsoler@gmail.com

1 Université de Picardie, 33 Rue Saint Leu, 80039 Amiens,
France

2 Aix Marseille Univ, Université de Toulon, CNRS, LIS,
Marseille, France

3 Artificial Intelligence Research Institute (IIIA-CSIC),
Campus of the UAB, 08193 Bellaterra, Spain

1 Introduction

SAT is the problem of deciding whether there exists an
assignment that satisfies a given (multi)set of propositional
formulas. On the other hand, MaxSAT andMinSAT are opti-
mization versions of SATwhose goal is to find an assignment
that minimizes or maximizes the number of unsatisfied for-
mulas, respectively. These problems have gained increasing
interest, because many practical questions can be solved by
first encoding them as a SAT, MaxSAT, or MinSAT problem
and then finding a solution by solving the resulting encoding
with a SAT, MaxSAT, or MinSAT solver. While SAT is used
to solve decision problems, MaxSAT and MinSAT are used
to solve optimization problems.

MaxSAT and MinSAT have been applied in real-world
domains as diverse as bioinformatics [1,2], circuit design
and debugging [3], combinatorial auctions [4], combinato-
rial testing [5,6], community detection in complex networks
[7], diagnosis [8], planning [9], scheduling [10], and team
formation [11,12], among others.

The literature distinguishes between clausal SAT,MaxSAT,
and MinSAT, and non-clausal SAT, MaxSAT, and MinSAT,
respectively. In the clausal case, the input multiset only con-
tains clauses (i.e., disjunctions of literals). In the non-clausal
case, the input multiset contains propositional formulas that
are not necessarily in clausal form.

Many combinatorial problems admit more natural and
compact encodings when represented in non-clausal form.

0123456789().: V,-vol 123

http://crossmark.crossref.org/dialog/?doi=10.1007/s44196-022-00143-z&domain=pdf
http://orcid.org/0000-0002-8366-1458
http://orcid.org/0000-0001-6730-6491

 97 Page 2 of 12 International Journal of Computational Intelligence Systems (2022) 15:97

However, the fastest andmost robust SAT/MaxSAT/MinSAT
solvers require their input in clausal form. Thus, some kind of
clausal form transformation is needed to solve them. In SAT,
there are several algorithms that transform a multiset of arbi-
trary propositional formulas into a satisfiability equivalent
multiset of clauses [13,14]. Unfortunately, usual clausal form
transformations used in SAT are not valid neither inMaxSAT
nor MinSAT. The reason is that they are not cost-preserving,
i.e., they do not preserve the minimum/maximum number of
unsatisfied formulas between the input and the transformed
multiset.

The main contribution of this paper is the definition of
three different cost-preserving transformations. Two trans-
formations extend the usual equivalence preserving trans-
formation used in SAT to MaxSAT and MinSAT. The third
one extends the well-known Tseitin transformation [14].
Moreover, we report on an empirical comparison of the per-
formance of the proposed transformations when solved with
a state-of-the-art MaxSAT solver.

An alternative option to solve non-clausal MaxSAT and
MinSAT is to use the semantic tableaux and natural deduc-
tion calculi defined for these problems [15–19].Nevertheless,
no efficient implementation of such calculi is available.
Furthermore, we believe that such implementations could
rarely compete with the state-of-the-art clausal MaxSAT and
MinSAT solvers, because they do not incorporate solving
techniques such as lower bounds based on unit propagation
[20] and clause learning [21].

We currently have highly optimized clausal MaxSAT
solvers, due in part to the existence of a yearly MaxSAT
Evaluation (MSE) since 2006 [22,23]. There are two types
of exact MaxSAT algorithms: Branch-and-Bound (BnB) and
SAT-based algorithms. BnB algorithms apply restrictions
of MaxSAT resolution and incorporate a bounding proce-
dure based on detecting disjoint inconsistent cores with
unit propagation [24]. Recently, they also incorporate clause
learning [21,25]. SAT-based algorithms transform MaxSAT
into a sequence of SAT instances that are solved with a
Conflict-Driven Clause Learning (CDCL) SAT solver [26–
29]. Moreover, there exist efficient local search MaxSAT
algorithms like BandMaxSAT [30] and SATLike 3.0 [31].
There has not been as much activity in MinSAT as in
MaxSAT, but there exist a few clausalMinSAT solvers [4,32–
34].

This paper unifies the clausal forms transformations
proposed in the conference papers [35,36], provides new cor-
rectness proofs, and reports on an empirical comparison of
differentMaxSAT transformations. It is structured as follows:
Sect. 2 introduces definitions and notations used throughout
the document. Sections 3–5 define the proposed transforma-
tions and their correctness proofs. Section 6 details how the
proposed transformation can be extended to weighted for-
mulas. Section 7 reports on an empirical comparison of the

transformations. Finally, Sect. 8 presents some concluding
remarks.

2 Preliminaries

In this section, we briefly introduce the basic logical tools on
which this work is based and present formally the problems
we are going to study.

Given a set of propositional variables V = {x1, . . . , xn},
a literal � is a variable xi or its negation ¬xi , and a clause
is a disjunction of literals. A formula, on the other hand,
is any expression built from the variables in the language
〈∧/2,∨/2,¬/1〉, andwhere symbols→/2,↔/2 are defined
from the previous ones by letting

ϕ → ψ :=¬ϕ ∨ ψ ϕ ↔ ψ := (ϕ → ψ) ∧ (ψ → ϕ).

Equivalently, a formula ϕ is any element according to the
following language definition:

ϕ := x |ϕ ∧ ϕ|ϕ ∨ ϕ|¬ϕ.

We will say that a formula is in conjunctive normal form if
it is written as a conjunction of clauses. For convenience, we
will denote by FmC to the set of clauses, by FmCNF to the
set of formulas in conjunctive normal form, and by Fm to
the set of all formulas.1

A truth-assignment or evaluation e is a mapping from the
variables into {0, 1} that extends to all formulas in the usual
classical sense (namely, where ∧ and ∨ are, respectively, the
minimum and maximum operations in {0, 1}, ¬0 := 1 and
¬1 := 0). We will say that e satisfies a formula ϕ if e(ϕ) = 1,
and that it falsifies or violates it if e(ϕ) = 0. The set of all
evaluations will be denoted by Ev.2

A weighted formula is a pair 〈ϕ,w〉, where ϕ is a for-
mula and w, its weight, is a positive integer or infinity.
These weights, in the optimization context, are understood
as penalties for violating that formula under an evaluation.
Consequently, if theweight of a formula is infinity, it is called
a hard formula (wewill usually omit infinite weights for sim-
plicity of the notation); otherwise, it is a soft formula.

Optimization questions in MaxSAT and MinSAT are rep-
resented using multisets instead of sets, because repeated
formulas cannot be collapsed into a single formula as in SAT
(e.g., if a formula appears twice in an input, the penalty for
violating it will double). Considering only sets affects the
preservation of the number of unsatisfied clauses and does

1 We omit the set of variables, since it will always be clear from the
context.
2 The set of variables is omitted from the notation, since it will either
be clear from the context or specified in each case.

123

International Journal of Computational Intelligence Systems (2022) 15:97 Page 3 of 12 97

not allow to model many problems that take into account
multiplicity.

The symbols ∪ and
⋃

will denote the union of sets, while
	 and

⊔
will denote the union of multisets. Similarly, the ∈

symbol will denote the usual set membership relation (even
in multisets), and we will use the ∃symbol to denote multiset
membership relation (taking into account the multiplicity).
To clarify this with a simple example, for a multiset A =
{a, a}, we have that
⋃

x∈A

{x} =
⋃

x ∃A
{x} =

⊔

x∈A

{x} = {a} and
⊔

x ∃A
{x} = {a, a}.

Asusual, conjunction anddisjunctiondistributewhenapplied
to multisets of formulas. Namely, for a multiset A and a for-
mula ϕ, we let

A ∧ ϕ :=
⊔

ψ

∃A
{ψ ∧ ϕ} and A ∨ ϕ :=

⊔

ψ

∃A
{ψ ∨ ϕ}.

Aweighted partial instance is a finitemultiset of weighted
formulas. As such, we will address it as a set of hard formu-
las and a multiset of soft formulas.3 A particular case of a
weighted partial instance is when all soft formulas have the
sameweight. In this case,wewill call such amultiset apartial
instance and we will usually not specify the weight. We will
see that, for what concerns optimization questions, the par-
ticular weight of all the soft clauses turns out to be irrelevant
in this case.

When considering an evaluation e over a multiset of
weighted formulas A, we will say that the cost A under e,
denoted by e(A), is the sum of the weights of the formulas
in A violated by e. Formally,

e(A) :=
∑

〈ϕ,w〉 ∃A,
e(ϕ)=0

w.

The Weighted Partial MaxSAT problem, or WPMaxSAT,
is defined forweighted partial instances of clauses. It consists
in finding an assignment that minimizes the cost of the input
instance, as long as it is below infinity (i.e., satisfying all
hard clauses, since otherwise the problem has no solution).
Dually, the Weighted Partial MinSAT problem, or WPMin-
SAT, searches for an assignment that maximizes the cost of
the input weighted partial instance of clauses, also keeping
this optimal cost below infinity (again, this means that only
assignments satisfying the hard clauses set are deemed to be
solutions of the problem).

For practical reasons (among other things, these assign-
ments might not be unique), the outputs of the WPMaxSAT

3 Observe that hard formulas can always be considered with multiplic-
ity one, i.e., to form a set as opposed to a multiset, since we require all
of them to be satisfied.

andWPMinSATquestions are usually taken to be the optimal
cost (either minimal or maximal, according to the previous
definition). This is the convention we will use in this work.
Formally, for a weighted partial instance of clauses F ,

WPMaxSAT(F) := min
e∈Ev,

e(F)<∞
e(F) and

WPMinSAT(F) := max
e∈Ev,

e(F)<∞
e(F).

Common subproblems of WPMaxSAT (and analogously
forWPMinSAT) are: theWeightedMaxSAT(resp.WMaxSAT),
which is WPMaxSAT without hard clauses; Partial MaxSAT
(resp. PMaxSAT), which is WPMaxSAT when all the soft
clauses have the same weight (which, for the calcula-
tions above, is considered to be 1), and MaxSAT, which
is PMaxSAT without hard clauses. Observe that the above
formulation is defining MaxSAT (resp. MinSAT) as the min-
imum (resp. maximum) number of unsatisfied clauses in the
input multiset.

When WPMaxSAT (resp. WPMinSAT), as well as any of
their subproblems, is studied over a weighted partial instance
in general (namely, of arbitrary formulas), we refer to this
problem as Non-clausal WPMaxSAT (resp. WPMinSAT). In
this work, we will focus on studying the above optimization
problems in full generality by means of providing faithful
translations from Non-clausal WPMaxSAT (resp. WPMin-
SAT) into their corresponding clausal versions.

For that, recall that any propositional formula can be trans-
lated into the so-called Conjunctive Normal Form (CNF)
through the recursive application of a very simple set of rules
preserving logical equivalence. These are double negation
elimination, De Morgan’s laws and distributivity of ∨ over
∧. Further simplifications are also applied.4 This produces a
formula in CNF, namely, a conjunction of clauses. In what
follows, CNF(ϕ) denotes the formula equivalent to ϕ in
CNF resulting from the previous equivalences, so naturally,
for any truth-assignment e, it holds that e(ϕ) = e(CNF(ϕ)).

When inquiring about the satisfiability of a set of propo-
sitional formulas A = {ϕ1, . . . , ϕn}, each of the CNF(ϕi)

formulas can be split into a set of clauses (simply remov-
ing the conjunctions) to get a set of clauses that will serve
as input to a SAT solver. We will refer to the union of these
sets by TSAT(A). The satisfiability of TSAT(A) coincides with
that of A, i.e., SAT(A) if and only if SAT(TSAT(A)). As we
showbelow, this approach does not serve to solve non-clausal
MinSAT or MaxSAT.

Example 1 Let A = {(¬x ↔ x)∧(¬y ↔ y), x∨y}be amul-
tiset of propositional formulas. Applying the transformation

4 e.g., removing clauses with a literal and its negation, or repeated
clauses.

123

 97 Page 4 of 12 International Journal of Computational Intelligence Systems (2022) 15:97

defined above, we get TSAT(A) = {x,¬x, y,¬y, x∨ y}. The
evaluation e(x) = e(y) = 0 violates two formulas of A and
three clauses of TSAT(A), despite being an optimal MinSAT
solution for both A and TSAT(A). Thus, that transformation is
not cost-preserving and MinSAT(A) �= MinSAT(TSAT(A)).
Similarly, the evaluation e(x) = e(y) = 1 is an optimal
MaxSAT solution for both A and TSAT(A), but violates one
formula of A and two clauses of TSAT(A).

Example 1 illustrates how the preservation problem arises
at the step when the CNF is split into clauses. This operation
can generate additional clauses that violate the preserva-
tion of the minimum or the maximum number of unsatisfied
formulas. To overcome this drawback, we propose several
new cost-preserving transformations for WPMaxSAT and
WPMinSAT in the next three sections. For convenience, we
will present the transformations for unweightedMaxSATand
MinSAT. In Sect. 6, we will see that adding weights in full
generality (thus, covering also theWPMaxSAT/WPMinSAT
and PMaxSAT/PMinSAT problems) can be easily done.

3 A Uniform Transformation Preserving the
Variables Space: Tu

We first define a uniform transformation in the sense that it
is cost-preserving for both MaxSAT and MinSAT, which we
denote by Tu . It does not add new variables, and so, it does
not expand the search space.

Recall that FmCNF denotes the formulas in Conjunctive
Normal Form (i.e., conjunctions of clauses). For conve-
nience, let us denote by FMC the negations of clauses, i.e.,
formulas of the form ¬c where c is a clause.

We define inductively the mapping ∗ : FmCNF ∪ FmC →
MS, where MS denotes the set of all multisets of clauses, as
follows:

c∗ := {c}
(c ∧ F)∗ := {c, (¬c)∗ ∨ F∗}

(¬(� ∨ c))∗ := {¬�, � ∨ (¬c)∗},

where F ∈ FmCNF, c ∈ FmC (i.e., is a clause) and � is a
literal. Furthermore, the following very basic simplifications
of the clauses in ϕ∗ are applied:

1. If a trivial clause (one including a literal and its nega-
tion) appears—and it is not the only clause—in ϕ∗, it is
removed.

2. If a literal is repeated in a clause, the repetitions are
removed.

3. The negation of a negated literal is the corresponding vari-
able, namely ¬¬x , is substituted by x , for any variable
x .

Definition 1 (Transformation Tu) Let A = ANC 	 AC be a
multiset of formulas of which ANC are not clauses and AC

are clauses. Tu(A) is the multiset of clauses

⊔

ϕ

∃ANC

(CNF(ϕ))∗ 	 AC .

Conceptually, the transformation Tu is the one providing
a deeper understanding of the preservation of MaxSAT or
MinSATwithout using a partial instance. It preserves the kind
of input (as opposed to the transformations, wewill present in
the next sections, which are partial instances), and preserves
the variables used in the original multiset. Moreover, it is
based on the idea of preserving one-to-one the number of
unsatisfied elements. However, all this comes at the cost of
deriving a multiset whose size can be exponential in the size
of the input multiset, due to the distributivity rules.

Example 2 Let ϕ be the formula ¬(¬x1 ∧¬x2)∧ (x3 ∨ x4)}.
We have that CNF(ϕ) = (x1 ∨ x2) ∧ (x3 ∨ x4). We convert
it into the multiset of clauses Tu({ϕ}) as follows:

Tu({ϕ}) = ((x1 ∨ x2) ∧ (x3 ∨ x4))
∗

= {x1 ∨ x2, (¬(x1 ∨ x2))
∗ ∨ (x3 ∨ x4)}

= {x1 ∨ x2, {¬x1, x1 ∨ ¬x2} ∨ (x3 ∨ x4)}
= {x1 ∨ x2,¬x1 ∨ x3 ∨ x4, x1 ∨ ¬x2 ∨ x3 ∨ x4}.

Example 3 Let A be the multiset of propositional formulas
{¬x1 ∨ ¬x2, x1 ∧ (¬x1 ∨ x2), x1 ∧ (¬x1 ∨ x2),¬(¬x1 ∧
¬x2)∧ (x3 ∨ x4)}. We translate it into the multiset of clauses
Tu(A) as follows:

Tu(A) = {¬x1 ∨ ¬x2}
	 {(x1 ∧ (¬x1 ∨ x2))

∗}
	 {(x1 ∧ (¬x1 ∨ x2))

∗}
	 {(¬(¬x1 ∧ ¬x2) ∧ (x3 ∨ x4))

∗}
= {¬x1 ∨ ¬x2,

x1,¬x1 ∨ x2,

x1,¬x1 ∨ x2,

x1 ∨ x2,¬x1 ∨ x3 ∨ x4, x1 ∨ ¬x2 ∨ x3 ∨ x4}.

To prove that transformation Tu is cost-preserving for
both MaxSAT and MinSAT, we first study how translation
∗ behaves. Since it is, in an intuitive way, working from the
inner most level to the outer most, let us first study the most
internal level, and later, how the full translation works.

Proposition 1 For arbitrary clause c and truth-assignment
e, the following holds:

1. e(c) = 1 if and only if all clauses in (¬c)∗ are evaluated
to 1 except for one;

123

International Journal of Computational Intelligence Systems (2022) 15:97 Page 5 of 12 97

2. e(c) = 0 if and only if all clauses in (¬c)∗ are evaluated
to 1.

Proof We can easily check these properties by induction on
the number k of literals appearing in clause c. For k = 2, we
have that c = �1∨�2. By definition (¬c)∗ := {¬�1, �1∨¬�2}.

1. An evaluation ewith e(c) = 1 is such that either e(�1) = 1
(hence, the first clause in (¬c)∗ is evaluated to 0 and the
second to 1), or, if e(�1) = 0, necessarily e(�2) = 1, and
then, e(¬�1) = 1 and e(�1 ∨ ¬�2) = 0.

2. e(c) = 0 if and only if e(�1) = e(�2) = 0, and so,
e(¬�1) = 1 and also e(�1 ∨ ¬�2) = 1.

For k = n+1, we can write c = �1∨c2 (where c2 = �2∨
· · ·∨�k , and it has only n literals). Then, (¬c)∗ := {¬�1, �1∨
d : d ∈ (¬c2)∗}.

1. Assume e with e(c) = 1. If e(�1) = 1, the first clause
in (¬c)∗ is trivially evaluated to 0 and all the others to 1.
Otherwise, if e(�1) = 0, necessarily e(c2) = 1, in which
case, e(¬�1) = 1 and, by Induction Hypothesis (I.H.), all
clauses di ∈ (¬c2)∗ are evaluated to 1 except for one, let
us call it d0. Then, e(�1 ∨ d0) = 0 and all other clauses
�1 ∨ d in (¬c)∗ are evaluated to 1.

2. e(c) = 0 if and only if both e(�1) = e(c2) = 0. The
first clause in (¬c)∗ is trivially again evaluated to 1. By
I.H., all clauses di in (¬c2)∗ are evaluated to 1, and so,
all remaining clauses �1 ∨ di in (¬c)∗ are so too. �	

Proposition 2 For any formula in CNF F and any truth-
assignment e, the following holds:

1. e(F) = 1 if and only if all clauses in F∗ are evaluated
to 1;

2. e(F) = 0 if and only if all clauses in F∗ are evaluated
to 1 except for one.

Proof Similarly to how it was done in the previous propo-
sition, it is easily provable by induction on k, the number
of clauses in F . For k = 2, we have that F = c1 ∧ c2. By
definition F∗ := {c1, (¬c1)∗ ∨ c∗

2} = {c1, (¬c1)∗ ∨ c2} =
{c1, d ∨ c2 : d ∈ (¬c1)∗}.

1. For e(F) = 1, necessarily e(c1) = e(c2) = 1, and so,
both clauses in F∗ are trivially evaluated to 1.

2. Assume e(F) = 0. If e(c1) = 0, the first clause in F∗ is
evaluated to 0, and by Proposition 1 (2), all clauses d in
(¬c1)∗ are evaluated to 1, proving our point. Otherwise,
if e(c1) = 1, necessarily e(c2) = 0. The first clause in F∗
is evaluated to 1, and by Proposition 1 (1), all d ∈ (¬c1)∗
are evaluated to 0 except for one, call it d0. Then, for all

d ∈ (¬c1)∗ except for d0, we know that e(d ∨ c2) = 1,
and e(d0 ∨ c2) is the only clause in F∗ evaluated to 0.

For k = n + 1, we have that F = c1 ∧ F2 (where
F2 = c2 ∧ · · · ∧ ck , and it has n clauses only). By definition
F∗ := {c1, (¬c1)∗ ∨ (F2)∗} = {c1, d ∨ f : d ∈ (¬c1)∗, f ∈
(F2)∗}.

1. For e(F) = 1, necessarily e(c1) = e(F2) = 1. Thus,
the first clause in F∗ is trivially evaluated to 1, and any
d ∈ (F2)∗ is, by I.H., also evaluated to 1, proving our
point.

2. Assume e(F) = 0. If e(c1) = 0, the first clause in F∗ is
evaluated to 0, and by Proposition 1 (2), all clauses d in
(¬c1)∗ are evaluated to 1, proving our point. Otherwise,
if e(c1) = 1, necessarily e(F2) = 0. The first clause in F∗
is evaluated to 1, and by Proposition 1 (1), all d ∈ (¬c1)∗
are evaluated to 1 except for one, call it d0. Similarly, by
I.H., all f ∈ (F2)∗ are evaluated to 1 except for one, call
it f0. Henceforth, e(d0 ∨ f0) = 0, and it is the only clause
in F∗ evaluated to 0. �	

Proposition 2 implies that, for any (multi) set of formulas
in clausal form A, and any truth assignment e, it holds that

|{ϕ ∃A : e(ϕ) = 0}| = |{C ∃Tu(ϕ) : ϕ

∃A, e(C) = 0}|.

Observe that, since for any evaluation e and any formula F
in CNF either e(F) = 1 or e(F) = 0, we know that for any
evaluation e, either all clauses in F∗ are evaluated to 1 or
exactly one clause in F∗ is evaluated to 0 (and the rest to 1).

Since there is no restriction on the kind of evaluation e,
the fact that Tu preserves bothMaxSAT andMinSAT is fairly
straightforward.

Theorem 3 Let A be an arbitrary finite multiset of formulas.
Then, the following holds:

1. MaxSAT(A) = MaxSAT(Tu(A));
2. MinSAT(A) = MinSAT(Tu(A)).

Proof Assume A = ANC 	 AC , where AC are clauses and
ANC are not, and let e be any evaluation of the variables in
A. Recall that, for any formula ψ and any evaluation e, by
definition e(ψ) = e(CNF(ψ)). Then,

|{ψ ∃ANC : e(ψ) = 0}| =
|{ψ ∃ANC : e(CNF(ϕ)) = 0}| Prop2=

|{C ∃F∗ : F = CNF(ϕ), ϕ ∈ ANC , e(F) = 0}| Def .=
|{C ∃Tu(ANC) : e(c) = 0}|.

123

 97 Page 6 of 12 International Journal of Computational Intelligence Systems (2022) 15:97

Henceforth, it is immediate that for any evaluation e,

|{ψ ∃A : e(ψ) = 0}| = |{C ∃Tu(A) : e(c) = 0}|.

Assume MaxSAT(A) = n for some number n, it means that
n is the minimum number of unsatisfied formulas in A. Then

• For any evaluation e, we have that n ≥ |{ψ ∃A : e(ψ) =
0}| = |{C ∃Tu(A) : e(c) = 0}|, and

• There is someevaluation f forwhichn = |{ψ ∃A : f (ψ) =
0}|. Thus, n = |{C ∃Tu(A) : f (c) = 0}|.

Then, by definition, n is the minimum number of unsatisfied
clauses in Tu(A), namely, MaxSAT(Tu(A)) = n.

Similarly, if MinSAT(A) = n for some number n, then n
is the maximum number of unsatisfied formulas in A. Thus

• For any evaluation e, we have that n ≤ |{ψ ∃A : e(ψ) =
0}| = |{c ∈ Tu(A) : e(c) = 0}|, and

• There is someevaluation f forwhichn = |{ψ ∃A : f (ψ) =
0}|. Thus, n = |{c ∈ Tu(A) : f (c) = 0}|.

Again, by definition, n is themaximumnumber of unsatisfied
clauses in Tu(A), namely, MinSAT(Tu(A)) = n. �	
Example 4 Transformation Tu , applied to the multiset of for-
mulas A = {¬(¬x1 ∧ ¬x2) ∧ (x3 ∨ x4)} from Example 2,
derived the multiset of clauses � = {x1 ∨ x2,¬x1 ∨ x3 ∨
x4, x1 ∨ ¬x2 ∨ x3 ∨ x4}. This multiset satisfies Theorem 3.

4 More Compact Transformations: TM and Tm

We can propose a different kind of transformation that
relies on the addition of one fresh variable for each (non-
clausal) formula in the original multiset. Then, Partial
MaxSAT/MinSAT can be used to encode strict knowledge
that will relate the behavior of the new variable and the orig-
inal formulas, and soft knowledge that will relate the optimal
answers of MaxSAT and MinSAT.

Two dual transformations can be introduced, each one
preserving one of the two optimization problems we are
studying: TM , which will preserve MaxSAT, and Tm , which
will preserve MinSAT.

Definition 2 Let A = ANC 	 AC be a multiset of formulas
of which ANC are not clauses and AC are clauses, and let
{yϕi : ϕi ∈ ANC } be a set of fresh variables.

1. TM (A) is the partial instance having as hard clauses the
set

HC(TM (A)) :=
⋃

ϕ∈ANC ,
C∈TSAT(ϕ)

C ∨ {¬yϕ}

and as soft clauses the set

SC(TM (A)) := AC 	
⊔

ϕ

∃ANC

{yϕ};

2. Tm(A) is the partial instance having as hard clauses the
set

HC(Tm(A)) :=
⋃

ϕ∈ANC ,
C∈TSAT(¬ϕ)

C ∨ {yϕ}

and as soft clauses the set

SC(Tm(A)) := AC 	
⊔

ϕ

∃ANC

{yϕ}.

Transformations Tm and TM are more compact than Tu in
the sense that the number of soft restrictions in the problem
is much smaller, preserving the number of elements from the
original input to the set of soft restrictions. Moreover, since
in partial instances, the set of hard restrictions must be fully
satisfied, it is not necessary to consider it as a multiset but
rather as a set of clauses. Nevertheless, as in Tu , the size of
the set of hard clauses can be exponential in the size of the
multiset of input formulas for the same reason.

Example 5 Let A be the multiset of propositional formulas
{¬x1 ∨ ¬x2, x1 ∧ (¬x1 ∨ x2), x1 ∧ (¬x1 ∨ x2),¬(¬x1 ∧
¬x2) ∧ (x3 ∨ x4)}. We translate it to the partial instances
TM (A) and Tm(A) as follows5:

Soft clauses: SC(TM (A)) =
SC(Tm(A)) = {¬x1 ∨ ¬x2, y1, y1, y2}
Hard clauses of TM : HC(TM (A))

= {x1 ∨ ¬y1,¬x1 ∨ x2 ∨ ¬y1,

x1 ∨ x2 ∨ ¬y2, x3 ∨ x4 ∨ ¬y2}
Hard clauses of Tm : HC(Tm(A))

= {¬x1 ∨ ¬x2 ∨ y1,

¬x1 ∨ ¬x3 ∨ y2,¬x1 ∨ ¬x4 ∨ y2,

¬x2 ∨ ¬x3 ∨ y2,¬x2 ∨ ¬x4 ∨ y2}.

Proposition 4 Let e be an arbitrary evaluation. Then, the
following conditions hold:

1. If e(HC(TM (A))) = {1}, then e(yϕ) = 1 implies e(ϕ) =
1, for each ϕ ∈ ANC.

5 For the sake of a simple reading, we change the subindexes in the
fresh variables from formulas to simple natural numbers in the obvious
way, namely, y1 denotes yϕ for ϕ = x1 ∧ (¬x1 ∨ x2) and y2 denotes
yψ for ψ = (x3 ∧ x2)∨ (¬x3 ∧ x2). Observe y3 does not exist, because
in the original multiset, there are not three different clauses, but two
different clauses with one of them repeated once.

123

International Journal of Computational Intelligence Systems (2022) 15:97 Page 7 of 12 97

2. If e(HC(Tm(A))) = {1}, then e(yϕ) = 0 implies e(ϕ) =
0, for each ϕ ∈ ANC.

Proof First claim is immediate, since the hard clauses in
TM (A) are imposing that, if e(yϕ) = 1, necessarily e(C) = 1
for each C ∈ TSAT(ϕ). By definition of TSAT, it follows that
e(ϕ) = e(

∧
C∈TSAT(ϕ) C) = 1.

Dually, the hard clauses in Tm(A) are imposing that, if
e(yϕ) = 0, necessarily e(C) = 1 for each C ∈ TSAT(¬ϕ).
Again, bydefinitionofTSAT, e(¬(ϕ)) = e(

∧
C∈TSAT(¬ϕ) C) =

1 and by the definition of the negation in classical logic, we
get that e(ϕ) = 0. �	
Corollary 5 Let e be an arbitrary evaluation. Then, the fol-
lowing holds:

1. If e(HC(TM (A))) = {1}, then

|{C ∃SC(TM (A)) : e(C) = 0}| ≥ |{ϕ ∃A : e(ϕ) = 0}|.

2. If e(HC(Tm(A))) = {1}, then

|{C ∃SC(TM (A)) : e(C) = 0}| ≤ |{ϕ ∃A : e(ϕ) = 0}|.

Proof For e satisfying HC(TM (A)), from Proposition 4 (1),
weknow(bycontraposition) that, for anyϕ ∈ ANC , if e(ϕ) =
0, then e(yϕ) = 0 too. Since the clauses in SC(TM (A))

preserve the multiplicity from A (in particular, the formulas
in AC are literally copied), it follows that |{ϕ ∃A : e(ϕ) =
0}| ≤ |{C ∃SC(TM (A)) : e(C) = 0}|.

Similarly, if e satisfies e(HC(Tm(A))), from Proposi-
tion 4, (2) we know that, for any ϕi ∈ ANC , if e(yϕi) =
0, then e(ϕ) = 0 too. As above, it is immediate that
|{C ∃SC(Tm(A)) : e(C) = 0}| ≤ |{ϕ ∃A : e(ϕ) = 0}|. �	
Theorem 6 Let A be an arbitrary finite multiset of formulas.
Then, the following holds:

1. MaxSAT(A) = MaxSAT(TM (A));
2. MinSAT(A) = MinSAT(Tm(A)).

Proof Let MaxSAT(A) = n, so n is the minimum number
of unsatisfied formulas in A. By definition, we have that

• For any evaluation e, n ≤ |{ϕ ∃A : e(ϕ) = 0}|. From
Corollary 5 (1), it follows that n ≤ |{C ∃SC(TM (A)) :
e(C) = 0}| too. Namely, n ≤ MaxSAT(TM (A)).

• There is some evaluation f , such that n = |{ϕ ∈
A : e(ϕ) = 0}|. Consider the evaluation f ′ defined by
letting f ′(x) := f (x) for each variable x appearing in A,
and f ′(yϕ) = f (ϕ) for each formula ϕ ∈ ANC . It is
immediate that |{C ∃SC(TM (A)) : f ′(C) = 0}| = n. On
the other hand, any hard clause C ∨ yϕ in HC(TM (A))

is satisfied: either f (ϕ) = 1, and so, 1 = f (C) = f ′(C)

for each C ∃TSAT(ϕ), or f (ϕ) = 0, and so, f ′(¬yϕ) = 1.
Together with the previous point, this proves that the
minimum number of unsatisfied clauses in TM (A) is n,
namely, MaxSAT(TM (A)) = n.

In a dual way, we prove the theorem for MinSAT. If
MinSAT(A) = n, we know that n is the maximum number
of unsatisfied formulas in A. This implies that

• For any evaluation e, n ≥ |{ϕ ∃A : e(ϕ) = 0}|. From
Corollary5 (2), it follows thatn ≥ |{C ∃SC(Tm(A)) : e(C) =
0}| too. Namely, n ≥ MaxSAT(Tm(A)).

• There is some evaluation f , such that n = |{ϕ ∈
A : e(ϕ) = 0}|. Let f ′ be as above, the evaluation defined
by letting f ′(x) := f (x) for each variable x appearing
in A, and f ′(yϕ) = f (ϕ) for each formula ϕ ∈ ANC .
Again, it is immediate that |{C ∃SC(Tm(A)) : f ′(C) =
0}| = n. On the other hand, it is again easy to see
that f ′ satisfies any clause C ∨ yϕ in HC(Tm(A)): if
f (ϕ) = 1, then f ′(yϕ) = 1, and otherwise, if f (ϕ) = 0,
then f (¬ϕ) = 1, and so, 1 = f (C) = f ′(C) for each
C ∈ TSAT(¬ϕ). Together with the previous point, this
proves that the maximum number of unsatisfied clauses
in Tm(A) is n, namely, MinSAT(Tm(A)) = n. �	

5 Non-exponential Translation: Tt
M and Tt

m

As we already said, the transformations proposed in the pre-
vious two sections might produce multisets of clauses whose
size is exponential in the size of the input multiset, due to
the distributivity rules in the CNF and TSAT transforma-
tions. A simple way of overcoming this question is to use
a Tseitin-style encoding of the original set of formulas [14]
and encode the new problem as a partial instance. This trans-
formation adds one fresh variable for each formula in the set
of subformulas of the original input. Henceforth, the result-
ing hard clauses of the partial instance are at most of length
3. In contrast, the number of hard clauses will be bigger than
in the previous case.

For a formula ϕ, let us denote by SFm(ϕ) the set of sub-
formulas of ϕ. Then, for each ψ ∈ SFm(ϕ), consider a new
variable yψ , and for each formula ψ , we define the set of
clauses Def (ψ) by6

6 To simplify the notation, we do not distinguish between propositional
variables and more complex formulas. Thus, a variable p will receive
a fresh variable yp in the new language, and p will no longer appear
in the translation. The definition of Def over propositional variables is
also included to lighten notation later on, and observe that this approach
does not affect the resulting number of clauses.

123

 97 Page 8 of 12 International Journal of Computational Intelligence Systems (2022) 15:97

Def (x) := ∅ for x propositional variable,

Def (ψ ∨ χ) := {¬yψ∨χ ∨ yψ ∨ yχ , yψ∨χ ∨ ¬yψ, yψ∨χ ∨ ¬yχ }
Def (ψ ∧ χ) := {¬yψ∨χ ∨ yψ,¬yψ∧χ ∨ yχ , yψ∧χ ∨ ¬yψ ∨ ¬yχ }

Def (¬ψ) := {¬y¬ψ ∨ yψ, y¬ψ ∨ ¬yψ }.

Recall that all connectives different from ∧,∨,¬ (i.e., →
and ↔) are simply wrapping some expression involving the
other three, so any formula ϕ is written in fact in the previous
language, and so, Def is correctly defined for all formulas.
It is clear that the above definitions generate clauses with at
most 3 literals each. For a formula ϕ, its Tseitin definition is
the set of clauses

T s(ϕ) :=
⋃

ψ∈SFm(ϕ)

Def (ψ).

Further, the Tseitin-SAT transformation T sSAT(ϕ) is the set
of clauses

T sSAT(ϕ) := {yϕ} ∪ T s(ϕ).

It is routine to see that, for any evaluation e and any for-
mula ϕ

e(ψ) = e(yψ) for each ψ ∈ SFm(ϕ) if and only if e(T s(ϕ)) = {1}.
(1)

Consequently, as it is well known, ϕ is in SAT if and only
if T sSAT(ϕ)) is in SAT.Naturally, also for a set of formulas A,
we have that SAT(A) if and only if SAT(T sSAT(A)), where,
as usual, by T sSAT(A), we denote the set

⋃
ϕ∈A T (ϕ).

To use the previous approach preserving MaxSAT and
MinSAT, it is only necessary to do a slightmodification to the
previous transformation, to consider multisets as inputs and
allow for the formulas at the outermost level to be unsatisfied,
and then rely on a Partial SAT instance.

Definition 3 (Transformation TTs) Let A = ANC 	 AC be
a multiset of formulas of which ANC are not clauses and AC

are clauses. We call TTs(A) to the partial instance having as
hard clauses the set

HC(TTs(A)) :=
⋃

ϕ∈ANC

T s(ϕ),

and as soft clauses the set

SC(TTs(A)) := AC 	
⊔

ϕ

∃ANC

{yϕ}.

Example 6 Given themultiset of formulas A = {x1∧x2, x1∧
x2, x3 ∧ x4}, TTs(A) derives the following partial MinSAT

instance7:

Hard clauses: {¬y1 ∨ x1, ¬y1 ∨ x2, y1 ∨ ¬x1 ∨ ¬x2,
¬y2 ∨ x3, ¬y2 ∨ x4, y2 ∨ ¬x3 ∨ ¬x4}

Soft clauses: {y1, y1, y2}.

Theorem 7 Let A = ANC 	 AC be a multiset of formulas.
Then, the following holds:

1. MaxSAT(A) = MaxSAT(TTs(A)),
2. MinSAT(A) = MinSAT(TTs(A)).

Proof It is first immediate that, as for the usual Tseitin trans-
formation, for any evaluation e, such that e(HC(TTs(A))) =
{1}, and for any ϕ ∈ ANC , we have that e(ϕ) = e(yϕ).

Observe that for each formula ϕ

∃ANC , we have one
clause (singleton) yϕ in TTs(A) (and this relation preserves
the multiplicity of ϕ in ANC). Henceforth, by definition of
MaxSAT and MinSAT (and the corresponding definitions of
these questions over partial instances), it follows that:

MaxSAT(A) ≤ MaxSAT(TTs(A)) and

MinSAT(A) ≥ MinSAT(TTs(A)).

On the other hand, assume that there is an evaluation f ,
such that |{ϕ ∃A : f (ϕ) = 0}| = n. We can easily build an
evaluation f ′, in a similar way to how we did in Theorem 6,
so |{C ∃TTs(A) : f (C) = 0}| = n. Indeed, let f ′(x) := f (x)
for all variable x appearing in the original A, and f ′(yψ) =
f (ψ) for each variable yψ in TTs(A) that did not appear in
A. It is immediate that |{C ∃SC(TM (A)) : f ′(C) = 0}| = n.
On the other hand, any hard clause C ∨ yϕ in HC(TTs(A))

is satisfied by construction, since, as we said before, Eq. 1
holds for any evaluation, and we built f ′ in such a way that
the left side of the equation is met. This concludes the proof
of the theorem. �	

In the following, T t
M (resp. T t

m) denotes that the input to
TTs is a non-clausal MaxSAT (resp. MinSAT) instance.

6 AddingWeights

It is fairly natural to incorporate weighted formulas and
clauses into the transformations presented in the previous
sections.

For what concerns Tu , the weight of each formula ϕ in the
original multiset Amust simply be preserved to all clauses in
themultiset of clausesϕ∗. FromProposition 2, it follows that,

7 For the sake of readability, we simplify the naming of the new vari-
ables with natural indexes associated to the formulas in A, i.e., y1
denotes yϕ for ϕ = x1 ∧ x2 and y2 denotes yψ for ψ = x3 ∧ x4.

123

International Journal of Computational Intelligence Systems (2022) 15:97 Page 9 of 12 97

Table 1 Comparison of the
MaxSAT transformations Tu ,
TM , and T t

M

Group size 2 3 4 5 6 7 8 9 10

Tu 0.227 0.892 1.053 2.686 4.47 18.838 17.684 119.751 126.564

TM 0.089 0.065 0.052 0.033 0.02 0.021 0.015 0.014 0.011

T t
M 0.125 0.096 0.062 0.041 0.038 0.038 0.022 0.021 0.018

Each instance has 60 variables. Solving time with RC2 in seconds

if ϕ was not satisfied by some evaluation e (and so, its weight
was added up to the cost computation), then exactly one of the
clauses in CNF(ϕ)∗ is not satisfied by e, thus adding up the
same cost to the cost of e. Furthermore, since the proposition
works in both directions, the cost of an evaluation e is also
faithfully preserved from the translated multiset of clauses
Tu(A) to the original multiset of formulas A.

Example 7 Let A be the weighted multiset of formulas
{〈¬x1 ∨ ¬x2, 3〉, 〈x1 ∧ (¬x1 ∨ x2), 4〉, 〈x1 ∧ (¬x1 ∨ x2), 7〉,
〈¬(¬x1∧¬x2)∧(x3∨x4), 2〉}.We translate A to theweighted
multiset of clauses Tu(A) as follows:

Tu(A) = {〈¬x1 ∨ ¬x2, 3〉,
〈x1, 4〉, 〈¬x1 ∨ x2, 4〉,
〈x1, 7〉, 〈¬x1 ∨ x2, 7〉,
〈x1 ∨ x2, 2〉, 〈¬x1 ∨ x3 ∨ x4, 2〉, 〈¬x2 ∨ x3 ∨ x4, 2〉}.

For transformations TM , Tm and TTs , the weight associ-
ated with each formula ϕ in the original multiset A must
simply be attached to each fresh variable yϕ added to the
set of soft clauses of the corresponding translated multiset.
Indeed, since the relation between the satisfaction of the orig-
inal formulas and the soft clauses in the resulting multisets is
one-to-one, by doing so, the weights are faithfully preserved.

Example 8 Let A be the weighted multiset of formulas
{〈¬x1 ∨ ¬x2, 3〉, 〈x1 ∧ (¬x1 ∨ x2), 4〉, 〈x1 ∧ (¬x1 ∨ x2), 7〉,
〈¬(¬x1 ∧ ¬x2) ∧ (x3 ∨ x4), 2〉}.

We translate A to the weighted partial multisets of clauses
TM and Tm by preserving the hard clauses from the non-
weighted example (5) and the set of weighted soft clauses is
defined as follows:

Soft clauses: SC(TM (A)) = SC(Tm(A))

= {〈¬x1 ∨ ¬x2, 3〉, 〈y1, 4〉, 〈y1, 7〉, 〈y2, 2〉}.

7 Experimental Investigation

This section reports on an empirical comparison of the three
MaxSAT transformations proposed in the paper: Tu , TM , and
T t
M . The experiments were run with theMaxSAT solver RC2

[27] on an Intel Core i7-5820K CPU at 3.30GHz under a
Linux system with 32GB of memory. We did not consider

Fig. 1 Comparison of the MaxSAT transformations Tu , TM and T t
M .

Each instance has 60 variables. Solving time with RC2 in seconds

MinSAT instances, because there are no robust and publicly
available MinSAT solvers.

We first generated clausal SAT instances using the ran-
dom generator [q]bfGen [37].We fixed the number of literals
per clause to 3 and the ratio of the number of clauses to
the number of variables to 5. This ratio ensures, with a
high probability, that the instances are unsatisfiable. Sec-
ond, the obtained CNF instances are converted to non-clausal
instances as follows: we partition the set of clauses into sub-
sets of size k and create formulas by creating a conjunction
of k clauses for each subset. The hardness of the instances is
adjusted by varying the group size and the number of vari-
ables.

Example 9 Assuming k = 2, the CNF instance {x1 ∨ x2 ∨
x3,¬x1 ∨ x2 ∨ x3, x1 ∨¬x2 ∨ x3,¬x1 ∨¬x2 ∨ x3, x1 ∨ x2 ∨
¬x3,¬x1 ∨ x2 ∨ ¬x3, x1 ∨ ¬x2 ∨ ¬x3,¬x1 ∨ ¬x2 ∨ ¬x3},
which contains eight clauses, is transformed into the non-
clausal instance {(x1 ∨ x2 ∨ x3) ∧ (¬x1 ∨ x2 ∨ x3), (x1 ∨
¬x2 ∨ x3) ∧ (¬x1 ∨ ¬x2 ∨ x3), (x1 ∨ x2 ∨ ¬x3) ∧ (¬x1 ∨
x2 ∨ ¬x3), (x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ ¬x2 ∨ ¬x3)}, which
contains four formulas. In this case, we say that we have a
non-clausal instance with a group size of 2.

Third, the resulting formulas are transformed into (partial)
MaxSAT instances by applying the Tu , TM and T t

M transfor-
mations.

123

 97 Page 10 of 12 International Journal of Computational Intelligence Systems (2022) 15:97

Fig. 2 Comparison of the MaxSAT transformations TM and T t
M . Each instance has 100 variables (left plot) or 150 variables (right plot). Time in

seconds

In the first experiment, we compared transformations
Tu , TM , and T t

M . We first derived the transformations and
then solved the obtained transformations with the MaxSAT
solver RC2. We considered (Partial) MaxSAT instances with
60 variables whose group size ranges from 2 to 10. For
each transformation and group size, we solved 50 instances.
Table 1 shows the experimental results. Each cell contains
the mean time, in seconds, needed to solve 50 instances with
the transformation indicated in the same row and considering
the group size indicated in the same column. Figure 1 graph-
ically displays the results. We observe the behavior of the
transformations as the group size increases, as well as that
transformation Tu is not competitive when compared with
transformations TM and T t

M . The poor performance is due to
the fact that the Tu instances have a larger number of clauses
and all the clauses are soft, whereas the TM and T t

M instances
have fewer clauses and contain both hard and soft clauses.

In the second experiment, we only compare TM and T t
M on

harder instances. We considered Partial MaxSAT instances
with 100 and 150 variables. For 100 variables, the group
size ranges from 2 to 14. For 150 variables, the group size
ranges from 50 to 200 in steps of 25. For each transforma-
tion and group size,we solved 50 instances. Such rangeswere
selected to obtain instances that could be solved in a reason-
able amount of time. For instance, the mean times for TM
and T t

M with 150 variables and a group size of 25 are 32.76 s
and 40.74 s, respectively. Figure 2 graphically displays the
results. We observe, as in Table 1, that TM significantly out-
performs T t

M . Hence, our results indicate that TM should be
the first option and T t

M should be the second option.

8 Conclusions

We have defined three transformation from non-clausal
MaxSAT to clausal MaxSAT (Tu , TM , and T t

M) and three
transformations from non-clausal MinSAT to clausal Min-
SAT (Tu , Tm , and T t

m). Moreover, we have performed an
empirical comparison of the MaxSAT transformations Tu ,
TM , and T t

M . The experimental results indicate that TM is the
best-performing option, followed by T t

M . In general, Tu is
not so competitive, because it generates larger instances and
all its clauses are soft.

The contributions of this paper are relevant, because, to our
best knowledge, we have proposed the first efficient way of
solving non-clausal MaxSAT andMinSATwith state-of-the-
art clausalMaxSAT andMinSAT solvers. As future work, we
propose to extend our results to signed CNF formulas [38]
and conduct an empirical investigation.

Acknowledgements We acknowledge administrative and technical
support by the Spanish National Research Council (CSIC).

Author Contributions All authors have contributed in the development
and revision of the whole work. The experimental results are mainly
due to J.R. Soler, and the theoretical proofs to A. Vidal.

Funding This project has received funding from the European Union’s
Horizon 2020 research and innovation programme under the Marie
Skłodowska-Curie Grant Agreement No. 101027914. This work has
been supported by the French Agence Nationale de la Recherche, ref-
erence ANR-19-CHIA-0013-01, and Grant PID2019-111544GB-C21
funded by MCIN/AEI/10.13039/501100011033. F. Manyà was sup-
ported by mobility Grant PRX21/00488 of the Spanish Ministerio de
Universidades.

123

International Journal of Computational Intelligence Systems (2022) 15:97 Page 11 of 12 97

Availability of Data andMaterials Detailed results can be obtained from
the authors on demand. The same holds for all problem instances used
in this work.

Declarations

conflict of interest The authors declare no conflict of interest. The fun-
ders had no role in the design of the study; in the collection, analyses, or
interpretation of data; in the writing of themanuscript, or in the decision
to publish the results.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Guerra, J., Lynce, I.: Reasoning over biological networks using
maximum satisfiability. In: Proceedings of the 18th International
Conference on Principles and Practice of Constraint Programming,
CP, Québec City, QC, Canada, pp. 941–956 (2012)

2. Marques-Silva, J., Argelich, J., Graça, A., Lynce, I.: Boolean lex-
icographic optimization: algorithms and applications. Ann. Mat.
Artif. Intell. 62(3–4), 317–343 (2011)

3. Safarpour, S., Mangassarian, H., Veneris, A.G., Liffiton, M.H.,
Sakallah, K.A.: Improved design debugging using maximum satis-
fiability. In: Proceedings of 7th International Conference on Formal
Methods in Computer-Aided Design, FMCAD, Austin, Texas,
USA, pp. 13–19 (2007)

4. Li, C.M., Zhu, Z.,Manyà, F., Simon, L.: Optimizingwithminimum
satisfiability. Artif. Intell. 190, 32–44 (2012)

5. Ansótegui, C., Izquierdo, I., Manyà, F., Jiménez, J.T.: A Max-
SAT-based approach to constructing optimal covering arrays. In:
Proceedings of the 16th International Conference of the Catalan
Association for Artificial Intelligence, CCIA 2013, Vic, Spain. IOS
Press, Frontiers inArtificial Intelligence andApplications, vol. 256,
pp. 51–59 (2013)

6. Ansótegui, C.,Manyà, F., Ojeda, J., Salvia, J.M., Torres, E.: Incom-
plete MaxSAT approaches for combinatorial testing. J. Heurist.
107, 2411–2502 (2022)

7. Jabbour, S., Mhadhbi, N., Raddaoui, B., Sais, L.: A SAT-based
framework for overlapping community detection in networks. In:
Proceedings of the 21st Pacific-Asia Conference on Advances in
Knowledge Discovery and Data Mining, Part II, PAKDD, Jeju,
South Korea, pp. 786–798 (2017)

8. D’Almeida, D., Grégoire, É.: Model-based diagnosis with default
information implemented through MAX-SAT technology. In: Pro-
ceedings of the IEEE 13th International Conference on Information
Reuse and Integration, IRI, Las Vegas, NV, USA, pp. 33–36 (2012)

9. Zhang, L., Bacchus, F.: MAXSAT heuristics for cost optimal plan-
ning. In: Proceedings of the 26th AAAI Conference on Artificial
Intelligence, Toronto, Ontario, Canada, pp. 1846–1852 (2012)

10. Bofill, M., Coll, J., Garcia, M., Giráldez-Cru, J., Pesant, G., Suy,
J., Villaret, M.: Constraint solving approaches to the business-to-
business meeting scheduling problem. J. Artif. Intell. Res. 74, 263–
301 (2022)

11. Manyà, F., Negrete, S., Roig, C., Soler, J.R.: A MaxSAT-based
approach to the team composition problem in a classroom. In:
Autonomous Agents and Multiagent Systems—AAMAS 2017
Workshops, Visionary Papers, São Paulo, Brazil, Revised Selected
Papers. Springer LNCS, vol. 10643, pp. 164–173 (2017)

12. Manyà, F., Negrete, S., Roig, C., Soler, J.R.: Solving the team
composition problem in a classroom. Fundam. Inf. 174(1), 83–101
(2020)

13. Plaisted, D.A., Greenbaum, S.: A structure-preserving clause form
translation. J. Symb. Comput. 2, 293–304 (1986)

14. Tseitin, G.S.: On the complexity of derivations in the propositional
calculus. In: Studies in Constructive Mathematics and Mathemati-
cal Logic, Part II. Steklov Mathematical Inst., pp. 115–125 (1968)

15. Casas-Roma, J., Huertas, A., Manyà, F.: Solving MaxSAT with
natural deduction. In: Proceedings of the 20th International Confer-
ence of theCatalanAssociation forArtificial Intelligence,Deltebre,
Spain. IOS Press, Frontiers in Artificial Intelligence and Applica-
tions, vol. 300, pp. 186–195 (2017)

16. Fiorino, G.: A non-clausal tableau calculus for MinSAT. Inf. Pro-
cess. Lett. 173, 106167 (2022)

17. Fiorino, G.: New tableau characterizations for non-clausal
MaxSAT problem. Log. J. IGPL 30(3), 422–436 (2022)

18. Li, C.M., Manyà, F., Soler, J.R.: A tableau calculus for non-clausal
maximum satisfiability. In: Proceedings of the 28th International
Conference on Automated Reasoning with Analytic Tableaux and
RelatedMethods, TABLEAUX, London, UK. Springer LNCS, vol.
11714, pp. 58–73 (2019)

19. Soler, J.R.: New solving techniques for maximum and minimum
satisfiability. Ph.D. Thesis, Universitat Autònoma de Barcelona
(UAB) (2021)

20. Li, C.M., Manyà, F., Mohamedou, N.O., Planes, J.: Resolution-
based lower bounds inMaxSAT.Constraints15(4), 456–484 (2010)

21. Li, C., Xu, Z., Coll, J., Manyà, F., Habet, D., He, K.: Combining
clause learning and branch and bound forMaxSAT. In: Proceedings
of the 27th International Conference on Principles and Practice
of Constraint Programming, CP, Montpellier, France. LIPIcs, vol.
210, pp. 38–13818 (2021)

22. Argelich, J., Li, C.M., Manyà, F., Planes, J.: The first and second
Max-SAT evaluations. J. Satisfiab. Bool. Model. Comput. 4(2–4),
251–278 (2008)

23. Bacchus, F., Berg, J., Järvisalo, M., Martins, R.: MaxSAT Eval-
uation 2020: Solver and Benchmark Descriptions. University of
Helsinki, Department of Computer Science (2020)

24. Li, C.M., Manyà, F.: MaxSAT, hard and soft constraints. In: Biere,
A., Heule, M., van Maaren, H., Walsh, T. (eds.) Handbook of Sat-
isfiability, pp. 903–927. IOS Press, New York (2021)

25. Li, C., Xu, Z., Coll, J., Manyà, F., Habet, D., He, K.: Boosting
branch-and-boundMaxSAT solvers with clause learning. AI Com-
mun. 35(2), 13–151 (2021). https://doi.org/10.3233/AIC-210178

26. Bacchus, F., Järvisalo, M., Ruben, M.: Maximum satisfiability. In:
Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.) Handbook
of Satisfiability, pp. 929–991. IOS Press, New York (2021)

27. Ignatiev, A., Morgado, A., Marques-Silva, J.: RC2: an efficient
MaxSAT solver. J. Satisfiab. Bool. Model. Comput. 11(1), 53–64
(2019)

28. Le Berre, D., Parrain, A.: The Sat4j library, release 2.2. J. Satisfiab.
Bool. Model. Comput. 7(2–3), 59–64 (2010)

29. Ansótegui, C., Gabàs, J.: WPM3: an (in)complete algorithm for
weighted partial MaxSAT. Artif. Intell. 250, 37–57 (2017)

30. Zheng, J., He, K., Zhou, J., Jin, Y., Li, C.M., Manyà, F., Band-
MaxSAT: a local search MaxSAT solver with multi-armed bandit.

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3233/AIC-210178

 97 Page 12 of 12 International Journal of Computational Intelligence Systems (2022) 15:97

In: Proceedings of the 31st International Joint Conference on Arti-
ficial Intelligence, IJCAI, Vienna, Austria, pp. 1901–1907 (2022)

31. Cai, S., Lei, Z.: Old techniques in newways: clause weighting, unit
propagation and hybridization for maximum satisfiability. Artif.
Intell. 287, 103354 (2020)

32. Abramé, A., Habet, D.: Local search algorithm for the partial min-
imum satisfiability problem. In: Proceedings of the 27th IEEE
International Conference on Tools with Artificial Intelligence,
ICTAI, Vietri Sul Mare, Italy, pp. 821–827 (2015)

33. Ansótegui, C., Li, C.M.,Manyà, F., Zhu, Z.: A SAT-based approach
to MinSAT. In: Proceedings of the 15th International Conference
of the Catalan Association for Artificial Intelligence, CCIA-2012,
Alacant, Spain, pp. 185–189 (2012)

34. Li, C.M., Zhu, Z., Manyà, F., Simon, L.: Minimum satisfiability
and its applications. In: Proceedings of the 22nd International Joint
Conference on Artificial Intelligence, IJCAI, Barcelona, Spain, pp.
605–610 (2011)

35. Li, C.M., Manyà, F., Soler, J.R.: Clausal form transformation in
MaxSAT. In: Proceedings of the 49th IEEE International Sympo-
sium on Multiple-Valued Logic, ISMVL, Fredericton, Canada, pp.
132–137 (2019)

36. Li, C.M., Manyà, F., Soler, J.R., Vidal, A.: From non-clausal to
clausal MinSAT. In: Proceedings of the 23rd International Confer-
ence of the Catalan Association for Artificial Intelligence, CCIA,
Lleida, Spain, pp. 27–36 (2021)

37. Creignou,N., Egly,U., Seidl,M.:A framework for the specification
of random SAT and QSAT formulas. In: Proceedings of the 6th
International Conference on Tests and Proofs, TAP, Prague, Czech
Republic. Springer LNCS, vol. 7305, pp. 163–168 (2012)

38. Beckert, B., Hähnle, R., Manyà, F.: The SAT problem of signed
CNF formulas. In: Basin, D., D’Agostino, M., Gabbay, D.,
Matthews, S., Viganò, L. (eds.) Labelled Deduction. Kluwer,
Applied Logic Series, vol. 17, pp. 61–82 (2000)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

	Clausal Forms in MaxSAT and MinSAT
	Abstract
	1 Introduction
	2 Preliminaries
	3 A Uniform Transformation Preserving the Variables Space: Tu
	4 More Compact Transformations: TM and Tm
	5 Non-exponential Translation: TMt and Tmt
	6 Adding Weights
	7 Experimental Investigation
	8 Conclusions
	Acknowledgements
	References

