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Abstract
Picture fuzzy set (PFS) can intuitively express the answers of ‘‘yes’’, ‘‘neutral’’, ‘‘no’’ and ‘‘reject’’, which have strong

advantages in solving uncertain information. The similarity measure is an effective tool to determine the relationship

between two picture fuzzy sets (PFSs). In this paper, we propose a hybrid picture fuzzy (PF) similarity measure which

combines the Hamming distance and the transformed tetrahedral centroid distance and verifies that it satisfies the four

properties of the similarity measure. The proposed and existing picture fuzzy similarity measures are compared and

investigated through numerical examples and some applications of pattern recognition. The results show that the proposed

similarity measure not only produces no unreasonable results, but also overcomes the shortcomings of the existing

similarity measures. Furthermore, we investigate an improved VIKOR method based on the proposed similarity measure of

PFS. Finally, through an example, several multi-attribute decision-making (MADM) methods are compared and analyzed

to illustrate the effectiveness and practicability of the improved VIKOR method.
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Abbreviations
FS Fuzzy set

IFS Intuitionistic fuzzy set

PF Picture fuzzy

PFS Picture fuzzy set

PFSs Picture fuzzy sets

MADM Multi-attribute decision-making

PFWG Picture fuzzy weighted geometric

PFNP Picture fuzzy normalized projection

1 Introduction

Zadeh [1] introduced the concept of fuzzy set (FS) in 1965,

a fuzzy set is mainly understood and represented by

membership degree function. The emergence of fuzzy sets

can handle the uncertain information that occurs in the real

world. Fuzzy integrodifferential equations theory has been

studied to adapt to model various phenomena under

uncertainty, thereby solving more complex engineering and

applied science problems [2–5]. Scholars have promoted

and developed fuzzy set theory, among which the intu-

itionistic fuzzy set (IFS) proposed by Atanassov [6] in 1986

is an effective extension of fuzzy set theory. Intuitionistic

fuzzy sets are composed of membership and non-mem-

bership degree functions and can overcome some disad-

vantages of fuzzy sets. Because of the effectiveness and

superiority of intuitionistic fuzzy sets, they have been

broadly used in cluster analysis [7–11], pattern recognition

[12–14], group decision-making [11, 15, 16] and other

fields. Although intuitionistic fuzzy sets have greater

advantages than fuzzy sets in expressing uncertain infor-

mation, there are still some situations that cannot be

described by intuitionistic fuzzy sets in real life, such as

human voting, medical diagnosis and other issues. In the

voting model, there are four results when voters vote for
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candidates: ‘‘vote for’’, ‘‘abstain’’, ‘‘vote against’’ and

‘‘refuse to vote’’. Among medically diagnosed problems:

symptoms of cough and headache may have little effect on

chest and stomach illnesses. Likewise, symptoms of chest

and stomach pain may have a neutral effect on disorders of

the head and lungs. The neutral attitude of voter abstention,

and the neutral influence of some symptoms on specific

diseases, so we can see that the degree of neutrality plays a

significant role in the decision making process, which

cannot be solved by intuitionistic fuzzy sets. To address

this type of problem, Cuong and Kreinovich [17] proposed

a new generalization of fuzzy sets and intuitionistic fuzzy

sets in 2013, called picture fuzzy sets. The picture fuzzy set

consists of three functions: membership degree function,

neutral degree function and non-membership degree func-

tion. In [17, 18], Coung and Kreinovich gave some basic

operations and relations of picture fuzzy sets.

When using picture fuzzy sets to solve practical prob-

lems such as pattern recognition, cluster analysis, infor-

mation retrieval, image processing, medical diagnosis, and

decision-making, it is necessary to measure the connection

and difference between two picture fuzzy sets. Similarity

measures and distance measures are effective tools to

determine the degree of connection and difference between

two sets or objects. Cuong [17] first gave the Hamming

distance and Euclidean distance of picture fuzzy sets in

2013. Wei [19] proposed eight kinds of picture fuzzy

similarity measures based on cosine function, and proved

the effectiveness and practicability of the proposed simi-

larity measures by applying it to an example of selecting

the optimal production. Similarity measures of cosine,

weighted cosine, set theory, weighted set theory, gray and

weighted gray were proposed by Wei [20] in the picture

fuzzy environment, and were effectively applied to build-

ing material identification and mineral field identification.

Wei and Gao [21] proposed picture fuzzy generalized Dice

similarity measure, and proved the effectiveness of the

picture fuzzy generalized Dice similarity measure in the

application of pattern recognition through the selection of

building materials. In [22], Singh et al. gave a geometric

interpretation of picture fuzzy sets and proposed several

distance and similarity measures for picture fuzzy sets,

which were applied in flood disaster risk analysis. The

picture fuzzy similarity measure composed of three func-

tions was proposed by Luo et al. [23] and applied to

medical diagnosis. Ganie and Singh [24] studied a picture

fuzzy similarity measure based on the upper and lower

bounds of membership degree, non-membership degree,

neutral degree and rejection degree, and proposed a new

method of picture fuzzy inferior ratio, which was applied in

multi-attribute decision-making. Singh and Ganie [25] also

continued to study some similarity measures that can dis-

tinguish highly similar picture fuzzy sets, and developed a

maximum spanning tree clustering method for picture

fuzzy. Bi-parametric picture fuzzy similarity and distance

measures based on the tetrahedral centroid were proposed

by Khan [26] and applied to medical diagnosis and pattern

recognition. There are also many studies and applications

on the similarity and distance measures of picture fuzzy

sets in the literature [27–33].

It is of great significance to deal with multi-attribute

decision making problems with picture fuzzy sets as the

background. Wang [34] et al. applied the developed picture

fuzzy geometric operator to multi-attribute decision mak-

ing problems, and verified the practicability of the method

through an example. In [35], the authors build a projection

model to measure the similarity of each scheme to the ideal

point of picture fuzzy set, rank the given options according

to the projection model, and then select the most ideal

option. Due to the advantages of VIKOR method proposed

by Opricovic [36], scholars are attracted to study and apply

it to decision-making problems. Wang and Zhang et al.

[37] proposed the picture fuzzy normalized projection

(PFNP) model, which overcomes the limitations of [35],

and combined the PFNP model with the VIKOR method to

construct a picture fuzzy normalization based Projected

VIKOR method, applied to multiple attribute decision

problems. Yue [38] applied the proposed picture fuzzy

normalization projection and extended VIKOR method to

software reliability evaluation. Tian et al. [33] proposed a

corresponding WET-PPP project sustainability evaluation

method based on the picture fuzzy similarity VIKOR

method. In [39], the PFNs algorithm operator is used, and

the VIKOR method is applied to evaluate citizens’ satis-

faction with municipal services.

Ganie and Singh [24] studied the existing PF similarity

measure [19–22] and found that there was a counterintu-

itive situation. First of all, in the process of research and

learning, we found that some PF similarity measures pro-

posed in the past two years [23–26] [33] cannot distinguish

the similarity degree between different PFSs in some cases.

And when dealing with pattern recognition problems, the

problem of classification failure often occurs. Second,

Khan et al. [26] transformed PFS into a tetrahedron model

and constructed a bi-parametric similarity measure of PFS

based on the distance between the centroids of two tetra-

hedrons. However, the similarity measure formula given at

the end changes the sign in two directions, then there are

two directions that are not the distance between the cen-

troids. To overcome the above existing problems, we

propose a PF similarity measure that mixes Hamming

distance and transformed tetrahedral centroid distance.

When we carefully study the extended VIKOR method

based on picture fuzzy similarity by Tian et al. [33] their

method only considers group utility and individual regret

that are close to the positive ideal, and obtains VIKOR
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values that are only close to the positive ideal. Therefore,

based on the proposed picture fuzzy similarity measure and

the extended VIKOR method, we investigate an improved

VIKOR method that considers VIKOR values close to the

positive ideal and negative ideal. Finally, TOPSIS method

is used to calculate the relative closeness coefficient of

candidate schemes and sort them.

The main contributions of this paper are as follows:

1. We propose a hybrid picture fuzzy similarity measure

which combines the Hamming distance and the trans-

formed tetrahedral centroid distance, and verifies that it

satisfies the four properties of similarity measure.

2. Numerical examples illustrate the rationality of the

proposed picture fuzzy similarity measure, overcoming

the counter-intuitive situation of existing picture fuzzy

similarity measures.

3. The superiority of the new picture fuzzy similarity

measure is further verified by pattern recognition.

4. Research an improved VIKOR method based on the

proposed picture fuzzy similarity measure, and illus-

trate its practicability and effectiveness through com-

parative analysis of examples.

The remainder of this article is structured as follows: in the

second part, we review some basic concepts and properties

of picture fuzzy sets, give some existing picture fuzzy

similarity measures. In the third part, we propose and

verify a new picture similarity measure and a weighted

picture fuzzy similarity measure. In the fourth part, we

apply the proposed and existing PF similarity measure to

some instances and pattern recognition, compare the results

and illustrate the advantages of the proposed similarity

measure. In the fifth part, the algorithm steps of the

improved VIKOR method are given and applied to the

examples in the literature [34] for comparative analysis. In

the sixth part, it summarizes the full text and looks forward

to the future.

2 Preliminaries

In this section, we will briefly give the basic definition,

operation of picture fuzzy set and some important PF

similarity measures.

2.1 Basic Definitions

Definition 1 [17] Let X ¼ x1; x2; . . .; xnf g be a universe of

discourse, a PFS B in X is defined as

B ¼ xk;mB xkð Þ; gB xkð Þ; vB xkð Þh i xk 2 Xjf g, where mB xkð Þ,
gB xkð Þ and vB xkð Þ represents the membership degree,

neutral degree and non-membership degree, respectively,

of the element xk 2 X in the set B such that

0�mB xkð Þ þ gB xkð Þ þ vB xkð Þ� 1.The refusal degree of

element xk belonging to the PFS B is denoted by

qB xkð Þ ¼ 1 � mB xkð Þ � gB xkð Þ � vB xkð Þ. For the sake of

simplicity, the triad mB xkð Þ; gB xkð Þ; vB xkð Þð Þ represents

picture fuzzy value.

Definition 2 [18] For any two PFSs B and C in X, the

operations of complement, equality, inclusion, union, and

intersection are defined as:

(1) Bð ÞC ¼ xk; vB xkð Þ; gB xkð Þ;mB xkð Þh i xkjf
2 X; k ¼ 1; 2; . . .; n:g

(2) B ¼ C if and only if, mB xkð Þ ¼ mC xkð Þ; gB xkð Þ ¼
gC xkð Þ; vB xkð Þ ¼ vC xkð Þ; 8xk 2 X:

(3) B � C if and only if, mB xkð Þ�mC xkð Þ;
gB xkð Þ� gC xkð Þ; vB xkð Þ � vC xkð Þ; 8xk 2 X:

(4) B [ C ¼ fhxk;maxðmBðxkÞ;mCðxkÞÞ;minðgBðxkÞ;
gCðxkÞÞ;minðvBðxkÞ; vCðxkÞÞijxk 2 Xg:

(5) B \ C ¼ fhxk;minðmBðxkÞ;mCðxkÞÞ;minðgBðxkÞ;
gCðxkÞÞ;maxðvBðxkÞ; vCðxkÞÞijxk 2 Xg:

Definition 3 [20] Let B, C and D be PFSs defined on the

universe of discourse X. A function S B;Cð Þ is called a PF

similarity measure if it satisfies:

(1) 0� S B;Cð Þ� 1;

(2) S B;Cð Þ ¼ S C;Bð Þ;
(3) S B;Cð Þ ¼ 1, if and only if B ¼ C;

(4) If B � C � D, then S B;Dð Þ� S B;Cð Þ and

S B;Dð Þ� S C;Dð Þ.

2.2 The Existing PF Similarity Measures

Next, we write the existing PF similarity measure in

[19–26] [33]. Some of the shortcomings and limitations of

these PF similarity measures will be illustrated by com-

parative analysis in Sect 4.

PF similarity measures SW1; SW2; SW3; SW4 [19]:

SW1 B;Cð Þ ¼ 1

n

Xn

k¼1

cos
p
2

����mB xkð Þ � mC xkð Þj _ gB xkð Þ � gC xkð Þj j
��

_ vB xkð Þ � vC xkð Þj jÞ
�
;

ð1Þ
SW2 B;Cð Þ

¼ 1

n

Xn

k¼1

cos
p
2

mB xkð Þ � mC xkð Þj j _ gB xkð Þ � gC xkð Þj j
_ vB xkð Þ � vC xkð Þj j _ qB xkð Þ � qC xkð Þj j

� �� �
;

ð2Þ
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SW3 B;Cð Þ

¼ 1

n

Xn

k¼1

cos
p
4

mB xkð Þ � mC xkð Þj j þ gB xkð Þ � gC xkð Þj j
þ vB xkð Þ � vC xkð Þj j þ qB xkð Þ � qC xkð Þj j

� �� �
;

ð3Þ
SW4 B;Cð Þ

¼ 1

n

Xn

k¼1

cot
p
4
þ p

4

mB xkð Þ � mC xkð Þj j _ gB xkð Þ � gC xkð Þj j
_ vB xkð Þ � vC xkð Þj j _ qB xkð Þ � qC xkð Þj j

� �� �
:

ð4Þ

PF similarity measures SW5 [20]:

PF similarity measures SWG1; SWG2 [21]:

PF similarity measures SSMK1; SSMK2; SSMK3 [22]:

SSMK1 B;Cð Þ

¼ 1 � 1

4n

Xn

k¼1

mB xkð Þ � mC xkð Þj j þ gB xkð Þ � gC xkð Þj j
þ vB xkð Þ � vC xkð Þj j þ qB xkð Þ � qC xkð Þj j

� �
;

ð8Þ

SSMK2 B;Cð Þ

¼ 1 � 1

4n

Xn

k¼1

max
mB xkð Þ � mC xkð Þj j; gB xkð Þ � gC xkð Þj j;
vB xkð Þ � vC xkð Þj j; qB xkð Þ � qC xkð Þj j

� �
;

ð9Þ

PF similarity measures SGS2; SGS3; SGS4; SGS5 [25]:

SGS2 B;Cð Þ

¼ 1

n

Xn

k¼1

2 1� mB xkð Þ�mC xkð Þj j_ gB xkð Þ�gC xkð Þj j_ vB xkð Þ�vC xkð Þj jð Þ½ � � 1
n o

;

ð12Þ

SGS3 B;Cð Þ

¼ 1

n

Xn

k¼1

2 1�1
2

mB xkð Þ�mC xkð Þj jþ gB xkð Þ�gC xkð Þj jþ vB xkð Þ�vC xkð Þj jð Þ½ � � 1
n o

;

ð13Þ

SW5ðB;CÞ ¼
1

n

Xn

k¼1

mB xkð ÞmC xkð Þ þ gB xkð ÞgC xkð Þ þ vB xkð ÞvC xkð Þ
max mB xkð Þð Þ2þ gB xkð Þð Þ2þ vB xkð Þð Þ2; mC xkð Þð Þ2þ gC xkð Þð Þ2þ vC xkð Þð Þ2

� � : ð5Þ

SWG1ðB;CÞ ¼
1

n

Xn

k¼1

2 mB xkð ÞmC xkð Þ þ gB xkð ÞgC xkð Þ þ vB xkð ÞvC xkð Þð Þ
mB xkð Þð Þ2þ gB xkð Þð Þ2þ vB xkð Þð Þ2

� �
þ mC xkð Þð Þ2þ gC xkð Þð Þ2þ vC xkð Þð Þ2
� � ; ð6Þ

SWG2ðB;CÞ ¼
1

n

Xn

k¼1

2 mB xkð ÞmC xkð Þ þ gB xkð ÞgC xkð Þ þ vB xkð ÞvC xkð Þ þ qB xkð ÞqC xkð Þð Þ
m2

B xkð Þ þ g2
B xkð Þ þ v2

B xkð Þ þ q2
B xkð Þð Þ þ m2

C xkð Þ þ g2
C xkð Þ þ v2

C xkð Þ þ q2
C xkð Þ

	 
 : ð7Þ

SSMK3 B;Cð Þ ¼ 1

4n

Xn

k¼1

min mB xkð Þ � mC xkð Þj j; gB xkð Þ � gC xkð Þj j; vB xkð Þ � vC xkð Þj j; qB xkð Þ � qC xkð Þj jð Þ
max mB xkð Þ � mC xkð Þj j; gB xkð Þ � gC xkð Þj j; vB xkð Þ � vC xkð Þj j; qB xkð Þ � qC xkð Þj jð Þ : ð10Þ

PF similarity measure SGS1 [24]:

SGS1 B;Cð Þ � 1

4n

Xn

k¼1j

3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mB xkð ÞmC xkð Þ

p
þ 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nB xkð ÞnC xkð Þ

p

þ 3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vB xkð ÞvC xkð Þ

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qB xkð ÞqC xkð Þ

p

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � mB xkð Þ � gB xkð Þð Þ � 1 � mC xkð Þ � gC xkð Þð Þ

p

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � mB xkð Þ � vB xkð Þð Þ � 1 � mC xkð Þ � vC xkð Þð Þ

p

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � vB xkð Þ � gB xkð Þð Þ � 1 � vC xkð Þ � gC xkð Þð Þ

p

2
66666666664

3
77777777775

ð11Þ
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SGS4 B;Cð Þ

¼ 1

n

Xn

k¼1

2 1� mB xkð Þ�mC xkð Þj j_ gB xkð Þ�gC xkð Þj j_ vB xkð Þ�vC xkð Þj j_ qB xkð Þ�qC xkð Þj jð Þ½ � � 1
n o

;

ð14Þ
SGS5 B;Cð Þ

¼ 1

n

Xn

k¼1

2 1�1
2

mB xkð Þ�mC xkð Þj jþ gB xkð Þ�gC xkð Þj jþ vB xkð Þ�vC xkð Þj jþ qB xkð Þ�qC xkð Þj jð Þ½ ��1
n o

:

ð15Þ

PF similarity measure SLZ [23]:

Where t ¼ 2; 3; 4; � � � and p ¼ 1; 2; 3; � � �.

3 A Hybrid Similarity Measures for PFSs

3.1 Background

Let B and C be two PFSs in universe of discourse X, where

B ¼ xk;mB xkð Þ; gB xkð Þ; vB xkð Þh if g and C ¼ xk;mC xkð Þ;hf
gC xkð Þ; vC xkð Þig.

Due to 0�mB xkð Þ þ gB xkð Þ þ vB xkð Þ� 1 and

qB xkð Þ ¼ 1 � mB xkð Þ � gB xkð Þ � vB xkð Þ, the membership

degree mB xkð Þ can be taken up to mB xkð Þ þ qB xkð Þ. In the

same way, the neutral degree gB xkð Þ can be taken up to

gB xkð Þ þ qB xkð Þ, the non-membership degree vB xkð Þ can be

taken up to vB xkð Þ þ qB xkð Þ. We establish a spatial Carte-

sian coordinate system with membership, neutrality and

non-membership as three directions. Take points

B1ðmBðxkÞ; gBðxkÞ; vBðxkÞÞ, B2ðmBðxkÞ þ qBðxkÞ; gBðxkÞ;
vBðxkÞÞ, B3ðmBðxkÞ; gBðxkÞ þ qBðxkÞ; vBðxkÞÞ, B4ðmBðxkÞ;
gBðxkÞ; vBðxkÞ þ qBðxkÞÞ, and the tetrahedron obtained by

connecting the four points is all the value ranges of PFS B.

Since the centroid of the tetrahedron has the largest amount

of information, the centroid of the tetrahedron is taken as

mB xkð Þ þ qB xkð Þ
4

;
�

gB xkð Þ þ qB xkð Þ
4

; vB xkð Þ þ qB xkð Þ
4

�
. Since

qB xkð Þ ¼ 1 � mB xkð Þ � gB xkð Þ � vB xkð Þ, therefore, the

centroid can be expressed as
1þ3mB xkð Þ�gB xkð Þ�vB xkð Þ

4
;

�

1þ3gB xkð Þ�mB xkð Þ�vB xkð Þ
4

; 1þ3vB xkð Þ�mB xkð Þ�gB xkð Þ
4

Þ. Similarly, the

tetrahedral centroid formed by the membership degree,

neutral degree and non-membership degree of PFSs C is

expressed as
1þ3mC xkð Þ�gC xkð Þ�vC xkð Þ

4
;

�
1þ3gC xkð Þ�mC xkð Þ�vC xkð Þ

4
;

1þ3vC xkð Þ�mC xkð Þ�gC xkð Þ
4

Þ.
The distance between the two centroids in the mem-

bership degree direction is
1þ3mB xkð Þ�gB xkð Þ�vB xkð Þ

4

���

� 1þ3mC xkð Þ�gC xkð Þ�vC xkð Þ
4

j ¼ 3 mB xkð Þ�mC xkð Þð Þ
���

� gB xkð Þ � gC xkð Þð Þ � vB xkð Þ � vC xkð Þð Þj4. The distance

between the two centroids in the neutral degree direction is
1þ3gB xkð Þ�mB xkð Þ�vB xkð Þ

4

��� � 1þ3gC xkð Þ�mC xkð Þ�vC xkð Þ
4

j ¼
3 gB xkð Þ�gC xkð Þð Þ� mB xkð Þ�mC xkð Þð Þ
��� � vB xkð Þ � vC xkð Þð Þj4. The

distance between the two centroids in the non-membership

SLZ B;Cð Þ ¼ 1

3n

Xn

k¼1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mB xkð ÞmC xkð Þ

p
þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gB xkð ÞgC xkð Þ

p
þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vB xkð ÞvC xkð Þ

p

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � mB xkð Þ � gB xkð Þð Þ � 1 � mC xkð Þ � gC xkð Þð Þ

p

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � mB xkð Þ � vB xkð Þð Þ � 1 � mC xkð Þ � vC xkð Þð Þ

p

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � vB xkð Þ � gB xkð Þð Þ � 1 � vC xkð Þ � gC xkð Þð Þ

p

2

6664

3

7775: ð16Þ

PF similarity measure SKK [26]:

SKK B;Cð Þ ¼ 1 � 1

3n t þ 1ð Þp
Xn

k¼1

t mB xkð Þ � mC xkð Þð Þ � gB xkð Þ � gC xkð Þð Þ � vB xkð Þ � vC xkð Þð Þj jp
þ t gB xkð Þ � gC xkð Þð Þ � mB xkð Þ � mC xkð Þð Þ þ vB xkð Þ � vC xkð Þð Þj jp
þ t vB xkð Þ � vC xkð Þð Þ � mB xkð Þ � mC xkð Þð Þ þ gB xkð Þ � gC xkð Þð Þj jp

0
@

1
A

2
4

3
5

1
p

; ð17Þ

Where t ¼ 3; 4; � � � and p ¼ 1; 2; 3; � � �.
PF similarity measure STP [33]:

STP B;Cð Þ ¼ 1 � 1

6n t þ 1ð Þp
Xn

k¼1

t mB xkð Þ � mC xkð Þð Þ � vB xkð Þ � vC xkð Þð Þj jp
þ t vB xkð Þ � vC xkð Þð Þ � mB xkð Þ � mC xkð Þð Þj jp
þ t mB xkð Þ � mC xkð Þð Þ � gB xkð Þ � gC xkð Þð Þj jp
þ t gB xkð Þ � gC xkð Þð Þ � mB xkð Þ � mC xkð Þð Þj jp
þ t gB xkð Þ � gC xkð Þð Þ � vB xkð Þ � vC xkð Þð Þj jp
þ t vB xkð Þ � vC xkð Þð Þ � gB xkð Þ � gC xkð Þð Þj jp

0

BBBBBB@

1

CCCCCCA

2

6666664

3

7777775

1
p

; ð18Þ
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degree direction is
1þ3vB xkð Þ�mB xkð Þ�gB xkð Þ

4

���

� 1þ3vC xkð Þ�mC xkð Þ�gC xkð Þ
4

j ¼ 3 vB xkð Þ � vC xkð Þð Þ � mB xkð Þ�
����

mC xkð ÞÞ � gB xkð Þ � gC xkð Þð Þj4.

Khan et al. [26] constructed a similarity measure SKK for

PFSs based on the distance between the two tetrahedral

centroid. However, the similarity measure formula (17)

given at the end changes the sign in the direction of neutral

and non-membership degree, then these two directions are

not the distance between the centroids.

When Ganie and Singh [24] studied PF similarity

measure based on Hamming distance [22], they found

some unreasonable results in calculating different similar-

ity measure. In addition, the application in the pattern

recognition problem will have unclassifiable results. Due to

the shortcomings of the PF similarity measure based on the

tetrahedral centroid distance proposed by Khan et al and

the Hamming distance proposed by Singh et al, we next

consider a hybrid PF similarity measure which combines

the Hamming distance and the transformed tetrahedral

centroid distance.

3.2 PF Similarity Measure Combines
the Hamming Distance and the Transformed
Tetrahedral Centroid Distance

In this section, we define a new PF similarity measure and

verify that definition 3 is satisfied.

Let B and C be two PFSs in universe of discourse X,

where B ¼ xk;mB xkð Þ; gB xkð Þ; vB xkð Þh if g and

C ¼ xk;mC xkð Þ; gC xkð Þ; vC xkð Þh if g. We introduce a hybrid

PF similarity measure which combines the Hamming dis-

tance and the transformed tetrahedral centroid distance

between the PFSs B and C as

Where
3 vB xkð Þ�vC xkð Þð Þ� mB xkð Þ�mC xkð Þð Þ� gB xkð Þ�gC xkð Þð Þj j

4
denotes

the distance of the two centroids in the non-membership

degree direction. Where
mB xkð Þ�mC xkð Þj jþ gB xkð Þ�gC xkð Þj jþ vB xkð Þ�vC xkð Þj j

2
denotes the Ham-

ming distance base on membership degree, neutral degree

and non-membership degree. Where
qB xkð ÞþqC xkð Þ

2
and

1 � qB xkð ÞþqC xkð Þ
2

� �
denotes the geometric mean of rejection

degree as the weight.

Theorem 1 SL B;Cð Þ is a PF similarity measure between

the two PFSs B and C, due to satisfying the four properties

of definition 3.

Proof (1) 0� SL B;Cð Þ� 1

We can write the following equations:

3 vB xkð Þ � vC xkð Þð Þ � mB xkð Þ � mC xkð Þð Þ � gB xkð Þ � gC xkð Þð Þj j
¼ 3vB xkð Þ � mB xkð Þ � gB xkð Þð Þ � 3vC xkð Þ � mC xkð Þ � gC xkð Þð Þj j:

Since from the definition 1 of PFS, we have

0�mB xkð Þ� 1; 0� gB xkð Þ� 1; 0� vB xkð Þ � 1; 0�
mC xkð Þ � 1; 0� gC xkð Þ� 1; 0� vC xkð Þ� 1, 0�mB xkð Þ þ
gB xkð Þ þ vB xkð Þ� 1; 0�mC xkð Þ þ gC xkð Þ þ vC xkð Þ� 1.

Therefore, we have the following inequalities:

�1� 3vB xkð Þ � mB xkð Þ � gB xkð Þ
� 3;�3� � 3vC xkð Þ � mC xkð Þ � gC xkð Þð Þ� 1;

0� mB xkð Þ � mC xkð Þj j þ gB xkð Þ � gC xkð Þj j þ vB xkð Þj
�vC xkð Þj � 2,

then we have

�4� 3vB xkð Þ � mB xkð Þ � gB xkð Þð Þ � 3vC xkð Þ � mC xkð Þð
�gC xkð ÞÞ� 4.

So, we have the following inequalities:

0� mB xkð Þ�mC xkð Þj jþ gB xkð Þ�gC xkð Þj jþ vB xkð Þ�vC xkð Þj j
2

� 1;

0� 3 vB xkð Þ�vC xkð Þð Þ� mB xkð Þ�mC xkð Þð Þ� gB xkð Þ�gC xkð Þð Þj j
4

� 1.

Due to qB xkð Þ ¼ 1 � mB xkð Þ � gB xkð Þ � vB xkð Þ and

qC xkð Þ ¼ 1 � mC xkð Þ � gC xkð Þ � vC xkð Þ, we obtain

0� qB xkð ÞþqC xkð Þ
2

� 1, furthermore, we have:

0� mB xkð Þ�mC xkð Þj jþ gB xkð Þ�gC xkð Þj jþ vB xkð Þ�vC xkð Þj j
2

�
1 � qB xkð ÞþqC xkð Þ

2

� �
� 1 � qB xkð ÞþqC xkð Þ

2
;

0� 3 vB xkð Þ�vC xkð Þð Þ� mB xkð Þ�mC xkð Þð Þ� gB xkð Þ�gC xkð Þð Þj j
4

�
qB xkð ÞþqC xkð Þ

2
� qB xkð ÞþqC xkð Þ

2
.

It means that

SLðB;CÞ ¼ 1 � 1

n

Xn

k¼1

mB xkð Þ � mC xkð Þj j + gB xkð Þ � gC xkð Þj j þ vB xkð Þ � vC xkð Þj j
2

� 1 � qB xkð Þ þ qC xkð Þ
2

� �

þ 3 vB xkð Þ � vC xkð Þð Þ � mB xkð Þ � mC xkð Þð Þ � gB xkð Þ � gC xkð Þð Þj j
4

� qB xkð Þ þ qC xkð Þ
2

2
664

3
775: ð19Þ
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0� mB xkð Þ � mC xkð Þj j þ gB xkð Þ � gC xkð Þj j þ vB xkð Þ � vC xkð Þj j
2

� 1 � qB xkð Þ þ qC xkð Þ
2

� �
þ

3 vB xkð Þ � vC xkð Þð Þ � mB xkð Þ � mC xkð Þð Þ � gB xkð Þ � gC xkð Þð Þj j
4

� qB xkð Þ þ qC xkð Þ
2

� 1:

Then we have the following inequality:

Finally, 0� SL B;Cð Þ� 1.

(2) SL B;Cð Þ ¼ SL C;Bð Þ

¼ SL B;Cð Þ.
(3) SL B;Cð Þ ¼ 1, if and only if B ¼ C.

‘‘ )’’ If SL B;Cð Þ ¼ 1, according to formula (19), we

have:
mB xkð Þ�mC xkð Þj jþ gB xkð Þ�gC xkð Þj jþ vB xkð Þ�vC xkð Þj j

2
� 1 � qB xkð Þ

�

þqC xkð Þ2Þ ¼ 0 and
3 vB xkð Þ�vC xkð Þð Þ� mB xkð Þ�mC xkð Þð Þ
��� � gB xkð Þð

�gC xkð ÞÞj4 � qB xkð ÞþqC xkð Þ
2

¼ 0.

If
mB xkð Þ�mC xkð Þj jþ gB xkð Þ�gC xkð Þj jþ vB xkð Þ�vC xkð Þj j

2
�

1 � qB xkð ÞþqC xkð Þ
2

� �
¼ 0, then we can get mB xkð Þ ¼

mC xkð Þ; gB xkð Þ ¼ gC xkð Þ; vB xkð Þ ¼ vC xkð Þ mean B ¼ C or
qB xkð ÞþqC xkð Þ

2
¼ 1.

If
3 vB xkð Þ�vC xkð Þð Þ� mB xkð Þ�mC xkð Þð Þ� gB xkð Þ�gC xkð Þð Þj j

4

� qB xkð ÞþqC xkð Þ
2

¼ 0, then we can get 3vB xkð Þ � mB xkð Þ �

gB xkð Þ ¼ 3vC xkð Þ � mC xkð Þ � gC xkð Þ or
qB xkð ÞþqC xkð Þ

2
¼ 0.

Because
qB xkð ÞþqC xkð Þ

2
¼ 1 and

qB xkð ÞþqC xkð Þ
2

¼ 0 are disjoint

events, we talk about the following one case: If 3vB xkð Þ �
mB xkð Þ � gB xkð Þ ¼ 3vC xkð Þ � mC xkð Þ � gC xkð Þ and
qB xkð ÞþqC xkð Þ

2
¼ 1, then we can get qB xkð Þ ¼ qC xkð Þ ¼ 1, it

means that vB xkð Þ ¼ mB xkð Þ ¼ gB xkð Þ ¼ vC xkð Þ ¼ mC xkð Þ
¼ gC xkð Þ ¼ 0. Therefore, we have B ¼ C.

Accordingly, we have proved that if SL B;Cð Þ ¼ 1 then

B ¼ C.

‘‘ (’’ If B ¼ C, according to definition 2, we have:

mB xkð Þ ¼ mC xkð Þ; gB xkð Þ ¼ gC xkð Þ; vB xkð Þ
¼ vC xkð Þ; qB xkð Þ ¼ qC xkð Þ. According to formula (19), we

have SL B;Cð Þ ¼ 1.

(4) If B � C � D, then SL B;Cð Þ� SL B;Dð Þ and

SL C;Dð Þ� SL B;Dð Þ.
According to formula (19), we know that:

0� 1

n

Xn

k¼1

mB xkð Þ � mC xkð Þj j þ gB xkð Þ � gC xkð Þj j þ vB xkð Þ � vC xkð Þj j
2

� 1 � qB xkð Þ þ qC xkð Þ
2

� �

þ 3 vB xkð Þ � vC xkð Þð Þ � mB xkð Þ � mC xkð Þð Þ � gB xkð Þ � gC xkð Þð Þj j
4

� qB xkð Þ þ qC xkð Þ
2

2
664

3
775� 1

SL C;Bð Þ ¼ 1 � 1

n

Xn

k¼1

mC xkð Þ � mB xkð Þj j þ gC xkð Þ � gB xkð Þj j þ vC xkð Þ � vB xkð Þj j
2

� 1 � qC xkð Þ þ qB xkð Þ
2

� �

þ 3 vC xkð Þ � vB xkð Þð Þ � mC xkð Þ � mB xkð Þð Þ � gC xkð Þ � gB xkð Þð Þj j
4

� qC xkð Þ þ qB xkð Þ
2

2

664

3

775

¼ 1 � 1

n

Xn

k¼1

mB xkð Þ � mC xkð Þj j þ gB xkð Þ � gC xkð Þj j þ vB xkð Þ � vC xkð Þj j
2

� 1 � qB xkð Þ þ qC xkð Þ
2

� �

þ � 3 vB xkð Þ � vC xkð Þð Þ � mB xkð Þ � mC xkð Þð Þ � gB xkð Þ � gC xkð Þð Þf gj j
4

� qB xkð Þ þ qC xkð Þ
2

2

664

3

775

¼ 1 � 1

n

Xn

k¼1

mB xkð Þ � mC xkð Þj j þ gB xkð Þ � gC xkð Þj j þ vB xkð Þ � vC xkð Þj j
2

� 1 � qB xkð Þ þ qC xkð Þ
2

� �

þ 3 vB xkð Þ � vC xkð Þð Þ � mB xkð Þ � mC xkð Þð Þ � gB xkð Þ � gC xkð Þð Þj j
4

� qB xkð Þ þ qC xkð Þ
2

2

664

3

775
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SLðB;CÞ ¼ 1 � 1

n

Xn

k¼1

mB xkð Þ � mC xkð Þj j þ gB xkð Þ � gC xkð Þj j þ vB xkð Þ � vC xkð Þj j
2

� 1 � qB xkð Þ þ qC xkð Þ
2

� �

þ 3 vB xkð Þ � vC xkð Þð Þ � mB xkð Þ � mC xkð Þð Þ � gB xkð Þ � gC xkð Þð Þj j
4

� qB xkð Þ þ qC xkð Þ
2

2
664

3
775;

SLðB;DÞ ¼ 1 � 1

n

Xn

k¼1

mB xkð Þ � mD xkð Þj j þ gB xkð Þ � gD xkð Þj j þ vB xkð Þ � vD xkð Þj j
2

� 1 � qB xkð Þ þ qD xkð Þ
2

� �

þ 3 vB xkð Þ � vD xkð Þð Þ � mB xkð Þ � mD xkð Þð Þ � gB xkð Þ � gD xkð Þð Þj j
4

� qB xkð Þ þ qD xkð Þ
2

2

664

3

775:

We can write the following equations:

3 vB xkð Þ � vC xkð Þð Þ � mB xkð Þ � mC xkð Þð Þ � gB xkð Þ � gC xkð Þð Þj j
¼ 3vB xkð Þ � mB xkð Þ � gB xkð Þð Þ � 3vC xkð Þ � mC xkð Þ � gC xkð Þð Þj j;

3 vB xkð Þ � vD xkð Þð Þ � mB xkð Þ � mD xkð Þð Þ � gB xkð Þ � gD xkð Þð Þj j
¼ 3vB xkð Þ � mB xkð Þ � gB xkð Þð Þ � 3vD xkð Þ � mD xkð Þ � gD xkð Þð Þj j:

If B � C � D, according to definition 2, we have:

0�mB xkð Þ�mC xkð Þ�mD xkð Þ� 1; 0� gB xkð Þ�
gC xkð Þ� gD xkð Þ� 1 and 1� vB xkð Þ� vC xkð Þ� vD xkð Þ� 0.

Therefore, we have the following inequalities:

3vB xkð Þ � mB xkð Þ � gB xkð Þ� 3vC xkð Þ � mC xkð Þ�
gC xkð Þ� 3vD xkð Þ � mD xkð Þ � gD xkð Þ.

Hence, we have

SL B;Cð Þ ¼1 � 1

n

Xn

k¼1

mC xkð Þ � mB xkð Þð Þ þ gC xkð Þ � gB xkð Þð Þ þ vB xkð Þ � vC xkð Þð Þ
2

�

mC xkð Þ � mB xkð Þð Þ þ gC xkð Þ � gB xkð Þð Þ þ vB xkð Þ � vC xkð Þð Þ
2

� qB xkð Þ þ qC xkð Þ
2

þ

3 vB xkð Þ � vC xkð Þð Þ � mB xkð Þ � mC xkð Þð Þ � gB xkð Þ � gC xkð Þð Þ
4

� qB xkð Þ þ qC xkð Þ
2

2
6666664

3
7777775

¼1 � 1

n

Xn

k¼1

mC xkð Þ � mB xkð Þð Þ þ gC xkð Þ � gB xkð Þð Þ þ vB xkð Þ � vC xkð Þð Þ
2

�

mC xkð Þ � mB xkð Þð Þ þ gC xkð Þ � gB xkð Þð Þ � vB xkð Þ � vC xkð Þð Þ
4

� qB xkð Þ þ qC xkð Þ
2

2
664

3
775

¼1 � 1

n

Xn

k¼1

mC xkð Þ � mB xkð Þð Þ þ gC xkð Þ � gB xkð Þð Þ þ vB xkð Þ � vC xkð Þð Þ
2

�

mC xkð Þ þ gC xkð Þ þ vC xkð Þð Þ � mB xkð Þ þ gB xkð Þ þ vB xkð Þð Þ
4

� qB xkð Þ þ qC xkð Þ
2

2

664

3

775

¼ 1 � 1

n

Xn

k¼1

mC xkð Þ � mB xkð Þð Þ þ gC xkð Þ � gB xkð Þð Þ þ vB xkð Þ � vC xkð Þð Þ
2

� 1 � qC xkð Þð Þ � 1 � qB xkð Þð Þ
4

� qB xkð Þ þ qC xkð Þ
2

2

664

3

775

¼ 1 � 1

n

Xn

k¼1

mC xkð Þ � mB xkð Þð Þ þ gC xkð Þ � gB xkð Þð Þ þ vB xkð Þ � vC xkð Þð Þ
2

� qB xkð Þ2 � qC xkð Þ2

8

" #
:

Similarly, we can obtain:

SL B;Dð Þ ¼ 1 � 1
n

Pn

k¼1

mD xkð Þ�mB xkð Þð Þþ gD xkð Þ�gB xkð Þð Þþ vB xkð Þ�vD xkð Þð Þ
2

� qB xkð Þ2�qD xkð Þ2

8

h i
.

Accordingly, we have
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SL B;Cð Þ � SL B;Dð Þ

¼ 1

n

Xn

k¼1

mD xkð Þ � mC xkð Þð Þ þ gD xkð Þ � gC xkð Þð Þ þ vC xkð Þ � vD xkð Þð Þ
2

þ qD xkð Þ2 � qC xkð Þ2

8

" #

¼ 1

n

Xn

k¼1

4 mD xkð Þ � mC xkð Þð Þ þ gD xkð Þ � gC xkð Þð Þ þ vC xkð Þ � vD xkð Þð Þ½ �
8

þ qD xkð Þ � qC xkð Þð Þ qD xkð Þ þ qC xkð Þð Þ
8

2

64

3

75

¼ 1

8n

Xn

k¼1

4 mD xkð Þ � mC xkð Þð Þ þ gD xkð Þ � gC xkð Þð Þ þ vC xkð Þ � vD xkð Þð Þ½ �þ
vC xkð Þ � vD xkð Þð Þ � mD xkð Þ � mC xkð Þð Þ � gD xkvð Þ � gC xkð Þð Þ½ � � qD xkð Þ þ qC xkð Þð Þ

� 


¼ 1

8n

Xn

k¼1

mD xkð Þ � mC xkð Þð Þ þ gD xkð Þ � gC xkð Þð Þ½ � � 4 � qD xkð Þ � qC xkð Þð Þ
þ vC xkð Þ � vD xkð Þð Þ � 4 þ qD xkð Þ þ qC xkð Þð Þ

� 

:

Because of mC xkð Þ�mD xkð Þ; gC xkð Þ� gD xkð Þ
; vC xkð Þ� vD xkð Þ and 0� qC xkð Þ þ qD xkð Þ� 2, we can get

SL B;Cð Þ � SL B;Dð Þ� 0, so SL B;Cð Þ� SL B;Dð Þ.
Similarly, we can prove SL C;Dð Þ� SL B;Dð Þ.
If we consider the weights wk of xk such that wk 2 0; 1½ �

and
Pn

k¼1

wk ¼ 1 , then the PF weighted similarity measure

between the PFSs B and C can be defined as

Theorem 2 SWL B;Cð Þ is a PF similarity measure between

the two PFSs B and C.

Proof According to the above proof process and definition

3, it is straightforward.

4 Experiments and Analysis

In this section, to verify the rationality and superiority of

our proposed PF similarity measure in practical cases, the

proposed and existing PF similarity measure formulas (1)-

(19) are compared and analyzed through numerical exam-

ples and pattern recognition.

4.1 Numerical Comparisons

In the previous section, the newly proposed PF similarity

measure combines the Hamming distance and the trans-

formed tetrahedral centroid distance. Next, we use an

example to illustrate the counterintuitive situation of the PF

similarity measure proposed by Khan et al. [26] based on

the transformed tetrahedral centroid, and the insufficiency

SWL B;Cð Þ ¼ 1 �
Xn

k¼1

wk

mB xkð Þ � mC xkð Þj j þ gB xkð Þ � gC xkð Þj j þ vB xkð Þ � vC xkð Þj j
2

� 1 � qB xkð Þ þ qC xkð Þ
2

� �

þ 3 vB xkð Þ � vC xkð Þð Þ � mB xkð Þ � mC xkð Þð Þ � gB xkð Þ � gC xkð Þð Þj j
4

� qB xkð Þ þ qC xkð Þ
2

2

664

3

775: ð20Þ
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Table 2 Comparison results of PF similarity measure

Similarity measures B;Cð Þ C;Dð Þ B;Dð Þ Ordering

SW1 0.988 0.988 0.988 S B;Cð Þ ¼ S C;Dð Þ ¼ S B;Dð Þ
SW2 0.988 0.988 0.988 S B;Cð Þ ¼ S C;Dð Þ ¼ S B;Dð Þ
SW3 0.988 0.988 0.988 S B;Cð Þ ¼ S C;Dð Þ ¼ S B;Dð Þ
SW4 0.854 0.854 0.854 S B;Cð Þ ¼ S C;Dð Þ ¼ S B;Dð Þ
SW5 0.833 0.933 0.852 S C;Dð Þ[ S B;Dð Þ[ S B;Cð Þ
SWG1 0.98 0.982 0.958 S C;Dð Þ[ S B;Cð Þ[ S B;Dð Þ
SWG2 0.969 0.971 0.97 S C;Dð Þ[ S B;Dð Þ[ S B;Cð Þ
SSMK1 0.95 0.95 0.95 S B;Cð Þ ¼ S C;Dð Þ ¼ S B;Dð Þ
SSMK2 0.975 0.975 0.975 S B;Cð Þ ¼ S C;Dð Þ ¼ S B;Dð Þ
SSMK3 0 0 0 S B;Cð Þ ¼ S C;Dð Þ ¼ S B;Dð Þ
SGS1 0.995 0.991 0.99 S B;Cð Þ[ S C;Dð Þ[ S B;Dð Þ
SGS2 0.866 0.866 0.866 S B;Cð Þ ¼ S C;Dð Þ ¼ S B;Dð Þ
SGS3 0.932 0.932 0.866 S B;Cð Þ ¼ S C;Dð Þ[ S B;Dð Þ
SGS4 0.866 0.866 0.866 S B;Cð Þ ¼ S C;Dð Þ ¼ S B;Dð Þ
SGS5 0.866 0.866 0.866 S B;Cð Þ ¼ S C;Dð Þ ¼ S B;Dð Þ
SLZ 0.996 0.993 0.991 S B;Cð Þ[ S C;Dð Þ[ S B;Dð Þ
SKK 0.958 0.958 0.917 S B;Cð Þ ¼ S C;Dð Þ[ S B;Dð Þ
STP 0.967 0.967 0.933 S B;Cð Þ ¼ S C;Dð Þ[ S B;Dð Þ
SL(proposed) 0.956 0.944 0.9 S B;Cð Þ[ S C;Dð Þ[ S B;Dð Þ

Bold fonts in tables indicate unconscionable results. t ¼ 3; p ¼ 1 in SKK . t ¼ 2; p ¼ 1 in STP

Table 3 The results of different similarity measures for pattern

recognition

Similarity

measures

B1;Cð Þ B2;Cð Þ B3;Cð Þ Classification

results

SW1 0.951 0.881 0.875 B1

SW2 0.951 0.881 0.875 B1

SW3 0.951 0.857 0.81 B1

SW4 0.726 0.674 0.678 B1

SW5 0.819 0.722 0.686 B1

SWG1 0.926 0.766 0.754 B1

SWG2 0.912 0.778 0.75 B1

SSMK1 0.9 0.85 0.83 B1

SSMK2 0.95 0.935 0.935 B1

SSMK3 0 0.083 0.087 B3

SGS1 0.944 0.922 0.904 B1

SGS2 0.741 0.683 0.685 B1

SGS3 0.821 0.66 0.651 B1

SGS4 0.741 0.683 0.685 B1

SGS5 0.741 0.637 0.599 B1

SLZ 0.952 0.926 0.888 B1

SKK 0.851 0.813 0.772 B1

STP 0.9 0.844 0.838 B1

SL(proposed) 0.858 0.737 0.729 B1

t ¼ 3; p ¼ 1 in SKK . t ¼ 2; p ¼ 1 in STP

Table 1 Comparison results of PF similarity measure

Similarity measures B;Dð Þ C;Dð Þ

SW1 0.707 0

SW2 0 0

SW3 0 0

SW4 0 0

SW5 0 0

SWG1 0 0

SWG2 0 0

SSMK1 0.5 0.5

SSMK2 0.75 0.75

SSMK3 0 0

SGS1 0.354 0.25

SGS2 0.414 0

SGS3 0.414 0.414

SGS4 0 0

SGS5 0 0

SLZ 0.471 0.333

SKK 0.833 0.583

STP 0.778 0.667

SL(proposed) 0.625 0.375

Bold fonts in tables indicate unconscionable results. t ¼ 3; p ¼ 1 in

SKK . t ¼ 2; p ¼ 1 in STP
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of the PF similarity measure proposed by Singh et al. [22]

based on the Hamming distance.

Example 1 Let us consider the following three PFSs in the

universe of discourse X ¼ xf g, where B ¼ 0:1; 0:1;hf
0:4ig, C ¼ 0:1; 0:6; 0:3h if g and D ¼ 0:1; 0:6; 0:2h if g. By

definition 2(3), the relationship among PFSs B, C and D is

obtained as B � C � D. It can be obtained from definition

3(4): S B;Cð Þ� S B;Dð Þ. Using the PF similarity measure

formula (8) based on the Hamming distance, we calculate

SSMK1 B;Cð Þ ¼ 0:75 and SSMK1 B;Dð Þ ¼ 0:75. Using the PF

similarity measure formula (17) based on the transformed

tetrahedral centroid distance, we calculate SKK B;Cð Þ ¼
0:833 and SKK B;Dð Þ ¼ 0:858. Using our proposed PF

similarity measure formula (19) that combines the Ham-

ming distance and the transformed tetrahedral centroid

distance, we calculate SL B;Cð Þ ¼ 0:72 and

SL B;Dð Þ ¼ 0:669.

From the above calculation results, we can see that the

similarity measure SKK based on the tetrahedral transfor-

mation centroid distance violates Definition 3(4), which is

obviously counter-intuitive. Although the similarity mea-

sure SSMK1 based on Hamming distance does not violate the

basic definition, it will be difficult to attribute PFS B to C

or D if it is applied to pattern recognition problems. And

our proposed similarity measure SL not only has no

unreasonable results, but also clearly sees that PFSs B

and C are more similar. SL is proposed by combining the

Hamming distance and the transformed tetrahedral centroid

distance. It not only combines the advantages of the two

distances but also overcomes their shortcomings.

The next two examples further illustrate some of the

advantages of our proposed PF similarity measure through

comparative analysis with existing PF similarity measures.

Example 2 Let us consider the following three PFSs in the

universe of discourse X ¼ xf g, where B ¼ 0:0; 0:5;hf
0:0ig, C ¼ 0:0; 0:0; 1:0h if g and D ¼ 0:0; 0:0; 0:0h if g.

Apparently PFS D is closer to B than to C. So we can get

that the similarity measure between B and D is higher than

that between C and D, that is, S B;Dð Þ[ S C;Dð Þ. Table 1

is a detailed comparison of the results of calculating sim-

ilarity measure data using formulas (1)–(19).

In Table 1, it can be clearly seen that the PF similarity

measures SW2, SW3, SW4, SW5, SWG1, SWG2, SSMK1, SSMK2,

SSMK3, SGS3, SGS4 and SGS5 appear unreasonable cases, that

is, S B;Dð Þ ¼ S C;Dð Þ. This is the same as Contrary to our

above analysis, it is obviously impossible to distinguish the

similarity of PFSs B, C and D, respectively. However, there

is no unreasonable situation between our proposed simi-

larity measure SL and the existing similarity measures SW1,

SGS1, SGS2, SLZ , SKK and STP, which shows that our pro-

posed similarity measure is effective in the instance.

Example 3 Let us consider the following three PFSs in the

universe of discourse X ¼ xf g, where B ¼ 0:4; 0:1;hf
0:2ig, C ¼ 0:5; 0:1; 0:2h if g and D ¼ 0:5; 0:1; 0:1h if g. By

definition 2(3), the relationship among PFSs B, C and D is

obtained as B � C � D . Therefore, according to definition

3(4), the similarity measure between these three PFSs

should follow the following size relationships

S B;Cð Þ� S B;Dð Þ and S C;Dð Þ� S B;Dð Þ. Table 2 is a

detailed comparison of the results of calculating similarity

measure data using formulas (1)-(19).

In Table 2, it can be clearly seen that the PF similarity

measures SW5 and SGS2 appear counter-intuitive, that is,

S B;Cð Þ\S B;Dð Þ. This violates the fourth property of

similarity measure definition 3. We observe that the PF

similarity measures SW1, SW2, SW3, SW4, SSMK1, SSMK2,

SSMK3, SGS2, SGS4 and SGS5 all show the result of

S B;Cð Þ ¼ S C;Dð Þ ¼ S B;Dð Þ, so none of them can distin-

guish between the three PFSs degree of similarity. The PF

similarity measures SGS3, SKK and STP showed the result of

S B;Cð Þ ¼ S C;Dð Þ , so none of them could distinguish the

similarity degree between C and different PFSs B and D.

The above-mentioned thirteen similarity measure formulas

all appear in weak order. If they are applied to decision-

Table 4 The results of different similarity measures for pattern

recognition

Similarity measures B1;Cð Þ B2;Cð Þ Classification results

SW1 0 0 Not Classified

SW2 0 0 Not Classified

SW3 0 0 Not Classified

SW4 0 0 Not Classified

SW5 0 0 Not Classified

SWG1 0 0 Not Classified

SWG2 0 0 Not Classified

SSMK1 0.5 0.5 Not Classified

SSMK2 0.75 0.75 Not Classified

SSMK3 0.05 0.025 B1

SGS1 0.177 0.177 Not Classified

SGS2 0 0 Not Classified

SGS3 0.189 0.189 Not Classified

SGS4 0 0 Not Classified

SGS5 0 0 Not Classified

SLZ 0.236 0.236 Not Classified

SKK 0.625 0.692 B2

STP 0.556 0.533 B1

SL(proposed) 0.331 0.306 B1

Bold fonts in tables indicate unconscionable results. t ¼ 3; p ¼ 1 in

SKK . t ¼ 2; p ¼ 1 in STP
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making problems, there may be a problem that the best

solution cannot be selected. However, our proposed PF

similarity measure SL and the existing SWG1, SGS1, SLZ not

only do not violate Definition 3(4), but also produce strong

ranking results. The ranking result of SL is the same as the

ranking order of SGS1 and SLZ , which is

S B;Cð Þ[ S C;Dð Þ[ S B;Dð Þ. From this result, the simi-

larity measure we propose is stronger than most of the

existing ones, and it is in line with the sorting problem that

occurs in actual decision-making.

From the comparative analysis of the experimental

results of the first three examples, it is not difficult to find

that most of the existing PF similarity measures are

counter-intuitive, unreasonable, and unable to be sorted in

practice. Only a few PF similarity measures can handle the

above problem and achieve satisfactory results, including

our proposed similarity measure formula SL. Next, we

apply these formulations (1)-(19) to a pattern recognition

problem to test the practicability of formulation SL.

4.2 Application in Pattern Recognition

Pattern recognition is the problem of classifying an

unknown pattern into known patterns. Due to its practi-

cality, it has been applied to practical problems such as

medical diagnosis and corporate decision-making. In

solving the problem of pattern recognition in PF environ-

ment, many measurement tools can be used to classify

unknown patterns, such as distance measure, accuracy

measure, divergence measure, similarity measure and cor-

relation measure. We employ the similarity measure as a

tool to solve the pattern recognition problem for the PF

similarity measure formula (19) provided in this research,

and we apply the PF similarity measure (1-19) to the pat-

tern recognition problem to compare and analyze its ben-

efits and drawbacks.

In PF environment, using similarity measure to solve

pattern recognition problem is formulated as follows:

Let Bi i ¼ 1; 2; � � � ; nð Þ be some known patterns and C be

an unknown pattern, where Bi and C are given in the form

of PFSs as follows:

Bi ¼ xk;mBi
xkð Þ; gBi

xkð Þ; vBi
xkð Þ

� �
xk 2 X; k ¼ 1; 2;j

�

. . .; n:g;

C ¼ xk;mC xkð Þ; gC xkð Þ; vC xkð Þh i xk 2 Xjf g.

To classify the unknown pattern C into one of the known

patterns Bi i ¼ 1; 2; � � � ; nð Þ, the similarity measure formula

(1-19) is used to calculate the similarity degree between

and each unknown patterns, namely S Bi;Cð Þ. The calcu-

lated maximum similarity value S Bi	 ;Cð Þ represents C

Table 5 The results of different similarity measures for pattern recognition

Similarity measures B1;Cð Þ B2;Cð Þ B3;Cð Þ Classification results

SW1 0.975 0.975 0.88 Not Classified

SW2 0.976 0.976 0.666 Not Classified

SW3 0.943 0.943 0.639 Not Classified

SW4 0.812 0.812 0.473 Not Classified

SW5 0.828 0.841 0.466 B2

SWG1 0.925 0.956 0.539 B2

SWG2 0.922 0.927 0.55 B2

SSMK1 0.9 0.9 0.75 Not Classified

SSMK2 0.967 0.967 0.883 Not Classified

SSMK3 0.875 0.875 0.046 Not Classified

SGS1 0.953 0.974 0.81 B2

SGS2 0.824 0.824 0.627 Not Classified

SGS3 0.805 0.825 0.612 B2

SGS4 0.824 0.824 0.479 Not Classified

SGS5 0.744 0.744 0.443 Not Classified

SLZ 0.981 0.984 0.839 B2

SKK 0.897 0.911 0.808 B2

STP 0.919 0.93 0.867 B2

SL(proposed) 0.86 0.871 0.772 B2

Bold fonts in tables indicate unconscionable results. t ¼ 3; p ¼ 1 in SKK . t ¼ 2; p ¼ 1 in STP

  113 Page 12 of 19

123



being classified into Bi	 , where i	 ¼ arg max

S Bi;Cð Þf g; i ¼ 1; 2; � � � ; n:

Example 4 Let us consider the following four PFSs in the

universe of discourse X ¼ x1; x2; x3; x4; x5f g, where B1 ¼
0:4; 0:1; 0:3h i; 0:5; 0:2; 0:3h i; 0:4; 0:0; 0:3h i;f 0:7; 0:2;h

0:0i; 0:6; 0:1; 0:1h ig, B2 ¼ 0:7; 0:1; 0:1h i; 0:2; 0:4;hf 0:3i;
0:2; 0:5; 0:1h i; 0:1; 0:2; 0:5h i; 0:3; 0:3; 0:3h ig, B3 ¼ 0:1;hf

0:4; 0:3i; 0:4; 0:1; 0:3h i; 0:3; 0:2;h

0:4i; 0:2; 0:3; 0:5h i; 0:5; 0:1; 0:3h ig, C ¼ 0:6; 0:1; 0:2h i;f
0:3; 0:2; 0:4h i; 0:4; 0:2; 0:3h i; 0:7; 0:0; 0:1h i; 0:4; 0:2; 0:2h ig

from literature [40]. Now our purpose is to classify

unknown pattern C into known patterns B1, B2, B3, and

calculate the similarity measure of C and each known

pattern, respectively. C belongs to the pattern with the

largest similarity measure. The classification results of

different similarity measures are shown in Table 3.

Fig. 1 Flowchart of the

improved VIKOR method based

on the proposed PFS similarity

measure
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In Table 3, we can clearly see that the existing and our

proposed PF similarity measure classifies C to known

patterns B1, except that the PF similarity measure SSMK3

has different classification results. This result shows that

the application of our proposed similarity measure SL is

effective on pattern recognition problems.

Example 5 Let us consider the following three PFSs in the

universe of discourse X ¼ xf g, where

B1 ¼ 0:2; 0:0; 0:3h if g, B2 ¼ 0:1; 0:0; 0:4h if g and

C ¼ 0:0; 1:0; 0:0h if g. Now our purpose is to classify

unknown pattern C into known patterns B1, B2, and cal-

culate the similarity measure of C and each known pattern,

respectively. C belongs to the pattern with the largest

similarity measure. The classification results of different

similarity measures are shown in Table 4.

In Table 4, we can clearly observe that the PF similarity

measures SW1, SW2 ,SW3, SW4, SW5, SWG1, SWG2, SSMK1,

SSMK2, SGS1, SGS2, SGS3, SGS4, SGS5 and SLZ all have failed

classifications. While the PF similarity measures SSMK3,

SKK , STP and SL all successfully classified the unknown

pattern C, but most similarity measures classified C to B1.

From the above situation, we can see that our proposed

similarity measure is not only successful in classification,

but also the classification results are consistent with most

similarity measures. This shows that the PF similarity

measure SL has a superior function in the pattern recogni-

tion problem.

Example 6 Let us consider the following four PFSs in the

universe of discourse X ¼ x1; x2; x3f g, where B1 ¼
0:5; 0:1; 0:1h i; 0:3; 0:1; 0:3h i; 0:3;hf 0:1; 0:4ig, B2 ¼
0:4; 0:3; 0:2h i; 0:3; 0:2; 0:5h i;f 0:4; 0:1; 0:3h ig, B3 ¼
0:2; 0:4;hf 0:3i; 0:1; 0:4; 0:4h i; 0:0; 0:0; 0:0h ig and C ¼
0:3; 0:2; 0:3h i; 0:4; 0:1; 0:3h i; 0:4;hf 0:2; 0:3ig. Now our

purpose is to classify unknown pattern C into known pat-

terns B1, B2, B3, and calculate the similarity measure of C

and each known pattern, respectively. C belongs to the

pattern with the largest similarity measure. The classifica-

tion results of different similarity measures are shown in

Table 5.

In Table 5, we clearly see that the unknown pattern C

are classified into B2 according to our proposed similarity

measure SL. These existing similarity measures SW5, SWG1,

SWG2, SGS1, SGS3, SLZ , SKK and STP are consistent with the

proposed SL classification results. Since the similarity

measures SW1, SW2, SW3, SW4, SSMK1, SSMK2, SSMK3,

SGS2; SGS4 and SGS5 respectively calculate the known pat-

terns B1 and B2 with the same similarity value as the

unknown pattern C, these existing similarity measures

cannot classify the unknown pattern C. Therefore, the

similarity measure SL proposed by us can not only correctly

classify unknown patterns, but also solve some pattern

recognition problems that cannot be classified by existing

similarity measures.

From the comparative analysis of the experimental

results of different similarity measures applied to pattern

recognition in Table 3, Table 4 and Table 5, it can be found

that most of the existing PF similarity measures have

classification failures. However, only the PF similarity

measures STP and SL can well address the above short-

comings and achieve the same classification results as most

existing similarity measures. It can be seen that our pro-

posed PF similarity measure is more effective than most

existing PF similarity measures in classifying the best

attribution patterns in pattern recognition problems.

In the six examples given above, applying the existing

PF similarity measure formula (1)-(18) and our proposed

PF similarity measure formula (19), we can clearly see that

the similarity measure SL has the following advantages:

1. Our proposed PF similarity measure combines Ham-

ming distance and transformed tetrahedral centroid

distance. While retaining the advantages of the two

distances, it also overcomes the shortcomings of the PF

similarity measure proposed by the two distances.

2. Most PF similarity measures cannot distinguish the

similarity measures between different PFSs, while our

proposed similarity measure not only can distinguish,

but also achieves more reasonable results compared

with a small number of similar measures that can

distinguish.

3. For some highly similar but different PFSs, there is

inclusion relationship. Most PF similarity measures

cannot distinguish the degree of connection between

these PFSs, and even violate the similarity measure

definition 3 (3). Our proposed PF similarity measure

can perfectly solve the above existing problems,

indicating that it has better compatibility.

Table 6 Comparisons of the different methods with the example 7

[34]

Method Preference orders of

example 5

PFWG operator [34] A4 [A3 [A1 [A5 [A2

Extant projection model of PFSs [35] A4 [A1 [A3 [A5 [A2

PFNP-VIKOR method [37] A4 [A3 [A1 [A5 [A2

VIKOR method in the PF environment

[33]

A4 [A5 [A2 [A1 [A3

Improved VIKOR method A4 [A3 [A1 [A5 [A2
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4. In the pattern recognition problem, the PF similarity

measure proposed by us can maintain the same

classification results as most PF similarity measures

in the examples proposed by other literature, indicating

that it has good consistency.

5. In pattern recognition problems, it can be seen from

many examples that most of the existing PF similarity

measures have failed in classification, while our

proposed PF similarity measure can accurately classify.

It can be seen from the above situation that SL has more

obvious advantages in pattern recognition than the

existing similarity measure.

6. From the above six examples, it can be clearly seen

that the existing PF similarity measures has some

unreasonable or even wrong results, while our pro-

posed PF similarity measure can handle all cases

correctly, and its stability is better.

Based on the advantages of the PF similarity measure SL,

we next apply it to multi-attribute decision-making prob-

lems and propose an improved VIKOR method.

5 An Improved VIKOR Method Based
on the Proposed Similarity Measure of PFS

In the PF environment, we propose an improved VIKOR

method based on the similarity measure SL to solve the

MADM problem. In [33], Tian et al. proposed a VIKOR

method in the PF environment, which only considers group

utility and individual regret that are close to the positive

ideal, and then obtains VIKOR values for the alternatives

that are only close to the positive ideal. We improve the

VIKOR method based on Tian et al. [33], which obtains an

optimal alternative that considers not only the closest to the

positive ideal solution, but also the farthest from the neg-

ative ideal solution. The proposed similarity measure SL is

used as a tool to calculate the group utility and individual

regret values closest to the positive and negative ideals, and

then the VIKOR values of the alternatives closest to the

positive and negative ideals are obtained. Finally, the

concept of the TOPSIS method is used to calculate the

relative closeness coefficient of each alternative. The

smaller the relative closeness coefficient, the better the

order of the alternatives.

To verify the effectiveness and practicability of the

improved VIKOR method, this method is applied to the

MADM problem of literature [34], and the prioritization of

the obtained alternatives is compared and analyzed with the

decision method of literature [33–35] [37].

Below we will give the specific steps and flowchart to

improve the VIKOR method.

5.1 Algorithmic Steps of the Improved VIKOR
Method

Suppose the expert evaluates m alternatives based on n

attributes, where m ¼ A1;A2; � � � ;Amf g, n ¼ C1;C2; � � � ;f
Cng. Let B ¼ bij

	 

m�n

0� i�m; 0� j� nð Þ be the PF

decision matrix obtained from the expert evaluation results

as follows:

B ¼ bij
	 


m�n
¼

b11 b12 � � � b1n

b21 b22 � � � b2n

..

. ..
. . .

. ..
.

bm1 bm2 � � � bmn

2

6664

3

7775,

where bij ¼ mij; gij; vij
	 


is an evaluation value expres-

sed by picture fuzzy values. mij; gij and vij represent the

membership degree, neutral degree and non-membership

degree of the alternative Ai satisfies attribute Cj. The rows

of matrix B represent alternatives, and the columns repre-

sent attributes.

Step1: Constructing normalized picture fuzzy decision

matrix.

In the decision matrix B, there are two types of attri-

butes, namely benefit attribute and cost attribute. To make

the following calculation simple, we uniformly transform

the cost attribute into the benefit attribute according to

Definition 2 (1). Therefore, the normalized picture fuzzy

decision matrix D ¼ dij
	 


m�n
is shown below, where the

rows represent alternatives and the columns represent

attributes:

D¼ dij
	 


m�n

¼
bij¼ mij;gij;vij

	 

;Cj is a benefit attribute;

bij
C¼ vij;gij;mij

	 

;Cj is a cost attribute:

(
ð21Þ

Step2: Calculate the weights of attributes.

In the multi-attribute decision making problem, there is

not much difference in the evaluation value of the alter-

natives under the same attribute, so we think that this

attribute is not important here; On the contrary, under the

same attribute, the evaluation value of the alternatives is

greatly different, so we consider this attribute to be more

important. Therefore, it is necessary to calculate the weight

of each attribute to express its importance, and here we use

picture fuzzy entropy [37] to calculate the attribute

weights. The weight wj of attribute Cj is given by the

following formula:

wj ¼
1 � Ej

n�
Pn

j¼1

Ej

;where wj 2 0; 1½ �; and
Xn

j¼1

wj ¼ 1: ð22Þ

Here Ej stands for picture fuzzy entropy [37] of attribute

Cj:
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Ej ¼ 1 � 1

2m

Xm

i¼1

mij � gij
�� ��þ mij � vij

�� ��þ gij � vij
�� ��	 


:

ð23Þ

Step3: Determine the positive and negative ideal vectors

for each attribute.

According to definitions 2(4) and (5), construct positive

ideal value picture fuzzy vector Fþ and negative ideal

value picture fuzzy vector F�, respectively, as follows:

Fþ ¼ fþ1 fþ2 � � � fþn
� �

;

F� ¼ f�1 f�2 � � � f�n½ �;

where fþj ¼ max
i

mij;min
i

gij;min
i

vij

� �
;

f�j ¼ min
i

mij;min
i

gij;max
i

vij

� �
:

ð24Þ

Step4: Obtain the positive ideal similarity measure matrix

Hþ and the negative ideal similarity measure matrix H�.

Based on the similarity measure formula (19), calculate

the similarity measure of Fþ and D under each attribute,

calculate the similarity measure of F� and D under each

attribute, and obtain the positive ideal similarity measure

matrix Hþ and the negative ideal similarity measure matrix

H�.

Hþ ¼ hþij

� �

m�n
; H� ¼ h�ij

� �

m�n
;

where hþij ¼ SL dij; f
þ
j

� �
; h�ij ¼ SL dij; f

�
j

� �
:

ð25Þ

Step5: Determine the similarity measure vectors Pþ and

P� closest to and farthest from the positive ideal for all

attributes; Determine the similarity measure vectors Kþ

and K� closest to and farthest from the negative ideal for

all attributes.

Pþ ¼ pþ1 pþ2 � � � pþn
� �

; P� ¼ p�1 p�2 � � � p�n½ �;
Kþ ¼ kþ1 kþ2 � � � kþn

� �
; K� ¼ k�1 k�2 � � � k�n½ �:

Where pþj ¼ max
i

hþij ; p�j ¼ min
i

hþij ; kþj ¼ max
i

h�ij ; k�j ¼ min
i

h�ij :

ð26Þ

Step6: Calculate the normalized closest positive ideal

group utility value PSi and the normalized closest positive

ideal individual regret value PRi of alternative Ai, respec-

tively, shown as follows:

PSi ¼
Xn

j¼1

wj

pþj � hþij
pþj � p�j

; PRi ¼ max
j

wj

pþj � hþij
pþj � p�j

 !
: ð27Þ

Calculate the normalized closest negative ideal group

utility value KSi and the normalized closest negative ideal

individual regret value KRi of alternative Ai, respectively,

shown as follows:

KSi ¼
Xn

j¼1

wj

kþj � h�ij
kþj � k�j

; KRi ¼ max
j

wj

kþj � h�ij
kþj � k�j

 !
: ð28Þ

Step7: Compute the closest positive ideal VIKOR index

Qþ
i and the closest negative ideal VIKOR index Q�

i of

alternative Ai, respectively, shown as follows:

Qþ
i ¼ k

PSi � PS	

PS� � PS	
þ 1 � kð Þ PRi � PR	

PR� � PR	 ;

Q�
i ¼ k

KSi � KS	

KS� � KS	
þ 1 � kð Þ KRi � KR	

KR� � KR	 :

Where PS� ¼ max
i

PSi; PS	 ¼ min
i

PSi;

PR� ¼ max
i

PRi; PR	 ¼ min
i

PRi:

Where KS� ¼ max
i

KSi; KS	 ¼ minK
i

Si;

KR� ¼ max
i

KRi; KR	 ¼ min
i

KRi:

ð29Þ

The values of k and 1 � k are the weight of the strategy of

‘‘ the majority of attribute ’’ and ‘‘ the individual regret ’’,

respectively. In general, the value of k ¼ 0:5 is adopted.

Step8: Calculate the relative closeness coefficient DQi

of alternative Ai, shown as follows:

DQi ¼
Qþ

i

Qþ
i þ Q�

i

: ð30Þ

The smaller the degree of relative closeness DQi , the better

the preference order of alternative Ai, where 1� i�m.

To understand the steps of improving VIKOR method

given above, the flowchart is shown in Figure 1.

5.2 Experimental Results and Comparison

Next, to demonstrate the effectiveness of the improved

VIKOR method, we use numerical examples from [34] for

verification to obtain the preference order of the

alternatives.

Example 7 Suppose the expert evaluates five alternatives

based on four attributes, where five alternatives

¼ A1;A2;A3;A4;A5f g, four attributes ¼ C1;C2;C3;C4f g.

PF decision matrix B ¼ bij
	 


5�4
of experts evaluating

alternatives based on attributes is obtained from the liter-

ature [34] as follows:

B ¼

0:2; 0:3; 0:1ð Þ 0:7; 0:1; 0:1ð Þ 0:1; 0:2; 0:6ð Þ 0:4; 0:1; 0:2ð Þ
0:4; 0:2; 0:3ð Þ 0:1; 0:6; 0:1ð Þ 0:3; 0:2; 0:4ð Þ 0:3; 0:1; 0:4ð Þ
0:2; 0:5; 0:1ð Þ 0:6; 0:1; 0:1ð Þ 0:5; 0:1; 0:2ð Þ 0:5; 0:1; 0:3ð Þ
0:2; 0:3; 0:1ð Þ 0:6; 0:2; 0:1ð Þ 0:5; 0:3; 0:2ð Þ 0:5; 0:0; 0:3ð Þ
0:6; 0:1; 0:2ð Þ 0:4; 0:2; 0:3ð Þ 0:6; 0:1; 0:2ð Þ 0:3; 0:4; 0:2ð Þ

2
6666664

3
7777775
;

where the rows represent alternatives and the columns

represent attributes.

  113 Page 16 of 19

123



Step1: In the literature [34], we know that attributes are

all benefit attributes, and the normalized picture fuzzy

decision matrix D ¼ B is obtained by formula (21).

Step2: Using formula (22) and (23), the weight of all

attributes are calculated as w1 ¼ 0:2027;w2 ¼
0:3108;w3 ¼ 0:2568 and w4 ¼ 0:2297.

Step3: Using formula (24), write the positive and

negative ideal vectors, respectively, as follows:

Fþ ¼ 0:6; 0:1; 0:1ð Þ 0:7; 0:1; 0:1ð Þ 0:6; 0:1; 0:2ð Þ 0:5; 0:0; 0:2ð Þ½ �;
F� ¼ 0:2; 0:1; 0:3ð Þ 0:1; 0:1; 0:3ð Þ 0:1; 0:1; 0:6ð Þ 0:3; 0:0; 0:4ð Þ½ �:

Step4: Through our proposed similarity measure formula

(19), calculate the similarity measure of Fþ and D under

each attribute, calculate the similarity measure of F� and D

under each attribute. Using formula (25), obtain the posi-

tive ideal similarity measure matrix Hþ and the negative

ideal similarity measure matrix H� as follows:

Hþ ¼

0:775 1 0:51 0:93

0:76125 0:52875 0:71 0:76875

0:68 0:95375 0:95375 0:91

0:775 0:91 0:85625 0:94375

0:94625 0:71 1 0:75

2

6666664

3

7777775
;

H� ¼

0:8 0:63 0:95375 0:8

0:86875 0:67625 0:75375 0:95625

0:715 0:67625 0:6 0:81

0:8 0:63 0:505 0:85625

0:76875 0:83 0:55375 0:71

2
6666664

3
7777775
:

Step5: Using formula (26), write the similarity measure

vectorsPþ and P� closest to and farthest from the positive

ideal for all attributes, respectively, as follows:

Pþ ¼ 0:94625 1 1 0:94375½ �;
P� ¼ 0:68 0:52875 0:51 0:75½ �:

Using formula (26), write the similarity measure vectors

Kþ and K� closest to and farthest from the negative ideal

for all attributes, respectively, as follows:

Kþ ¼ 0:86875 0:83 0:95375 0:95625½ �;
K� ¼ 0:715 0:63 0:505 0:71½ �:

Step6: Using formula (27), calculate the normalized clos-

est positive ideal group utility value PSi and the normalized

closest positive ideal individual regret value PRi of alter-

native Ai, respectively, shown as follows:

PS1 ¼ 0:4035;PS2 ¼ 0:8111;PS3 ¼ 0:2975;

PS4 ¼ 0:2651;PS5 ¼ 0:4210;

PR1 ¼ 0:2568;PR2 ¼ 0:3108;PR3 ¼ 0:2027;

PR4 ¼ 0:1304;PR5 ¼ 0:2297:

Using formula (28), calculate the normalized closest neg-

ative ideal group utility value KSi and the normalized

closest negative ideal individual regret value KRi of alter-

native Ai, respectively, shown as follows:

KS1 ¼0:5472;KS2 ¼ 0:3534;KS3 ¼ 0:7805;

KS4 ¼ 0:7515;KS5 ¼ 0:5904;

KR1 ¼0:3108;KR2 ¼ 0:2389;KR3 ¼ 0:2389;

KR4 ¼ 0:3108;KR5 ¼ 0:2297:

Step7: Using formula (29), compute the closest positive

ideal VIKOR index Qþ
i and the closest negative ideal

VIKOR index Q�
i of alternative Ai, respectively, shown as

follows:

Qþ
1 ¼ 0:4771;Qþ

2 ¼ 1;Qþ
3 ¼ 0:2301;

Qþ
4 ¼ 0;Qþ

5 ¼ 0:418;

Q�
1 ¼ 0:7269;Q�

2 ¼ 0:0567;

Q�
3 ¼ 0:5567;Q�

4 ¼ 0:9661;Q�
5 ¼ 0:2775:

Step8: Using formula (30), calculate the degree of relative

closeness DQi of alternative Ai, shown as follows:

DQ1 ¼ 0:3963;DQ2 ¼ 0:9463;

DQ3 ¼ 0:2925;DQ4 ¼ 0;DQ5 ¼ 0:601:

Because DQ4\DQ3\DQ1\DQ5\DQ2 , the preference

order of the alternatives A1, A2, A3, A4 and A5 is:

A4 [A3 [A1 [A5 [A2.

Tian et al. [33] used their own similarity measure (18)

combined with the traditional VIKOR method, which is

widely used in multi-attribute decision-making problems in

PF environments. In [34], Wang et al. adopted the

developed picture fuzzy weighted geometric (PFWG)

operator for multi-attribute decision-making. Wei et al.

[35] ranked the given options according to an extended

projection model of picture fuzzy set, and then selected the

most ideal option. In the literature [37], the author

proposed the picture fuzzy normalized projection (PFNP)

model, combined the PFNP model with the VIKOR

method, constructed a VIKOR method based on picture

fuzzy normalized projection and applied it in multi-

attribute decision-making. We apply these methods to

example 7 and obtain the prioritization of alternatives in

Table 6.

It can be seen from Table 6 that the best alternatives

obtained by the five multi-attribute decision-making
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methods are consistent. And the improved VIKOR method,

the PFWG operator method and the PFNP-VIKOR method

have the same ordering method for the alternatives. Among

the extant projection model methods, only the second and

third alternatives are ranked differently, and the ranking

results of other alternatives are consistent with other

methods. In the VIKOR method in the PF environment, the

ranking of all the alternatives except the best alternative is

inconsistent. If the first two best alternatives are selected in

the actual decision-making problem, the VIKOR method in

the PF environment will have a different choice than other

schemes. Therefore, the improved VIKOR method based

on PF similarity measure SL is not only effective in multi-

attribute decision-making problems, but also better than the

traditional VIKOR method in PF environment proposed by

Tian et al. [33].

6 Conclusion

This paper proposes a hybrid PF similarity measure com-

bining Hamming distance and transformed tetrahedron

centroid distance, and proves that it satisfies the property of

similarity measure. We find that the hybrid PF similarity

measure can not only combine the advantages of the two

distances, but also overcome the shortcomings of the PF

similarity measure proposed by the two distances. The

existing and proposed PF similarity measures are applied to

numerical examples and pattern recognition problems. The

experimental results show that the proposed PF similarity

measures have more advantages than the existing ones.

Based on the hybrid PF similarity measure, we study the

application of an improved VIKOR method in PF envi-

ronment, and compare it with other MADM methods

through examples. The results verify the practicability and

effectiveness of the improved VIKOR method. In addition,

we do not give a geometric image explanation of the hybrid

PF similarity measure, which is missing some confidence.

Future research work will be carried out in the following

areas:

1. The hybrid PF similarity measure is applied to med-

ical diagnosis, cluster analysis and image processing.

2. Like Rong et al. [41, 42] applied the proposed hybrid

PF similarity measure to the MARCOS method for multi-

criterion group decision-making.

3. Extend the improved VIKOR method to interval

picture fuzzy set, generalized picture fuzzy soft set and

other fields.
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