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Abstract
This paper deals with the real-time tracking control problem for an autonomous underwater vehicle based on an acoustic-
based positioning method, i.e., the so-called GPS intelligent buoy system, which causes inevitable measurement delay. The 
measurement delay increases the control difficulty and degrades the tracking accuracy. Additionally, the exact modeling for an 
autonomous underwater vehicle is difficult due to uncertain hydrodynamic parameters. Based on these findings, a model-free 
control scheme is proposed. In the proposed scheme, the GPS intelligent buoy system provides the position signals without 
velocity measurements. Considering the measurement noise, a robust exact differentiator is used instead of the traditional 
numerical differentiation method to obtain the derivatives of position signals, which saves the limited actuator energy of 
autonomous underwater vehicles. Simulations are performed to verify the validity of the proposed control scheme. The 
results demonstrate that the proposed control scheme can achieve high timeliness and high tracking accuracy for autonomous 
underwater vehicles. Compared to the conventional model predictive control, the proposed controller requires 89.7% less 
average calculation time. In addition, the proposed controller outperforms the conventional proportion-differentiation 
controller in root-mean-square error by approximately 62.3−80.7%.

Keywords GPS intelligent buoy system · Real-time tracking control · Measurement delay · Measurement noise · Robust 
exact differentiator

Abbreviations
AUV  Autonomous  underwater  vehicle
ROV  Remotely operated  vehicle
GIB  GPS intelligent  buoy
GPS  Global  positioning  system
DVL  Doppler  velocity  log
IMU  Inertial  measurement unit
PID  Proportion integration differentiation
MPC  Model  predictive control

TDE  Time delay  estimator
TDC  Time delay  controller
RED  Robust  exact  differentiator
LMI  Linear  matrix  inequality
RMS  Root mean square
ZOH  Zero order  hold

1 Introduction

Autonomous underwater vehicles (AUVs) play an extremely 
important role in deep sea tasks [1], e.g., enemy target track-
ing [2], sea-bed scanning [3], inspection of deep water oil/
gas pipelines, and marine environmental data collection 
[4]. Currently, underwater robotic vehicles mainly include 
manned underwater vehicles, tethered unmanned underwater 
vehicles, i.e., remotely operated vehicles (ROVs), and AUVs 
[5]. Due to high risk and operational cost, manned underwa-
ter vehicles are not a good choice for deep sea tasks. ROVs 
and AUVs are the two major categories of unmanned under-
water vehicles and have much lower operational costs and 
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risks than the manned underwater vehicles. An ROV is usu-
ally controlled by a surface control center and is subject to 
the communication delay between the surface control center 
and ROV. This communication delay results in degradation 
of tracking performance in deep sea missions. Compared 
to ROVs, AUVs can autonomously collect data and inde-
pendently complete predefined tasks. In other words, the 
control center is located in the AUV. AUVs can also reduce 
operational costs. However, the positioning for AUV is not 
convenient as for other devices on land. It is well known that 
the penetration of electromagnetic signals is poor below the 
sea surface, so the global positioning system (GPS) is not 
available for AUV positioning [6]. To solve the AUV posi-
tioning problem, a GPS intelligent buoy (GIB) has been used 
in commercial applications as an acoustic positioning system 
[7]. Nevertheless, the GIB system has the problem of time-
varying communication delay between the AUV and buoys 
due to the finite speed of sound propagation in water. This 
indicates that the measurement signals cannot be provided to 
the controller in a timely manner. The corresponding meas-
urement delay will lead to an undesirable effect on tracking 
performance of an AUV. In addition, due to the uncertain 
hydrodynamic parameters, the exact AUV system model is 
poorly known, which is commonly encountered in practice. 
These problems make it difficult to drive an AUV precisely 
to a desired target point in a demanding marine environment.

Deep learning has proven its capabilities in numerous fields 
including medical recommender systems, object detection, 
and path planning (e.g., tracking target points). Spurred by 
deep learning’s state-of-the-art capabilities, researchers have 
already extended artificial intelligence-based techniques into 
the field of AUV underwater positioning and path planning. 
For example, [8] suggests a hybrid pipeline, where a deep 
learning scheme generates low-frequency position informa-
tion to correct the error accumulation of the navigation sys-
tem. Then, the x2 rule determines if the Doppler velocity log 
(DVL) measurement fails, and an adaptive filter, exploiting 
the variational Bayesian method, estimates the navigation 
information. However, although this method is interesting, 
it relies on GPS data and thus is constrained to surface and 
low submersing platforms. In [9], the authors utilize a Recur-
rent Neural Network to predict the AUV’s relative horizontal 
velocities by exploiting data from an Inertial Measurement 
Unit (IMU), pressure sensor, and control inputs. The RNN 
network is trained on experimental data with a DVL providing 
ground truth velocities. Despite this method posing a prom-
ising solution for deep learning-based AUV localization, it 
suffers from substantial errors in the order of hundreds of 
meters, requiring further research to improve it. Extending 
the vehicle’s localization architecture to AUVs has also been 
proposed, with [10] extracting features from sonar imagery 
using a Convolution Neural Network. Although this is a theo-
retically sound solution, the paper is constrained on the feature 

matching performance rather than the AUV’s trajectory accu-
racy. In [11], the authors develop a reinforcement learning-
based algorithm that solely employs the information measured 
by the AUV’s onboard sensors. Moreover, in this method, 
the reward function considers different factors substantially 
affecting the AUV’s navigation control accuracy. The experi-
ments reveal that the RL-based technique responds well to 
disturbances, but no trajectory is presented to evaluate the 
complete performance of this method. A more sophisticated 
solution is presented in [12] that considers AUV path planning 
combining deep learning and reinforcement learning. This 
promising solution has not yet been evaluated in synthetic 
or real experiments. Although artificial intelligence-based 
solutions have been explored, currently, they do not pose a 
complete off-the-shelf and practical solution as substantial 
research must be undertaken.

Extensive research has been carried out on the design 
of tracking controllers for AUVs to address hydrodynamic 
parameter uncertainties. It is well known that the classical 
proportion–integration–differentiation (PID) technology has 
been used in the automatic systems including vehicle con-
trol. Considering the parameter uncertainties, Jalving [13] 
designed three autopilots for steering, diving, and speed con-
trol of an AUV based on PID technologies, where the control 
system was robust and stable for the autopilots. Modern con-
trollers have been developed to cope with the system uncer-
tainties for AUVs. Considering an uncertain model including 
certain unstructured disturbances, a traditional back-stepping 
method combined with robust adaptive technologies [14] 
was proposed for an AUV to address the so-called match-
ing condition problem [15]. Repoulias et al. [16] designed 
a closed-loop controller to address tracking errors due to 
uncertain model parameters and external disturbances. Liang 
et al. [17] suggested a spatial path following controller for an 
underactuated AUV, where a nonlinear damping term was 
introduced to offset the influence of dynamic uncertainties and 
disturbances. In [18], a controller was proposed by combin-
ing a back-stepping technique and adaptive dynamical slid-
ing mode control method. The designed controller resolved 
the environmental disturbances and systematic parametric 
uncertainties well. Utilizing a back-stepping and sliding mode 
control technique, a hierarchical robust nonlinear controller 
was presented for the trajectory tracking of an AUV subject 
to uncertainties [19]. Specifically, the uncertainties include 
current disturbances, unmodelled dynamics, and parameter 
variations. Liang et al. [20] exploited the combination of 
back-stepping control and sliding mode control to acquire 
robustness against systematic uncertainties and external 
disturbances. In the framework of adaptive control, Li et al. 
[21] developed a novel robust adaptive tracking controller 
for an AUV subject to unknown dynamic parameters. Wang 
et al. [22] established an appropriate error dynamics model 
for an AUV in the presence of parameter uncertainties and 
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disturbances. The presented adaptive-robust control scheme 
successfully achieved path following. In [23], a neural adap-
tive-robust prescribed performance controller was proposed. 
The proposed controller guaranteed robust stability against 
unmodelled dynamics and external disturbances. Peng et al. 
[24] introduced an extended state observer to estimate the 
extended state composed of unknown internal dynamics and 
external disturbances. In a previous paper [25], the authors 
combined neural networks and adaptive control techniques, 
and obtained good robustness for path following. Neverthe-
less, most of these modern controllers [14–25] require full or 
partial knowledge of hydrodynamics and disturbances to be 
known. Yan et al. [26] described a double closed-loop trajec-
tory tracking method for an AUV based on model predictive 
control (MPC). In this method, system uncertainty is com-
pensated by a receding horizon implementation. However, 
the MPC method incurs considerable computational complex-
ity and energy consumption. In practical deep sea tasks, the 
AUV’s energy is usually limited. Thus, the current MPC strat-
egy is not an optimum solution for AUV tasks. For robustness 
against hydrodynamic uncertainties and external disturbances, 
time-delay estimator (TDE) has been adopted. Compared to 
the controllers [14–26], TDE has the advantage of computa-
tional simplicity. The main idea of TDE is that assuming the 
system dynamics are given in the form of piecewise or con-
tinuous functions, the variation in the dynamics over a very 
short period can be negligible; thus, the current value of the 
dynamics can be estimated circuitously using the past system 
state and input information. Utilizing TDE techniques, some 
time-delay controllers (TDCs) have been proposed to solve the 
case of system uncertainties and disturbances. Kumar et al. 
[27] first introduced the TDE technique into AUV control. 
The designed TDC used the feedback of delayed accelera-
tions and control inputs to approximately cancel the unknown 
dynamics of the plant and unexpected disturbances. Kim et al. 
[28] developed an integral sliding-mode controller to supple-
ment a conventional TDC and decrease the TDE error due 
to slow data acquisition rate when a DVL navigation system 
is in operation. Cho et al. [29] suggested a robust controller 
combining a back-stepping approach and TDE for the trajec-
tory tracking of an AUV subject to highly nonlinear dynamics 
and external disturbances. Mahmood et al. [30] employed a 
TDC and nonlinear disturbance observer simultaneously to 
address parametric uncertainties and thereby provided an 
attractive model-free structure. Nevertheless, these controllers 
[27–30] do not consider the time-varying measurement delay 
problem. In addition, the implementation of TDE requires 
prior information of the derivative of the system state, i.e., 
the acceleration is known in advance. The acceleration is 
generally acquired by a traditional numerical differentiation 
method [27–30], i.e., the differential of the velocity signal or 
twice the differential of the position signal. However, meas-
urement position signals are inevitably affected by noise due 

to the complex operational conditions and the surrounding 
environment. Thus, the traditional numerical differentiation 
method introduces nonnegligible measurement noise into the 
acceleration [31]. This results in the deterioration of track-
ing performance. Different from the numerical differentiation 
method, a state-derivatives estimation technique was adopted 
in a time-delayed adaptive-robust control strategy [32]. The 
state-derivatives estimation procedure itself had the ability to 
suppress the measurement noise. The presented time-delayed 
adaptive-robust control provided an appealing solution to the 
existing issues of TDE-based controllers and conventional 
ARCs. However, the controller assumes that the feedback 
position signals were timely regardless of potential delay 
issue.

Due to complex marine environment, positioning is par-
ticularly challenging for AUV. Thus, tackling the position-
ing problem for AUV navigation is a current research focus 
[33–35]. With accurate positioning, an AUV can accomplish 
deep sea tracking tasks well. Given that a GPS navigation 
system for an AUV is not available due to the high attenua-
tion rate of GPS signals in the deep sea, the alternative solu-
tions are inertial navigation and acoustic navigation systems. 
In an inertial navigation system, onboard inertial sensors 
mainly include accelerometers, gyroscopes, magnetometers, 
DVLs, and depth sensors [36]. The AUV’s relative posi-
tion and velocity can be estimated by different sensor data 
combined with appropriate filter algorithms. Nevertheless, 
these onboard sensor measurements are sensitive to physi-
cal conditions and lead to significant error accumulation in 
practice. In addition, the complex environment and high 
water pressure in the deep sea make the mechanical design 
of sensors embedded in an AUV difficult. Compared to iner-
tial navigation, acoustic navigation has better accuracy but 
also a higher cost [37]. With the aid of multiple acoustic 
transponders, the acoustic navigation system uses the time 
of flight concept to estimate the position of an AUV. One 
of the popular acoustic navigation systems is a GIB that 
has been used commercially for AUV positioning. Since 
position estimates are available only at the central station, 
a GIB system is naturally suited for AUV tracking applica-
tions [38]. However, the communication delay between the 
AUV and buoys hinders the design of the tracking controller. 
There is a little literature focusing on communication delay 
in the field of AUV control. A region tracking controller was 
proposed to navigate an AUV within a specific region with 
known constant input delay, but robustness to model-based 
uncertainties and external disturbances is not addressed 
[39]. Yan et al. [40] presented a fast terminal sliding mode 
observer to estimate the velocity of an AUV. The designed 
observer performance was not affected directly by the com-
munication delays between the AUV and buoys. In the field 
of aircraft control, [41] presented a trajectory tracking con-
trol scheme for unstable aircraft with delayed measurement. 
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In the presented scheme, a Lyapunov–Krasovskii functional 
and linear matrix inequality (LMI) technique are used to 
obtain a delay-dependent sufficient criterion. In the field 
of ROV control [42, 43], developed tracking controllers to 
address the communication delay between the surface con-
trol center and ROV. Nevertheless, these controller assumed 
that the velocity signal was measurable, while GIB systems 
only provided position signals for AUV.

Inspired by the discussions above, we consider the 
combined nuisance factors of uncertain hydrodynamic 
parameters along with measurement delay. In addition, 
energy efficiency and timeliness are important criteria for 
designing AUV tracking controllers. These findings motivate 
us to favor controllers that are computationally easy to 
implement and suitable for real-time tracking control. 
In this study, a target points tracking controller based on 
underwater positioning system is proposed for an AUV with 
consideration of uncertain hydrodynamic parameters, time-
varying measurement delay, and measurement noise. The 
proposed controller could achieve the target points tracking 
tasks with less energy consumption in a limited time, and 
obtain appealing position tracking accuracy performance. 
The main contributions of our work can be summarized as 
five aspects: 

1. We propose a GIB-based model-free controller that can 
efficiently drive an AUV to arrive at a desired target 
point under hydrodynamic parameter uncertainties, 
measurement noise, and an allowable time-varying 
measurement delay. Note that the presented control 
law does not require the knowledge of the bounds 
on uncertainties, which is the norm for practical 
applications.

2. We analyze system stability for the proposed controller 
and present a delay-dependent stability criterion, where 
the allowable upper bound of measurement delay can be 
calculated.

3. We introduce a robust exact differentiator (RED) 
into the presented control law to reduce the effect 
of measurement noise on the position tracking 
performance. Compared to the traditional numerical 
differentiation method, the RED is effective improving 
the position accuracy for target points.

4. We utilize RED to obtain the derivatives of position 
signals with measurement noise. The control input is 
not significantly increased thus reducing the energy 
consumption of AUV.

5. We challenge our proposed AUV target point tracking 
method in several synthetic scenarios. In the presence of 
measurement noise, measurement delay, and uncertain 
hydrodynamics, the suggested control law attains 
better position control precision than the conventional 
PD controller. Compared to the advanced control 

strategy, i.e., MPC controller, our controller affords 
more appealing computational complexity, i.e., high 
timeliness.

The remainder of this article is organized into four sections. 
Section 2 introduces the mathematical model of the AUV and 
the GIB system. Section 3 describes the presented control 
law and RED. Section 4 presents the simulation results that 
illustrate the performance of the proposed controller, and 
Sect. 5 concludes the work.

2  Modeling and Underwater Positioning

2.1  Mathematical Model of an AUV

The mathematical model includes kinematics and 
hydrodynamics. To describe the motion of an AUV, an inertial 
coordinate frame {I} and body-fixed coordinate frame {B} are 
used, as shown in Fig. 1. Specifically, the position and attitude, 
velocity, and acceleration are represented by frames {I} and 
{B} , respectively. In particular, Fig. 2 shows the motions 
represented simultaneously by frame {I} and frame {B} in the 
horizontal plane.

For frame {I} , the six degree-of-freedom (DOF) AUV 
kinematic equation is defined as follows [1]:

Likewise, the 6-DOF AUV hydrodynamic equation is 
described in frame {B} as follows [1]:

(1)�̇� = J(𝜼)v

Fig. 1  Tracking reference frames
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In Eq. (1), � = [x y z � � �]T is the position and attitude 
vector of the AUV in frame {I} . Specifically, x, y, and z 
denote the positions of AUV in surge, sway, and heave, 
respectively. � , � , and � are the attitude (i.e., Euler angles) 
in roll, pitch and yaw, respectively. The non-singular J(�) 
is a rotation matrix from the {B} frame to the {I} frame. 
v = [u v w p q r]T denotes the velocity vector of the AUV 
in frame {B} , [u v w]T represents the linear velocities and 
[ p q r]T represents the angular velocities.

In Eq. (2), M = MRB +MA is the positive definite iner-
tia matrix, and MRB and MA represent the rigid body mass 
matrix and the added mass matrix, respectively. C(v) is the 
Coriolis and the centripetal terms matrix of the rigid body 
(CRB) with added mass (CA) . D(v) is the damping matrix 
including the linear and quadratic drag terms. The vec-
tor g(�) represents the restoring forces and moments. � is 
control input consisting of forces and moments.

From Eqs. (1) and (2), we can rewrite the AUV dynamic 
system as follows:

where M� = J−TMJ−1 ,  C�(v, �) = J−T [C −MJ−1J̇]J−1 , 

D�(v, �) = J−TDJ−1 , g�(�) = J−Tg(�) , and �� = J−T� . The 
equation (3) is intended to facilitate the analysis of system 
stability later.

The important properties are expressed as follows [44, 
45]:

• The center of mass of the vehicle is the origin OB of 
frame {B}.

(2)Mv̇+ C(v)v+ D(v)v+ g(𝜼) = 𝝉

(3)M𝜼�̈�+ C𝜼(v, 𝜼)�̇�+ D𝜼(v, 𝜼)�̇�+ g𝜼(𝜼) = 𝝉𝜼

• The inertia matrix M� is bounded and symmetric positive 
definite.

• The damping matrix D�(v, �) is positive definite.
• Matrix M� − 2C�(v, �) is skew-symmetric.
• During the controller design, all AUV model parameters 

are unknown and hydrodynamic parameters are uncer-
tain.

Most open-frame AUVs are inherently stable with respect 
to pitch and roll. Therefore, we neglect the pitch and roll 
motions in our work and obtain the 4-DOF hydrodynamics 
of AUV:

where mu , mv , and mw denote the masses in surge, sway, 
and heave, respectively. Ir represents the moment of inertia 
in yaw. ku∕ ku|u|,  kv∕ kv|v| , and kw∕ kw|w| and kr∕ kr|r| are the 
linear/quadratic damping coefficients. Fu , Fv , and Fw are 
the input forces in surge, sway, and heave, respectively. 
Tr describes the external turning moment in yaw. W(t) 
represents restoring force in heave.

In addition, the yaw angle is sufficiently controlled by the 
autopilot installed on the open-frame AUV. Thus, we assume 
that yaw angle is constant, i.e., �(t) = �c , and simplify the 
AUV model to 3-DOF. Hence, we obtain [46]:

(4)muu̇ − mvvr + kuu + ku|u||u|u = Fu

(5)mvv̇ + muur + kvv + kv|v||v|v = Fv

(6)mwẇ + kww + kw|w||w|w = Fw +W(t)

(7)Irṙ + (mv − mu)uv + krr + kr|r||r| = Tr

(8)M =

⎡⎢⎢⎣

mu 0 0

0 mv 0

0 0 mw

⎤⎥⎥⎦

(9)

D(v(t)) =

⎡
⎢⎢⎣

ku + ku�u��u(t)� 0

0 kv + kv�v��v(t)�
0 0

0

0

kw + kw�w��w(t)�

⎤⎥⎥⎦

(10)C(v(t)) = O3×3

(11)g(�(t)) = [0 0 −W(t)]T

(12)�(t) = [Fu(t) Fv(t) Fw(t)]
T

Fig. 2  AUV motions represented by the frames {I} and {B} in the 
horizontal plane



 International Journal of Computational Intelligence Systems           (2023) 16:36 

1 3

   36  Page 6 of 17

2.2  Underwater Positioning

An acoustic positioning-based GIB system (see Fig. 3 is 
adopted [5], which can provide the position signals to the 
AUV controller. In the GIB system, buoys whose clocks 
are synchronized with those of the AUV are deployed over 
the surface and periodically emit acoustic signals. The 
period is TG . Then, the control center of the AUV obtains 
the times of arrival of these acoustic signals to calculate 
an estimated position of the AUV. There is a time-varying 
communication delay from the buoys to the AUV. In general, 
a longer distance between the AUV and buoys corresponds 
to greater communication delay. In addition, the calculated 
time is considered. Thus, the total measurement delay d(t) 
includes the communication time dco(t) and the calculated 
time dca(t) , i.e., d(t) = dco(t) + dca(t) . Here, an assumption 
is made as follows:

Assumption 1 The measurement delay d(t) and its deriva-
tive ̇d(t) are lower and upper bounded, i.e., satisfying the 
limitation [41]

where 0 ≤ dmin ≤ dmax and amin ≤ amax ≤ 1 . dmin and dmax 
denote positive scalars representing the minimum and 
maximum delay, respectively. Likewise, amin and amax are the 
minimum derivative and maximum derivative, respectively.

Remark 1 The traditional GIB system [38] and the extended 
GIB system [5] both encounter the problem of measurement 
delay. Thus, our study does not lose generality.

Remark 2 It is worth noting that we use zero-order hold 
(ZOH) to bridge the GIB system and the continuous-time 
control system. Thus, the measurement position signal is 
continuous for AUV control system.

3  Control Synthesis

In this section, we present an AUV tracking control system 
that can operate under uncertain hydrodynamic parameters 
and time-varying measurement delays. The proposed scheme 
is shown in Fig. 4. The presented controller with a time-
varying measurement delay drives the AUV system to arrive 
at the target point. Because the GIB system only provides 

(13)J(�(t)) =

⎡
⎢⎢⎣

cos(�c) − sin(�c) 0

sin(�c) cos(�c) 0

0 1 0

⎤
⎥⎥⎦

(14)d(t) ∈ [dmin, dmax], ḋ(t) ∈ [amin, amax]

position signals without velocity signals, the RED is used 
instead of the traditional numerical differentiation method to 
obtain the derivative of the position signal, which saves the 
AUV’s limited energy. Table 1 describes the main symbols 
used in this article.

3.1  Control Law with Time‑Varying Measurement 
Delay

In this subsection, the control law with time-varying 
measurement delay is presented for AUV target points 
tracking.

Due to uncertain hydrodynamic parameters, an exact 
AUV model is generally impossible to obtain. Thus, we 
use the model-free control method and obtain the following 
control law

where KP and KD denote the proportional and derivative 
symmetric gain matrices, respectively, and J is the constant 
rotation matrix.

Remark 3 The presented control law uses the derivative of 
the position signal. In our study, the measurement noise is 
considered. In order to obtain the derivative of the position 
signal, the traditional numerical differentiation method will 
magnify the amplitude of measurement noise, which results 
in a significant control input. Therefore, it is necessary to 
find an alternative method to obtain the derivative of the 
position signal for real-time control system.

3.2  System Stability Analysis

The control objective is that the tracking error e = �(t) − �d 
asymptotically converges to zero using proposed control 
law. The following Lemmas are introduced to analyze the 
stability of the proposed controller.

Lemma 1 ([47]) Consider a given positive definite matrix 
R ≻ 0 . Then, for any continuous function � in [a, b] → ℝn , 
the following inequality holds:

w h e r e  �R(�) = ∫ b

a
�T (�)R�(� ) d�  a n d 

Ω = ∫ b

a
�(s) ds −

2

b−a
∫ b

a
∫ s

a
�(�)d�ds.

(15)
𝝉(t) = JT [KP(𝜼d − 𝜼(t − d(t)))

+ KD�̇�(t − d(t))] + g(�)

(16)
�R(�) ≥ 1

b − a

(
�

b

a

�(� ) d�

)T

R

(
�

b

a

�(� ) d�

)

+
3

b − a
ΩTRΩ
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Lemma 2 ([48])  For given positive integers n, and m, a 
scalar � in the interval (0, 1), a given n × n matrix R ≻ 0 , 
two matrices W1 and W2 in ℝn×m , a vector � in ℝm , and a 

defined function Θ(�,R) = 1

�
�TW1

TRW1� +
1

1−�
�TW2

TRW2� . 

Then, if there exists a matrix X in ℝn×n such that 
[
R X

∗ R

]
 ≻ 0 , 

the following inequality holds:

Next, the stability theorem using the proposed control 
law is provided as follows:

Theorem 1 Assume that there exist 3 × 3 positive definite 
matrices R,A,B,E,F,G , matrices X ∈ ℝ

3×3 , H ∈ ℝ
27×3 , 

K ∈ ℝ
27×3, and Φ1,k(𝜂, �̇�) ∈ ℝ

27×27 such that the fol-
lowing LMIs are satisfied for d(t) = {dmin, dmax} and 
ḋ(t) = {amin, amax}

(17)min
�∈(0,1)

Θ(�,R) ≥
[
W1�

W2�

]T[
R X

∗ R

][
W1�

W2�

]

Then the AUV tracking system for a target point under 
Assumptions 1 is asymptotically stable (i.e., tracking error 
asymptotically converges to zero) for time-varying measure-
ment delay d(t).

Several notations and the proof for Theorem 1 are pre-
sented in the appendix.

Remark 4 We refer to the methods in [43] and [47], which are 
applicable to our 3-DOF position control based on the GIB 
positioning system. The structure of the proof is the same as 
the article of Yan et al. [43]. Here, we are more focused on 
how to get the derivative of position signal with measurement 
noise. In the GIB system, velocity signal is not available. If the 
derivative of the position signal is obtained using traditional 
numerical differentiation method, it will significantly enlarge 
the control input and cause a considerable energy consump-
tion of AUV. Thus, we focus on saving the limited energy 
of AUV. In addition, we also consider the case of uncertain 
hydrodynamic parameters in the simulations.

3.3  Robust Exact Differentiator for the Presented 
Control Law

Based on the GIB system, only the measurement of 
position is available for the proposed controller. In practice, 
the measurement signal �m contains the measurement 
noise. Other controllers [27, 29, 30] obtain �̇�m(t) directly 
via numerical differentiation. The traditional numerical 
differentiation method [31] is given by:

Here, � is assumed to be very small. However, due to 
the extremely small factor � , the traditional numerical 

(18)Φ1(𝜂, �̇�) = Φ1,k(𝜂, �̇�) −
1

dmax

ΓTΦ2Γ ≺ 0

(19)Φ2 =

[
R̃ X

∗ R̃

]
≻ 0

(20)�̇�m(t) =
𝜼m(t) − 𝜼m(t − �)

�

Fig. 3  The GIB system [5]

Fig. 4  Schematic diagram of the proposed tracking control
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differentiation method introduces non-negligible measure-
ment noise into �̈�m(t − �) and �̇�m(t − d(t)) in equation (15). 
To circumvent this problem, a RED [49] is introduced to 
reduce the measurement noise effects and improve tracking 
accuracy for target points.

We set �m(t) = �(t) + �(t) . The signal �m is a measurable 
locally bounded function defined on [0,∞ ) and consists of a 
base signal �(t) (i.e., real position) having a derivative with 
Lipschitz’s constant Lc > 0 and noise �(t) . The noise �(t) 
is a measurable (Lebesgue) bounded function of time. The 
practical first-order RED [49] is presented as follows:

where �1 , 𝜆2 > 0 . z0 and z1 are auxiliary functions. ̂̇�m(t) is the 
output of the differentiator. i.e., the estimate of �̇m(t) . Moreover, 

(21)

⎧⎪⎨⎪⎩

ż0 = ̂̇�m(t)

ż0=−𝜆1�z0−�m(t)�1∕2sign(z0−�m(t))+z1
ż1 = −𝜆2sign(z0 − �m(t))

the following saturation function sat(.) is used instead of the 
sign(.) function to avoid the chattering effect in the velocity 
estimation.

where � is the thickness of the boundary layer. � is usually 
chosen as a very small positive value. The robust exact dif-
ferentiator can be rewritten as follows:

(22)

sat((z0 − �m(t))∕𝜑) =

⎧⎪⎨⎪⎩

1, (z0 − �m(t)) > 𝜑

(z0 − �m(t))∕𝜑, �(z0 − �m(t))∕𝜑� ≤ 1

−1, (z0 − �m(t)) < 𝜑

(23)

⎧⎪⎨⎪⎩

ż0 = ̂̇�m(t)

ż0 = −𝜆1�ż0−�m(t)�1∕2sat((z0−�m(t))∕𝜑)+z1
ż1=−𝜆2sat((z0 − �m(t))∕𝜑)

Table 1  The main notations Symbol Description Value

TG The period of emitting acoustic signals from buoys –
d(t) The time-varying measurement delay –
� The real position –
�d The target point position –
�m The measurement position from GIB system –
̂̇�m The estimated derivative of the position using the RED –
e The position error –
KP The proportional matrix –
KD The derivative matrix –
ℝ

n×m Set of all real m by n matrices –
I The identity matrix –
m Weight in air 219.8 kg
mu Mass in surge 391.5 kg
mv Mass in sway 639.6 kg
mw Mass in heave 639.6 kg
ku Linear damping coefficient in surge 16 kg/s
kv Linear damping coefficient in sway 131.8 kg/s
kw Linear damping coefficient in heave 65.6 kg/s
ku|u| Quadratic damping coefficient in surge 229.4 kg/m
kv|v| Quadratic damping coefficient in sway 328.3 kg/m
kw|w| Quadratic damping coefficient in heave 296.8 kg/m
W(t) Buoyancy force in heave −5 N
Ts MPC sample time 0.1 s
Np MPC prediction horizon 10
Nc MPC control horizon 4
U

max
MPC maximum input 400 N

U
min

MPC minimum input −400 N
Qc MPC weight on state 30I

10×10

Rc MPC weight on input 10I
12×12

Nx Number of state variables 6
Nu Number of manipulated variables 3
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Thus, we obtain the estimate ̂̇𝜼m , which is used in the control 
law (15).

Remark 5 It is worth noting that the RED does not need to 
be used in the proposed control law throughout the entire 
trace, only when the AUV arrives at the neighborhood 
of the target point. One reason is that we aim to improve 
the position precision of the target points while reducing 
the amount of computation. The other reason is that the 
parameters of RED are difficult to obtain.

Remark 6 The RED can be employed in real-time control 
systems and the use of the RED is preferable in high-preci-
sion systems with small noise [49].

3.4  The Target Points Tracking Algorithm

In this subsection, the proposed complete algorithm for 
the target points tracking is described in Algorithm 1. 
Note that the proposed algorithm requires little comput-
ing time, so it has high timeliness in real-time control. In 
addition, the proposed algorithm is suitable for tracking 
applications, where the acoustic underwater positioning 
has been implemented commercially [38].

4  Simulation

In this section, simulations for the proposed controller are 
performed in MATLAB 2014a adopting a fourth-order 
Runge–Kutta approach with a fixed step size of 0.01 s. For 

simplicity, �(t) = �c = 0 and r(t) = 0. Thus, the motion in 
yaw is not considered. The AUV hydrodynamic parameters 
utilized from Kim et al. [28] are presented in Table 1, where 
the kmin is equal to 16 kg/s. The target point positions of 
tracking tasks are presented as: PA = [55, 70,−60]T m, PB = 
[55, 50,−60]T m, PC = [35, 50,−60]T m, PD = [35, 70,−60]T 
m and the starting location of the AUV is PS = [70, 80, 0]T 
m on the surface, with an initial position error. The target 
points have the same constant depth −60 m. This research 
can be applied to seabed surveys. The simulation process 
time is 125 s and the target point change time is 25 s ( 
PS → PA → PB → PC → PD → PA ). The linear/quadratic 
damping coefficients are set to vary by 20% from their true 
values in the AUV model. In particular, when AUV tracks 
target points PA and PC , the coefficients increase by 20%, 
and when AUV tracks target points PB and PD , the coef-
ficients decrease by 20%. The control variables are given 
as KP = diag{25, 22, 12} and KD = diag{−58,−55,−45} , 
which are obtained heuristically. First, KP is chosen, tak-
ing into account the positions of target points. Based on the 
simulation results, KP is adjusted to improve the tracking 
accuracy for target points. Second, fixing KP , KD is adjusted 
to improve the tracking accuracy based on the simulation 
results.

We use the LMI-optimization toolbox of MATLAB to 
obtain the allowable measurement delay upper bound dmax 
= 0.723 s. The allowable measurement delay lower bound 
dmin is 0 s.

4.1  The Proposed Controller Utilizing Different 
Measurement Delays

For this trial, the measurement noise is not considered. The 
proposed controller utilizing different measurement delays 
is tested for AUV under system uncertainties.

4.1.1  The Proposed Controller Utilizing an Allowable 
Time‑varying Measurement Delay

According to the lower and upper bounds of the measurement 
delay, the allowable time-varying measurement delay can be 
set to d(t) = 0.723 sin(t) s. The ḋ(t) = 0.723 cos(t) also has 
lower and upper bounds.

The buoys in the GIB system are deployed on the 
surface and are fixed. The range of motion of the AUV 
is in an area of 80 × 100 × 80m3 where the maximum 
distance between the buoy and an arbitrary AUV is 
approximately 151 m. The speed of sound propagation in 
water is approximately 1500 m/s. Here, d(t) = dca(t) + dco(t) . 
The calculated time dca(t) is set to be very small and 
much less than dco(t) , i.e., 0 < dca(t) ≪ dco(t) , such that 
1500m∕s × (0.723s − dca(t)) > 151m . This shows that the 
measurement delay is allowable when AUV performs the 
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tasks in the area of 80 × 100 × 80m3 . A longer distance 
between the AUV and buoys generally corresponds to 
greater measurement delay. For simplicity, we ignore the 
relationship between distance and measurement delay. 
Our main focus shifts to the target points ( PA , PB , PC , and 
PD ) tracking of the AUV under the given measurement 
delay d(t) = 0.723 sin(t) s. Figure 5 presents the position 
trajectory of the proposed controller utilizing the allowable 
measurement delay d(t) = 0.723 sin(t) . This indicates that 
the target point tracking task is achieved using our proposed 
controller with allowable measurement delay.

4.1.2  The Proposed Controller Utilizing a Non‑allowable 
Measurement Delay

Here, all the initial conditions except for the calculation 
time dca are the same as in the previous simulation in 
Sect. 4.1.1. dca is set very large such that the measure-
ment delay d(t) is greater than 0.723 s. For simplicity, we 
assume that the measurement delay d(t) is always equal to 
1 s when the AUV travels in the area of 80 × 100 × 80m3 . 
Figure 6 describes the 3D position trajectory with the pro-
posed controller utilizing a non-allowable measurement 

delay d(t) = 1 s. This figure shows that the positions of 
AUV cannot converge to the desired values of target points 
when the proposed controller uses the non-allowable 
measurement delay.

Fig. 5  AUV position trajectory of the proposed controller utilizing the allowable measurement delay d(t) = 0.723 sin(t)

Fig. 6  AUV 3D position trajectory of the proposed controller utiliz-
ing the non-allowable measurement delay d(t) = 1 s
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4.2  The Proposed Controller Utilizing Robust 
Exact Differentiation against Numerical 
Differentiation Method

We consider the measurement noise and compare the proposed 
controller utilizing the RED with the proposed controller 
utilizing the traditional numerical differentiation method. 
When the AUV arrives at the neighborhood of a target 
point, the measurement signal �m and its derivative both 
change very little. The Lipschitz’s constant Lc can be set to 
1. According to [49], we let �1 = 1 and �2 = 1.1 . � is set to 
0.003. The measurement noise �(t) is a Gaussian white noise 
with zero mean and variance 4 × 10−4m . Then, the root-mean-
square (RMS) errors at steady state for PA(15 s to 25 s), PB

(40 s to 50 s), PC (65 s to 75 s), and PD (90 s to 100 s) are 
calculated and presented in Table 2. The results show that the 
proposed controller utilizing the RED offers better tracking 
accuracy in the positions of target points than the proposed 
controller utilizing the traditional numerical differentiation 
method. We note that the proposed controller utilizing the 
RED outperforms the proposed controller utilizing the 
traditional numerical differentiation method in RMS error 
by approximately 61.2−79.1%. Moreover, Fig. 7 presents the 
control input of both controllers in all directions. It is clear that 
the proposed controller using the RED has a smaller control 
signal than the controller using the numerical differentiation 
method. It is shown that the proposed controller using the RED 
can effectively reduce the energy consumption of AUV, which 
increases the work time for AUV to perform deep sea tasks.

4.3  Evaluating Current Controllers 
under Measurement Delay and Measurement 
Noise

The proposed controller is challenged for d(t) = 0.723 sin(t) 
s, against the conventional PD controller, and MPC controller. 
The new measurement noise �(t) is a Gaussian white noise 
with zero mean and variance 2 × 10−4m . The RED parameters 
are the same as those in the previous trial, while for a fair 
comparison, the control parameters of PD are the same as the 
proposed controller. For PD controller, the derivative of posi-
tion signal is acquired by a traditional numerical differentiation 
method. Then, we compare the proposed controller with an 
advanced control strategy, i.e., the MPC. The parameters for 

MPC are presented in Table 1, while the type of MPC algo-
rithm is a state feedback predictive control (SFPC) with the 
cost function defined as follows:

where ‖x‖2
A
= xTAx ; Y(k) and Yd(k) represent the predicted 

position and the desired position, respectively, Qc and Rc 
are the weighting factors of the output and control signals, 
and △U(k) denotes the control input increment. Note that 
we apply the ZOH technique on MPC to bridge the domain 
difference between the system model and the control syn-
thesis. Figure 8 describes the position tracking results, and 
Table 3 illustrates the RMS errors at steady state for vari-
ous controllers. These results indicate that the PD control-
ler under the measurement delay and measurement noise 
affords a mediocre positional accuracy. In contrast to the 
PD controller, both the MPC controller and the proposed 
controller precisely achieve the target point tracking. In par-
ticular, the proposed controller outperforms the conventional 
PD controller in RMS error by approximately 62.3−80.7%. 
Given that the suggested method meets the requirement of 
high tracking accuracy, we also examine the computational 
burden of each method. Table 4 presents the average calcula-
tion time of each controller in a single step, revealing that the 
proposed controller requires 89.7% less average calculation 
time than the MPC. Given the limited energy resources of 
an AUV, exploiting MPC controller poses a disadvantage 
for AUV applications.

These trials show that the proposed controller achieves 
excellent tracking performance with fewer RMS error 
while only a minor calculation time is required. Finally, it 
is important to note that during our trials, we challenge our 
proposed controller only against open-source controllers, 
namely the conventional PD, and MPC controllers, since 
re-implementing current controllers might lead to a non-
optimized solution that would inevitably underestimate the 
capabilities of the original method.

5  Conclusion

In this paper, a new control method is presented for AUV 
target point tracking. The presented method considers meas-
urement noise and measurement delay, and additionally, all 

(24)J(k) = ‖Y(k) − Yd(k)‖2Qc
+ ‖△ U(k)‖2

Rc

Table 2  RMS errors (m) at the steady state for the proposed controller using RED against numerical differentiation method under measurement 
noise �(t) and measurement delay d(t) = 0.723 sin(t) s

The proposed controller RMS error ( P
A
) RMS error ( P

B
) RMS error ( P

C
) RMS error ( P

D
)

Surge Sway Heave Surge Sway Heave Surge Sway Heave Surge Sway Heave

Using the RED 0.082 0.041 0.026 0.079 0.039 0.025 0.082 0.040 0.028 0.076 0.039 0.027
Using the numerical differentiation 0.229 0.173 0.117 0.221 0.169 0.114 0.231 0.171 0.131 0.196 0.170 0.129
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Fig. 7  The control input of proposed controller using RED against numerical differentiation method under measurement noise �(t) and measure-
ment delay d(t) = 0.723 sin(t) s
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the hydrodynamic parameters to be unknown, which is the 
norm for practical applications. The suggested controller 
with appropriate control gains and measurement delay can 
achieve high steady-state tracking accuracy. The simulation 
results demonstrate the effectiveness of the proposed scheme. 
In particular, the proposedour controller outperforms the con-
ventional time-delay controller in root-mean-square error by 
approximately 62.3−80.7%. Moreover, compared to the model 

predictive control, the proposedour controller requires 89.7% 
less average calculation time. Thus, the proposed controller 
has two advantages, i.e., high tracking accuracy and appeal-
ing computational complexity. In addition, by comparing the 
control input of the proposed controller utilizing robust exact 
differentiation against the numerical differentiation method, 
it can be found that the proposed controller utilizing robust 
exact differentiation can effectively reduce the energy con-
sumption of AUV, which increases the work time for AUV to 
perform deep sea tasks. However, the method presented in this 
work has some limitations. First, the proposed controller does 
not consider the performance indicator of error convergence 
speed. The finite-time convergence for target points needs 
to be studied. Second, the method is limited to target point 
tracking. Therefore, it should be extended to path tracking for 
future research.

Table 3  RMS errors (m) at the steady state for various controllers under measurement noise �(t) and measurement delay 0.723 sin(t) s

Controller RMS error ( P
A
) RMS error ( P

B
) RMS error ( P

C
) RMS error ( P

D
)

Surge Sway Heave Surge Sway Heave Surge Sway Heave Surge Sway Heave

PD controller 0.217 0.168 0.112 0.220 0.166 0.109 0.227 0.170 0.128 0.191 0.165 0.122
The proposed controller 0.079 0.038 0.027 0.077 0.032 0.026 0.078 0.038 0.029 0.081 0.039 0.027
MPC controller [26] 0.052 0.031 0.019 0.050 0.030 0.018 0.053 0.032 0.026 0.051 0.029 0.019

Fig. 8  AUV position trajectory for MPC controller [26], PD controller, and the proposed controller under measurement delay 0.723 sin(t) s and 
measurement noise �(t)

Table 4  The average calculation time of each controller in single step 
(measurement noise �(t) and measurement delay 0.723 sin(t) s)

Controller Time(ms)

The PD controller 0.041
The proposed controller 0.091
The MPC controller [26] 0.883
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Appendix A The notations for Theorem 1

Appendix B The proof for Theorem 1 [43]

The Lyapunov functional candidate is given by

where

Φ1,k(𝜂, �̇�) = Ŝ + R̂ + F̂ + Â + Ĥ + K̂

+ Ê + B̂ + Ĝ,

Γ = [GT
0

GT
1

GT
2

GT
3
],

GT
0
= [03 03 03 03 I3 03 03 03 03],

GT
1
= [03 03 03 I3 03 I3 − 2I3 03 03],

GT
2
= [03 03 03 03 I3 03 03 03 I3],

GT
3
= [03 I3 03 03 03 I3 03 − 2I3 03],

R̂ = diag{dmaxR, 024}, R̃ = diag{R, 3R}

F̂ = diag{F, 03,−(1 − ḋ(t))F, 018},

Ĝ = diag{03, 03, 03, 03,−G, 03,−G, 03, 03},

Ŝ = (Si,j)9×9 with S1,1 = −2kminI3,

S1,2 = −Kp, S1,3 = KD,

and the others are 03,

Â = (Âi,j)9×9 with Â1,2 = A,

Ê = (Êi,j)9×9 with Ê2,8 = d(t)E,

Ê6,8 = −d(t)[1 − ḋ(t)E]

and the others are 03,

B̂ = (B̂i,j)9×9 with B̂4,7 = −(dmax − d(t))B,

B̂6,7 = (dmax − d(t))[1 − ḋ(t)B]

and the others are 03,

Ĥ = HZ1, K̂ = KZ2 with

Z1 = [03 2I3 03 03 03 − 2I3 03 0n − 2I3]

and

Z2 = [03 03 03 − 2I3 − 2I3 − 2I3 03 03 03].

(B1)V =

6∑
i=1

Vi

(B2)V1 = �̇�TM𝜂�̇�

(B3)V2 = eTAe

(B4)V3 = ∫
t−d(t)

t−dmax

eT (s)Ge(s) ds

The given functional equation (B1) is positive definite since 
M𝜂 ≻ 0 , R ≻ 0 , F ≻ 0 , A ≻ 0 , G ≻ 0 ,  E ≻ 0 , and B ≻ 0 . 
Differentiating V1 , we obtain

From MT
�
=M�  ,  M𝜂�̈�=�𝜂 − C��̇� − D��̇� − g𝜂  ,  and 

�T
𝜂
�̇� = {�T

𝜂
�̇�}T = �̇�T�𝜂 , one yields

Using the skew-symmetric property sT (Ṁ𝜂 − 2C𝜂)s = 0 , we 
obtain

In this paper, we consider 3-DOF motions and obtain

Then let D(v) = D1 + D2|v(t)| with D1 = diag{ku, kv, kw} and 
D2 = diag{ku|u|, kv|v|, kw|w|} . Because J−TD1J

−1 and D1 have 
the same eigenvalues, we obtain

where Dmin = diag{kmin, kmin, kmin} and
kmin=min{ku, kv, kw} . Then we obtain

We use the control law (15) and Newton Leibniz formula, 
and obtain

The time derivative of V2 is

Differentiating V3 , we obtain

(B5)V4 = ∫
0

−dmax
∫

t

t+𝜎

�̇�T (s)R�̇�(s) dsd𝜎

(B6)

V5 = ∫
t

t−d(t)

eT (s) dsE∫
t

t−d(t)

e(s) ds

+ ∫
t−d(t)

t−dmax

eT (�) d�B∫
t−d(t)

t−dmax

e(�) d�

(B7)V6 = ∫
t

t−d(t)

�̇�T (s)F�̇�(s) ds

(B8)V̇1 = �̈�TM𝜂�̇� + �̇�TṀ𝜂�̇� + �̇�TM𝜂�̈�

(B9)V̇1=2�̇�T�𝜂−2�̇�
Tg𝜂−2�̇�

TD𝜂�̇�−2�̇�
TC𝜂�̇�+�̇�

TṀ𝜂�̇�

(B10)V̇1 = 2�̇�T�𝜂 − 2�̇�Tg𝜂 − 2�̇�TD𝜂�̇�

(B11)
D(v) = diag{ku, kv, kw}

+ diag{ku|u||u(t)|, kv|v||v(t)|, kw|w||w(t)|}

(B12)− �̇�TD𝜂�̇� < −�̇�TJ−TD1J
−1�̇� < −�̇�TDmin�̇�

(B13)V̇1 < 2�̇�T�𝜂 − 2�̇�Tg� − 2�̇�TDmin�̇�

(B14)
V̇1 < −2�̇�TKP(−∫

t

t−d(t)

�̇�(s)ds + e)

+ 2�̇�TKD�̇�(t − d(t)) − 2�̇�TDmin�̇�

(B15)V̇2 = eT (A + AT )ė
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The time derivative of V4 is

Splitting the integral [t − dmax, t] into two integrals 
[t − dmax, t − d(t)] and [t − d(t), t] , we obtain

We employ Lemma 1, obtaining

and

where W01 = [G0,G1]
T and W23 = [G2,G3]

T . Then we get

We employ Lemma 2 and obtain

Thus, we obtain

The time derivative of V5 is

(B16)
V̇3 = eT (t − d(t))Ge(t − d(t))(1 − ḋ(t))

− eT (t − dmax)Ge(t − dmax)

(B17)V̇4 = dmax�̇�
TR�̇� − ∫

t

t−dmax

�̇�T (s)R�̇�(s)ds

(B18)
V̇4 = dmax�̇�

TR�̇� − ∫
t−d(t)

t−dmax

�̇�T (s)R�̇�(s)ds

− ∫
t

t−d(t)

�̇�T (s)R�̇�(s)ds

(B19)
− ∫

t−d(t)

t−dmax

�̇�T (s)R�̇�(s)ds

=
1

dmax − d(t)
𝜉TWT

01

[
R 0n
0n 3R

]
W01𝜉

(B20)
− �

t

t−d(t)

�̇�T (s)R�̇�(s)ds

≤ −
1

d(t)
𝜉TWT

23

[
R 0n
0n 3R

]
W23𝜉

(B21)

− �
t

t−dmax

�̇�T (s)R�̇�(s)ds

≤ −𝜉T (
1

dmax − d(t)
WT

01

[
R 0n
0n 3R

]
W01

+
1

d(t)
WT

23

[
R 0n
0n 3R

]
W23)𝜉

(B22)− �
t

t−dmax

�̇�T (s)R�̇�(s)ds ≤ −
1

dmax

𝜉TΓTΦ2Γ𝜉

(B23)V̇4 ≤ dmax�̇�
TR�̇� −

1

dmax

𝜉TΓTΦ2Γ𝜉

Differentiating V6 , we obtain

Auxiliary functions are constructed as follows:

Finally, we obtain

where

𝜉=[�̇�, e, �̇�(t−d(t)), e(t−d
max

), ∫ t−d(t)

t−dmax

�̇�(s)ds, e(t − d(t)),

(
1

dmax

− d(t)) ∫ t−d(t)

t−dmax

e(s)ds,
1

d(t)
∫ t

t−d(t)
e(s)ds, ∫ t

t−d(t)
�̇�(s)ds]T and 

Φ1(𝜂, �̇�) = Φ1,k(𝜂, �̇�) −
1

dmax

ΓTΦ2Γ.
If Φ1(𝜂, �̇�) ≺ 0 , we can conclude that V̇  is negative defi-

nite. The matrix Φ1(𝜂, �̇�) is convex with respect to d(t) and 
ḋ(t) . Therefore, it is sufficient to ensure that Φ1 ≺ 0 at the 
vertices of the internals [dmin, dmax] × [amin, amax] . Since V is 
positive definite, the AUV tracking system for a target point 
is asymptotically stable. This completes the proof.

Acknowledgements Not applicable.

Author Contributions Conceptualization: QL; methodology: QL; soft-
ware: QL; writing original draft: QL; writing–review and editing: ML.

Funding The author(s) received no financial support for the research, 
authorship, and/or publication of this article.

Availability of data and materials The data presented in this study are 
available on request from the corresponding author.

Declarations 

 Conflict of interest The authors declare no conflict of interest.

(B24)

V̇5 = ∫
t

t−d(t)

eT (s)ds(E + ET )

×
(
e(t) − e(t − d(t))(1 − ḋ(t))

)

+ ∫
t−d(t)

t−dmax

eT (s)ds(B + BT )

×
(
e(t − d(t))(1 − ḋ(t)) − e(t − dmax)

)

(B25)V̇6= �̇�T (t)F�̇�(t)−�̇�T (t−d(t))F�̇�(t−d(t))(1−ḋ(t))

(B26)f1=0=2𝜉TH[e(t) − e(t − d(t)) − ∫
t

t−d(t)

�̇�(s)ds]

(B27)

f2 = 0 = 2𝜉TK[e(t − d(t)) − e(t − dmax)

− ∫
t−d(t)

t−dmax

�̇�(s)ds]

(B28)V̇ =

6∑
i=1

V̇i +

2∑
j=1

fj ≤ 𝜉TΦ1(𝜂, �̇�)𝜉
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