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Abstract
Many complex real-world problems have been resolved based on similarity operators under intuitionistic fuzzy sets (IFSs).

Numerous authors have developed intuitionistic fuzzy similarity operators (IFSOs) but with some setbacks, which include

imprecise results, omission of hesitation information, misleading interpretations, and outright violations of metric axioms of

similarity operator. To this end, this article presents a newly developed similarity operator under IFSs to ameliorate the itemized

setbacks noticed with the hitherto similarity operators. To buttress the validity of the new similarity operator, we discuss its

properties in alliancewith the truismsof similarity. In addition,wediscuss some complexdecision-making situations involvingcar

purchase selection process, pattern recognition, and emergency management using the new similarity operator based on multiple

criteria decisionmaking (MCDM) technique and recognition principle, respectively. Finally, comparative studies are presented to

argue the justification of the new similarity operator. In short, the novelty of thiswork includes the evaluation of the existing IFSOs

to isolate their fault lines, development of a new IFSO technique with the capacity to resolve the fault lines in the existing

techniques, elaboration of some properties of the newly developed IFSO, and its applications in the solution of disaster control,

pattern recognition, and the process of car selection for purchasing purpose based on the recognition principle and MCDM.

Keywords Intuitionistic fuzzy similarity operators � Intuitionistic fuzzy sets � Emergency management � Intuitionistic fuzzy
pairs � Pattern recognition � Decision-making

1 Introduction

Decision making is an art of making choices established on

information gathering and appraisal of alternative resolu-

tions. An elaborate decision-making procedure enhances

more thoughtful and deliberate decisions by establishing

pertinent information and defining alternate. Decision

making can be tactical, strategic, and operational depend-

ing on the aims and alternatives. The process of decision-

making could be carried out based on the recognition

principle and multiple criteria decision making (MCDM)

by using information measures like distance operator,

correlation coefficient, and similarity operator. Most often,

the art of decision making is hampered by indeterminacies

which necessitate the deployment of fuzzy sets and/or

fuzzy logic [53] to resolve the indeterminacies interwoven

with the decision making process to attain consistent ends.

Fuzzy system though resourceful is handicapped because it

does not consider the hesitant degree component of the

alternatives under consideration. Because of this setback,

the construct of intuitionistic fuzzy sets (IFSs) was intro-

duced by Atanassov [1]. In fact, the idea of IFSs expands
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the scope and modelling capability of fuzzy set. Mathe-

matically speaking, IFS is described by grades of mem-

bership and non-membership, with hesitation margin

collected from the closed interval, I ¼ ½0; 1�. While all

fuzzy sets can be described as an IFS, the idea of IFSs is

different from fuzzy set in the sense that the grades of

membership and non-membership are not complementary.

Pertinent applications of the IFSs have been discussed in

the solutions of real-world problems such as medical

diagnosis [12, 41]. Shi and Ye [10] deliberated on the fuzzy

queries process via intuitionistic fuzzy social networks, and

Liu and Chen [33] discussed a decision-making process

using Heronian aggregation operators under IFSs. In the

same way, some information measures have been discussed

with applications to decision-making problem and diag-

nostic analysis [20]. A work on clustering algorithm using

IFSs was conducted in [51]. Boran [3] deliberated on the

selection process of a facility location by means of IFSs

approach, and an attribute selection using Hellwig’s algo-

rithm was unveiled using IFSs [42]. Xu and Yager [52]

discussed some intuitionistic fuzzy preference relations for

the assessment of group agreement. Belief and plausibility

measures for IFSs were developed with application to

belief-plausibility TOPSIS [45], and a hybridized correla-

tion coefficient technique was developed under IFSs with

application to classification process [16]. Numerous prac-

tical problems have been solved based on sundry correla-

tion approaches [13, 17–19, 21, 43].

To enlarge the application spectral of IFSs, the concept

of intuitionistic fuzzy distance operators (IFDOs) has been

extensively discussed. Burillo and Bustince [5] pioneered

the concept of IFDOs and extended it to interval-valued

fuzzy sets. Szmidt and Kacprzyk [40] improved on the

IFDOs in [5] by incorporating all the describing parameters

of IFSs to enhance accuracy. Various IFDOs via Hausdorff

metric were deliberated on in [7, 23], and a wide-ranging

overview on IFDOs was discussed in [50]. Hatzimichailidis

et al. [24] presented a new IFDOs and its application in

cases of pattern recognition. Wang and Xin [44] discussed

a novel IFDO and its weighted variant with application to

pattern recognition problem, and Davvaz and Sadrabadi

[11] revised certain existing IFDOs and discussed their

application in medical diagnosis.

Intuitionistic fuzzy similarity operator (IFSO) is one of

the widely used techniques applied to data analysis,

machine learning, pattern recognition, and other related

decision-making problems. IFSO measures the relationship

between two IFSs to examine whether there is relation

between two IFSs. Many authors have worked on IFSOs

because the concept is very applicable to real-world

problems. Boran and Akay [4] developed an IFSO from a

biparametric approach and applied it to pattern recognition.

A technique of IFSO was developed from transformation

approach and used to discuss pattern recognition [8], and

Xu [49] applied certain developed techniques of IFSO in

MCDM. Certain IFSOs were developed and used to discuss

pattern recognition [39, 48]. IFSOs using Hausdorff dis-

tance [26] and Lp metric [27] have been studied. In [29],

some new IFSOs based on upper, lower and middle fuzzy

sets were developed, and Ye [47] developed an IFSO using

the cosine function and applied it to mechanical design

schemes. Some IFSOs using set pair analysis were devel-

oped [22]. Numerous practical problems have been solved

based on sundry approaches of IFSO [9, 14, 30, 32].

More so, Chen [6] developed an IFSO technique based

on biparametric approach for estimating the similarity of

IFSs. This similarity technique cannot be reliable because

the hesitation margins of the concerned IFSs are omitted.

Similarly, [25] developed an IFSO technique akin to the

technique in [6], with the same limitation. Mitchell [36]

developed an IFSO technique to augment the Dengfeng–

Chuntian similarity approach. In addition, Li et al. [31]

developed an IFSO based on an IFDO in [5] by considering

the incomplete parameters of IFSs. Ye [46] developed a

cosine-based IFSO, and Hung and Yang [28] presented

some techniques of IFSO. However, both the techniques

[28, 46] do not consider the hesitation margins of IFSs. In

[38], an IFSO [46] was modified by including the whole

descriptive parameters of IFSs and applied it to fault

diagnosis of turbine. Luo and Ren [34] developed an IFSO

using biparametric approach and used it to discuss multiple

attributes decision making (MADM). In [37], a new IFSO

was introduced and used to discuss sundry applications.

Most recently, a new IFSO was developed and applied to

solve emergency control problem [15]. Though this tech-

nique [15] includes all the describing parameters of IFSs, it

lacks accuracy, which will lead to misinterpretation in

terms of application.

The interpretations from the existing techniques of IFSO

cannot be rely upon because

(i) some omit hesitation margins of IFSs in their

computations,

(ii) some could not measure the similarity between

two comparable IFSs,

(iii) the IFSO technique in [37] violates the axiomatic

description of similarity operator,
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(iv) all the existing IFSO techniques yield outcomes

that are not reliable, and so give misleading

interpretations.

These drawbacks constitute the justification of this present

work. The present work is equipped with the necessary

facilities to absolve the drawbacks of the hitherto IFSOs.

The aim of work, which form the contributions of the study

will be achieved by the following points:

(i) evaluating the existing IFSOs to isolate their fault

lines,

(ii) developing a new IFSO technique with the

capacity to resolve the drawbacks in the existing

techniques,

(iii) elaborating some properties of the new IFSO to

describe its alliances with the notion of similarity

operator,

(iv) discussing the application of the new IFSO in the

solution of disaster control problem, pattern

recognition, and the process of car selection for

purchasing purpose based on recognition principle

and MCDM.

For organization purpose, we outline the rest of the work as

follows: Sect. 2 dwells on some preliminaries of IFSs and

recaps some existing IFSO techniques; Sect. 3 presents the

development of the new IFSO and discusses its properties;

Sect. 4 discusses the application examples based on

recognition principle and MCDM approach; and Sect. 5

gives the summary of the findings and suggest areas of

future direction.

2 Intuitionistic Fuzzy Sets and Their
Similarity Operators

This section elucidates the preliminaries of IFSs and reit-

erates some hitherto similarity operators for IFSs.

2.1 Intuitionistic Fuzzy Sets

Assume X to be the classical set in this article. Firstly, we

reiterate the definition of fuzzy set:

Definition 2.1 A fuzzy set symbolized by C in X is

describes by

C ¼ fhx; bCðxÞi : x 2 Xg; ð1Þ

where bCðxÞ is a degree of membership of x in X defined by

the function given as bC : X ! ½0; 1� [53].

Definition 2.2 An intuitionistic fuzzy set symbolized by <
in X is describes by

< ¼ fhx; b<ðxÞ; g<ðxÞi : x 2 Xg; ð2Þ

where b<ðxÞ and g<ðxÞ are grades of membership and non-

membership of x in X defined by the functions b< : X !
½0; 1� and g< : X ! ½0; 1�, with the property that b<ðxÞ þ
g<ðxÞ� 1 [1].

The hesitation margin of an IFS < in X denoted by

w<ðxÞ 2 ½0; 1�, expresses the knowledge of the degree to

whether x in X or not, and it is defined by

w<ðxÞ ¼ 1� b<ðxÞ � g<ðxÞ. For simplicity, we symbol-

ized an IFS < ¼ fhx; b<ðxÞ; g<ðxÞi : x 2 Xg as

< ¼
�
b<ðxÞ; g<ðxÞ

�
.

Next, we recap certain operations on IFSs like equality,

inclusion, complement, union, and intersection.

Definition 2.3 Assume <1 and <2 are IFSs in X, then the

following properties follows [2]:

(i) <1 ¼ <2 , b<1
ðxÞ ¼ b<2

ðxÞ and g<1
ðxÞ ¼ g<2

ðxÞ,
8x 2 X,

(ii) <1 � <2 , b<1
ðxÞ� b<2

ðxÞ and g<1
ðxÞ� g<2

ðxÞ,
8x 2 X,

(iii) <1 � <2 , b<1
ðxÞ� b<2

ðxÞ and g<1
ðxÞ� g<2

ðxÞ,
8x 2 X,

(iv) <1 ¼ fhx; b<1
ðxÞ; g<1

ðxÞi : x 2 Xg,
<2 ¼ fhx; b<2

ðxÞ; g<2
ðxÞi : x 2 Xg,

(v) <1 [ <2 ¼ fhx;max
�
b<1

ðxÞ; b<2
ðxÞ
�
;

min
�
g<1

ðxÞ; g<2
ðxÞ
�
i : x 2 Xg,

(vi) <1 \ <2 ¼ fhx;min
�
b<1

ðxÞ;b<2
ðxÞ
�
;

max
�
g<1

ðxÞ; g<ðxÞ
�
i : x 2 Xg.

2.2 Some Intuitionistic Fuzzy Similarity
Operators

Some obtainable techniques for calculating the similarity

between IFSs are recapped before the development of the

new IFSO technique. First, the definition of IFSO is pre-

sented as in [40].

Definition 2.4 Suppose <1 and <2 symbolize IFSs in

X ¼ fx1; . . .; xNg, then the similarity measure between the
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IFSs is a function Sð<1;<2Þ : <1 	 <2 ! ½0; 1� which

satisfies the following conditions;

(i) 0�Sð<1;<2Þ� 1,

(ii) Sð<1;<1Þ ¼ 1,

(iii) Sð<1;<2Þ ¼ 1 , <1 ¼ <2,

(iv) Sð<1;<2Þ ¼ Sð<2;<1Þ,
(v) Sð<1;<3Þ�Sð<1;<2Þ þ Sð<2;<3Þ, where <3 is

an IFS in X.

When Sð<1;<2Þ tends to 1 implies that <1 and <2 are

strongly similar, Sð<1;<2Þ tends to 0 implies <1 and <2

are weakly similar. In particular, if Sð<1;<2Þ ¼ 0 implies

<1 and <2 are not similar, and if Sð<1;<2Þ ¼ 1 then

implies <1 and <2 are perfectly similar.

The following are some of the existing techniques for

measuring similarity concerning IFSs:

2.2.1 Chen [6]

S1ð<1;<2Þ

¼ 1� 1

2N

XN
j¼1

�
j
�
b<1

ðxjÞ � g<1
ðxjÞ
�
�
�
b<2

ðxjÞ � g<2
ðxjÞ
�
j
	
:

ð3Þ

This similarity operator does not include the hesitation

information, and so the operator lacks credibility due to the

exclusion. In addition, the operator yields results with low

precision as seen in Tables 2 and 3.

2.2.2 Hong and Kim [25]

S2ð<1;<2Þ

¼ 1� 1

2N

XN
j¼1

�
jb<1

ðxjÞ � b<2
ðxjÞj þ jg<1

ðxjÞ � g<2
ðxjÞj

	
:

ð4Þ

This similarity operator modified the operator in [6] with

the inclusion of absolute values for the parametric differ-

ence. Likewise, the similarity operator excludes the hesi-

tation information, and so lacks credibility. Also, the

operator yields results with low precision as seen in

Tables 2 and 3.

2.2.3 Mitchell [36]

S3ð<1;<2Þ ¼
1

2

 

1� 1

N

�XN
j¼1

jb<1
ðxjÞ � b<2

ðxjÞj
	�

þ


1� 1

N

�XN
j¼1

jg<1
ðxjÞ � g<2

ðxjÞj
	�!

;

ð5Þ

S4ð<1;<2Þ ¼
1

2

 

1� 1ffiffiffiffi

N
p

�XN
j¼1

jb<1
ðxjÞ � b<2

ðxjÞj2
	1

2
�

þ


1� 1ffiffiffiffi

N
p

�XN
j¼1

jg<1
ðxjÞ � g<2

ðxjÞj2
	1

2
�!

:

ð6Þ

The similarity operators in [36] improved the operators

developed in [6, 25], but the limitation of the exclusion of

the hesitation information remains. Similarly, the similarity

values from these operators have low precision as seen in

Tables 2 and 3.

2.2.4 Li et al. [31]

This similarity operator is similar to (6), and hence has the

same limitation as the operator proposed in [36].

2.2.5 Hung and Yang [28]

S6ð<1;<2Þ ¼
1

N

XN
j¼1

 
minfb<1

ðxjÞ; b<2
ðxjÞg þminfg<1

ðxjÞ; g<2
ðxjÞg

maxfb<1
ðxjÞ; b<2

ðxjÞg þmaxfg<1
ðxjÞ; g<2

ðxjÞg

!
;

ð8Þ

S7ð<1;<2Þ ¼
PN

j¼1

�
minfb<1

ðxjÞ;b<2
ðxjÞg þminfg<1

ðxjÞ; g<2
ðxjÞg

�

PN
j¼1

�
maxfb<1

ðxjÞ;b<2
ðxjÞg þmaxfg<1

ðxjÞ; g<2
ðxjÞg

� ;

ð9Þ

S8ð<1;<2Þ ¼ 1�
PN

j¼1

�
jb<1

ðxjÞ � b<2
ðxjÞj þ jg<1

ðxjÞ � g<2
ðxjÞj

�

PN
j¼1

�
b<1

ðxjÞ þ b<2
ðxjÞ þ g<1

ðxjÞ þ g<2
ðxjÞ
� :

ð10Þ

S5ð<1;<2Þ ¼ 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2N

XN
j¼1

��
b<1

ðxjÞ � b<2
ðxjÞ
�2

þ
�
g<1

ðxjÞ � g<2
ðxjÞ
�2	

vuut : ð7Þ
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The similarity operators are based on the extreme values of

parameters and absolute values of parametric difference

different from the aforementioned operators. Albeit, the

outcomes of these operators cannot be relied on because of

the omission of the hesitation information. Also, the results

from these operators have low precision and accuracy as

seen in Tables 2 and 3.

2.2.6 Ye [46]

S9ð<1;<2Þ

¼ 1

N

XN
j¼i

 
b<1

ðxjÞb<2
ðxjÞ þ g<1

ðxjÞg<2
ðxjÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�

b2<1
ðxjÞ þ g2<1

ðxjÞ
��
b2<2

ðxjÞ þ g2<2
ðxjÞ
�q
!
:

ð11Þ

This similarity operator has three deficiencies namely, (i) it

does not include the hesitation information, and so the

operator lacks credibility due to the exclusion, (ii) it yields

results with low precision as seen in Tables 2 and 3, and

(iii) it violates the metric condition of the similarity oper-

ator. To see (iii), we consider the following example.

Example 2.5 Assume IFSs <1 and <2 in X ¼ fx1; x2g are

given by

<1 ¼ fh1; 0i; h0; 0:6ig;
<2 ¼ fh0; 0:5i; h1; 0ig:

By applying (11), we have

S9ð<1;<2Þ

¼ 1

2

 
ð1	 0Þ þ ð0	 1Þ þ ð0	 0:5Þ þ ð0:6	 0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð12 þ 02 þ 02 þ 0:62Þ þ ð02 þ 0:52 þ 12 þ 02Þ

p
!

¼ 0;

which infringes on the metric condition of the similarity

operator.

2.2.7 Shi and Ye [38]

This similarity operator improved the operator in [46] by

the inclusion of hesitation information. Its deficiencies

include (i) it yields results with low precision as seen in

Tables 2 and 3, and (ii) it violates the metric condition of

similarity operator. To see (ii), we consider Example 2.5 by

applying (11), and similarly,

S10ð<1;<2Þ ¼ 0;

which violates the metric condition of the similarity

operator.

2.2.8 Luo and Ren [34]

S11ð<1;<2Þ ¼ 1� 1

3N

XN
j¼1

�
jb2<1

ðxjÞ � b2<2
ðxjÞj

þjg2<1
ðxjÞ � g2<2

ðxjÞj þ jm2
<1
ðxjÞ � m2

<2
ðxjÞj

	
;

ð13Þ

where

m<1
ðxjÞ ¼

b<1
ðxjÞ þ 1� g<1

ðxjÞ
2

;

m<2
ðxjÞ ¼

b<2
ðxjÞ þ 1� g<2

ðxjÞ
2

:

Similarly, this similarity operator does not include the

hesitation information, and so it lacks credibility due to the

exclusion, and yields results with low precision as seen in

Tables 2 and 3.

2.2.9 Quynh et al. [37]

S12ð<1;<2Þ ¼
3þmin

�
b<1

ðxjÞ; b<2
ðxjÞ
�

4

�
max

�
g<1

ðxjÞ; g<2
ðxjÞ
�

4

�
�
jb<1

ðxjÞ � b<2
ðxjÞj þ jg<1

ðxjÞ � g<2
ðxjÞj

�
4

:

ð14Þ

This similarity operator has three deficiencies namely, (i) it

does not include the hesitation information, (ii) it violates

the metric condition of similarity operator by yielding

results that are not within the close interval [0, 1] (see

S10ð<1;<2Þ ¼
1

N

XN
j¼i

 
b<1

ðxjÞb<2
ðxjÞ þ g<1

ðxjÞg<2
ðxjÞ þ w<1

ðxjÞw<2
ðxjÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�

b2<1
ðxjÞ þ g2<1

ðxjÞ þ w2
<1
ðxjÞ
��
b2<2

ðxjÞ þ g2<2
ðxjÞ þ w2

<2
ðxjÞ
�q
!
: ð12Þ
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Table 3), and (iii) it yields results with low precision as

seen in Tables 2 and 3.

2.2.10 Ejegwa and Ahemen [15]

S13ð<1;<2Þ ¼ 1� 1ffiffiffiffiffiffi
3N

p
�XN

j¼1

�
jb<1

ðxjÞ � b<2
ðxjÞj2

þ jg<1
ðxjÞ � g<2

ðxjÞj2

þ jw<1
ðxjÞ � w<2

ðxjÞj2
�	1

2

:

ð15Þ

This similarity operator includes the hesitation information

and satisfies the metric condition of the similarity operator,

but yields results with low precision as seen in Tables 2 and

3 compare to the new similarity operator.

3 New Similarity Operator for IFSs

Every one of the enlisted similarity methods of IFSs pos-

sesses either one of the setbacks, namely; (1) omission of

the indeterminate parameter, (2) unable to produce valid

similarity value, and (3) violation of the axioms of the

similarity operator. Sequel to these setbacks, we develop a

new method similarity operator under IFSs to resolve the

setbacks. The new similarity operator concerning IFSs F

and G in S ¼ fs1; s2; . . .; sNg is given by:

~Sð<1;<2Þ ¼
SbðF;GÞ þ Sg þ SwðF;GÞ

3
; ð16Þ

where

SbðF;GÞ ¼ 1� 1ffiffiffiffi
Na

p
 XN

j¼1



max

n
b<1

ðxjÞ; b<2
ðxjÞ
o

�min
n
b<1

ðxjÞ; b<2
ðxjÞ
o�a!1

a

SgðF;GÞ ¼ 1� 1ffiffiffiffi
Na

p
 XN

j¼1



max

n
g<1

ðxjÞ � g<2
ðxjÞ
o

�min
n
g<1

ðxjÞ � g<2
ðxjÞ
o�a!1

a

SwðF;GÞ ¼ 1� 1ffiffiffiffi
Na

p
 XN

j¼1



max

n
w<1

ðxjÞ � w<2
ðxjÞ
o

�min
n
w<1

ðxjÞ � w<2
ðxjÞ
o�a!1

a

for a ¼ 1; 2.

We see that (16) includes the indeterminate parameter/

hesitation information, can produce valid similarity value

(as seen in Tables 2, 3), and satisfies the axioms of simi-

larity operator unlike the discussed similarity operators.

3.1 Some Properties of the New IFSO

Some of the properties of the new similarity operator under

IFSs are presented in this subsection to validate the new

method. We observe that

max
n
b<1

ðxjÞ; b<2
ðxjÞ
o
�min

n
b<1

ðxjÞ; b<2
ðxjÞ
o

¼ jb<1
ðxjÞ � b<2

ðxjÞj;

max
n
g<1

ðxjÞ; g<2
ðxjÞ
o
�min

n
g<1

ðxjÞ; g<2
ðxjÞ
o

¼ jg<1
ðxjÞ � g<2

ðxjÞj; and

max
n
w<1

ðxjÞ;w<2
ðxjÞ
o
�min

n
w<1

ðxjÞ;w<2
ðxjÞ
o

¼ jw<1
ðxjÞ � w<2

ðxjÞj

9>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>;

:

ð17Þ

Substituting (17) into (16), we have

~Sð<1;<2Þ ¼
1

3

 

1� 1ffiffiffiffi

Na
p

�XN
j¼1

jb<1
ðxjÞ � b<2

ðxjÞja
	1

a
�

þ


1� 1ffiffiffiffi

Na
p

�XN
j¼1

jg<1
ðxjÞ � g<2

ðxjÞja
	1

a
�

þ


1� 1ffiffiffiffi

Na
p

�XN
j¼1

jw<1
ðxjÞ � w<2

ðxjÞja
	1

a
�!

:

ð18Þ

Theorem 3.1 Suppose <1 � <2 � <3 are IFSs in

X ¼ fx1; x2. . .; xng, then

(i) ~Sð<1;<3Þ� ~Sð<1;<2Þ,
(ii) ~Sð<1;<3Þ� ~Sð<2;<3Þ,
(iii) ~Sð<1;<3Þ� min

�
~Sð<1;<2Þ; ~Sð<2;<3Þ

�
.

Proof Since <1 � <2 � <3, then b<1
ðxjÞ� b<2

ðxjÞ
� b<3

ðxjÞ and g<1
ðxjÞ� g<2

ðxjÞ� g<3
ðxjÞ 8xj 2 X. By

consequence,

jb<1
ðxjÞ � b<3

ðxjÞja � jb<1
ðxjÞ � b<2

ðxjÞja;

jg<1
ðxjÞ � g<3

ðxjÞja � jg<1
ðxjÞ � g<2

ðxjÞja;

jw<1
ðxjÞ � w<3

ðxjÞja � jw<1
ðxjÞ � w<2

ðxjÞja;

which implies that
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1� 1ffiffiffiffi
Na

p
�XN

j¼1

jb<1
ðxjÞ � b<3

ðxjÞja
	1

a

� 1� 1ffiffiffiffi
Na

p
�XN

j¼1

jb<1
ðxjÞ � b<2

ðxjÞja
	1

a

;

1� 1ffiffiffiffi
Na

p
�XN

j¼1

jg<1
ðxjÞ � g<3

ðxjÞja
	1

a

� 1� 1ffiffiffiffi
Na

p
�XN

j¼1

jg<1
ðxjÞ � g<2

ðxjÞja
	1

a

;

1� 1ffiffiffiffi
Na

p
�XN

j¼1

jw<1
ðxjÞ � w<3

ðxjÞja
	1

a

� 1� 1ffiffiffiffi
Na

p
�XN

j¼1

jw<1
ðxjÞ � w<2

ðxjÞja
	1

a

:

Hence, ~Sð<1;<3Þ� ~Sð<1;<2Þ by (18), which proves (i).

Similarly, (ii) follows. From (i) and (ii), (iii) follows. h

Theorem 3.2 Suppose <1 � <2 � <3 are IFSs in

X ¼ fx1; x2. . .; xng, then

(i) 0� ~Sð<1;<2Þ� 1,

(ii) ~Sð<1;<1Þ ¼ 1, ~Sð<2;<2Þ ¼ 1,

(iii) ~Sð<1;<2Þ ¼ 1 , <1 ¼ <2,

(iv) ~Sð<1;<2Þ ¼ ~Sð<1;<2Þ,
(v) ~Sð<1;<2Þ ¼ ~Sð<2;<1Þ,
(vi) Sð<1;<3Þ�Sð<1;<2Þ þ Sð<2;<3Þ,
(vii) ~Sð<1 \ <2;<1 [ <2Þ ¼ ~Sð<1;<2Þ.

Proof To show (i), we establish that (a) ~Sð<1;<2Þ� 0,

and (b) ~Sð<1;<2Þ� 1. It is easy to see (a) because

1� 1ffiffiffiffi
Na

p
�XN

j¼1

jb<1
ðxjÞ � b<2

ðxjÞja
	1

a

� 0;

1� 1ffiffiffiffi
Na

p
�XN

j¼1

jg<1
ðxjÞ � g<2

ðxjÞja
	1

a

� 0;

1� 1ffiffiffiffi
Na

p
�XN

j¼1

jw<1
ðxjÞ � w<2

ðxjÞja
	1

a

� 0:

To prove (b), we assume that

�XN
j¼1

jb<1
ðxjÞ � b<2

ðxjÞja
	1

a

¼ A

�XN
j¼1

jg<1
ðxjÞ � g<2

ðxjÞja
	1

a

¼ B

�XN
j¼1

jw<1
ðxjÞ � w<2

ðxjÞja
	1

a

¼ C

9>>>>>>>>>>>>=
>>>>>>>>>>>>;

: ð19Þ

Substituting (19) into 18, we have

~Sð<1;<2Þ ¼
1

3

 

1� Affiffiffiffi

Na
p

�
þ


1� Bffiffiffiffi

Na
p

�
þ


1� Cffiffiffiffi

Na
p

�!

¼ 3
ffiffiffiffi
Na

p
� A� B� C

3
ffiffiffiffi
Na

p :

Then

~Sð<1;<2Þ � 1 ¼ 3
ffiffiffiffi
Na

p
� A� B� C

3
ffiffiffiffi
Na

p � 1

� � ðAþ Bþ CÞ
3
ffiffiffiffi
Na

p � 0:

Hence, ~Sð<1;<2Þ � 1� 0 ) ~Sð<1;<2Þ� 1, which proves

(i). The proofs of (ii)–(iv) are straightforward.

We prove (v) as follows:

~Sð<1;<2Þ ¼
1

3

 

1� 1ffiffiffiffi

Na
p

�XN
j¼1

jb<1
ðxjÞ � b<2

ðxjÞja
	1

a
�

þ


1� 1ffiffiffiffi

Na
p

�XN
j¼1

jg<1
ðxjÞ � g<2

ðxjÞja
	1

a
�

þ


1� 1ffiffiffiffi

Na
p

�XN
j¼1

jw<1
ðxjÞ � w<2

ðxjÞja
	1

a
�!

¼ 1

3

 

1� 1ffiffiffiffi

Na
p

�XN
j¼1

j � ð�b<1
ðxjÞ þ b<2

ðxjÞÞja
	1

a
�

þ


1� 1ffiffiffiffi

Na
p

�XN
j¼1

j � ð�g<1
ðxjÞ þ g<2

ðxjÞÞja
	1

a
�

þ


1� 1ffiffiffiffi

Na
p

�XN
j¼1

j � ð�w<1
ðxjÞ þ w<2

ðxjÞÞja
	1

a
�!

¼ 1

3

 

1� 1ffiffiffiffi

Na
p

�XN
j¼1

jb<2
ðxjÞ � b<1

ðxjÞja
	1

a
�

þ


1� 1ffiffiffiffi

Na
p

�XN
j¼1

jg<2
ðxjÞ � g<1

ðxjÞja
	1

a
�

þ


1� 1ffiffiffiffi

Na
p

�XN
j¼1

jw<2
ðxjÞ � w<2

ðxjÞja
	1

a
�!

;

which shows that ~Sð<1;<2Þ ¼ ~Sð<2;<1Þ. The proof of

(vi) is deductively from Theorem 3.1.
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By incorporating the intersection and union of IFSs

based on the new similarity operator, we have

~Sð<1 \ <2;<1 [ <2Þ

¼ 1

3

 

1� 1ffiffiffiffi

Na
p

�XN
j¼1

jminfb<1
ðxjÞ; b<2

ðxjÞg

�maxfb<1
ðxjÞ; b<2

ðxjÞgja
	1

a
�

þ


1� 1ffiffiffiffi

Na
p

�XN
j¼1

jmaxfg<1
ðxjÞ; g<2

ðxjÞg

�minfg<1
ðxjÞ; g<2

ðxjÞgja
	1

a
�

þ


1� 1ffiffiffiffi

Na
p

�XN
j¼1

jw<1\<2
ðxjÞ � w<1[<2

ðxjÞja
	1

a
�!

¼ 1

3

 

1� 1ffiffiffiffi

Na
p

�XN
j¼1

jb<1
ðxjÞ � b<2

ðxjÞja
	1

a
�

þ


1� 1ffiffiffiffi

Na
p

�XN
j¼1

jg<2
ðxjÞ � g<1

ðxjÞja
	1

a
�

þ


1� 1ffiffiffiffi

Na
p

�XN
j¼1

jw<1
ðxjÞ � w<2

ðxjÞja
	1

a
�!

¼ 1

3

 

1� 1ffiffiffiffi

Na
p

�XN
j¼1

jb<1
ðxjÞ � b<2

ðxjÞja
	1

a
�

þ


1� 1ffiffiffiffi

Na
p

�XN
j¼1

j � ð�g<2
ðxjÞ þ g<1

ðxjÞÞja
	1

a
�

þ


1� 1ffiffiffiffi

Na
p

�XN
j¼1

jw<1
ðxjÞ � w<2

ðxjÞja
	1

a
�!

¼ 1

3

 

1� 1ffiffiffiffi

Na
p

�XN
j¼1

jb<1
ðxjÞ � b<2

ðxjÞja
	1

a
�

þ


1� 1ffiffiffiffi

Na
p

�XN
j¼1

jg<1
ðxjÞ � g<2

ðxjÞÞja
	1

a
�

þ


1� 1ffiffiffiffi

Na
p

�XN
j¼1

jw<1
ðxjÞ � w<2

ðxjÞja
	1

a
�!

¼ ~Sð<1;<2Þ;

which proves (vii). h

4 Application Examples

The applications of the new similarity operator in real-

world problems based on recognition principle and MCDM

technique are discussed in this section.

4.1 Recognition Principle

Recognition principle involves the classification of an

unidentified pattern < with known patterns <j

(j ¼ 1; 2; . . .;N) to decide which class < belongs with the

aid of an information measure. Now, using the new simi-

larity operator, we determine the classification process of <
to <j by

X ¼ argmax1� j�Nf ~Sð<;<jÞg: ð20Þ

4.1.1 Application 1

Emergency control is the management of responsibilities or

resources to deal with a disaster to avert or lessen its

harmful effects. The incidence of disasters is indetermi-

nate, and so it is good to adopt indeterminate approaches to

manage disasters. We deploy IFSO to control disaster

because of the ability of IFSs to tackle hesitations.

Suppose emergency rescue workers have documented

three typical situations of emergency rescue planning data

represented as IFSs denoted by ~D1, ~D2 and ~D3 determined

by rescue difficulty (s1), scale of people affected (s2),

traffic conditions (s3), and emergency supplies (s4),

respectively. Assume a new emergency situation occurred

denoted by IFS ~E also describe by rescue difficulty, scale

of people affected, traffic conditions, and emergency sup-

plies. To control the present emergency, the emergency

rescue workers will match the present emergency with the

past emergencies to classify the current emergency and

adopt the corrective measures of the past emergency to the

present one. The disaster situation data used in the appli-

cation is taken from the work in [35].

First, the similarity indexes of ~E and ~Dj (j ¼ 1; 2; 3) are

computed using (18) as follow:

~Sð ~D1; ~EÞ ¼ 0:9; ~Sð ~D2; ~EÞ ¼ 0:9167;

~Sð ~D3; ~EÞ ¼ 0:9333; for a ¼ 1;

and

~Sð ~D1; ~EÞ ¼ 0:8635; ~Sð ~D2; ~EÞ ¼ 0:9118;

~Sð ~D3; ~EÞ ¼ 0:9152; for a ¼ 2:

By applying (20), the current emergency ~E is most asso-

ciated with emergency ~D3. Hence, the disaster rescue team

should apply the disaster control measures used to control

emergency ~D3 for the current disaster ~E. This approach of

disaster control is very significant in real life because

during an emergency, there are apprehension and confusion

that needed to be controlled as quickly as possible. With

this approach, disasters can be adequately controlled pro-

vided there are intuitionistic fuzzy dataset for past

emergencies.
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4.1.2 Application 2

The process of pattern recognition or classification is most

often enmeshed with uncertainties, and as such, pattern

recognition based on IFSO is the significance for the

dependable outcome. Suppose there are four classes of

building material symbolized by IFSs ~P1, ~P2, ~P3, and ~P4

described by the set of features ‘ ¼ f‘1; ‘2; . . .; ‘12g.
Assume there is an unknown building material symbolized

by an IFS ~C defined in the same features. The recognition

principle associates ~C with any of the known patterns using

the new similarity operator. The patterns are given in

Table 1 [44].

The similarity indexes of ~C and ~Pj (j ¼ 1; 2; 3; 4) are

computed using (18) as follows:

~Sð ~P1; ~CÞ ¼ 0:7564; ~Sð ~P2; ~CÞ ¼ 0:7411; ~Sð ~P3; ~CÞ ¼ 0:8802;

~Sð ~P4; ~CÞ ¼ 0:9772; for a ¼ 1;

and

~Sð ~P1; ~CÞ ¼ 0:6807; ~Sð ~P2; ~CÞ ¼ 0:6756; ~Sð ~P3; ~CÞ ¼ 0:8077;

~Sð ~P4; ~CÞ ¼ 0:9656; for a ¼ 2:

Using (20), we see that the unknown ~C can be classified

with pattern ~P4 since their similarity index is the greatest.

The unknown pattern is categorized using the greatest

similarity value without any indecision. Because of the

inevitability of vagueness in the process of pattern recog-

nition, this idea of IFSO will be of a significant help in eye

tracking algorithm using multi-model Kalman filter, human

action recognition in movies, among others.

Table 1 Building material

patterns
Patterns ‘1 ‘2 ‘3 ‘4 ‘5 ‘6 ‘7 ‘8 ‘9 ‘10 ‘11 ‘12

b ~P1
0.173 0.102 0.530 0.965 0.420 0.008 0.331 1.000 0.215 0.432 0.750 0.432

g ~P1
0.524 0.818 0.326 0.008 0.351 0.956 0.512 0.000 0.625 0.534 0.126 0.432

b ~P2
0.510 0.627 1.000 0.125 0.026 0.732 0.556 0.650 1.000 0.145 0.047 0.760

g ~P2
0.365 0.125 0.000 0.648 0.823 0.153 0.303 0.267 0.000 0.762 0.923 0.231

b ~P3
0.495 0.603 0.987 0.073 0.037 0.690 0.147 0.213 0.501 1.000 0.324 0.045

g ~P3
0.387 0.298 0.006 0.849 0.923 0.268 0.812 0.653 0.284 0.000 0.483 0.912

b ~P4
1.000 1.000 0.857 0.734 0.021 0.076 0.152 0.113 0.489 1.000 0.386 0.028

g ~P4
0.000 0.000 0.123 0.158 0.896 0.912 0.712 0.756 0.389 0.000 0.485 0.912

b ~C 0.978 0.980 0.798 0.693 0.051 0.123 0.152 0.113 0.494 0.987 0.376 0.012

g ~C 0.003 0.012 0.132 0.213 0.876 0.756 0.721 0.732 0.368 0.000 0.423 0.897

Table 2 Similarity values for Application 1

Methods ð ~D1; ~EÞ ð ~D2; ~EÞ ð ~D3; ~EÞ Rankings Class

S1 [6] 0.8750 0.8750 0.9125 ð ~D3; ~EÞ
ð ~D2; ~EÞ � ð ~D1; ÊÞ ð ~D3; ~EÞ
S2 [25] 0.8750 0.8750 0.9125 ð ~D3; ~EÞ
ð ~D2; ~EÞ � ð ~D1; ÊÞ ð ~D3; ~EÞ
S3 [36] 0.8750 0.8750 0.9125 ð ~D3; ~EÞ
ð ~D2; ~EÞ � ð ~D1; ÊÞ ð ~D3; ~EÞ
S4 [36] 0.8035 0.8677 0.8829 ð ~D3; ~EÞ
ð ~D2; ~EÞ
ð ~D1; ÊÞ ð ~D3; ~EÞ
S5 [31] 0.8419 0.8304 0.8827 ð ~D3; ~EÞ
ð ~D1; ~EÞ
ð ~D2; ÊÞ ð ~D3; ~EÞ
S6 [28] 0.7926 0.7480 0.8313 ð ~D3; ~EÞ
ð ~D1; ~EÞ
ð ~D2; ÊÞ ð ~D3; ~EÞ
S7 [28] 0.6364 0.7778 0.8889 ð ~D3; ~EÞ
ð ~D2; ~EÞ
ð ~D1; ÊÞ ð ~D3; ~EÞ
S8 [28] 0.7778 0.9000 0.9500 ð ~D3; ~EÞ
ð ~D2; ~EÞ
ð ~D1; ÊÞ ð ~D3; ~EÞ
S9 [46] 0.2436 0.2394 0.2437 ð ~D3; ~EÞ
ð ~D1; ~EÞ
ð ~D2; ÊÞ ð ~D3; ~EÞ
S10 [38] 0.2410 0.2400 0.2431 ð ~D3; ~EÞ
ð ~D1; ~EÞ
ð ~D2; ÊÞ ð ~D3; ~EÞ
S11 [34] 0.8625 0.8858 0.9056 ð ~D3; ~EÞ
ð ~D2; ~EÞ
ð ~D1; ÊÞ ð ~D3; ~EÞ
S12 [37] 0.6750 0.5500 0.8500 ð ~D3; ~EÞ
ð ~D1; ~EÞ
ð ~D2; ÊÞ ð ~D3; ~EÞ
S13 [15] 0.8586 0.8616 0.9000 ð ~D3; ~EÞ
ð ~D2; ~EÞ
ð ~D1; ÊÞ ð ~D3; ~EÞ
~S 0.9000 0.9167 0.9333 ð ~D3; ~EÞ
ð ~D2; ~EÞ
ð ~D1; ÊÞ ð ~D3; ~EÞ
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4.1.3 Comparison of the IFSOs Based on Recognition
Principle

Next, we justify the validity of the newly developed sim-

ilarity operator by comparison with the other similarity

operators [6, 15, 25, 28, 31, 34, 36–38, 46], and present the

results in Tables 2 and 3.

From Table 2 and Fig. 1, we see that all the IFSOs give

the same classification. Albeit, the new developed simi-

larity operator yields the greatest similarity values when

compared to the methods in [6, 15, 25, 28, 31, 34,

36–38, 46]. In fact, the developed IFSO gives the most

accurate results, and so it is very reliable and appropriate

for MCDM problems.

From Table 3 and Fig. 2, we see that the newly devel-

oped IFSO gives the best similarity indexes with a high

reliability rate. It is observed that the IFSO [37] violates a

condition of similarity measure by yielding values that are

not within [0, 1]. Nonetheless, all the similarity operators

in [6, 15, 25, 28, 31, 34, 36, 38, 46] and the new similarity

operator give the same classification.

4.2 Multiple Criteria Decision Making

The multiplicity of objectives in most human decision-

making cases necessitate the use of multiple criteria deci-

sion-making (MCDM) approaches. Multiple criteria deci-

sion-making (MCDM) is the process use to tackle the

multiplicity of objectives in the human decision domain.

Fig. 1 Plot of Table 2

Table 3 Similarity values for Application 2

Similarities ð ~P1; ~CÞ ð ~P2; ~CÞ ð ~P3; ~CÞ ð ~P4; ~CÞ Rankings Class

S1 [6] 0.5689 0.5659 0.8032 0.9750 ð ~P4; ~CÞ
ð ~P3; ~CÞ
ð ~P1; ~CÞ
ð ~P2; ~CÞ ð ~P4; ~CÞ
S2 [25] 0.5689 0.5638 0.8006 0.9730 ð ~P4; ~CÞ
ð ~P3; ~CÞ
ð ~P1; ~CÞ
ð ~P2; ~CÞ ð ~P4; ~CÞ
S3 [36] 0.6709 0.6511 0.8415 0.9748 ð ~P4; ~CÞ
ð ~P3; ~CÞ
ð ~P1; ~CÞ
ð ~P2; ~CÞ ð ~P4; ~CÞ
S4 [36] 0.5729 0.5656 0.7392 0.9638 ð ~P4; ~CÞ
ð ~P3; ~CÞ
ð ~P1; ~CÞ
ð ~P2; ~CÞ ð ~P4; ~CÞ
S5 [31] 0.4844 0.5135 0.7079 0.9578 ð ~P4; ~CÞ
ð ~P3; ~CÞ
ð ~P2; ~CÞ
ð ~P1; ~CÞ ð ~P4; ~CÞ
S6 [28] 0.3098 0.3068 0.5580 0.7552 ð ~P4; ~CÞ
ð ~P3; ~CÞ
ð ~P1; ~CÞ
ð ~P2; ~CÞ ð ~P4; ~CÞ
S7 [28] 0.1172 0.3820 0.3648 0.9751 ð ~P4; ~CÞ
ð ~P2; ~CÞ
ð ~P3; ~CÞ
ð ~P1; ~CÞ ð ~P4; ~CÞ
S8 [28] 0.2098 0.5528 0.5346 0.9874 ð ~P4; ~CÞ
ð ~P2; ~CÞ
ð ~P3; ~CÞ
ð ~P1; ~CÞ ð ~P4; ~CÞ
S9 [46] 0.0525 0.0599 0.0724 0.0832 ð ~P4; ~CÞ
ð ~P3; ~CÞ
ð ~P2; ~CÞ
ð ~P1; ~CÞ ð ~P4; ~CÞ
S10 [38] 0.0509 0.0579 0.0708 0.0807 ð ~P4; ~CÞ
ð ~P3; ~CÞ
ð ~P2; ~CÞ
ð ~P1; ~CÞ ð ~P4; ~CÞ
S11 [34] 0.5739 0.5664 0.7972 0.9713 ð ~P4; ~CÞ
ð ~P3; ~CÞ
ð ~P1; ~CÞ
ð ~P2; ~CÞ ð ~P4; ~CÞ
S12 [37] �2:9975 �2:9003 �1:0505 0.6487 ð ~P4; ~CÞ
ð ~P3; ~CÞ
ð ~P2; ~CÞ
ð ~P1; ~CÞ ð ~P4; ~CÞ
S13 [15] 0.5936 0.5971 0.7588 0.9589 ð ~P4; ~CÞ
ð ~P3; ~CÞ
ð ~P2; ~CÞ
ð ~P1; ~CÞ ð ~P4; ~CÞ
~S 0.7564 0.7411 0.8802 0.9772 ð ~P4; ~CÞ
ð ~P3; ~CÞ
ð ~P1; ~CÞ
ð ~P2; ~CÞ ð ~P4; ~CÞ

Fig. 2 Plot of Table 3
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MCDM is the aspect of operations research that explicitly

assesses numerous conflicting criteria in decision-making.

The best way to effectively carry out MCDM is through

fuzzy logic.

4.2.1 Application 3

Suppose a car buyer wants to buy an effective car for

private use, and there are five cars represented by IFSs ~Cj

ðj ¼ 1; 2; 3; 4; 5Þ to be selected from. The five selected cars

were based on the following evaluating factors (E); fuel

Table 4 Car selection information

Evaluating factors

Cars Fuel consumption Degree of friction Price Comfort Design Security

~C1 (0.5, 0.2) (0.3, 0.6) (0.6, 0.2) (0.6, 0.3) (0.7, 0.1) (0.5, 0.3)

~C2 (0.2, 0.4) (0.4, 0.1) (0.2, 0.5) (0.9, 0.0) (0.8, 0.1) (0.7, 0.1)

~C3 (0.4, 0.4) (0.8, 0.1) (0.4, 0.5) (0.5, 0.1) (0.6, 0.2) (0.3, 0.2)

~C4 (0.6, 0.3) (0.5, 0.2) (0.3, 0.6) (0.6, 0.1) (0.7, 0.1) (0.4, 0.3)

~C5 (0.3, 0.5) (0.6, 0.1) (0.1, 0.6) (0.4, 0.3) (0.8, 0.1) (0.5, 0.4)

Table 5 Normalized car selection information

Evaluating factors

Cars Fuel consumption Degree of friction Price Comfort Design Security

~C1 (0.5, 0.2) (0.3, 0.6) (0.2, 0.6) (0.6, 0.3) (0.7, 0.1) (0.5, 0.3)

~C2 (0.2, 0.4) (0.4, 0.1) (0.5, 0.2) (0.9, 0.0) (0.8, 0.1) (0.7, 0.1)

~C3 (0.4, 0.4) (0.8, 0.1) (0.5, 0.4) (0.5, 0.1) (0.6, 0.2) (0.3, 0.2)

~C4 (0.6, 0.3) (0.5, 0.2) (0.6, 0.3) (0.6, 0.1) (0.7, 0.1) (0.4, 0.3)

~C5 (0.3, 0.5) (0.6, 0.1) (0.6, 0.1) (0.4, 0.3) (0.8, 0.1) (0.5, 0.4)

Table 6 NIP and PIS for car selection information

Evaluating factors

Cars Fuel consumption Degree of friction Price Comfort Design Security

~C� (0.2, 0.5) (0.3, 0.6) (0.6, 0.1) (0.4, 0.3) (0.6, 0.2) (0.3, 0.4)

~Cþ (0.6, 0.2) (0.8, 0.1) (0.2, 0.6) (0.9, 0.0) (0.8, 0.1) (0.7, 0.1)

Table 7 Similarity indexes for a ¼ 1

Cars ~Sð ~Cj; ~C�Þ ~Sð ~Cj; ~CþÞ

~C1 0.9000 0.8222

~C2 0.7667 0.9000

~C3 0.8333 0.8444

~C4 0.8111 0.8667

~C5 0.8333 0.8444

Table 8 Similarity indexes for a ¼ 2

Cars ~Sð ~Cj; ~C�Þ ~Sð ~Cj; ~CþÞ

~C1 0.8618 0.7789

~C2 0.7213 0.8302

~C3 0.7814 0.8104

~C4 0.7752 0.8436

~C5 0.7705 0.7970
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consumption, degree of friction, price, comfort, design, and

security.

4.2.2 Algorithm for the MCDM

Step 1. Formulate the intuitionisic fuzzy decision matrix

(IFDM) ~Ck ¼ fEið ~CjÞgðm	nÞ for i ¼ 1; . . .;m and

j ¼ 1; . . .; n. The information of the cars are represented by

IFDM based on the selecting factors in Table 4.

The least criterion from Table 4 is price and it is called

the cost criterion, and the other criteria are the benefit

criteria.

Step 2. Find the normalized IFDM ~D ¼
hb ~C�

j
ðEiÞ; g ~C�

j
ðEiÞim	n for ~Ck, where hb ~C�

j
ðEiÞ; g ~C�

j
ðEiÞi are

intuitionistic fuzzy values, and ~D is defined by

hb ~C�
j
ðEiÞ; g ~C�

j
ðEiÞi

¼
hb ~Cj

ðEiÞ; g ~Cj
ðEiÞi; for benefit criterion of ~D

hg ~Cj
ðEiÞ; b ~Cj

ðEiÞi; for cost criterion of ~D

(

ð21Þ

Table 5 contains the information of the normalized IFDM.

Step 3. Compute positive ideal solution (PIS) and neg-

ative ideal solution (NIS) given by

~Cþ ¼ f ~Cþ
1 ; . . .;

~Cþ
n g

~C� ¼ f ~C�
1 ; . . .;

~C�
n g

ð22Þ

where

~Cþ ¼
hmaxfb ~Cj

ðEiÞg;minfg ~Cj
ðEiÞgi; if Ei is a benefit criterion

hminfb ~Cj
ðEiÞg;maxfg ~Cj

ðEiÞgi; if Ei is a cost criterion;

(

ð23Þ

~C� ¼
hminfb ~Cj

ðEiÞg;maxfg ~Cj
ðEiÞgi; if Ei is a benefit criterion

hmaxfb ~Cj
ðEiÞg;minfg ~Cj

ðEiÞgi; if Ei is a cost criterion:

(

ð24Þ

The information for NIS and PIS is contains in Table 6.

Step 4. Calculate the similarity indexes, ~Sð ~Cj; ~C
�Þ and

~Sð ~Cj; ~C
þÞ using the new method for a ¼ 1; 2. Applying

(18) on Tables 4 and 6, we get Tables 7 and 8.

Step 5. Calculate the closeness coefficients for each cars
~Cj using

f ð ~CjÞ ¼
~Sð ~Cj; ~C

þÞ
~Sð ~Cj; ~C

þÞ þ ~Sð ~Cj; ~C
�Þ

: ð25Þ

By applying (25), we get Table 9.

Step 6. The car with the greatest closeness coefficient is

the most suitable to purchase by the car buyer. From

Table 9, we see that car ~C2 is the appropriate car to buy

because of its economic fuel consumption, commensurate

price, comfort, good design, and security.

For the sake of comparison, we deploy the existing

similarity operators [6, 15, 25, 28, 31, 34, 36–38, 46] and

our new similarity operator on the data in Tables 4 and 6.

By following Steps 4–6, we get the orderings in Table 10.

Table 10 shows that the MCDM technique embedded

with the discussed similarity operators yields the same

choice with the exception of the similarity operators in

[6, 25]. In fact, the MCDM approach with the similarity

operators in [6, 25] gives the same ordering and ranking,
~C4
 ~C3
 ~C2
 ~C5
 ~C1. The MCDM approach with the sim-

ilarity operator in [46] and S6 in [28] gives the same

ordering and ranking, ~C2
 ~C3
 ~C5
 ~C1
 ~C4. The MCDM

approach with the similarity operators in [15, 38] gives the

same ordering and ranking, ~C2
 ~C4
 ~C5
 ~C3
 ~C1. Finally,

the MCDM approach with the similarity operators in

Table 9 Closeness coefficients

Cars f ð ~CjÞ; a ¼ 1 Ranking f ð ~CjÞ; a ¼ 2 Ranking

~C1 0.4774 5th 0.4747 5th

~C2 0.5400 1st 0.5351 1st

~C3 0.5033 3rd 0.5091 3rd

~C4 0.5166 2nd 0.5211 2nd

~C5 0.5033 4th 0.5085 4th

Table 10 Comparative Information

Methods Ordering Purchase choice

S1 ~C4
 ~C3
 ~C2
 ~C5
 ~C1
~C4

S2 ~C4
 ~C3
 ~C2
 ~C5
 ~C1
~C4

S3 ~C2
 ~C4
 ~C3
 ~C5
 ~C1
~C2

S4 ~C2
 ~C4
 ~C3
 ~C5
 ~C1
~C2

S5 ~C2
 ~C4
 ~C3
 ~C5
 ~C1
~C2

S6 ~C2
 ~C3
 ~C5
 ~C1
 ~C4
~C2

S7 ~C2
 ~C4
 ~C3
 ~C5
 ~C1
~C2

S8 ~C2
 ~C4
 ~C3
 ~C5
 ~C1
~C2

S9 ~C2
 ~C3
 ~C5
 ~C1
 ~C4
~C2

S10 ~C2
 ~C4
 ~C5
 ~C3
 ~C1
~C2

S11 ~C2
 ~C4
 ~C3
 ~C5
 ~C1
~C2

S12 ~C2
 ~C4
 ~C3
 ~C5
 ~C1
~C2

S13 ~C2
 ~C4
 ~C5
 ~C3
 ~C1
~C2

~S ~C2
 ~C4
 ~C3
 ~C5
 ~C1
~C2
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[28, 31, 34, 36, 37] and the new similarity operator gives

the same ordering and ranking, ~C2
 ~C4
 ~C3
 ~C5
 ~C1.

The new similarity method possesses some overriding

advantages, which are:

(i) the new similarity method produces more precise

and reliable similarity values compare to the other

similarity methods.

(ii) the new similarity method incorporates all the

parameters of IFSs to enhance performance rating

and avoid exclusion error as witnessed in

[6, 25, 28, 31, 34, 36, 37, 46].

(iii) the new similarity method completely satisfied the

axioms of similarity operator unlike the method in

[37].

5 Conclusion

The place of similarity operator in real-world problems of

decision making under indeterminate environments cannot

be overemphasized. To this end, the concept of similarity

operator have been researched by not a few authors using

intuitionistic fuzzy information. In this paper, a generalized

similarity operator is developed which produces more

precise and reliable similarity values compare to the other

similarity methods. Besides the fact that the new similarity

operator completely satisfied the axioms of the similarity

operator unlike the method in [37], it equally incorporates

all the descriptive features of IFSs to enhance performance

rating unlike the methods in [6, 25, 28, 31, 34, 36, 37, 46].

Some theoretical results of the generalized similarity

operator for IFSs were discussed. In addition, the gener-

alized similarity operator was used to discuss problems of

real-world decision-making based on the recognition

principle and MCDM approach. Some comparative studies

were carried out to justify the rationale behind the devel-

opment of the generalized similarity operator for IFSs. The

generalized similarity operator for IFSs could be extended

to other uncertain environments besides IFSs with some

marginal modifications for future consideration.
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