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Abstract. Knowledge graphs’ incompleteness has motivated many
researchers to propose methods to automatically infer missing facts
in knowledge graphs. Knowledge graph embedding has been an active
research area for knowledge graph completion, with great improvement
from the early TransE to the current state-of-the-art ConvKB. ConvKB
considers a knowledge graph as a set of triples, and employs a convo-
lutional neural network to capture global relationships and transitional
characteristics between entities and relations in the knowledge graph.
However, it only utilizes the triple information, and ignores the rich
information contained in relation paths. In fact, a path of one relation
describes the relation from some aspect in a fine-grained way. Therefore,
it is beneficial to take relation paths into consideration for knowledge
graph embedding. In this paper, we present a novel convolutional neu-
ral network-based embedding model PConvKB, which improves knowl-
edge graph embedding by incorporating relation paths locally and glob-
ally. Specifically, we introduce attention mechanism to measure the local
importance of relation paths. Moreover, we propose a simple yet effec-
tive measure DIPF to compute the global importance of relation paths.
Experimental results show that our model achieves substantial improve-
ments against state-of-the-art methods.

Keywords: Knowledge graph embedding · Link prediction · Triple
classification · Convolutional neural network · Attention mechanism

1 Introduction

Large-scale knowledge graphs such as Freebase [3], DBpedia [1], and Wikidata [38]
store real-world facts in the form of triples (head, relation, tail), abbreviated as
(h, r, t), where head and tail are entities and relation represents the relationship
between head and tail. They are important resources for many intelligence applica-
tions like question answering and web search. Although current knowledge graphs
consist of billions of triples, they are still far from complete and missing crucial
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facts, e.g., 75% of the person entities in Freebase have no known nationality [8],
which hampers their usefulness in the aforementioned applications.

Various methods are proposed to address this problem, and the knowledge
graph embedding methods have attracted increasing attention in recent years.
The main idea of knowledge graph embedding is to embed entities and relations
of a knowledge graph into a continuous vector space and predict missing facts
by manipulating the entity and relation embeddings involved. Among knowl-
edge graph embedding methods, the translation-based models are simple and
efficient, also perform well. For example, given a triple (h, r, t), the most well-
known translation-based model TransE [5] models the relation r as a translation
vector r connecting the embeddings h and t of the two entities, i.e., h + r ≈ t.
It performs well on simple relations, i.e., 1-to-1 relations. but poorly on compli-
cated relations, i.e., 1-to-N, N-to-1 and N-to-N relations. To address this issue,
TransH [41], TransR [20] and TransD [14] are proposed. Unfortunately, these
models are less simplicity and efficiency than TransE. Nickel et al. [26] present
HolE, which uses circular correlation to combine the expressive power of the
tensor product with the simplicity and efficiency of TransE.

Recently, several convolutional neural network (CNN)-based models [7,22,23]
have been proposed to learn the embeddings of entities and relations in knowl-
edge graphs, in which [22] reserves the transitional characteristic in translation-
based models and is comparably simple and efficient, achieves state-of-the-art
performance. However, it only focuses on knowledge triples, ignoring the rich
knowledge contained in relation paths. In fact, a path of one entity pair describes
the relation connecting the entity pair from some aspect in a fine-grained way,
and the importance of each path is different. For example, in Fig. 1, the two paths
place of birth – country and friend – nationality of entity pair (Tom Cruise,
America) describes the relation nationality from the location and social way,
respectively. Since the path place of birth – country is more essential than friend
– nationality to express the relation nationality, thus it is more important from
the local view. Moreover, from the global view the path friend – nationality also
occurs in entity pair (Tom Cruise, England), which is connecting by the relation
travel, thus it is less important than the path place of birth – country to express
the relation nationality.

In this paper, we present a path-augmented CNN-based model, which incor-
porates relation paths for knowledge graph embedding. Specifically, we first
introduce the attention mechanism to automatically measure the local impor-
tance of each path for the given entity pair, then inspired by inverse docu-
ment frequency, we propose degree-guided inverse path frequency to compute the
global importance of each path. Finally, we improve knowledge graph embedding
by incorporating locally and globally attentive relation paths.

Our contributions in this paper are summarized as follows:

– We present a path-augmented CNN-based knowledge graph embedding
model, which improves embedding model by incorporating relation paths
locally and globally.
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Fig. 1. An illustration that a path of one relation describes the relation from some
aspect in a fine-grained way, and the importance of each path is different.

– We introduce attention mechanism to model the local importances of relation
paths for knowledge graph embedding.

– We propose a simple yet effective measure, degree-guided inverse path fre-
quency, to compute the global importances of relation paths for knowledge
graph embedding.

– In addition, we apply three pooling operations to aggregate convolutional
feature maps, which reduces the number of parameters greatly.

– The experimental results on four benchmark datasets show that our model
achieves state-of-the-art performance.

2 Preliminaries

2.1 Problem Definition

Given a knowledge graph G, which is a collection of valid factual triples (h, r, t),
where h, t ∈ E and r ∈ R. E is the entity set and R is the relation set. In
knowledge graph completion, embedding methods aim to define a score function
f that gives an implausibility score for each triple (h, r, t) such that valid triples
receive lower scores than invalid triples.

2.2 ConvKB

In this section, we briefly describe the state-of-the-art CNN-based model Con-
vKB, and choose it as the base of our model.

For each triple (h, r, t), ConvKB denotes the dimensionality of embeddings
by k, such that each embedding triple (vh,vr,vt) can be viewed as a matrix
A = [vh,vr,vt] ∈ R

k×3. A filter ω ∈ R
1×3 is repeatedly operated over every

row of A to generate a feature map v = [v1, v2, . . . , vk] ∈ R
k, in which vi =

g(ω · Ai,: + b), where · denotes a dot product, Ai,: is the i-th row of A, b is
a bias term, and g is the non-linear activation function ReLU. In particular, if
ω = [1, 1,−1], b = 0, and g(x) = |x| or g(x) = x2, ConvKB reduces to the plain
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TransE. Hence, in some point of view, ConvKB is an extension of TransE, which
models triple more globally and comprehensively. The overview of ConvKB is
shown in Fig. 2.

Fig. 2. The architecture of ConvKB.

Let Ω and n denote the set of filters and the number of filters, respectively.
ConvKB uses n filters to generate n feature maps. These feature maps are con-
catenated into a single vector, which is then calculated using the dot product
with a weight vector w ∈ R

nk×1 to give an implausibility score for the triple
(h, r, t). Formally, the score function of ConvKB is defined as follows:

fConvKB(h, r, t) = concat(g([vh,vr,vt] ∗ Ω)) · w (1)

where Ω and w are shared parameters, independent of h, r and t, ∗ denotes the
convolution operator, and concat denotes the concatenation operator.

It is obvious that ConvKB only learns from triples, ignoring the rich knowl-
edge contained in relation paths, which can lead to poor performance.

3 Our Proposed Model

3.1 PConvKB

In this section, we present our model PConvKB, which learns the embeddings
by taking relation paths into consideration. Moreover, we also take into account
the local and global importances of the relation paths. The architecture of our
model is shown in Fig. 3.

We denote relation paths between the head entity h and the tail entity t as
P (h, t) = {p1, p2, . . . , pN}, where relation path p = (r1, . . . , rm) is a series of
interconnected relations between the entities, i.e., h

r1−→ . . .
rm−−→ t. Similar to

ConvKB, for each triple (h, r, t), the score function of our model PConvKB is
defined as follows:

fPConvKB(h, r, t) = σ(ψ([vh,

N∑

i=1

ΦGi
× ΦLi

× pi + vr,vt] ∗ Ω)) · w (2)
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Fig. 3. The architecture of our model PConvKB.

where σ denotes the non-linear function, i.e., sigmoid, ψ denotes the average
pooling operation, ΦGi

denotes the global importance of the i-th path, ΦLi

denotes the local importance of the i-th path, pi is the embedding of the
i-th path, which is computed as

∑m
i=1 vri , Ω and w are shared parameters.

The computation of local and global importances is detailed in Sects. 3.2 and
3.3, respectively.

3.2 Measuring Local Importances of Relation Paths by Attention
Mechanism

Attention mechanism [2] is designed to improve the performance of encoder-
decoder model on machine translation, which assigns different weights to dif-
ferent data to allow the model focusing on important data. In recent years,
attention mechanism has been widely used in several research topics, such as
question answering [18] and image captioning [40]. In this paper, we apply
attention mechanism to measure the local importances of relation paths for
knowledge graph embedding. Given a triple (h, r, t) and its set of relation paths
P (h, t) = {p1, p2, . . . , pN}, we compute the local importance of each path as:

ΦLi
= sigmoid(vrWLpi) (3)

where WL ∈ R
k×k is the parameter matrix. Similar to [19], we set the maximum

length of each path to 3.

3.3 Measuring Global Importances of Relation Paths by
Degree-Guided Inverse Path Frequency

Since the attention mechanism only focuses on the set of relation paths P (h, t)
of the given entity pair (h, t) that connects by the relation r. It does not consider
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that the path in the set of relation paths may also occur in other entity pairs
that connects by other relations. Typically, the more set of relation paths a
path occurs in, the less importance the path is. Therefore, inspired by inverse
document frequency [10,16], which is a weighting function that has been widely
used for measuring how informative each word is in a set of documents. We
propose the Degree-guided Inverse Path Frequency (DIPF) to model the global
importance of each path in the set of relation paths.

For each relation r ∈ R in the knowledge graph G, we first find its corre-
sponding entity pairs (hr, tr)i, i = 1, 2, . . . , nr, where nr is the number of entity
pairs connecting by the relation r. i.e.,

(hr, tr)i ∈ G and (hr, r, tr)i ∈ G. (4)

Then, we choose the entity pair (hr, tr)b, which has the biggest node degree
and is computed as:

NodeDegree((hr, tr)b) = max[NodeDegree((hr, tr)i)], i = 1, 2, . . . , nr (5)

in which,
NodeDegree((hr, tr)i) = deg(hr

i ) + deg(tri ) (6)

where NodeDegree(·) is the function to compute the node degree of an entity
pair, max[·] is the maximum function, deg(·) is the node degree of an entity,
which is computed as the number of the edges connected with the entity.

Next, we count the set of relation paths for entity pair (hr, tr)b, and is denoted
as P ((hr, tr)b):

P ((hr, tr)b) = {pr1, p
r
2, . . . , p

r
mr} (7)

where mr is the number of paths of entity pair (hr, tr)b. Similar to local impor-
tance computation, we set the maximum length of each path to 3.

Finally, the global importance of each path in the set of relation paths
P (h, t) = {p1, p2, . . . , pN} of the given triple (h, r, t) is computed as:

ΦGi
= log

|R|
pti

(8)

where |R| is the cardinality of R (i.e., total number of relations in R), pti is the
number of times the path pi occurs in the set of {P ((hr, tr)b), r ∈ R}.

3.4 Aggregating Feature Maps Using Pooling Operation

As mentioned in Sect. 2.1, ConvKB uses concatenate operation to aggregate
feature maps. However, previous works [30,35] demonstrate that pooling opera-
tion can better aggregate feature maps than simply concatenate operation, and
reduce the number of parameters greatly. In this paper, we adopt the following
three pooling operations to replace the concatenate operation, respectively:

ψsum =
n∑

i=1

vi (9)
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ψave =
1
n

n∑

i=1

vi (10)

ψmax = max([v1, . . . ,vn]) (11)

The average pooling operation is finally chosen due to its superior perfor-
mance in the experiments.

3.5 Model Training

The objective is to ensure that a triple in the golden set G should have a lower
implausibility score than a triple in the corrupted triple set G′

. Similar to [22], we
adopt Adam optimizer [17] to train PConvKB, and minimize the loss function
with L2 regularization on the weight vector w as follows:

L =
∑

(h,r,t)∈G ⋃ G′
log(1 + exp(l(h,r,t) · fPConvKB(h, r, t))) +

λ

2
‖w‖22 (12)

in which, l(h,r,t) =

{
1, for (h, r, t) ∈ G
−1, for (h, r, t) ∈ G′

.

3.6 Complexity Analysis

We compare the parameter size and computational complexity of our model
PConvKB with ConvKB. Let Ne denote the number of entities, Nr the number
of relations, K the embedding dimension, S the number of triples for learning,
P the expected number of relation paths connecting two entities, and L the
expected length of relation paths. The parameter size of PConvKB is equal to the
parameter size of ConvKB, i.e., (Ne +Nr)K. For each iteration in optimization,
the computational complexity of PConvKB is O(SKPL), and the computational
complexity of ConvKB is O(SK).

4 Experiments

For a fair comparison, we evaluate our model on two tasks: link prediction [5],
and triples classification [33]. Both of them evaluate the accuracy of predicting
unseen triples from different viewpoints.

4.1 Datasets

We evaluate our model on four benchmark datasets WN18 [5], FB15k [5],
WN18RR [7] and FB15k-237 [36]. WN18 is extracted from WordNet [21], which
contains word concepts and lexical relations between the concepts. FB15k is
a subset of Freebase constructed by Bordes et al. [5]. As noted by Toutanova
and Chen [36], WN18 and FB15k have problematic reversible triples causing
abnormally high results. This is the reason that the refined version of WN18
and FB15k, i.e., WN18RR and FB15k-237, are widely used in state-of-the-art
methods. Table 1 shows the statistics of the datasets used in our experiments.
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Table 1. Statistics of the experimental datasets

Dataset #Entity #Relation #Train #Valid #Test

WN18 40,943 18 141,442 5,000 5,000

FB15k 14,951 1,345 483,142 50,000 59,071

WN18RR 40,943 11 86,835 3,034 3,134

FB15k-237 14,541 237 272,115 17,535 20,466

4.2 Comparison Methods

To demonstrate the effectiveness of our model, we compare PConvKB against a
variety of knowledge graph embedding methods developed in recent years.

– TransE [5] is one of the most widely used knowledge graph embedding
methods.

– TransH [41] associates each relation with a relation-specific hyperplane to
alleviate the complex relations problem.

– TransD [14] not only considers the complex relations, but also the diversity
of entities, by embedding entities and relations into separate entity space and
relation-specific spaces.

– HolE [26] uses circular correlation, a novel compositional operator, to capture
rich interactions of embeddings.

– ConvE [7] is the first CNN-based model for knowledge graph embedding.
– ConvKB [22] improves ConvE by taking the transitional characteristic

(i.e., one of the most useful intuitions for knowledge graph completion) into
consideration.

– CapsE [23] combines convolutional neural network with capsule network [29]
for knowledge graph embedding.

4.3 Link Prediction

Link prediction task is to complete a triple (h, r, t) with h or t missing, i.e., to
predict the missing h given (r, t) or the missing t given (h, r).

Evaluation Protocol. To evaluate the performance in link prediction, we fol-
low the standard protocol used in [5]. For each test triple (h, r, t), we replace
either h or t by each of other entities in E to create a set of corrupted triples,
and calculate implausibility scores on the corrupted triples. Ranking these scores
in ascending order, we can get the rank of the test triple. Notice that a corrupted
triple may exist in train, validation or test set, we use the Filtered setting pro-
tocol [5] to eliminate its misleading effect, i.e., not taking any corrupted triples
that appear in the knowledge graph into accounts. We employ two common
evaluation metrics: mean rank (MR) and Hits@10. MR is the mean of the test
triples’ ranks. Hits@10 is the percentage of test triples that are ranked within
top 10.
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Implementation Details. Following the previous work [41], we use the com-
mon Bernoulli trick to generate the head or tail entities when sampling invalid
triples. Like in ConvKB [22], we also use entity and relation embeddings pro-
duced by TransE to initialize entity and relation embeddings in PConvKB.
We use the pre-trained 100-dimensional glove word embeddings [28] to train
TransE model, and employ the TransE implementation provided by [25]. We
select the learning rate in {5e−6, 1e−5, 5e−5, 1e−4}, the number of filters in
{50, 100, 200, 400}. We fix the batch size at 128 and set the L2-regularizer λ
at 0.001 in our objective function. We run PConvKB up to 150 epochs and
monitor the Hits@10 score after every 10 training epochs to choose optimal
hyper-parameters. We obtain the highest Hits@10 scores on the validation set
when learning rate at 5e−5, the number of filters at 400 on WN18; and learning
rate at 1e−5, the number of filters at 50 on FB15k; and the learning rate at
5e−6, the number of filters at 400 on WN18RR; and the learning rate at 1e−5,
the number of filters at 200 on FB15k-237. For comparison methods, we use the
codes released by [11], [7] and [22].

Table 2. Experiments results on link prediction. Hits@10 is reported in %. The best
score is in bold, while the second best score is in underline. For comparison methods,
the values in black color are the results listed in the original publication, except Con-
vKB uses the [23] implemented version, which has been reported significantly better
performance than the original one. The values in blue color are obtained by implemen-
tations from the OpenKE repository.

Model WN18 FB15k WN18RR FB15k-237

MR Hits@10 MR Hits@10 MR Hits@10 MR Hits@10

TransE – – 125 47.1 – – – –

733 60.3 168 60.6 5766 32.4 349 42.2

TransH 388 82.3 87 64.4 – – – –

602 87.7 137 63.1 7019 36.3 358 40.0

TransD 212 92.2 91 77.3 – – – –

617 88.5 151 62.9 7050 36.8 418 40.2

HolE – 94.9 – 73.9 – – – –

589 79.6 76 76.2 5992 38.5 369 43.3

ConvE 504 95.5 64 87.3 5277 48.0 246 49.1

549 83.7 70 82.4 5385 46.9 286 48.4

CapsE – – – – 719 56.0 303 59.3

244 93.9 72 88.3 711 56.2 301 59.4

ConvKB – – – – 763 56.7 254 53.2

204 94.7 66 88.7 759 56.8 275 54.7

PConvKB (local) 212 95.3 58 89.6 733 57.0 267 57.5

PConvKB (global) 249 93.8 63 89.1 749 56.8 283 56.2

PConvKB 196 96.3 54 91.4 691 57.4 245 59.8
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Results. Table 2 shows the link prediction results of our model and the compar-
ison methods on the four benchmark datasets. From the results, we can observe
that:

1. PConvKB obtains the best MR and highest Hits@10 scores on the four bench-
mark datasets, demonstrating the effectiveness of incorporating relation paths
for knowledge graph embedding.

2. Among PConvKB, PConvKB (local) and PConvKB (global), PConvKB
obtains the best performance, which indicates that considering relation paths
locally and globally is beneficial for knowledge graph embedding.

3. PConvKB does better than the closely related model ConvKB on all exper-
imental datasets, especially on FB15k where PConvKB gains significant
improvements of 275 − 247 = 28 in MR (which is about 10.1% relative
improvement) and 59.8% − 54.7% = 5.1% absolute improvement in Hits@10.

4.4 Triple Classification

Triple classification task is to determine whether a given triple (h, r, t) is correct
or not, i.e., binary classification on a triple.

Evaluation Protocol. We follow the same protocol in [33]. For each triple in
test set and validation set, we construct one negative triple by switching enti-
ties from test triples and validation triples, respectively. The triple classification
decision rule is: for a triple (h, r, t), if its implausibility score is below the relation-
specific threshold σr, predict positive, otherwise negative. The relation-specific
threshold σr is determined by maximizing classification accuracy on the valida-
tion set. The triple classification accuracy is the percentage of triples in the test
set that are classified correctly.

Implementation Details. We use TransE to initialize entity and relation
embeddings in PConvKB, select the learning rate in {5e−6, 1e−5, 5e−5, 1e−4},
the number of filters in {50, 100, 200, 400}. We set the batch size at 128 and
set the L2-regularizer λ at 0.001 in our objective function. We run PConvKB
up to 150 epochs and monitor the accuracy after every 10 training epochs to
choose optimal hyper-parameters. We obtain the highest accuracy on the vali-
dation set when learning rate at 5e−5, the number of filters at 400 on WN18;
and learning rate at 1e−5, the number of filters at 50 on FB15k; and the learning
rate at 5e−6, the number of filters at 400 on WN18RR; and the learning rate at
1e−5, the number of filters at 200 on FB15k-237. For comparison methods, we
implement them by the codes released by [11], [7] and [22].

Results. Table 3 shows the triple classification results of our model and the
comparison methods on the four benchmark datasets. From the results, we can
observe that:
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Table 3. Experiments results on triple classification (%). The best score is in bold,
while the second best score is in underline.

Model WN18 FB15k WN18RR FB15k-237

TransE 87.6 82.9 74.0 75.6

TransH 96.5 85.7 77.0 77.0

TransD 96.4 86.1 76.3 77.0

HolE 88.1 82.6 71.4 70.3

ConvE 95.4 87.3 78.3 78.2

CapsE 96.5 88.4 79.6 79.5

ConvKB 96.4 87.9 79.1 80.1

PConvKB (local) 97.5 88.1 79.7 80.6

PConvKB (global) 96.9 87.6 79.4 80.9

PConvKB 97.6 89.5 80.3 82.1

1. On the whole, PConvKB yields the best performance on the four benchmark
datasets, which is consistent with the results of link prediction, and further
illustrates taking the relation paths into consideration is beneficial for knowl-
edge graph embedding.

2. More specifically, on FB15k-237, the accuracy of triple classification improves
from 80.6% of PConvKB(locally) to 82.1% PConvKB, and 80.9% of PCon-
vKB (global) to 82.1% PConvKB. It demonstrates that considering the
importances of relation paths locally and globally can better improve the
knowledge graph embedding.

5 Related Work

Various methods have been proposed for knowledge graph embedding, such as
general linear-based models [6], bilinear-based models [13,27,34], translation-
based models [5,9,14,15,20,41,43], and neural network-based models [4,7,22,
23,31–33]. We refer to [24,39] for a recent survey. In this section, we focus on
the most relevant neural network-based models, and briefly review the other
related methods.

Socher et al. [33] introduce neural tensor networks for knowledge graph
embedding, which allows mediated interaction of entity embeddings via a ten-
sor. Schlichtkrull et al. [31] present relational graph convolutional networks for
knowledge graph completion. Shi and Weninger [32] present a shared variable
neural network model called ProjE, which fills-in missing facts in a knowledge
graph by learning joint embeddings of entities and relations. Dettmers et al. [7]
present a multi-layer convolutional network model, namely ConvE, which uses
2D convolutions over embeddings to predict missing links in knowledge graphs.
Nguyen et al. [22] present a CNN-based embedding model, i.e., ConvKB. It
applies CNN to explore the global relationships among same dimensional entries
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in each embedding triple, which generalizes the transitional characteristics in
the transition-based embedding models. Nguyen et al. [23] present CapsE, which
combines CNN with capsule networks [29] for knowledge graph embedding. All
these models treat a knowledge graph as a collection of triples, and disregard
the rich information exist in relation paths.

There are several translation-based models [12,19,37,42,44] incorporating
relation paths to improve the embeddings of entities and relations. However,
they fully rely on hand-designed features to measure the importance of each
path, which is not differentiable and cannot adjust during training. Moreover,
they all based on translation-based models, which are not suitable for CNN-
based model. To the best of our knowledge, our model PConvKB is the first
attempt which incorporates relation paths in CNN-based embedding model.

6 Conclusion

In this paper, we present a novel CNN-based embedding model PConvKB, which
improves knowledge graph embedding by incorporating relation paths locally and
globally. In particular, we introduce attention mechanism to measure the local
importance of relation paths. Moreover, we propose a simple yet effective mea-
sure DIPF to compute the global importance of relation paths. We evaluate our
model on link prediction and triple classification. Experimental results show that
our model achieves substantial improvements against state-of-the-art methods.
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