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Abstract. Distributed Machine Learning, in which data and learning
tasks are scattered across a cluster of computers, is one of the answers
of the field to the challenges posed by Big Data. Still, in an era in which
data abounds, decisions must still be made regarding which specific data
to use on the training of the model, either because the amount of avail-
able data is simply too large, or because the training time or complexity
of the model must be kept low. Typical approaches include, for example,
selection based on data freshness. However, old data are not necessarily
outdated and might still contain relevant patterns. Likewise, relying only
on recent data may significantly decrease data diversity and representa-
tivity, and decrease model quality. The goal of this paper is to compare
different heuristics for selecting data in a distributed Machine Learning
scenario. Specifically, we ascertain whether selecting data based on their
characteristics (meta-features), and optimizing for maximum diversity,
improves model quality while, eventually, allowing to reduce model com-
plexity. This will allow to develop more informed data selection strategies
in distributed settings, in which the criteria are not only the location of
the data or the state of each node in the cluster, but also include intrinsic
and relevant characteristics of the data.

Keywords: Machine Learning · Distributed Computing · Data Selec-
tion.

1 Introduction

New approaches to Machine Learning (ML), such as Distributed ML [9] or Feder-
ated ML [5], emerged in the last years as a response to the challenges of learning
from Big Data [11].

The appearance of Distributed ML followed a previous trend, in which storage
was moved from large monolithic data architectures to distributed mesh ones [6].
Evidently, once data were distributed, it would not be feasible or possible to move
all the data to a single location in order to run learning tasks. Hence, learning
tasks became parallel and distributed, starting to include coordination and/or
message passing mechanisms such as ZooKeeper [3] or ZeroMQ [4].
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Even so, decisions on which data to use when training a ML model must often
still be made, be it because the data are simply too much, or because there are
restrictions on training time or model complexity.

In the past we have proposed approaches to deal with this issue [7], namely
by selecting the data (and running the distributed learning tasks) in the nodes
in which the data are located, and according to the state of each node. Given
that modern distributed file systems have some form of replication, this can be
explored to select from the best candidate nodes according to their state.

Other typical approaches include selecting data based on their freshness.
That is, more recent data will be more likely to be selected. While this is, at
first sight, intuitive, it might not always hold the best results in terms of model
quality. This happens because old data might describe patterns that are still
relevant and useful, as happens in scenarios of streaming data with recurring
concept drift (i.e. seasonality) [10], and that would otherwise be lost.

The main goal of this paper is to analyze the influence that different data se-
lection strategies have on the quality and complexity of ML models. Specifically,
we aim to ascertain whether selecting data based on a diversity criteria allows
to obtain better models, or smaller but equivalent models (in terms of predictive
performance) than when the full set of data are used. This will allow to devise
new strategies of data selection, based not only on data locality, data availability
and cluster state, but that also take into account intrinsic characteristics of the
data, in an attempt to select data that are as rich and diverse as possible. This
will contribute to the design of overall more efficient ML pipelines.

2 Distributed Machine Learning

The experiments described in this paper, in which a large number of ML En-
sembles were trained, were carried out in the CEDEs platform. CEDEs - Con-
tinuously Evolving Distributed Ensembles - is a Distributed Learning platform
developed in the context of a funded research project.

This section outlines the major modules comprising the architecture of CEDEs.
The Storage Layer serves as the central element, implemented on top of an HDFS
cluster. In this file system, large datasets are broken down into fixed-size blocks,
usually of 128MB. Various data sources, including files in different formats (e.g.,
CSV, Parquet, Avro) and databases, can be employed.

Thus, the user of CEDEs initiates a ML project by uploading a data source
into the HDFS, which is subsequently split, distributed, and replicated through-
out the cluster. Once this process is concluded, the user can create an actual
ML project by choosing the desired dataset, and supplying the relevant infor-
mation such as project name, description and owners, or base model(s) hyper-
parameters. After configuring the project, the user can begin training a new
Ensemble. This task is controlled by the Coordination module, which interacts
with the Optimization and Metadata modules.

Training an ensemble occurs in a distributed manner and benefits from two
aspects: the replication of blocks within files, enabling them to be accessed con-
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currently on multiple nodes, and the principle of data locality. To train an ensem-
ble, one base model is trained for each block of a file (excluding replicas). These
base models will collectively form the Ensemble. Consequently, it is essential to
determine the optimal node for training each base model, based on criteria such
as the state of the node where the block is available within the cluster.

Specifically, the Coordination module uses the following inputs:

– Block locations are used to know where in the cluster each individual block
exists. Generally, each block is simultaneously available in at least 3 nodes;

– Task cost prediction, in terms of time and computational resources (e.g.
RAM). This is given by a previously developed meta-learning module [2];

– The state of nodes, in terms of the makespan of their tasks and a prediction
of the necessary computational resources;

The goal of this paper, as elaborated further below, is to determine whether
the characteristics of the data blocks can also be used as a relevant optimization
criteria when selecting the blocks for training a new Ensemble.

Once the Coordination module defines the allocation of tasks, the process of
training the base models initiates. In order to coordinate the worker nodes, a
communication protocol was implemented in ZeroMQ: a brokerless asynchronous
messaging library that allows the implementation of multiple socket communi-
cation patterns, useful for implementing distributed systems.

During the distributed training process, worker nodes regularly report their
progress to the coordinator, allowing client applications to access this informa-
tion in real time. When a worker node finishes training a base model, it notifies
the Coordinator, which then moves on to the next task in its queue, if it exists.
Additionally, the base model is serialized and stored in the HDFS, and auto-
matically replicated and distributed across the cluster, based on the replication
and balancing factors defined in the configuration. This allows to serve the same
base model on multiple nodes shortly after the end of its training, significantly
increasing model availability and the robustness of the system.

This architecture is illustrated in Figure 1, in which the following terminology
is used: FiBjRk represents a replica k of block j of file i. The names of base
models follow the same logic, but start with the letter ’M’. The arrow between a
specific block replica and a model means that the base model was created based
on that specific block, on that node. Replicas of that base model may however
exist in other nodes, created through replication.

When a client requests predictions from an ensemble, a similar process to
that of training base models takes place. The Coordination module first queries
the Optimization module for information about which base models will be used
in the ensemble. Indeed, not all base models may be included, depending on the
specific project configuration. If the number of intended base models is smaller
than the number of blocks in the dataset, the Optimization module selects the
best group of base models based on a specific heuristic, that may include models’
performance metrics and the state of the nodes where they are located. The
main goal of this work is to check whether including a criteria of data diversity
improves the quality and decreases the necessity for data, of the Ensemble.
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Fig. 1. Depiction of the CEDEs architecture.

When the Ensemble is defined, the Coordinator requests all the correspond-
ing worker nodes for predictions for a specific dataset. Once all predictions are
received, they are combined to calculate the final predictions by the ensemble.
For regression problems, the mean is used, while for classification problems, the
mode is used. Ensembles are thus abstract and dynamic constructs, as depicted
in Figure 1 in the Model Layer, built out of a selection of available base models
for a given ML problem.

The architecture includes two more modules: the API module, and the User
Interface module. The API module provides endpoints for interacting with the
system’s services, which in turn communicate with the Coordination module,
when applicable, via ZeroMQ messages. External client applications can use
this API. Finally, the User Interface module is intended for human users and
communicates with the API module.

3 Methodology

This work analyzes how different data selection strategies impact the perfor-
mance of a distributed Machine Learning model, implemented as an Ensemble,
with the goal of determining the strategy that produces the best model with the
least amount of data and base models.

To this end, 60 different Machine Learning experiments were run. Each ex-
periment, described below, refers to a publicly available dataset (from those
described in Table 1), one block size (i.e. 4MB, 8MB and 16MB) and one of five
different heuristics for buillding the Ensemble. The datasets are all traditional
tabular datasets, with the exception of the "covid infections" dataset, which is
a time-series one.

The interest in experimenting with different block sizes lies in its potential
influence on the quality of the base models: in principle, the smaller the block,
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the lower and less reliable the quality of the base models (due to significant
variations between blocks and the data not being representative of the whole
problem). Thus, in each scenario, CEDEs was restarted and configured with
different block sizes to implement the experiments described.

Each dataset was first split into training (75%) and testing (25%) sets. The
training data was uploaded into CEDEs, as described below, while the test data
was held-out to assess the generalization ability of the Ensembles created.

Table 1. Characterization of the datasets used.

Dataset Rows Columns Size

covid infections 4623663 19 585 MB
solar production 2782080 15 399 MB
temperature 2434608 20 351 MB
car prices 1957675 1108 4160 MB

The methodology followed in each experiment, which is also depicted in Fig-
ure 2, was as follows. CEDEs was configured with one of the tested block sizes
(i.e. 4MB, 8MB and 16MB) and one of the datasets was uploaded into CEDEs.
The dataset was then automatically split into blocks, distributed and replicated.
For some datasets, some data preparation tasks were executed (e.g. cleaning,
feature engineering, encoding), which were implemented in Apache Spark. How-
ever, given that the goal is not at this stage to find the best model possible
but only to compare different approaches, no special effort was put on a further
improvement of the dataset.

Fig. 2. Methodology followed in each of the experiments.
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Once the dataset was pre-processed, the meta-features were extracted for
each block. This was achieved using the pymfe - Python Meta-Feature Extractor
library[8]. Meta-features are features that encode characteristics of an underlying
dataset and may represent many different dimensions such as data distribution
measures, data quality measures, measures of variability, other statistical mea-
sures, etc.

Once meta-features were extracted for each block, a base model was also
trained for each block and, as usually happens in CEDEs, their performance
metrics (e.g. RMSE, MAE, MSE, Logloss) recorded in a database.

Next, a k-means algorithm was run on the meta-features dataset. The goal
was to find clusters of blocks that share similar characteristics (meta-features),
thus allowing to select data (and consequently blocks) also based on their sim-
ilarity. K-means was run with k = 5, thus it always finds 5 groups of datasets,
based on their meta-features.

Then, for each dataset and block size, 5 different Ensembles were trained,
with the following heuristics being used for base-model selection:

– H1 - The Ensemble is created following a Bagging approach, with all the
base models being considered. However, each base model has a weight that
is inversely proportional to its quality, given by the RMSE calculated through
5-fold cross-validation.

– H2 - The Ensemble is created following a traditional Bagging approach, with
all the base models being used, and each having equal weight.

– H3 - The Ensemble is created by selecting only the top 50% base models,
and with all selected models having the same weight. Models are ranked by
their RMSE, calculated through 5-fold cross-validation.

– H4 - The Ensemble is created by picking one random model from each of
the 5 clusters. The goal of this heuristic is to maximize data diversity, by
picking models trained on blocks with different characteristics.

– H5 - The Ensemble is created by picking 5 random models from the cluster
that has the highest density, i.e. the datasets have more in common or share
similar traits, according to the meta-features.

Although CEDEs allows to build heterogeneous Ensembles, for the work
described in this paper, all the Ensembles trained are Random Forests, i.e.,
collections of Decision Trees. For the sake of fairness, all Decision Trees were
trained with the same configuration: max_depth=25, min_samples_split=2,
max_leaf_nodes=infinite and ccp_alpha=0.5

Each Ensemble was then evaluated both through 5-fold cross validation and
on the test data that was held-out. The results of this evaluation and of com-
paring the different heuristics are analyzed in Section 4.

4 Results

This section describes the results obtained while comparing the 5 previously
mentioned heuristics. The experiments were run in a CEDEs instance, that was
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configured with 3 different block sizes. The goal is to analyze the impact of the
data selection heuristic on the quality of the ensemble, and whether block size
affects it.

Specifically, we want to evaluate the proposed heuristic (H4), and determine
whether it produces simpler but equally good ensembles, independently of the
number of blocks of the original dataset. This selection is based on the diver-
sity of the data, through the extraction of meta-features [1]. Specifically, meta-
features were considered block-wise. As previously mentioned, in this heuristic,
data blocks are selected based on their belonging to a different cluster. This
means that under H4, ensembles always have 5 models. The same is true for H5.
However, in this case, the blocks are all obtained from the same cluster.

The analysis carried out was extensive, taking into consideration several fac-
tors including block size (x3), dataset (x4) and heuristics (x5). Moreover, we
looked at several indicators including the number of base models whose train-
ing was spared using H4 and H5, the amount of CPU time saved, and model
performance metrics (e.g. RMSE). For this reason, this section presents only a
summary of the results.

Table 2 presents some results with the ’solar production’ dataset. Here we
simply compare our proposed approach H4 with a traditional bagging one H2.
The proposed approach only outperforms the traditional one in one scenario
(8MB block size), in which the ensemble build with 5 diverse data blocks has
an RMSE that is 0.58% lower. In the other two scenarios (4MB and 16MB),
the proposed approach results in Ensembles that are slightly worse in terms of
RMSE (0.11% and 0.3% worse, respectively).

While this lower performance is quite marginal, the ensembles build clearly
outperform the traditional ones in terms of the number of models trained or the
time saved. In this case, the number of models trained is between ≈80% and
≈95% smaller, depending on the block size, which also results in a reduction of
≈80% to ≈95% of the ensemble training time.

Table 2. Summary of the results for the ’solar production’ dataset with ensembles
trained with 4, 8 and 16 MB block size. M - the number of models whose training was
avoided (%); T - CPU time saved (%); R - difference in RMSE (%).

Block Size Heuristic M T R

4 MB H2 vs H4 -94.79% -94.81% +0.11%

8 MB H2 vs H4 -89.56% -89.53% -0.58%

16 MB H2 vs H4 -79.17% 79.38% +0.3%

Tables 3 and 4 provide the remaining insights in terms of the analysis carried
out. Table 3 contains an overall analysis, concerning all the experiments carried
out. In what concerns heuristics H1 to H3, 618 base models were trained in total,
for each one. This includes the 3 different block sizes and the 4 different datasets.
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The only difference is that the Ensembles built with H3 only use half the base
models: the half with the best RMSE. However, these base models need to be
trained to calculate their RMSE, the number is the same.

On the other hand, H4 and H5 only need the training of 5 base models per
Ensemble, for the 12 experiments made (4 datasets * 3 block sizes), which results
in 60 base models trained in total. This means that these heuristics require 558
fewer models each, in comparison with the other 3. Following the same rationale,
these heuristics avoided approximately 3790 seconds of CPU time in the training
of models, and approximately 2409 GB of used RAM (measured at half-second
interval). In this table, the columns TR and RR represent the reduction in terms
of CPU time and RAM, when compared to traditional approaches.

Table 3. Compiled summary of the total results containing the four datasets with
models trained in 4, 8 and 16 MB block size. TM - total number of models trained;
TT - total training time (seconds); TR - total time reduction (seconds); UR - used
RAM (GB); RR - RAM reduction (GB).

Heuristic TM TT TR UR RR

H1 618 4561.99 - 2680.82 -
H2 618 4561.99 - 2680.82 -
H3 618 4561.99 - 2680.82 -
H4 60 771.24 3790.74 272 2409
H5 60 765.37 3796.62 268 2413

Table 4, on the other hand, shows the average values for each experiment
performed, grouped by heuristic. For each experiment the results were ranked,
and analyzed relatively. For instance, for each experiment the best heuristic in
terms of RMSE was identified. The remaining were ranked by decreasing RMSE,
and their RMSE was analyzed relatively to the lowest one. Thus, column AR
depicts how much worse the RMSE of a given heuristic was, in percentage. The
results were then averaged.

The table shows that the proposed heuristic H4 is the one that has the
lowest value in this indicator, which means that it was most frequently the best
approach in terms of predictor performance.

On average, the proposed approach manages to obtain the best performance
in terms of RMSE, and saving training resources, both in terms of CPU time and
of memory used, saving on average approximately 85% of models per ensemble:
corresponding to ≈5 minutes of training time avoided and ≈201 GB spared
RAM usage. This was the difference of training an Ensemble in only one minute
(heuristics H4 and H5) instead of 6 minutes (heuristics H1 to H3). However, this
difference might be much bigger in real scenarios with the typical 128MB block
size and with even bigger datasets.

Thus, heuristic H4 results in ensembles that train quicker and achieve better
performance most of the times, although not always. Nonetheless, even when
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Table 4. Compiled summary of the mean results considering the 4 datasets with
models trained with 4, 8 and 16 MB block sizes. AM - average number of avoided
models (%); AR - average difference in RMSE compared with the best ensemble (%);
TT - average training time (s); TR - average time reduction (s); UR - used RAM
(GB); RR - average RAM reduction (GB).

Heuristic AM AR TT AT UR RR

H1 0% -6.480% 380.17 - 223.40 -
H2 0% -6.680% 380.17 - 223.40 -
H3 0% -3.310% 380.17 - 223.40 -
H4 85.16% -2.710% 64.27 315.90 22.64 200.76
H5 85.16% -3.280% 63.78 316.39 22.31 201.09

the performance is not the best, it is close to it. In opposition, the amount of
necessary resources and the complexity of the resulting ensemble is far smaller,
which is a significant advantage, especially in Big Data and streaming scenarios.

The proposed heuristic for data selection is thus one that might sometimes
result in slightly worse model performance, but one that significantly reduces
training time and computational resources.

5 Conclusions and Future Work

As is widely accepted, data and their quality are a key determinant of model
quality. While in some cases all the available data is used, in others a subset of
the data must be selected. This happens when the available data is too much,
or when there are strict requirements concerning model training time or model
complexity. In such cases, the strategies used for selecting data must be carefully
considered, to maximize the quality of the model.

In this paper we analyze 5 different heuristics for selecting data. Two of them
are novel approaches, and are based on meta-features, that is, characteristics of
the data. Our goal was to ascertain whether selecting a smaller number of sub-
sets of data but while maximizing diversity, would result in better ensembles.
The results show not only this is generally true for the cases tested, but also
that the resulting Ensembles are much smaller. Moreover, we avoid the training
of a significant amount of models, which results in significant savings in terms
of computational resources and time.

There are, however, limitations to this work. One of the major ones is that
each experiment was only run once. Given that a methodology based on a holdout
dataset was used, the split of data and the results are dependent on luck. In
future work we will run the same experiments with cross-validation, to have
more reliable results (cross-validation was used but only at the level of the base
models). Moreover, in order to reduce variability in the results, a single algorithm
was used (Decision Trees). In future work we will repeat the experiment with
other algorithms, in far more extensive experiments. Also, the number of clusters
(5) was arbitrarily selected and is, most likely, not the best one for each problem.
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In the future, a prior heuristic for selecting the optimum value of k (number of
clusters) will be implemented.

Finally, the findings of this work will be included in the optimization module
of CEDEs, so that it can also take into account the characteristics of the data
when deciding which blocks to use.
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