
The Logic of Large Enough

Eerke Boiten and Dan Grundy

Computing Laboratory, University of Kent
e.a.boiten@kent.ac.uk, daniel.c.grundy@gmail.com

Abstract. In this paper we explore the “for large enough” quanti-
fier, also known as “all but finitely many”, which plays a central role
in asymptotic reasoning, as used for example in complexity theory and
cryptography. We investigate calculational properties of this quantifier,
and show their application in reasoning about limits of functions.

Keywords. Calculational methods; asymptotics; generalised quantifiers.

Introduction

In what follows we explore a variant of universal quantification, namely that a
particular predicate holds for “large enough” natural numbers. This quantifier
occurs naturally in many areas of mathematics that employ asymptotic reason-
ing, in particular in complexity theory and its applications. Unfortunately, it
often occurs in an encoded form (requiring two quantifiers, and worse: two
dummy variables), or is left implicit in the context, thereby obscuring which
manipulations are permissible. Most striking perhaps, is its negated occurrence,
“for infinitely many . . . ”, which is often seen in proofs by contradiction.

In the next section we define the “new” quantifier (in terms of existential
and universal quantification) and explore its calculational properties. We then
show how the quantifier can be applied in the theory of limits of sequences,
where, in particular, it allows us to avoid reference to sequence indices in the
resulting theorems and proofs. Finally, we indicate how this work leads to a
calculational theory of asymptotics, with applications to complexity theory and
beyond.

Large enough quantifiers

The property that P holds for large enough values of x can be described using
an existential-universal quantifier combination:

〈∃X :: 〈∀ x : x > X : P〉〉

Throughout this paper we assume that x and X are natural numbers. In that
case, the above is sometimes known as the “almost-all” quantifier, as it requires
P to hold for all but finitely many numbers. This quantifier has been studied in

logic since at least the 1970s [0,1], and belongs to the class of “generalised”, or
“modal quantifiers”, defined by Mostowski [2] in 1957, and studied in the 1990s
by Alechina, Van Lambalgen, and Van Benthem [3, 4]. However, their work
concentrated on properties of the class in general, in particular expressiveness
and decidability, rather than on practical calculation.

Taking the natural numbers as a timeline, a property holding for large enough
numbers means it will hold continuously from a certain point onwards; in other
words, eventually it will always hold. The notation used in the following defini-
tion has been designed to emphasise the modal view of this quantifier, and that
it binds a particular variable:

〈 x :: P〉 ≡ 〈∃X :: 〈∀ x : x > X : P〉〉 (1)

where X does not occur free in P . Properties of this quantifier follow.
The first collection of properties concerns situations where the quantifier can be
eliminated.

First, we show that:

〈 x :: true〉 ≡ true (2)

Proof:

〈 x :: true〉

≡ { definition of ; i.e., (1) }

〈∃X :: 〈∀ x : x > X : true〉〉
≡ { property of ∀ }
〈∃X :: true〉

≡ { the range of quantification (natural numbers) is non-empty }
true

Similarly, we have:

〈 x :: false〉 ≡ false (3)

Proof:

〈 x :: false〉

≡ { definition of }

〈∃X :: 〈∀ x : x > X : false〉〉
≡ { the range of ∀ quantification is non-empty:

there is no largest natural number }
〈∃X :: false〉

≡ { property of ∃ }
false

We can generalise (2) and (3) as follows: if x does not occur free in P we
have

〈 x :: P〉 ≡ P (4)

The proof uses the two properties of natural numbers used for proofs of (2) and
(3) :

〈 x :: P〉

≡ { definition of }

〈∃X :: 〈∀ x : x > X : P〉〉
≡ { eliminate redundant quantifiers; non-empty ranges }

P

Provided x does not occur free in a real-valued expression E we have:

〈 x :: x > E 〉 ≡ true (5)

Proof:

〈 x :: x > E 〉

≡ { definition of }

〈∃X :: 〈∀ x : x > X : x > E 〉〉
⇐ { one-point rule, dEe is the least integer ≥ E }
〈∀ x : x > dEe : x > E 〉

≡ { predicate calculus }
true

Next, we investigate properties of the quantifier in combination with standard
operators and quantifiers. The following useful monotonicity property follows
immediately from monotonicity of the standard quantifiers (with respect to the
⇒ ordering):

〈∀ x :: P ⇒ Q〉 ⇒ (〈 x :: P〉 ⇒ 〈 x :: Q〉) (6)

We can use (6) to prove various weakening and strengthening rules; for example:

〈 x :: P〉 ⇒ 〈 x :: P ∨ Q〉 (7)

Similarly, we have:

〈 x :: P ∧ Q〉 ⇒ 〈 x :: P〉 (8)

Clearly other variations are possible.
We can use (7) to prove the following “almost” distributivity property:

〈 x :: P〉 ∨ 〈 x :: Q〉 ⇒ 〈 x :: P ∨ Q〉 (9)

Proof:

〈 x :: P〉 ∨ 〈 x :: Q〉

⇒ { (7) , twice }

〈 x :: P ∨ Q〉 ∨ 〈 x :: P ∨ Q〉

≡ { idempotence of ∨ }

〈 x :: P ∨ Q〉

The opposite direction does not hold: replace P with even.x and Q with
odd .x , for example.

Intuitively we have

〈∀ x :: P〉 ⇒ 〈 x :: P〉 , (10)

but we can prove it without unfolding by virtue of (6) :

〈∀ x :: P〉
≡ { left identify of ⇒ , heading for an appeal to (6) }
〈∀ x :: true ⇒ P〉

⇒ { (6) with P ,Q := true,P }

〈 x :: true〉 ⇒ 〈 x :: P〉

≡ { (2) }

true ⇒ 〈 x :: P〉

≡ { left identity of ⇒ }

〈 x :: P〉

Next, we have the useful property that conjunction distributes over :

〈 x :: P〉 ∧ 〈 x :: Q〉 ≡ 〈 x :: P ∧ Q〉 (11)

The following proof is by mutual implication; first we prove that

〈 x :: P〉 ∧ 〈 x :: Q〉 ⇒ 〈 x :: P ∧ Q〉 .

If we assume the antecedent, then there exist witnesses X0 and X1 such that:

〈∀ x : x > X0 : P〉 ∧ 〈∀ x : x > X1 : Q〉
⇒ { arithmetic }
〈∀ x : x > X0 ↑ X1 :: P〉 ∧ 〈∀ x : x > X0 ↑ X1 : Q〉

≡ { distributivity }

〈∀ x : x > X0 ↑ X1 :: P ∧ Q〉
⇒ { ∃ introduction, with X := X0 ↑ X1 }
〈∃X :: 〈∀ x : x > X : P ∧ Q〉〉

≡ { definition of }

〈 x :: P ∧ Q〉

The opposite direction, viz

〈 x :: P〉 ∧ 〈 x :: Q〉 ⇐ 〈 x :: P ∧ Q〉 ,

is easily proved by appealing to the idempotence of conjunction, and then weak-
ening via (8) .

Remark. Properties (2) , (6) , and (11) , along with “dummy renaming”,
correspond to the “minimal logic” of generalised quantifiers described in [3].
End of Remark.

It should be clear that we can generalise (11) to an arbitrary, but finite
number of conjuncts; that is, for any fixed, finite set F , we have:

〈∀ i : i ∈ F : 〈 x :: Pi〉〉 ≡ 〈 x :: 〈∀ i : i ∈ F : Pi〉〉 (12)

and as a consequence, for fixed, finite set F , we have:

〈∀ y : y ∈ F : 〈 x :: P〉〉 ≡ 〈 x :: 〈∀ y : y ∈ F : P〉〉 (13)

It is clear from the first part of the proof of (11) , that in the general case,
finiteness is required to take the maximum over the X bounds of each conjunct.
Since finiteness is only necessary in one direction, if we drop this requirement
we retain the following, weaker form of (13) :

〈∀ y :: 〈 x :: P〉〉 ⇐ 〈 x :: 〈∀ y :: P〉〉 (14)

Proof:

〈 x :: 〈∀ y :: P〉〉

≡ { definition of }

〈∃X :: 〈∀ x : x > X : 〈∀ y :: P〉〉〉
≡ { nesting }
〈∃X :: 〈∀ y :: 〈∀ x : x > X : P〉〉〉

⇒ { ∃∀⇒∀∃ }
〈∀ y :: 〈∃X :: 〈∀ x : x > X : P〉〉〉

≡ { definition of }

〈∀ y :: 〈 x :: P〉〉

As a counterexample for the reverse implication, consider x ≥ y for P .
There are several ways of generalising the definition of to vectors; we

choose the following as it is insensitive to the ordering of dummy variables:

〈 x , y :: P〉 ≡ 〈∃X ,Y :: 〈∀ x , y : x > X ∧ y > Y : P〉〉 (15)

Equivalently, we have what we refer to as the “diagonal” property:

〈 x , y :: P〉 ≡ 〈∃Z :: 〈∀ x , y : x > Z ∧ y > Z : P〉〉 (16)

We prove (16) by mutual implication. Assume X , Y , and Z are not free
in P , then:

〈 x , y :: P〉

≡ { (15) }
〈∃X ,Y :: 〈∀ x , y :: x > X ∧ y > Y : P〉〉

⇒ { ∃ introduction, with Z := X ↑ Y }
〈∃X ,Y :: 〈∃Z :: 〈∀ x , y : x > Z ∧ y > Z : P〉〉〉

≡ { eliminate redundant outer quantifiers }
〈∃Z :: 〈∀ x , y : x > Z ∧ y > Z : P〉〉

⇒ { ∃ introduction, with X ,Y := Z ,Z }
〈∃Z :: 〈∃X ,Y :: 〈∀ x , y : x > X ∧ y > Y : P〉〉〉
≡ { eliminate redundant outer quantifier }
〈∃X ,Y :: 〈∀ x , y : x > X ∧ y > Y : P〉〉
≡ { (15) }

〈 x , y :: P〉

We refer to the following distributivity property as “unvectoring”. If x
does not occur free in Q , and y does not occur free in P , then:

〈 x , y :: P ∧ Q〉 ≡ 〈 x :: P〉 ∧ 〈 y :: Q〉 (17)

Proof:

〈 x , y :: P ∧ Q〉

≡ { ∧ over ; i.e., (11) }

〈 x , y :: P〉 ∧ 〈 x , y :: Q〉

≡ { eliminate redundant quantifiers }

〈 x :: P〉 ∧ 〈 y :: Q〉

The generalised definition of in (15) allows us to nest quantifications
as follows:

〈 x , y :: P〉 ⇒ 〈 x :: 〈 y :: P〉〉 (18)

Proof:

〈 x , y :: P〉

≡ { (15) }
〈∃X ,Y :: 〈∀ x , y : x > X ∧ y > Y : P〉〉

≡ { nesting, twice }
〈∃X :: 〈∃Y :: 〈∀ x : x > X : 〈∀ y : y > Y : P〉〉〉〉

⇒ { ∃∀⇒∀∃ }
〈∃X :: 〈∀ x : x > X : 〈∃Y : 〈∀ y : y > Y : P〉〉〉〉

≡ { (1) , twice }

〈 x :: 〈 y :: P〉〉

The reverse implication does not hold as ∃ and ∀ do not generally commute;
for example, consider y > x for P .

Next, we investigate circumstances where we can replace x by f.x inside
-expressions, for an “eventually increasing” function f . Specifically, let f

be a function from natural numbers to reals that satisfies the following property:

〈∀ y :: 〈 x :: f.x > y〉〉 (19)

Informally, this states that f.x will eventually remain above any bound. Most of
the functions considered in computational complexity theory have this property,
including, for example, positive polynomials, and their quotients where the nu-
merator has a higher degree than the denominator (but excluding the constant
0); the identity function also satisfies it. For functions that satisfy (19) , by
skolemising the existential quantification inside we can introduce a function
bound that satisfies the property:

〈∀ x : x > bound .y : f.x > y〉

For functions that satisfy (19) , for Boolean function P we have:

〈 x :: P .x 〉 ⇒ 〈 x :: P .(f.x)〉 (20)

If we assume the antecedent, then according to the definition of we have
〈∀ x : x > X : P .x 〉 for some X . Since f satisfies (19) we have:

〈∀ x : x > bound .X : f.x > X 〉
⇒ { ∃ introduction, with Y := bound .X }
〈∃Y :: 〈∀ x : x > Y : f.x > X 〉〉

⇒ { antecedent: x > X ⇒ P .x }
〈∃Y :: 〈∀ x : x > Y : P .(f.x)〉〉

≡ { definition of }

〈 x :: P .(f.x)〉

For functions that satisfy (19) , “for large enough x” is equivalent to “for
large enough f.x”:

〈 x :: P〉 ≡ 〈∃Y :: 〈∀ x :: f.x > Y : P〉〉 (21)

We prove this by mutual implication. From left to right, (19) is not necessary.
We observe that f has a maximal value on every prefix of N ; we denote this
maximum ∇.X , where

∇.X = 〈↑x : x ≤ X : f.x 〉

It follows that if f.x > ∇.X then x > X . Now we calculate as follows:

〈 x :: P〉

≡ { definition of }

〈∃X :: 〈∀ x : x > X : P〉〉
⇒ { range strengthening: f.x > ∇.X ⇒ x > X }
〈∃X :: 〈∀ x : f.x > ∇.X : P〉〉

⇒ { ∃ introduction, with Y := ∇.X ; eliminate redundant quantifier }
〈∃Y :: 〈∀ x : f.x > Y : P〉〉

To prove the opposite direction we observe that as a consequence of (19) , for
every bound Y , the set 〈x : f.x ≤ Y : x 〉 is finite, and has a maximum, which
we denote ∇.Y ; that is:

∇.Y = 〈↑x : f.x ≤ Y : x 〉

If follows that if x > ∇.Y then f.x > Y . Now we calculate as follows:

〈∃Y :: 〈∀ x : f.x > Y : P〉〉
⇒ { range strengthening: x > ∇.Y ⇒ f.x > Y }
〈∃Y :: 〈∀ x : x > ∇.Y : P〉〉

⇒ { ∃ introduction, with X := ∇.Y ; eliminate redundant quantifier }

〈∃X :: 〈∀ x : x > X : P〉〉

≡ { definition of }

〈 x :: P〉

The corresponding “existential” operator, denoted by , is defined as
the dual of :

〈 x :: P〉 ≡ ¬〈 x :: ¬P〉 (22)

Consequently,

〈 x :: P〉 ≡ 〈∀X :: 〈∃ x : x > X : P〉〉 , (23)

which can be paraphrased as “(by increasing x) always P eventually holds”;
equivalently: “there are infinitely many values of x for which P holds”, i.e.:

〈 x :: P〉 ≡ 〈x : P : x 〉 is infinite (24)

The above definition of rather naturally implies that the set 〈x : P : x 〉 is
infinite; in the other direction we have:

〈x : P : x 〉 is infinite

⇒ { prefixes of N are finite }
〈∀X :: 〈x : P : x 〉 * 〈x : x ≤ X : x 〉〉

≡ { definition of * }
〈∀X :: 〈∃ x :: P ∧ ¬(x ≤ X)〉〉

≡ { trading }
〈∀X :: 〈∃ x : x > X : P〉〉

≡ { (23) }
〈 x :: P〉

As a corollary, we have the property mentioned above, namely that denotes
“all but finitely many”:

〈 x :: P〉 ≡ 〈x : ¬P : x 〉 is finite (25)

Limits of sequences

As a simple application of the quantifier, we reason about limits of se-
quences, which we define as follows:

lim
x→∞

f.x = a ≡ 〈∀ ε : ε > 0 : 〈 x :: |f.x − a| < ε〉〉 (26)

where f is a function from naturals to reals, and ε and a are reals.
As a first example, we show that multiplication by a positive constant com-

mutes with taking a limit. For c > 0 , we have:

lim
x→∞

f.x = a

≡ { (26) }

〈∀ ε : ε > 0 : 〈 x :: |f.x − a| < ε〉〉

≡ { arithmetic }

〈∀ ε : ε > 0 : 〈 x :: |c · f.x − c · a| < c · ε〉〉

≡ { dummy translation: ε′ := c · ε }

〈∀ ε′ : ε′ > 0 : 〈 x :: |c · f.x − c · a| < ε′〉〉

≡ { (26) }
lim

x→∞
c · f.x = c · a

In the following proof that limits distribute over addition, we avoid reference
to particular values of the function’s arguments by appealing to the distributivity
of over conjunction:

lim
x→∞

f.x = a ∧ lim
x→∞

g .x = b

≡ { (26) , twice }

〈∀ ε : ε > 0 : 〈 x :: |f.x − a| < ε〉〉 ∧ 〈∀ ε : ε > 0 : 〈 x :: |g .x − b| < ε〉〉

≡ { distributivity }

〈∀ ε : ε > 0 : 〈 x :: |f.x − a| < ε〉 ∧ 〈 x :: |g .x − b| < ε〉〉

≡ { over ∧ }

〈∀ ε : ε > 0 : 〈 x :: |f.x − a| < ε ∧ |g .x − b| < ε〉〉

⇒ { arithmetic }

〈∀ ε : ε > 0 : 〈 x :: |(f.x + g .x)− (a + b)| < 2 · ε〉〉

≡ { dummy translation: ε′ := ε/2 }

〈∀ ε′ : ε′ > 0 : 〈 x :: |f.x − a| < ε′ ∧ |g .x − b| < ε′〉〉

≡ { (26) }
lim

x→∞
(f.x + g .x) = a + b

Next, we prove that every converging sequence is bounded. First, we establish:

lim
x→∞

f.x = a

≡ { (26) }

〈∀ ε : ε > 0 : 〈 x :: |f.x − a| < ε〉〉

⇒ { instantiation, with ε := 1 }

〈 x :: |f.x − a| < 1〉

⇒ { arithmetic }

〈 x :: f.x < a + 1〉

Now we can prove boundedness of f :

〈∃ b :: 〈∀ x :: f.x < b〉〉
≡ { range splitting on f.x < a + 1 }
〈∃ b :: 〈∀ x : f.x < a + 1 ∨ f.x ≥ a + 1 : f.x < b〉〉

⇐ { predicate calculus }
〈∃ b :: b ≥ a + 1 ∧ 〈∀ x : f.x ≥ a + 1 : f.x < b〉〉

≡ { above: 〈 x :: f.x < a + 1〉 so by (25) the

maximum of the complement exists }
〈∃ b :: b ≥ a + 1 ∧ b > 〈↑ x : f.x ≥ a + 1 : f.x 〉〉

≡ { one point rule: b = 1 + (a ↑ d〈↑ x : f.x ≥ a + 1 : f.x 〉e) }
true

Convergence of functions can also be characterised through the Cauchy criterion:

〈∀ ε : ε > 0 : 〈 x , y :: |f.x − f.y | < ε〉〉 (27)

This follows from the existence of a limit, as proved below. (Note that the
reverse implication relies on the function’s codomain being a complete metric
space.)

〈∀ ε : ε > 0 : 〈 x , y :: |f.x − f.y | < ε〉〉

⇐ { arithmetic: |x − c| < ε ∧ |y − c| < ε ⇒ |x − y | < 2 · ε }

〈∃ a :: 〈∀ ε : ε > 0 : 〈 x , y :: |f.x − a| < ε/2 ∧ |f.y − a| < ε/2〉〉〉

≡ { dummy translation: ε′ := 2 · ε }

〈∃ a :: 〈∀ ε′ : ε′ > 0 : 〈 x , y :: |f.x − a| < ε′ ∧ |f.y − a| < ε′〉〉〉

≡ { unvector, i.e., (17) }

〈∃ a :: 〈∀ ε′ : ε′ > 0 : 〈 x :: |f.x − a| < ε′〉 ∧ 〈 y :: |f.y − a| < ε′〉〉〉

≡ { dummy renaming, with y := x ; idempotence of ∧ }

〈∃ a :: 〈∀ ε′ : ε′ > 0 : 〈 x :: |f.x − a| < ε′〉〉〉

≡ { (26) }
〈∃ a :: lim

x→∞
f.x = a〉

Remark. The above proofs still require extensive reasoning about the dummy
variable ε in the definition of limits. A reviewer pointed out that one way of
avoiding this may be by defining limits in terms of “limit superior” and “limit
inferior”, viz.

liminf f = 〈↑ n :: 〈↓ m : m ≥ n : f .n〉〉
limsup f = 〈↓ n :: 〈↑ m : m ≥ n : f .n〉〉
limx→∞ f.x = a ≡ (liminf f = a ∧ limsup f = a)

and that it may be useful to explore the connection between the quantifier
and infima and suprema over tails of sequences as used above.
End of Remark.

Towards calculational asymptotics

Our exploration of the “for large enough” quantifier was originally motivated
by its application in proofs in asymptotics, which occur commonly in complexity
theory and cryptography. Typically, as in the definition of limits, two quantities
occur as dummies in asymptotic characterisations: the point where the function
value is “close enough”, and how close it is. The quantifier eliminates the
former, but not yet the latter (the ε in the limit definition). In this section
we define relations between functions that address this issue.

In the rest of this section we overload constants to denote constant functions,
where, in particular, variable x denotes the identity function, and we lift opera-
tors on numbers pointwise to operators on functions. Thus, x + 1 in a position
where a function is required denotes 〈λ x :: x 〉+ 〈λ y :: 1〉 = 〈λ x :: x + 1〉 as
expected.

Two types of asymptotic comparisons between functions exist: comparing
asymptotic behaviour (based on absolute differences), and comparing asymp-
totic growth (based on relative differences). In the former, we define a number
of operators between functions as follows:

f ↔ g ≡ 〈∀ ε : ε > 0 : 〈 x :: |f.x − g .x | < ε〉〉 (28)

f / g ≡ 〈∀ ε : ε > 0 : 〈 x :: 0 ≤ g .x − f.x < ε〉〉 (29)

f . g ≡ g / f (30)

Oberserve that the above remove the dummy ε , with the first generalising the
constant in the definition of a limit to a function.

The relation ↔ is reflexive, symmetric and transitive; the proof of tran-
sitivity has the same shape as that for the addition of limits in the previous
section. Indeed, we have that

lim
x→∞

f.x = a ≡ f ↔ a (31)

Using this notation we can encode a number of “asymptotic” relations from
the well-known textbook “Concrete Mathematics” [6]. The strict ordering of
functions by asymptotic growth is captured by the following definition:

f ≺ g ≡ f /g ↔ 0 (32)

It is easy to prove from this that ≺ is transitive and irreflexive. We also write
g � f for f ≺ g .

Useful relations in the world of asymptotic growth can be defined as follows:

f � g ≡ 〈∃C :: 〈 x :: |f .x | ≤ C · |g .x |〉〉 (33)

f � g ≡ f � g ∧ g � f (34)
f ∼ g ≡ f /g ↔ 1 (35)

It is easy to prove that the first is a preorder and that the other two are equiva-
lence relations. Our definition of � differs from the one in [6] in that the latter
uses a single quantification over C for both instances of � . However, the
two definitions are equivalent, as the inner predicate in the definition of � is
upward closed in C , so in both cases we can choose the maximum of the two
instances of C .

Some further properties of these relations are stated below:

f ↔ g ∧ ¬(f ↔ 0) ⇒ f ∼ g (36)
∼ ⊆ � (37)
� ⊆ � (38)

� o
9 ≺ ⊆ ≺ (39)

≺ o
9 � ⊆ ≺ (40)

where o
9 denotes forward function composition. The reverse of (36) does not

hold, e.g. x ∼ x + 1 but not x ↔ x + 1 .
As an example, in [7], for the full verification of a proof in [5], a proof obli-

gation was to show that, for a polynomial a of degree at least 2,

〈 x :: (1− x
a.x)a.x < 2−x 〉

Starting from a standard result, we derive for constant C :

(1 + C
x)x ↔ eC

⇒ { (21) , f .x := a.x/x satisfies (19) }
(1 + C

a.x/x)a.x/x ↔ eC

⇒ { (36) }
(1 + C

a.x/x)a.x/x ∼ eC

Also, we need a result based on continuity, which we state without further
proof: if f is a curried two-argument function such that f.x is continuous for
large enough x , then

g ↔ h ⇒ f.x .(g .x)↔ f.x .(h.x) (41)

Then we calculate:

(1− x
a.x)−a.x

= { fractions }

(1 + (−1)
a.x/x)−a.x

= { exponents }

((1 + (−1)
a.x/x)a.x/x)−x

∼ { above with C := −1 , and (41) }
(e−1)−x

= { exponents }
ex

� { cx ≺ dx for 1 < c < d }
2x

Using properties (37) to (40) we conclude from this calculation that

(1− x
a.x)−a.x � 2x

and using the definition of ≺ thus also

〈 x :: (1− x
a.x)a.x < 2−x 〉

as required.

We can also express so-called “Big Oh” notation using these relations. As
stated in [6], this notation is usually defined in a particular context, e.g., for all
arguments to the function, or near a fixed argument value, or for “large enough”
arguments. In keeping with our application area, we assume the last case here.
Thus, for functions on natural numbers, we have1

f ∈ O(g) ≡ f � g (42)

Because � is used but not given a separate notation in [6], this observation is
missing there. The consequence that Θ (the intersection of “Big Oh” with
1 Despite all the good reasons cited in [6] for writing “f (x) = O(g(x))” etc (“tra-

dition [. . .] tradition [. . .] tradition [. . .] for our purposes it’s natural.”), we can’t
bring ourselves to do so. We do stick with a more traditional way of denoting the
application of the O function though.

its converse) corresponds to � is included, and so is the link between ≺ and
Landau’s “little oh”. An alternative characterisation we may use and explore
further is finiteness of limsup |f /g | .

We now consider a number of the well-known properties of O , and how
they may be proved in this set-up. Since � is a preorder we have:

f ∈ O(f) (43)
f ∈ O(g) ∧ g ∈ O(h) ⇒ f ∈ O(h) (44)

Properties relating O to arithmetic operators would generally require unfolding
the definition of � , for example:

f ∈ O(g) ⇒ C · f ∈ O(g) for constant C (45)
f1 ∈ O(g1) ∧ f2 ∈ O(g2) ⇒ f1 + f2 ∈ O(|g1|+ |g2|) (46)
f1 ∈ O(g1) ∧ f2 ∈ O(g2) ⇒ f1 + f2 ∈ O(g1 ↑ g2) for positive g1, g2 (47)
f1 ∈ O(g1) ∧ f2 ∈ O(g2) ⇒ f1 · f2 ∈ O(g1 · g2) (48)

Finally, properties (36) to (38) allow all three kinds of asymptotic equivalence
between f and g to be transformed into f ∈ O(g) .

Further applications

The original motivation for this work was found in cryptography. The second
author’s PhD thesis [7] explores calculational approaches to proofs in cryptog-
raphy, which, in addition to traditional correctness notions and logic, contain
elements of probabilism, number theory, complexity theory, and —through the
latter— asymptotics.

Algebraic and symbolic reasoning has always been common in number the-
ory, and typical proofs in this area are calculational and elegant. However, typ-
ical proofs in modern cryptography contain quantifications over algorithms and
polynomials, with some of the quantifiers left implicit, and all of them changing
between existential and universal in every (possibly nested) proof by contra-
diction. For the particular proof explored in detail in [7] (a demonstration
proof from [5]), the “large enough” quantifier helped in the housekeeping of
quantifications “in the context” and their acceptable manipulations. Notations
explored in the previous section helped to structure and clarify a lemma based
on asymptotics.

In general, this paper makes a small contribution to making modern cryp-
tographic proofs more structured and manageable, with the ultimate goal of
correctness by construction in modern cryptography. Our work in this area
continues in the context of the UK EPSRC-funded CryptoForma network of
excellence [8].

Acknowledgements

We would like to thank our colleagues in the TCS group, especially Stefan Kahrs
and Simon Thompson, for fruitful discussions, and the MPC reviewers for many
interesting and relevant suggestions.

References

0. E. Adams. The logic of ‘almost all’. Journal of Philosophical Logic 3 (1974) 3–17
1. D. Marker and T. Slaman. Decidability of the natural numbers with the almost-all

quantifier (2006) Available from http://arxiv.org/abs/math/0602415v1

2. A. Mostowski. On a generalization of quantifiers. Fundamenta Mathematicae 44
(1957) 12–36

3. N. Alechina and M. van Lambalgen. Correspondence and completeness for general-
ized quantifiers. Bulletin of the Interest Group in Pure and Applied Logic 3 (1995)
167–190

4. N. Alechina and J. van Benthem. Modal quantification over structured domains.
In M. de Rijke, editor: Advances in Intensional Logic. Kluwer (1997) 1–27

5. O. Goldreich. Foundations of Cryptography: Volume I Basic Tools. Cambridge
University Press (2001)

6. R. Graham, D. Knuth, and O. Patashnik. Concrete Mathematics. Second Edition.
Addison-Wesley (1994)

7. D. Grundy. Concepts and Calculation in Cryptography. PhD thesis, Computing
Laboratory, University of Kent (2008)
Available from www.cs.kent.ac.uk/∼eab2/crypto/thesis.web.pdf

8. EPSRC CryptoForma network: http://www.cryptoforma.org.uk

