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An Analytical Comparison of Some Rule Learning Programs 

S 

by 

Alan Bandy. Bernard Silver and Dave Plummer 

Department of Artificial Intelligence 
University of Edinburgh 

To become a mature science. Artificial Intelligence needs more theoretical work. 

One form this should take is the analytic comparison of existing programs to extract 

precise techniques from the code, compare similar techniques. expose faults, and 

extend successful techniques. 

In this spirit, 	we compare the 	rule learning 	programs of Brazdil. (21. 

Langley. [7]. Mitchell et ai. 114. 151. Shapiro. (181. and Waterman. (21). 	Each of 

these programs has two main parts: 	a critic for identifying faulty rules and a 

modifier for correcting them. 	To aid comparison we describe the techniques of the 

various authors using a uniform notation. 	We find several similarities in the 

techniques used by the various authors and uncover the relations between them. 

We compare the rule learning programs with the concept learning programs of 

Quinlan. (171. and Young et al. [23]. 	The two types of program have much in 

common, and many of the rule modifying techniques are subsumed by the techniques 

of Young et al. 	Quinlan's program Is able to learn disjunctive concepts that are 

more general than those that can be learned by most of the other programs. 

Keywords 

Learning, 	concept iearning, 	ruie 	learning, 	production 	systems. 	PROLOG. 

-. 	 Generalization. Discrimination. Version Spaces. Focussing, Classification. 
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1. Introduction 

Artificial Intelligence is a young science, which is still developing its methodology- 

and its terminology. 	Currently, there is no universal agreement about many 

technical terms. 	Some techniques have several different nmos or none. and some 

names refer to several different techniques. 	Some techniques have not yet been 

abstracted from the programs in which they were originally developed. The 

relationship between techniques is not well understood. 

To correct this state of affairs, it is necessary to analyse existing Al programs 

and techniques: 

- to abstract techniques from programs by explaining them in a code free 

manner: 

- to identify the range of applicability of these techniques: 

- to locate and repair flaws in these techniques: 

- to establish the relationship between techniques for the same task; and 

to extend the range of existing techniques. 

We call such research analytic comparison 

This paper is an analytical comparison of the following work in the area of Al e 

learning programs: 

- The ELM program of Brazdil. U. 21. which transforms a specification into 

a program in the domains of: simple arithmetic, algebra and letter series 

V 
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completion. 

• 	 - The AMBER program of Langley. (71 
	

which acquires the ability to 

• 	 generate simple English utterances. 

- The LEX program of Mitchell et al. (14. 151, which acquires heuristics in 

the domain of symbolic Integration. 

- The extension by Quinian. 1171. of the concept learning system. CLS. of 

Hunt et al. (5). Qulnlan's program. lD3, was used by its author to 

classify certain chess positions as lost or won. 

- The Model Inference System of Shapiro. 1181, which synthesizes logic 

programs from examples In the domains of arithmetic, list processing. 

etc. 

- The P program of Waterman. (211. which acquires heuristics for betting in 

the game of draw poker. 

- The 	extension 	by Young. 	Plotkin 	and 	Linz, 	123). 	of Winston's 	concept 

learning program. (221, 	which 	learns 	the 	definitions 	of simple 	structures. 

e.g. 	an arch. 	from examples and near misses. 

It seemed to us that the above listed researchers had provided, sometimes 

complementary. sometimes alternative, techniques for 	solving isomorphic 	problems. 

but that this was obscured by their 	use of 	different formalisms and terminoiogy. 

Our 	comparison is analytical in that In 	order to 	clarify the similarities 	and 

differences 	between the techniques we have described them with a uniform 	formalism 

and terminology. 	To keep the comparisons simple we have suppressed some of the 

details of the techniques, but we hope we have retained their spirit. 	We have also 

suppressed all domain specific aspects of the techniques. except for the use of 

domain specific rules in our worked examples. and even here we have deliberately 

applied one person's technique to another's rules. 

a) 	 -. 

in 	this 	comparison, we include 	only 	those programs 	that are 	of direct relevance 

to 	rule 	learning, 	and that are 	representive 	of key techniques. This differs from the 
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a 
approach of non-analytical surveys, for example that in the Handbook of Artificial 

S 

Intelligence. (4), which attempt to cover a very wide range of diverse iearning 

programs, describing each 	in 	the 	terminology 	of 	the program's 	author. 	Our 

approach 	differs from that 	of 	Smith 	et 	al. 	(201. 	as 	that survey concentrated 	on 	the 

architecture of 	learning programs, 	rather than 	techniques. 

Furthermore, we have avoided a -behavioural classification of learning. e.g. 	'rote 

learning'. 	"learning by being told'. 	"learning from examples'. 	"learning from 

analogy', such as that found In (4). 	We have tried to develop an algorithmic 

classification. 	In our experience, programs In two different behavioural class may 

contain similar algorithms for some subtask, and there are often several different 

algorithms for each behavioural class. 	For instance: 	both "learning by being told" 

and 'learning from examples' programs may use the critic procedures described in 
I. 

section 3: and the two, very different, techniques of Version Spaces . (14). and - 

Precondition Analysis. (191. can be used for learning from examples'. 	This makes 

the behavioural classification less than helpful to the Al researcher whose main task 

r 
is to design algorithms. 

2. The Learning Task 

The programs surveyed are usually considered to tail into one of two groups. 

The programs of Quinlan and Young at al are concept learning programs. all the 

others are rule learning programs. These two classes are in fact closely related: 

concept learning is contained within rule learning. 

2. 1. Concept Learning Programs 

A cdncept learning program has to learn a symbolic description that enables it tow 

determine whether or not an object is an Instance of the target concept. 	Perhaps 	' 

the most famous example of a concept learning program is that of Winston. (221, 

that can learn the concept of an arch. 	The program of Young et al. (23] is an 

extension of Winston's. 
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2.2. Rule Learning Programs 
S 

• 	 The task tackled by the rule learning programs is to modify a set of rules of the 

form hypothesis implies conclusion . I. e. 

H -) C 
	

(I) 

These programs often use concept learning techniques to modify the hypotheses of 

such rules. 

The 	case 	we 	will 	consider first 	is 	that the 	hypothesis 	H 	is a conjunction 

H 1 	& 	. . . 	& 	H,1  (Ii) 

where 	each 	of 	the 	H is 	is 	a 	negated 	or unnegated 	atomic 	formula. 	We will 	call 

such 	rules 	conjunctive 	rules 	and 	each 	H a 	condition 	of 	the hypothesis. In 	logic. 

conjunctive rules are called 	Horn Clauses 

Secondly, 	we 	will 	consider 	a 	more general 	class 	of rules 	in 	which the 	- 

hypothesis. H. may be made from conjunctions and disjunctions of negated or 

unnegated atomic formuiae. We will call such rules disjunctive rules . Disjunctive 

hypotheses can always be put In conjunctive normal form, as a single conjunction of 

disjunctions, or In disjunctive normal form, as a single disjunction of conjunctions. 

All the programs we consider are able to learn conjunctive rules, whereas only a 

tow can learn disjunctive rules. We will mainly be concerned with conjunctive rules. 

Disjunctive rules will be discussed in section 6. 

For each set of rules there is some target behaviour, i. e. 	how it should 

behave once learning is complete. 	The rules are modified until this target behaviour 

has been achieved. 	 - 

Some exampie rules are given in figure 2-1. 	In the figure. and throughout this 



paper. we adopt the PROLOG 1  convention that identifiers beginning with a capitaL 

letter denote variables, and those beginning with a lower case letter denote. 

constants. 

In the case of Brazdii and Shapiro the rules are PROLOG clauses, which are run 

in backwards chaining mode by the PROLOG interpreter. 	Consider the first rule in 

figure 2-1. 	if the current goal unifies (matches) against 

(X5 + X6) + X2 = X3. 

the PROLOG interpreter attempts to solve the subgoals 

X5 + X6 = X4. and 

X4 + X2 = Xa. 

in the case of Langley. Mitcheil at al. and Waterman the rules are production 

rules, which are run in forwards chaining mode. 	Consider the second rule in figure 

2'-1. 	If the relations 

doscribe(X) & object(X.Y) & definito(X) & singular(X) 

hold for the current state, the production system asserts 

prefix(X. a). 

This 	can be 	interpreted as AMBER saying 	a. 	before 	X. 	where 	X 	is 	the 	Indefinite. 

singular. object of some event V. 

2.3. Types of Fault 

For our purposes it is necessary that the rules have a truth value. 	It will be - 

convenient to consider the rules as being formulae of Predicate Calculus, with a 

truth value assigned by a standard model using Tarskian semantics. 

description of PROLOG can be found in Clocksin and MoDish, [3]. 
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A rule. subsi, for addition in Peano arithmetic, from 	Brazdli, 

121 

X5 + X6 = X4 & X4 + X2 = X3 -> (X5 + X6) + X2 = X3 

whose procedure interpretation is: 

To add three numbers, add the first two and then add the result to the 
third. 

A rule for language generation, from Langley. (71. 

describe(X) & object(X, Y) & deflnite(X) & singular(X) 
-> prefix(X.a) 

which can be paraphrased as: 

if you want to describe X and X is the object of V and X Is not definite 
and X is singular then prefix X with "a". 

Figure 2-1: 	Some Example Rules 

The rules are modified because they contain a fault. 	These faults can be of two 

types: 

- Factual faults : A rule Is false, i.e. the rules constitute a program which 

calculates incorrect answers. 

- Control faults : The rules are true, but have undesirable control behaviour 

when run as a program, e. g. they do not terminate. 

A rule which Is overly general will either be false In the standard model, in 

which case it has a factual fault, or It will be true, in which case it has a control 

fault 

We assume throughout that the rules can be modified Into a consistent set that 

successfully accounts for all the data. 	In particular. we will not discuss how the 

programs deal with data that is noisy. or inconsistent for some other reason. 	Some 

of the authors do discuss this, see Mitchell's 1111 for example. 
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2.3. 1. Factual faults 

An example of a factual fault is 

describe(X) & objGct(X. Y) & plural(X) -) preflx(X. a). 

This rule can be paraphrased as 

If you want to describe X and X Is the object of V and X is plural, then 
prefix X with a. 

The rule is incorrect, plural objects should not be prefixed with a. this constitutes 

a factual fault. 

2.3.2. Control faults 

As an example of a control fault, consider the following rule, modified from 

Brardil. 

XI + X2 = X3 -> Xl + X2 = X3 

This Is factually correct, but If used in its current form is likely to cause a loop. 

However, if weakened to the rule: 

X5 + XC = X4 & X4 + X2 = X3 -, (X5 + XC) + X2 = xa 

it will not cause a loop, and defines a useful procedure for specifying the order in 

which addition Is to be evaluated. The weakening Is effected by instantiating Xl to 

(X5 + XC) and replacing (X5 + X6) + X2 = X3 by X5 + XC = X4 & X4 + X2 = X3. 

It is a common device In rule based programming to impose control on a 

program by weakening a rule by Instantiation or by giving It a stronger hypothesIs. 

Such weakening can also turn a factual incorrect rule into a correct rule. 	This is - 

why the same learning techniques are often applicable to both factual and control 

faults. 



2.4. The Main Càntroi Loop 

The faults in Langley and Shapiro's rules were factual and those in Mitchell at 

• 	al's rules were control faults . 	Waterman and Brazdll considered both types of 

fault. 

The programs listed, except for Quinlan's and Young's, above all used the 

following main control loop. 

Until the rules are satisfactory: 

1. Identify a fault with a rules 

2. Modify the rule to remove the fault. 

Note that the modification of the rule should not introduce new faults! 

Some of the 	authors 	also tackled the problem of 	creating 	new 	rules, as opposed 

to modifying existing 	ones. This 	is discussed 	in section 	5. 

Following 	Smith at 	ai. (20], 	we will 	call 	the subprogram 	responsible for identifying 

faults 	the 	critic 	. We will 	call 	the 	subprogram 	responsible 	for 	modifying the 	rules 

the 	modifier 	. 	 in the next 	section 	we 	consider 	the 	criticism 	techniques used 	by 

each of the above researchers and In the following section we consider the 

modification techniques. 

3. Criticism Techniques for Credit/Blame Assignment 

All the programs we are comparing identify faults by running the existing rules on 

a problem and then analysing the resulting rule trace . The analysis must identify 

where the rules behaved correctly. called positive training instances by Mitchell et 

al. and where they behaved Incorrectly, called negative training instances . 	Both 

sorts of information can be used: 	the positive instances to generalize the rules and 

the negative instances to correct them. 
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Negative instances can be of two types. 

- Errors of commission 	A rule fired incorrectly, because it was 

insufficiently constrained. 	This may produce a factual fault, because the 	- 

rule produces an incorrect result, 	or It could lead to undesirable 

behaviour. I. e. a control fault. 

- Errors of omission 	A rule failed to fire, either because it was 

incorrectly constrained, or the required rule simply does not exist. 	In 

the first case the error could be due to either a factual or control fault. 

The modifier requires three pieces of Information on each instance. 

- The type of instance: posltive. negative-commission or negative-omission. 

- The rule. 

- The context, consisting of the variable bindings when the rule was fired. 

Following Brazdil, we will adopt the convention that the variable bindings of positive 

Instances are called the selection context and the variables bindings of negative 

instances are called the rejection context 

One of the purposes of a critic is to solve the credit assignment problem 

This term was coined by Minsky. (101. to describe the problem of deciding which 

rules are responsible for certain aspects of the program's behaviour, desirable and 

otherwise. 

In the following section we describe some criticism techniques for Identifying 

control faults and factual faults 

3. 1. Using Ideal Traces 

One very common critic 	technique, in the programs we compared. is 	the use 	of 

an 	ideal trace 	. 	 i.e. an 	account of what rules 	shou!d have 	fired and in 	what 

sequence. This technique is 	appropriate for 	finding 	both control 	and 	factual 	faults. 

and 	is 	the only technique used 	by 	the above 	programs to 	find 	control 	faults 

Some of the programs take the ideal trace as input, others work it out by analysis 
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• 	using problem solving and Inference techniques. 	The detailed study of those 

techniques lies outside the scope of this paper. but we describe Mitcheii et al's 

technique in the next section to illustrate the general idea. 

The Ideal trace Is compared with the actual trace of the rules, the rule trace 

to locate the first point at which the traces differ. 	This enables the faulty rules to 

be identified. 

Running the rules 	causes a search tree to be grown (see 	figure 	3-1). 	The 	rule 

trace 	is 	a 	path through 	this tree. 	if this trace 	differs from 	the 	ideal 	trace 	it 	is 

because. 	at 	some 	point, 	the ruie 	that fired in 	the 	rule trace. 	Rr• 	differs 	from 	the 

rules 	that 	fired In 	the 	ideal trace. 	R,. Rr exhibits 	an error 	of 	commission 	and 	A. 

exhibits an error of omission. 

The question then arises of whether the current set of rules contains A 1 . 	If not. 

it must be created using the techniques described in section 5. 	in this section. we 

deal with the case where A. is in the current rule set. 

Correcting 	the error 	of commission 	will 	(eventually) correct the 	error of omission. 

When 	the error of 	commission is 	corrected. 	A,. 	no longer 	fires. 	if 	another 	rule. 

R'r• 	now causes an 	error 	of commission, 	this 	will be 	corrected. 	Eventually. 	A 1  

must 	be the 	most preferred rule, 	correcting 	the error 	of 	omission. 	We 	are 

therefore free 	to concentrate on errors of commission 

rule 	Ideal 
trace 	trace 

Figure 3-1: 	Search Tree for Program's Rules 



12 

The technique can be summarised as follows: 	 - 

(a) Grow the rule trace by running the rules on a problem. 	 - 

(b) Compare with the ideal trace and find the first place at which they 

differ. 

(c) The rules which fired before this point, together with their associated 

selection contexts, are positive training Instances 

(d) The program rule which fired at this point. •together with its associated 

rejection context . Is a commission error. 

For Instance, suppose the rule 

subs: Xl = X4 & X4 + X2 = X3 -) Xl + X2 = X3 

fires In the context (3/X1. 21X2. Ans/X3) but that the rule 

subz: X2=X4&X1 +X4=X3-> Xl +X2=X3 	 - 

Is fired In the ideal trace, then subs in the context (3/X1. 2/X2. AnsfXS). is an 

error of commission. 

3.2. Constructing the Ideal Trace 

Both Brazdil and Mitchell et al use their programs to produce the ideal trace 

but the approaches differ In an important way. 

In Brazdil's program. the ideal trace is constructed by a subprogram that is 

essentially separate 	from the 	rest. 	it 	uses 	only correct 	rules, 	and 	applies 	them 

only 	when appropriate. it 	exhibits 	the 	behaviour that 	the learning 	component 	is 

aiming 	towards. The 	learning 	component 	has 	no access 	this 	subprogram. 	The 

learning 	process 	would be 	the 	same 	if 	the 	user supplied the 	trace. 	Brazdil's 	- 

subprogram essentially 	corresponds to 	the 	target 	rules. 	The assumption 	that such 	a 

subprogram exists 	will rarely 	be 	appropriate. Brazdli's 'solution' 	should 	be 

considered to be ad hoc scaffolding 	which 	enables the rest of the program to run. 
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MItchell et al's program constructs its ideal trace by pruning the rule trace. 	We 

will call this technique Solution Extraction . 	The basic idea is to find a desirable 

branch 	of 	the program's search 	tree, and prune 	away 	all 	other 	branches. In 	the 

simplest 	case the 	desirable branch will be 	any 	branch 	leading 	to 	a solution. 

Mitchell 	et 	al go 	further and 	try 	to find 	a least 	cost 	solution. 	Solution Extraction 

does not assume access to 	the 	target rules. 

The 	rules 	used 	by 	the 	program 	are 	only 	partially 	specified 	(see section 4. 3) . A 

numerical 	score 	is 	assigned 	to 	how well 	they 	apply 	in 	a 	situation and 	this score is 

used 	as 	the 	evaluation 	function 	in 	a heuristic 	search. 	A 	resource limit 	is given to 

the problem solver,which puts an upper bound on the amount of c.p.u. 	time and 

memory it may use in attempting to solve a problem. 	These limitations may prevent 

the program finding the least cost solution and so load to an erroneous ideal trace 

To mitigate this a further expansion is made of negative training instances 

before they are finally sent to the rule modifier . 	This still doesn't guarantee that 

the least cost solution has been found. 

3.3. Contradiction Bacictracing 

In this section we consider Shapiro's technique. for locating factual faults . This 

technique is called Contradiction Backtracing . It is not suitable for finding control 

faults 

Suppose that the current 	rule 	set implies 	P. 	but 	that 	P 	is 	known to 	be 	false. 

The 	falsity 	of 	P may be 	given 	by 	the program 	user or 	calculated 	from the 	standard 

model. 	Clearly, at least 	one 	of 	the current 	rules is 	factually 	faulty, but we 	may 

not 	be 	able 	to tell which 	one 	from the 	model. If 	the 	faulty 	rule contains 	free 

variables and the model has an infinite domain then an infinite series of instances 

must be considered. 	Contradiction Backtracing uses the rule trace and the 

2
Thls Is another instance of the credit assignment problem 
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application of the model to variable free rules, to Identify the faulty rule. 	Since the 

model Is only used to test a finite number of variable free rules. Contradiction 

E3acktraclng always terminates. 	- 

Firstly 	P Is added to the set of rules. 	As P was ImplIed by the original rule 

set, 	the 	new rule 	set 	Is 	Inconsistent. The empty 	clause can 	therefore be 	derived 

by 	resolution. Once 	this 	derivation has 	been 	obtained. Contradiction Backtraclng 

uses 	it 	In 	reverse. 	Starting 	from 	the empty clause, 	the process makes use 	of 	the 

model (see below) to discover which parent of each resolution step is false. 

Eventually, the false parent must be a rule, and this rule therefore has a factual 

fault. 

The technique can be summarised as follows: 

(a) Add P as a new rule. (The rules are now inconsistent. 

(b) Derive —>, the empty clause, from the rules by resolution. 	(The 

derivation Is a rule trace, but unlike previous techniques we will not 

need an ideal trace. 

(c) Set —> to be the current clause of the derivation and 0 to be the 

accumulated substitution. 

(d) Until the current clause is a rule, do the following: 

(I) The 	current 	clause was 	derived 	by resolving 	clauses. 	C and 	D. 

with 	unifier 	tt, . The 	proposition K. 	from 	C. 	and negated 

proposition 	L. 	from D. 	were 	resolved away. 	where 	K Ut. 

Apply the 	accumulated 	substitution 	to K'Z 	to form 	Q. 

(II) If Q contaIns any free variables then Instantiate it to a varIable 

free proposition. Q'. In any way, using the substitution e. 

(lii) Form a new accumulated substitution by combining It with 	and 

a 

means 'Is syntactically Identical to'. 
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(lv) It Q' is true then let D be the current clause. 

- 	 (v) Otherwise Q' is false. Let C be the current clause. 

(e) The current clause Is a faulty rule, and applying the accumulated 

substitution to it gives a false instance. 

The 	decision 	as to 	whether each Q' 	is 	true 	or 	false can 	either 	be 	supplied by 

the 	program 	user or calculated from the 	standard 	model. Note 	that 	the 	only 	calls on 

the 	model 	are 	to decide 	the truth value 	of 	formulae without 	free 	variables (or 

quantifiers) . 	Shapiro uses the term ground oracle to describe something (e. g. 

model or user) that can determine the truth value of such formulae. 

Note also that the instantiation of Q to 0' will not be necessary if Q Is variable 

free. Different choices of B may lead to different faulty rules, and may all be tried. 

For instance, suppose the current rule set were: 

describe(Y) & object(X.Y) -> describe(X) 

describe(X) & object(X. Y) •-> prefix(X. a) 

-> obJect(balls.event2) 

-) descrlbe(event2) 

but 	that 	prefix( balls. a) 	were known to be 	false. This might correspond to 	the 	child 

having 	made the 	utterance: "The dog chases a balls". Adding the new rule 

prefix( balls, a) -> 

we 	can 	derive 	the 	empty 	clause with the derivation given 	in figure 	3-2. The 

Contradiction 	eacictracing 	algorithm now goes through the 	stops tabulated 	In table 

3-1. 	The rule 

describe(X) & object(X. Y) -> prefix(X. a) 

has now been identified as faulty, with substitution (balls/X, event2/Y) giving a false 

Instance. 
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describe(X) & object(X,Y) -> prefix(X,a) 

descre(Y) & objec(X,Y) -> descrthe(X) 

describe(Y' ) & object(X,Y') & object(X,Y) -) prefix(X,a) 

-> object(balls,eventZ) 

deucrthe(event2) -> prefix(balls,a) 

-> descrthe(event2) 

-> refixya11s.a) 

preflx(balls,a) -) 

Figure 3-2: 	Derivation of the Empty Clause from a Faulty Rule Set 

Current Clause - Q' Truth Value -- 

-'• - prefix(_balls,_a) false 	 -- 

-, 	 preflx(balls. a) descrlbe(event2) true 

descrlbe( event2) 
-> 	prefix( balls, a) 

obJect( balls, event2) true 

descrlbe(Y') 	& 	object(X. 'C) 
& 	obJect(X. '1) 	-, 	 prefix(X. a) 

descrlbe(balls) true 

describe(X) 	& 	object(X. Y) 
-) 	prefix(X.a)  

Table 	3-1: 	Backtracing 	Through 	a 	Contradiction 

3.4. Summary 

The critic procedures establish the existence of a fault in the rules and locate 

the faulty rule, the substitution that made it faulty and what type of fault it is. They 

also identify circumstances in which a rule was correctly fired. 	They feed to the - 

modifier procedures: the type of each instance, the rule in question. the context in 

which it fired. 

The major critic technique. used by nearly all the programs compared, and 

applicable to both control and factual faults 
	Is comparison of the actual rule firings 
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with an Ideal trace 

1. Some programs have this ideal trace directly input. 

2. some have It provided by a program which corresponds to the target 

state of the rules being learned, and 

3. some work out the Ideal trace by a process of Solution Extraction. 

(2) is just a convenient automation of (1). and neither is interesting as a learning 

technique. We considered only one example of (3) . the LEX problem solver. 

although others may be found In the literature. 

4. Modification Techniques for Conjunctive Rules 

Once a fault has been located, the faulty rule can be modified. 	The following 

modification techniques for conjunctive rules 	were used in the programs we 

co.m pared. 

1. Ordering the rules. e.g. specifying that 

H -) C should always be fired in preference to H' -) C' 

This technique is strictly only appropriate for control faults and was so 

used by Brazdil and Waterman. However. Langley also used it to 

suppress factual errors. 

2. Instantiating a rule, e. g. transforming 

H(X,Y) -> C(XY) 	to 	l-l(X.X) -> C(X,X) 

This technique is appropriate for both factual and control faults and was 

used by Brazdil and Shapiro. 

3. Adding extra conditions to a rule's hypothesis. e.g. 	transforming 

H ->C 	 to 	H&H'->C 

This technique is appropriate to both factual and control faults, and was 

used by Brazdil. Langley. Shapiro and Waterman. 

4. Updating a rule's hypothesis to take account of now instances. e. g. 

transforming 

S 
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to 

where H' is derived from H by concept learning . 	This technique is 	- 

appropriate to both factual and control faults. 	and was used by 

Waterman and Mitchell et al. 

Methods 2 and 3 both make the modified rule more specific. 	Method 4 narrows the 

range of uncertainty about the rule. 

The techniques described above modify conjunctive rules . 	The techniques of 

Mitchell and Langley have a limited capacity to learn disjunctive concepts. which is 

dependent on a 	favourable 	training 	order. Of the programs compared in this 	paper. 

only 	Quinlan's program 	learns 	disjunctive concepts flawlessly. Modification techniques 

for disjunctive rules are described in section 6. 

4. 1. Ordering the Rules 

All rule based systems need a control strategy to decide conflicts between two or 

more applicable rules. 	If a system uses a priority ordering on the rules then 

control faults can often be corrected by re—ordering the rules. 	In this section we 

explain the ordering technique used by l3razdil. 

Brazdil's 	system 	started with an 	unordered set of rules, and 	imposed the 	partial 

order 	required 	to 	keep 	the rule trace 	in 	line with the ideal trace 	. 	 His critic 	and 

modifier worked as co—routines, discovering conflicts and resolving them by imposing 

an order. 	The technique can be summarised as follows: 

(a) Suppose that rules. P.. .... P. are applicable and that rule P 1  is fired 

in the ideal trace. 	In the following P > Q means that the system will 

fire P before Q. 

(b) If P > P 1  for i Ir j € 11 .....n) than create a new rule P' 1  from P 1 . by 

techniques to be described in subsequent sections. and impose the order 

P' 1  > P 1  for all j. such that i 1j c(i .....n). 

(c) Otherwise impose the order P 1  > P for all j. such that i 	j € 

(1 .... .n) 



19 

- 	For instance. suppoèe the rules: 

subs: 	Xl =X4&X4+ X2X3 - 	Xl +X2 = X3 
subz: 	X2=X4&X1+X4X3 - 	X1+X2=X3 

eq: 	-> Xl = Xl 

are all applicable, but that the Ideal trace records that subz should fire, then the 

orders 

subz > subs 	and 	subz 	eq 

will be Imposed. 

if at some later stage the same rules are In conflict, but the Ideal trace 	records 

that subs 	should 	tire, 	then we cannot impose the 	order éubs 	> subz because 	this 

• would contradict the existing order subz > subs. 	In this case a new rule. subsi. is 

built from subs and the orders 

- 	. 	subsi > subz and 	subsi ) eq 

- 	are imposed. Since > is transitive these new orders also imply that subsl > subs. 

The techniques for making subsl are described in the next two sections. 

Langley uses rule re-ordering to deal with factual faults . 	Rules are ordered by 

having an associated priority number. 	Faulty rules have their priority reduced so 

that they are less likely to fire In future. 	Consequently, the same fault may be 

redetected several times before the rule's priority drops so low that It is never 

selected. 	in [7]. Langley justifies this strange technique with a rather dubious 

psychological argument. 	in a personal communication, however, he points out that 

the technique allows AMBER to learn disjunctive concepts, see section 6.4. and to 

learn from noisy data. 

in certain situations Waterman's program is unable to modify the existing rules 

successfuily. in this case the program obtains the correct rule from the trainer. 

The program then has to assign a priority to the rule to ensure It fires only when 

needed. Waterman does not report .how his program deals with the problem of 
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conflicting priority. 	Perhaps to try to avoid the problem. this technique is only used 

as a last resort. 	 - 

Of those rule ordering techniques. Brazdll's seems the neatest. 	He explicitly 

records 	the 	partial 	order.  which Is 	forced by 	the critic 	Information. 	No 	unnecessary 

orderings 	are 	imposed, as 	with the 	total orders of Langley and Waterman. 	Hence. 

maximum use Is made of ordering, and there Is no unforced use of alternative 

modification techniques. 

4.2. Adding Extra Conditions to a Rule's Hypothesis 

in this section we will consider how a rule can be modified by adding an extra 

condition to its hypothesis. 

- 	Suppose a rule. H -) C. has given a commission error, but that this rule has 

been applied' correctly in the past. 	The variable bindings of the correct application 

will give us a selection context and the variable bindings of the incorrect application 

will give us a rejection context . The idea of this technique is to find some 

difference between the selection and rejection contexts and use this difference as the 

new condition. The technique is realised in what, following Langley, we will call 

Discrimination 

(a) Apply the selection and rejection context substitutions to a fixed set of 

lilerals. 4  called the description space 

(b) Find a literal. H', which is true in the selection context and false in the 

rejection context. H' is called a discriminating literal 

(c) Form the new rule H & H' -, C. 

The new rule is only applicable to the selection context . 

For instanco, suppose the rule 

literal Is either a proposition, e.g. F(X), or a negated proposition, e.g. 'P(X). 
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describe(X) & object(X.Y) -> prefix(X.a) 

has been correctly applied to the word 'bail' and incorrectly applied to the word 

'balls'. 	We have: 

Selection Context: (bail/X. eventi /Y) 

Rejection Context: (balisfX. event2/Y) 

To find the difference. Et'. between these contexts we apply them as substitutions to 

the literals in the description space 

singuiar(X) 	"singular(X), deflnite(X). 	definite(X) 

The only discriminating literal is singular(X) . 	Adding this to the rule as a new 

condition yields: 

descrlbe(X) & object(X.Y) & singular(X) -, preflx(X.a) 

In section 4.2.2 we will describe a special case of Discrimination, and In section 

4-3 we will generalize Discrimination to a more powerful technique. 

4.2.1. Far Misses 

in 	the 	example 	above, this 	particular combination 	of 	selection context . 	 rejection 

context 	and 	description 	space 	yields only 	one 	discriminating literal. Following 

Winston 	we 	call 	such 	a situation 	a 	near 	miss 	. 	 If 	there is 	more than 	one 

discriminating literal then we will call the situation a far miss . 	A far miss would 

arise if we added to the description space the literal. past(Y) . meaning event V 

happened 1n the past. if past(eventl) was true but past(event2). was false then 

past(V) would also be a discriminating literal for the above contexts, and there 

would be a choice of new rules to form. Clearly the description space is of pivotal 

importance in determining whether a discriminating literal is found and what sort of 

new rUles are formed. in all the programs considered here the description space is 

user supplied, and It is difficult to see how it could be otherwise. 

Waterman deals with far misses by demanding extra information from the user 
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which will settle the ambiguity (see section 4.3) 

Langley deals with far misses by creating a now rule for each discriminating - 

4 	 literal, e.g  

descrlbe(X) & objoct(X. Y) & slngular(X) -> prefix(X. a) 
describe(X) & object(X. Y) & past(Y) -) prefix(X. a) 

Any useless creations (like the past rule) would eventually be criticised as faulty and 

fall low in the priority ordering. 

Brazdil deals with tar misses by including all the discriminating literals In a 

disjunction. e. g. 

describe(X) & object(X.Y) & (singular(X) v past(Y)) 
-) prefix(X. a) 

He uses a modified version of Discrimination which trios to prune such 

disjunctions before adding new conditions. For instance. if the following contexts 

arise: 

Selection Context: (ballfX. eventi Pt') 

Rejection Context: (bails/X, ovent3/Y) 

where past(events) is true then Brazdii's Discrimination algorithm drops past(Y) from 

the disjunction to form the rule: 

describe(X) & object(X. Y) & slnguiar(X) -) profix(X. a) 

In section 6.4 we discuss how the Langley and Brazdil far miss techniques can 

be used to learn disjunctive concepts. 

4.2.2. Instantiating a Rule 

An alternative to adding an extra condition to a rule Is to Instantiate it. This Is 

really a special case of adding an extra condition, but can lead to more efficient 

rules since the extra condition Is handled by the pattern matcher. For instance. 
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suppose we are modifying the rule: 

subs: Xl =X4&X4+ X2=X3 -) Xl +X2X3 

in the contexts 

Selection Context: 	((3+1) IX1. 1 /X2) 

Rejection Context: 	(3/X1. 2/X2) 

and the description space contains xl 	= X5 + X6. 	Xl 	= X5 + 	X6 	is 	a 	discriminating 

literal 	. so 	we could add 	it 	as 	an extra condition 	. Alternatively. 	we 	could 

instantiate the rule with the substitution. ((X5+X6) / Xl) to form 

subsi: X5 + X6 = X4 &X4 + X2 = X3 	-> 	(X5 +X6)+ X2 = X3 

Instantiation with 	the substitution 	(tIX) is 	always 	an 	alternative 	when 	the 	discriminating 

literal 	is 	X = 	t. 	for some variable X and term t. 

4.3. Concept Learning of the Rule Hypothesis 

in this section we consider how a rule can 	be modified by 	updating 	its 	hypothesis 

using 	concept 	learning 	techniques, 	like those 	used 	by Winston. 	(221. 	for 	learning 	the 

concept 	of an 	arch 	from 	examples and 	near 	misses. This 	technique 	can 	be 

regarded 	as a 	natural 	extension 	of the 	one 	described 	in the 	last 	section. 	This 

relationship is 	most 	clearly 	seen 	by considering 	the 	technique 	of 	Young 	et 	al. 

because 	it generalises 	much 	of the 	Winston 	and Brazdil/Langley/Waterman 

techniques. and 	is 	similar 	to. 	but more 	easily 	explained than, 	the 	Mitchell 	et 	ai 

technique. 

We therefore adopt the strategy of explaining first the Young et al technique. 

pointing out the differences from the other techniques as we go. 	We will be 

defining an algorithm which we will call Focussing . 	We describe Quinlan's 

technique. Classification . for learning disjunctive concepts in sections 6.5 and 6.6. 

and compare Classification with Focussing in section 6. 7. 
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4. 3. 1. The Description Space 

The description space . in Focussing. tries to capture the notion of a partially - 

specified concept, in which some situtations are know to lie outside the concept. 

some inside, and some, in a grey area, are yet to be decided. The Focussing 

process works to reduce this grey area. 

The description space consists of a set of relation trees (see figure 4-1). 	Each 

node of the tree Is labelled with a relation; relations in the same tree being applied 

to the same arguments. 	The label of the root node is the relation which is always 

true. 	The label of a node is logically equivalent to the exclusive disjunction of the 

labels of its daughters. I. e. 	the arrangement 

p(X) 

q(X) 	r(X) 	s(X) 

implfes that 

p(X) c-> (q(X) ' r(X) 	s(X)) 

where 	v 	means exclusive 	or. Thus, 	any 	given 	instance will 	cause 	the 	relation 

labelling 	exactly one 	tip 	node to 	be 	true. 	The 	instance is 	said 	to 	specify 	this 

relation. 

These trees make explicit the relationship between a proposition and its negation 

by arranging them as the labels on the two daughters of the root node. 	A tree 

consisting only of a root node with two daughters will be called a minimal tree 

The singular/plural and definite/Indefinite trees of figure 4-1 are minimal. 

This description space 	allows a 	partially 	specified 	rule 	hypothesis 	to be 

represented. 	During the 	course 	of rule 	learning 	this 	partially 	formed 	hypothesis Is 

gradually firmed 	up untii 	It 	is 	completely 	specified. 	The 	partlai 	representation Is 

achieved by 	placing two 	markers 	In each tree: 	an upper mark and a lower mark as 

In 	figure 4-1. 	The partially 	specified rule 	Is 	represented 	by 	the 	rule 	conclusion and 
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1. 	true(X,Y) 

action( X, Y) 	actor( X, Y) 
(upper) 

agent(X,Y) 	object(X,Y) 
(lower) 

3. 	true(X) (upper) 

deflnite( X) 	indefinite( X) 
(lower)  

2. 	true(X) (upper) 

singulax(X) 	plural( K) 
(lower) 

4. 

past(Y) present(Y) future(Y) 
(lower) 

Figure 4-1: 	Description Space for Language Acquisition 

the description space together with Its marks. We will call this a rule shell 

Any 	relation above 	the 	upper mark5 	Is 	outside the 	concept. e. g. 	actlon(X. Y) 

and 	true(X.Y) . Any 	relation 	in the 	tree 	below the 	lower mark 	Is 	inside 	the 

concept. 	e.g. object(X. Y) 	Any relation 	between the 	upper and 	lower marks 	is 	in 

a 	grey 	area, about 	which 	the program 	is 	not sure, 	e. g. agent(X. Y) 	and 

actor(X.Y). 	The condition is firmed up when the upper and lower marks coincide. 

The rule shell Is firmed up Into a rule when each of Its conditions Is firmed up. 

Focussing works by moving the upper marks down and/or the lower marks up. until 

they coincide. 

Since the rule shell only partially specifys the rule, there is some ambiguity about 

what rule to use when formIng rule traces. In particular. we can take two extreme 

views: 

- 	
- The 	Most General 	View 	: 	that the 	hypothesis 	is specified by 	the 

I 	 conjunction of 	relations 	labelling 	Its upper 	marks, 	which leads 	the rule 	to 

• 	 make errors of commission 	and. 

5Here, we say that a relation is above a mark if it is outside the subtree dominated by that mark. Similarly, a 
relation Is below a mark if it is In the subtree dominated by that mark. A relation is between the upper and 
lower marks if it is above the lower mark and below the upper mark. 
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- The Most Specific View 	that the hypothesis is specified by the 

conjunction of relations labelling its lower marks, which leads the rule to 

make errors of omission 

For the sake of definiteness and to facilitate comparison with the last section, we - 

will adopt the most general view. 	Note that this will force all negative training 

Instances to be errors of commission rather than errors of omission. 	Furthermore. 

since root reiptions are always true we will omit them from the hypothesis. 	Thus 

the rule represented by the description space in figure 4-1 Is 

descrlbe(X) & actor(X. Y) —> prefix(X. a) 	 (Iii) 

rather than 

describe(X) & object(X. '1) & singular(X) & lndefinite(X) & past(Y) 
—) prefix(X.a) 

Also, for the sake of definiteness, we will assume that the rules are fired forwards. 

Neither of these restrictions Is serious, since the algorithms for the other cases are 

duals of the one described below. 

The partial representation of a rule provided by a rule shell is similar to the 

version space representation used by Mitchell et at In the Version Spaces algorithm. 
6 

They record two sets: S. the set of most specific rules Implied by the evidence so 

far; and G. the set of most general rules Implied by the evidence so far. 

For Instance, the version space corresponding to the description space In figure 

4-1. is: 
7 

 

5: (describe(X) & object(X,Y) & singular(X) & indeflnite(X) & past(Y) 
-, prefix(X,a)J 

C: (describe(X) & actor(X,Y) -) prefix(X,a)) 

6lhroughout this paper, "Version Spaces" denotes the algorithm or Mitchell at al, while "version space" 
denotes the object. 

7
Note that we have omitted the true(X) conditions as these are always true. 
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The version space representation is more compact that the description space 

representation, but the explanation of Focussing is more messy. Version spaces do 

not explicitly record a piece of information vital to Version Spaces namely the 

correspondence between the conditions in the different rules. e. g. between 

obJect(X.Y) in S and actor(X,Y) in G. 

The Brazdil/Langley/ Waterman Discrimination technique of the last section 

corresponds to moving the upper mark down from the root to a tip of a minimal 

tree . We will enrich the meaning of Discrimination to cover all cases In which 

near/far misses cause the upper mark to descend. 

The ascending 	of lower 	marks 	does 	not 	correspond 	to any 	technique 	used 	by 

Brazdii or 	Langley. it 	is 	done 	when 	the 	critic 	provides 	a positive 	training 	instance 

of 	a 	rule 	and 	it 	generalizes the 	hypothesis, 	of 	that 	rule. In 	Winston's 	program. 

1221, it 	corresponds to 	the 	generalization 	of 	a 	concept 	when 	new 	examples 	of 	the 

concept are 	provided. We will 	call 	this 	step 	Generalization 

Focussing does not just compare the current context with a single previous 

context, but with all previous contexts. This is possible because all previous 

contexts, both selection and rejection, are summarised by the positions of the upper 

and lower marks in the relation trees . 	We need only compare the current context 

with the ôurrent positions of these marks. 	if the critic has provided us with a 

positive training instance then we will have a selection context, and will apply 

Generalization. 	if the critic has provided us with a commission error then we will 

have a rejection context . and will apply DIscrimination. To some extent 

Generalization and Discrimination are dual processes. but this duality is not complete 

and the reader should beware of assuming that It is. 

The 	description space 	is initialized 	by 	providing a 	positive 	training 	instance. 	For 

each 	tree 	in 	the description space, 	exactly 	one 	of its 	tip 	relations 	will 	be 	specified 
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by (I. e. be true in) the selection context of this Instance. 	The lower mark is 

placed on this tip'. 	The upper mark Is placed on the root of the tree. 

We now consider Generalization and Discrimination in more detail. 

4.3.2. GeneralizatIon 

The Input to Generalization consists of: the selection context of a correct 

application of a rule: and the description space of the rule. 	The output consists of 

new lower marks for some of the trees. 	Each tree is considered in turn and the 

following steps executed. 

(a) For each of the relations labelling a tip node, determine Its truth value 

In the selection context. 

(b) Exactly one of these relations will be specified by the selection context. 

label its node, the current node 

(c) Find the least upper bound of the current node and the current lower 

mark and make this the new lower mark. 

For instance, suppose that the rule 

describe(X) -> prefix(X.a) 

has been correctly applied in the selection context 

(dogfX. eventl/V) 

and that position of the marks In the relation trees are as in figure 4-2. The tip 

relations which are true in the selection context are: 

agent( dog. eventi). 
singular(dog), 
lndefinite(dog). 
present( event 3) 

These specify the current nodes 	markôd in 	figure 	4-2. 	and might correspond to 	the 

child making the 	utterance: 	A 	dog chases 	the ball". Taking 	the 	ieast upper 

bound between each 	current node 	and iower mark gives 	the new lower marks given 
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in figure 4-2. 	Note that the lower mark for trees 2 and 3 is unchanged. but that 

the lower mark of tree 1 moves to 'actor(X. V)' and the lower mark for tree 4 

moves to 'true(Y)'. 

Despite these changes to the lower marks of the description space. the rule does 

not change form, because it is determined by the upper marks. However. 

Generalization does have an effect on the rule learning process, because the lifting 

of the lower marks can limit the choices available to Discrimination . as we will see 

in the next section. 

1. 	true(X,Y) (upper) 

actlon(X,Y) 	actor(X,Y) 
(new, lower) 

agent(X,Y) 	object(X,Y). 
(current) 	(lower) 

.3 	true(X) (upper) 

deflnite(X) indefinite(X) 
(lower 
& current)  

2. true(X) (upper) 

slngular( X) 	plural(X) 
(lower 
& current) 

4. true(Y) (upper & 
/fl-RcwlOWr) 

past(Y) present(Y) future(Y) 
(lower) (current) 

Figure 4-2 	Applying Generalization to the Description Space 

The version space corresponding to the now lower marks' of figure 4-2 Is: 

5: (descrthe(X) & actor(x,Y) & singula.r(X) & indefinite(X) 
-> prefix(X,a)) 

Cs (descrthe(X) -) preflx(X,a)J 

4. 3. 3. DIscrimination 

The input to Discrimination consists of: the rejection context of an incorrect 

application of a rule: and the description space of the rule. 	The output consists of 

a new upper mark for exactly 211.Q of the trees. 
8 	

SInce we are dealing with a 

6
Note lack of duality. 
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conjunctive rule, all Its conditions must be true for the rule to fire. 	Thus making 

one condition false for an instance is enough to prevent the rule firing. 	Each tree 

is considered in turn and the following steps executed. 

4 

(a) For each of the relations labelling a tip node, determine its truth value 

in the rejection context. 

(b) Exactly one of these relations will be true In the-rejection context, label 

its node, the current node . Note that the curreAt node must lie below 

the upper mark . otherwise the rule could not have fired. 

(c) If the current node lies below the lower mark then mark the tree as a 

white tree  

(d) Otherwise, the current node must lie between the upper and lower 

marks. 	Mark the tree as a grey tree 

At 	least one 	of 	the 	trees must be 	grey, 	otherwise 	the 	ruie application would 	be 

correct. 	If 	just 	one 	tree 	Is grey then we have a 	near miss . 	 If 	more than - one 

tree 	is grey then 	have a far miss . 	 Only one of the grey trees can have its 	upper 

mark 	lowered. 	We 	call 	this grey tree 	the 	discriminant 	. 	 Far misses can be 	dealt 

with by at least five strategies: 

- depth first : We can pick one of the grey trees as discriminant: 

- breadth first: Or create a now rule for each grey tree: 

- teacher option: Or we can be told which tree to pick; 

- zero option: Or we can do nothing. 

- avoidance option: Or we can arrange the training order so that far 

misses do not arise. 

Either 	of 	the 	first 	two choices may lead to the 	creation 'of 	rules which are over 

constrained 	and 	may give 	rise to errors of omission 	. Such rules should be 

deleted. in 	the 	case 	of depth 	first search 	the program should 	then backup 	and 

chose another 	discrimlnant. The breadth 	first option corresponds to 	Langley's 

solution to 	far 	misses, 	as described In 	section 4. 2. 1. The 	third 	choice 	is 	that 

I 
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adopted. by Waterman, with the relevance information indicating which grey tree to 

pick (see below). 	The fifth choice is that adopted by Winston. in fact, he made a 

feature of the dependence of his method on the training order. 	If there are enough 

Instances to firm up all the trees, then far misses can be avoided by presenting all 

the positive instances first. 	However, presenting all the positive instances first can 

cause errors with some approaches to disjunctive rules (see section 6.3). 	Brazdil's 

solution cannot be adopted here without violating the relation tree representation of 

the rule hypothesis. but It is similar to the Version Spaces solution (see below). 

Once the dlscriminant has been picked its upper mark is lowered, just enough to 

exclude the current node . This is done by setting the new upper mark to be the 

least upper bound of the current node and the lower mark . To Illustrate 

Discrimination suppose that the rule 

describeCX) -) prefix(X. a) 

has been Incorrectly applied In the rejection context 

(chases/X, event2/Y) 

and that the position of the marks in the relation trees are as in figure 4-2. The 

tip relations which are true In the rejection context are: 

action(chases. event2). 
slngular(chases). 
indeflnite(chases). 
present( event2) 

These 	specify the current nodes 	marked 	In 	figure 	4-3. 	and 	might correspond 	to the 

child 	making 	the utterance: 	The dog •a 	chases the 	bail. 	Trees 	2 	and 	3 are 

white 	and 	trees 	'I and 	4 	are 	grey. If 	tree 	1 	is chosen 	as 	the 	discriminant then 

action(X.Y) 	can be 	excluded 	by lowering 	the upper 	mark 	from 	true(X.Y) to 

actor(X. fl. 	The new rule is: 

9Note lack of duality with Generalization • I.e. we do not use the greatest lower bound of the upper and 
current mark. 
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descrlbe(X) & actor(.X.Y) -, preflx(X.a) 
	

(lv) 

2. 	true(X) (upper) 
(white) 

singular(X) 	plural( K) 
(lower 
& current) 

1. 	true(X,Y) (upper) 
(grey) 

action( X, Y) 	actor( X, Y) 
(current) 	(new upper) 

agent( X, Y) 	object( X, Y) 
(lower) 

3. 	true(X) (upper) 
(white) 

deflnite( X) indefinite( X) 
(lower 
& current) 

4. 	true(Y) (upper) 
(grey) 

past(Y) present(Y) future(Y) 
(lower) (current) 

Figure 4-3: 	Applying Discrimination to the Description Space 

4.3.4. Far Misses 

If tree 4 had been picked as the discriminant then the new rule would have 

been: 

describe(X) & past(Y) -) prefix(X.a) 

Since 	the 	tense of an 	utterance does not affect whether the 	article 	a 	should 	prefix 

actors 	then 	this rule 	would eventually be 	guilty 	of 	an 	error 	of 	omissIon, 	e.g. 	in 	the 

context 	(dog/X. event4/Y), where 	present(event4) . 	 the rule 	would 	not 	fire 	when 	it 

should. 	At 	this stage 	the rule 	should be 	deleted, 	and if 	the 	alternative 	rule. 	(iv), 

has not already been formed, then it should now. 

Note that It the Generalization of past(Y) and present(Y) to true(Y) . had 

preceded the current Discrimination step. then tree 4 would not have been a grey 

tree and. hence, not available as the discriminant. Thus Generalization can prevect 

the occurrence of far misses, and the consequent creation of erroneous rules. For 

this reason it is best to make Generalization steps before Discrimination steps. 

When Waterman's program makes a wrong decision, either a control or factual 

error, It is given information additional to that provided by the Ideal trace 
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Waterman calls this Information relevance information 	This is a set of the trees 

that need to be considered to make a correct decision, 	in the situation of figure 

* 	4-3. the relevance information would Indicate that tree 1 is to be considered. and 

that tree 4 is not. 

The version space corresponding to the new upper marks of figure 4-3 is 

Si fdescribe(X) & object(X,Y) & singular(X) & 
lndeflnite(X) & pa.st(Y) 

-) prefix(X,a)J 

C: (descrthe(X) & actor(X,Y) -> prefix(X,.a), 
describe(X) & paat(Y) -> prefix(X,a)) 

Note 	that the correspondence 	between object(X. Y) 	and 	actor(X. Y) 	is 	not expilcitly 

recorded and must 	be 	rederived 	before further 	GeneralizationfDiscrimination can 	be 

applied. This is a disadvantage of the version space representation. 

in 	this version 	space 	G 	is 	a doubleton: the 	two members 	representing the 

outcomes of 	the 	twofold 	choice 	of discriminant in 	the 	far miss 	situation. 	Thus the 

version 	space can 	simuitaneousiy represent 	several 	alternative 	versions of 	a 	ruie. 

This 	explains why 	G 	is 	a 	set. However, 	it 	does 	not 	expiain 	why 	S is 	a 	set. 

Generalization never 	Invoives 	choices. 	even 	when 	the 	version 	space 	is representing 

several 	rules, so 	S 	will 	always 	be a 	singleton! 	Aiiowing 	S 	to 	be 	a 	set appears 	to 

be a minor flaw in the LEX program. 10 

4.3.5. Differences between Version Spaces and Focussing 

• 	 Focussing and Version Spaces are simiiar In many ways, most importantly they 

both combine Generaiization and Discrimination . 	However, there are a few 

- 	differences. 

- The Focussing relation trees explicitly store the correspondences between 

10Mltcheli, (personal communication), states that while this Is the case for the rule language used in this 
paper. (end for the rule language used in LEX), with other rule languages, such as that usod In Meta-
DENDRAL. S can be a non-singleton set. 
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relations, and this must be rederived in Version Spaces. 

- As shown in section 5. 1 below, the two representations differ in the rule-

creation phase. The specific boundary of the version space represents a 

more specific concept than that represented by the lower marks in the 

Focussing algorithm. 

- 	 In 	the 	Focussing 	algorithm. 	Generalization and Discrimination affect 	only 

one 	set 	of 	marks, 	the 	lower 	and 	upper marks respectively. Version 

Spaces 	actually 	requires 	the 	updating 	of both 	boundary 	sets 	for 	both 

processes. 	The 	extra 	operations 	prune the boundary 	sets: patterns 

matching 	negative 	instances 	are 	removed 	from the 	specific 	boundary 	set, 

and 	patterns 	not 	matching 	positive . instances are removed from the 	general 

set. 	None 	of 	the 	examples 	given 	for 	LEX use these 	pruning operations, 

and they seem to be needed only when dealing with 	graph-like description 

spaces and for noisy data. 

4.4. Summary of Conjunctive Modification Techniques 

The following relationships hold between the techniques presented above: 

- Focussing combines Generalization and Discrimination in a clean manner. 

They are near duals. but Discrimination is non-deterministic, whereas 

Generalization Is not. 

- Focussing is similar to Version Spaces, except that the Focussing relation 

trees explicitly store the correspondences between relations, and ibis must 

be rederived in Version Spaces 

- The firming up of a rule shell in Focussing and the meeting of S and G 

In Version Spaces, provide guarantees that the learning process has 

terminated. No such guarantees are provided by Generalization or 

Discrimination used alone. 

- Focussing contains a generalization of Langley's Discriminatidn so that it 

can deal with non-minimal relation trees  

- Discrimination is a generalization of Brazdii's rule instantiation. 

- Rule ordering is independent of the other modification techniques. 

Discrimination on far misses introduces choice and search into the modification 

processes. 
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Two possible flaws were detected In the published research: 	Langley's use of 

rule ordering for factual faults 	and Mitchell et al's use of a set of most specific 

rules, 	when there 	can never 	be 	more 	than 	one. 	Both authors 	have told us 	that 

while these are 	flaws 	In the 	programs referenced 	In this 	paper, 	they can be features 

In programs designed to tackle 	more 	difficult 	problems. 	e.g. cope with noisy data. 

5. Creating New Rules 

In this section we describe how new rules are created, in contrast to the 

modification of existing rules. Some of the programs don't address this task. None 

of the programs actually create new rules in the sense of deriving new conditions 

and conclusions. Instead, they use a degenerate form of rule modification, on a 

rule with no conditions. 

5. 1. Modifying the Empty Shell 

One obvious technique for creating a rule Is to treat .  Its absence as an error of 

omission, and use the standard techniques to correct this error. 

The idea Is to modify rules that have no conditions from the description space, 

only a conclusion. 	(The lack of conditions can cause both factual and control 

faults . ) We call such rules empty rules 
	

An empty rule, together with its 

description space. constitute an empty shell 
	

Mitchell and Shapiro adopt this 

approach, whIch we call Modifying the Empty Shell 

In our example, 

describe(X) -> preflx(X.a) 

will 	be an 	empty 	rule. The condition describe(X) 	does 	not 	take 	part 	in 	learning, 	it 

is 	not in 	the 	description space. , 

We describe the method used by LEX. ShapIro's method Is similar. 
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LEX creates a new rule shell when the process of Solution Extraction discovers an 

error 	of omission the first time that a 	new 	rule Is used 	In the 	ideal trace 	. In 

Focussing terminology, the lower marks are Initialized to the current marks, the - 

upper marks are InitIalized to the roots of the trees. 

If the most specific view is adopted, the rule shell Implies that the rule should 

only be used in the current context. The most general view implIes that the rule 

should always be used. 

For example, suppose that LEX is learning when it should use the empty rule 

describe(X) -> prefix(X. a). 

The ideal trace uses the rule for the first time In the context 

agent(dog, eventi). 
slngular(dog). 
indefinite( dog). 
present(eventl). 	 -I- 

(This corresponds to e. g 
	ap dog chases a ball. ) 	LEX creates the new rule 

shell shown In figure 5-1. 

i. 

1. 	true(X,Y) (upper) 

action(x,Y) 	actor(X,Y) vv 

agent(X,Y) 	object(X,Y) 
(lower) 

3. 	true(X) (upper) 

definite( X) 	indefinjte(x) 
(lower) 

Figure 5- 1 

2. 	true(X) (upper) 

aingular(X) 	plural(X) 
(lower) 

4. 

/17~ 
pa.st(Y) presen€(Y) future(Y) 

(lower) 

The Initialized Rule Shell 

This corresponds to the version space 
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3: describe(dog) & agent(dog,eventl) & singular(dog) & indefinite(dog) 
-, prefix(dog,a). 

G: describe(x) -> preflx(X,a). 

Note the rule S Is more specific than that represented by the Focussing algorithm. 

The version space representation allows the representation of very specific concepts, 

these will usually be generalized by further examples. 

Note that LEX also creates new rule-shells when the concept it is trying to learn 

is disjunctive, see section 6.3. 

Shapiro adopts a similar approach, although he is dealing with factual faults. 

MIS begins with the empty program. 	This fails to account for a positive instance. 

(an error of omission) . and so It is modified using his standard technique. 

5.2. Guided Rule Creation 

Waterman's program is given training information by the user 11  This information 

allows 	the 	program to 	directly 	construct 	the training rule 	. 	 the rule 	that 	should 	have 

been 	used 	In 	the current 	situation. 	The program first 	tries to 	modify 	the 	existing 

rule 	set 	to 	cover the 	training 	rule, 	but if 	it 	is unable 	to do 	this. 	it 	adds 	the 

training 	rule 	to 	its set, 	thus 	obtaining 	a 	new 	rule. We 	call this 	approach 	Guided 

Rule Creation 

The addition of the training rule can lead to control faults . 	Waterman adopts 

the approach likely to minimize this possibility by adding the new rule Just before the 

rule 	that fired 	incorrectly, correcting both 	an error of 	commission 	and an error 	of 

omission. The 	technique is 	rather ad-hoc, and there 	seems 	nothing to prevent 

further instances causing the program to loop, but Waterman does not discuss this. 

11 There are several different versions of Waterman's program. In some, the role of the user Is played by an 
expert program. in another the program uses a type of database to get this information. However, for our 
purposes the distinction is unimportant. 
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Langley's 	Rule Creation approach is 	somewhat 	similar 	to 	Waterman's. 	However. 

AMBER obtains 	Its training rule 	from a 	set of 	meta-rules 	rather than 	the 	user. 	The 

distinction 	doesn't appear to be very significant. 

5. 3. Summary 

We have described two rule creation techniques: 

- Modifying the Empty Shell 

- Guided Rule Creation. 

Both of these 	techniques 	are 	strongly dependent on 	the description 	space 	. 	 which 

supplies the conditions 	of the 	new 	rule. 

Modifying 	the Empty 	Shell 	is 	also 	strongly dependent on 	the ideal trace 	The 	ideal 

trace 	is 	needed to 	discover 	the conclusion of 	the 	new rule. Of course, 	it 	also 

shows that an 	error has 	occurred, and thus indió'atos 	the need for a new rule. 

This technique thus combines conclusions provided by the ideal trace with 

conditions from 	the description space. apparently 	a rather 	trivial 	form 	of rule 

creation. However, it 	would. perhaps be 	too 	much to 	expect 	the 	program to 

somehow discover new conditions and conclusions for itself. 

Guided Rule Creation obtains the conditions and conclusions of the new rule from 

the user. This is really an uninteresting way of creating new rules, and Waterman's 

implementation may be flawed. 

6. ModIfication Techniques for Disjunctive Rules 

The techniques discussed above have all been for conjunctive rules or conjunctive 

concepts. 	In this section we consider the • extension of these techniques to learn 

disjunctive rules and concepts. i.e. 	concepts that involve disjunction, as well as 

conjunction and negation. 
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In one sense the extension to disjunctive concepts is trivial. 	Any concept 

involving conjunction, negation and disjunction can be put in disjunctive normal form. 

I.e. rewritten into a logically equivalent form consisting of a disjunction of 

conjunctions of negated or unnegated atomic formulae. Each disjunct can then be 

learned separately using conjunctive learning techniques. From the viewpoint of rule 

learning this means that any disjunctive rule can be split into a number of 

conjunctive rules, e. g. 

describe(X) & actor(X.Y) & (singular(X) v deflnite(X)J 
-> use-article(X) 

(meaning: "use an article when describing a singular or definite actor") is logically 

equivalent to: 

descrlbe(X) & actor(X) & singuiar(X) -> use-article(X) 

describe(X) & actor(X) & definite(X) -> use-article(X) 

The problem of learning disjunctive rules then becomes one of knowing when to 

spilt a rule shell Into two or more rule shells, and which positive Instances to 

associate with which shells. (Negative Instances are counterexamples to all rules 

and apply to all shells) Since the Focussing concept learning technique subsumes 

the other techniques discussed above, we will compare various techniques for dealing 

with disjunctive concepts by considering what modifications they suggest to Focussing. 

The only exception to this is Quinian's Classification, which cannot be described in 

terms of FocussIng. We discuss this In sectIons 6.5 and 6. 6. and compare It to 

Focussing in section 6. 7. 

Of the programs discussed above, only Langley's AMBER, Mitchell's LEX and 

Brazdii's ELM, attempted to deal with disjunctive concepts. 
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6. 1. How Focussing Fails on Disjunctive Rules 

What difficulties arise when Focussing is applied to a disjunctive concept? 

First note that Focussing has some limited scope for disjunction. 	For example 

the rule 

describe(X) & actor(X. '1) -> prefix(X. a) 

effectively represents a rule containing an (exclusive) disjunction: 

describe(X) & (agent(X. Y) v object(X, 'fl) -> prefix(X. a). 

However, concepts containing disjunctions between trees cannot be represented. 	An 

example of such a rule is: 

descrlbe(X) & actor(X,Y) & (singular(X) v definite(X)) 
-> use-article(X) 

We now consider how Focussing might be adapted to learn this rule. 	We use 

the same description space as before. 	Suppose that we have the Instances given in 

figure 6-1. 

(a) 	agent(dog,eventl), 	 (b) object(ball,event2), 
singular( dog), 	 slngular(ball), 
indefirzite( dog), 	 indefinite( ball), 
present( eventi). 	 past( eventz). 

(c) 	agent(dogs,event3), 	 (d) object(balls,event4), 
plural(dogs), 	 plural(balls), 
indefinite( dogs), 	 definite(balls), 
present(eventa). 	 past( event4). 

(e) 	object(ball,events), 	 (f) action( chases, event6), 
singular(ball), 	 singular( chases), 
definite( ball), 	 deflnite( chases), 
present( event5). 	 present( event6). 

Figure 6-1:" 
	

Training Instances for a Disjunctive Concept 

Instances (a). (b). (d) and (e) are positive training instances . (c) and Cl) are 

negative ones. 	They might correspond to the child making the utterances: 

(a) "A dog chases . . 
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(b . chased a ball" 

(c) aa  dogs chases . . . . 

Cd .....chased the balls" 

Ce.....chases the ball. 

Ct) ". . . . the chases 

Suppose the training order is Instance (a) . followed by instance (b) . 	The 

description space will now contain the marks shown in figure 6-2. 	Tree 4 is firmed 

S 

1. 	true(X,Y) (upper) 

action(X,Y) 	actor(X,Y) 
(lower) 

agent(X,Y) 	object(X,Y) 

3. 	true(X) (upper) 

definite(X) indefinite(X) 
(lower) 

2. 	true(X) (upper) 

/ 
singular(X) 	plural(X) 
(lower) 

4. 	true(Y) (upper 

past(Y) present(Y) future(Y) 

Figure 6-2: 	The Description Space After Two Positive Instances 

Now Instance (c) is presented. 	This is a negative Instance. so  Discrlminatlor 

occurs. 	Only Tree 2 is grey, so It becomes the dlscrlminant and Is firmed up, 

while trees 1 and 3 remain unchanged. 	The situation Is shown In figure 6-3. 

Suppose that we now present the instance (d) 	a positive Instance. 	Focussing 

falls because the current instance on tree 2 Is above the upper mark, but the 

instance is positive. 	If the instances were presented in another order, different 

behaviour 	would 	be produced, 	but a 	similar problem 	would always 	occur. For 

example. 	If 	the 	first three 	Instances were 	(a) . (b) 	and 	(d) . trees 	2. 	3 	and 4 	all 

become 	firmed 	up. Then 	instance (c) 	causes the 	algorithm to 	fail 	as 	It 	is below 
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1. 	true(X,Y) (upper) 

action(X,Y) 	actor(X,Y) 
(lower) 
/ 

agent(X,Y) 	object(X,Y) 

2. 	true(X) 

slngular( X) 	plural( X) 
(upper 
& lower) 

3. 	true(X) (upper) 
	

4. 	true(Y) (upper 

/ 
definite(X) 	indeflni€e( X) 	 pazt(Y) present(Y) future(Y) 

(lower) 

Figure 6-3: 	The Description Space Alter a Negative Instance 

the tower mark on all four trees. 

6.2. Other Causes of Inconsistencies in Focussing 

Unfortunately. 	it 	is 	not just 	disjunctive 	concepts 	that 	can 	cause 	such 

inconsistencies. Each of the other possible causes suggests different ways of 

repairing the situation, contributing to a combinatorial explosion in the learning 

process. 

One obvious cause is noisy data. The positive instance that appears above the 

upper mark, or the negative instance that appears below the lower mark may just be 

wrongly classified. The solution in this case is just to ignore the evidence, and 

continue. Possibly, the noisy data occurred earlier in the learning process, in 

which case the solution is to back up and ignore the earlier evidence. 

A 	cause we have 	already met 	(see section 4.2. 1) is 	a 	wrong 	choice 	of 

discriminant when discriminating against 	a far 	miss . 	The solution 	in 	this 	case 	is 

to 	back up to the choice 	point and choose another grey tree as 	discriminant. 

An inconsistency can also be caused by an inadequate description space . 	For 

instance, suppose the correct form of the rule is: 
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describe(X) action(X. Y) & (present(Y) v future(Y)1 
-> use-present(X) 

Since the tense tree is ternary (see figure 6-4) then positive instances for 'present' 

and 'future' will cause Generalization to move the lower bound to the root node. 

tnie(Y) (new lower) 

past(Y) present(Y) future(Y) 
(current) 	(old lower) 

	

Figure 6-4: 	The Tense Tree Before Manipulation 

A negative instance for 'past' will now be below the lower bound and hence cause 

an inconsistency. The solution In this case is to manipulate the tense tree into the 

form given in figure 6-5. 

true(Y) (upper) 

/ 
past(Y) 	not-past(Y) (new lower) 
(current) 

present( Y) future( Y) 
(current) 	(old lower) 

	

Figure 6-5: 	The Tense Tree After Manipulation 

We have developed a technique to do this which we call Tree Hacking 	It can be 

summarised as follows: 

(a) Mark each tip that has been specified by a positive training instance with 

a +. If the tree has ever been used as a discriminant for a negative 

training Instance, then mark the tip specified with a -. 	(NB these 

marks will be inherently contradictory. ) 	Mark any unmarked nodes either 

+ or -. nondeterministicaily. 

(b) Remove from the tree all arcs and all nodes except the root and tip 

nodes. 

(c) if there Is only one + node, 	then join this to the root node. 

Otherwise, create a new node named P. say, and join It to the root 

and all + nodes to it. 
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(d) If there is only one - node, 	then join this to the root node. 

Otherwise, create a new node named N, say, and join It to the root 

and all - nodes to It. 

This procedure is correct, but might be improved by making It preserve any of the - 

existing structure of the tree which does not need to be altered. 

The description space may also be inadequate because a relation is missing. For 

Instance, suppose the tense tree is missing, but a positive and negative instance 

differ 	only 	in 	the 	specification of 	present(Y) 	In 	the 	positive Instance and 	past(Y) 	in 

the 	negative 	instance. 	The 	two instances 	will 	specify 	identical 	marks In 	the 	relation 

trees, 	and 	thus 	are 	bound 	to cause 	an 	inconsistency. 	The solution in 	this 	case 	is 

to 	create 	a 	new 	relation 	tree, but we 	know of no technique for doing this. 

Note 	that 	each 	of 	these possible 	causes 	of 	what might 	be 	identical 	looking 

inconsistencies, suggests 	a different 	solution. 	Thus an 	inconsistency 	causes 	a 

choice 	point 	in the 	learning process, 	leading 	to 	search and 	a 	possible 	combinatorial 

explosion. 	In the 	rest 	of this 	section 	we 	will 	assume that 	inconsistencies 	are 

caused only by disjunctive rules. 

Note that the detection of inconsistencies is only possible when the learning 

technique combines Generalization and Discrimination, and not when one of these 

techniques Is used on its own. Since Langley used Discrimination without 

Generalization, his program had to adopt a different method of creating disjunctive 

rules. 

6.3. Shell Creation: The Disjunctive Technique of Mitcheii et al 

To cope with inconsistencies caused by disjunctive rules it is necessary to 

introduce a new rule shell and to divide the positive instances between the old and 

the new sheiis. Negative instances should apply to both shells. Both rule shells 

have the same basis. e.g. 	prefix(X, a). but will firm up to different hypotheses. 

e. g. 	present(X) and future(X). 	Mitchell et al, (151, have implemented a technique 



for 	doing 	this 	for 	version spaces, 	which can 	be 	easily 	adapted to 	Focussing. 	We 

call 	it 	Shell 	Creation 	. However, 	it seems to suffer from some serious 	flaws. 	We 

describe 	Shell 	Creation 	in this 	section 	and discuss 	its 	flaws. 

LEX detects an 	inconsistency by 	the occurrence 	of 	a 	positive 	instance that 	is 

excluded by 	the version 	space 	. In Focussing, 	this 	corresponds 	to 	a positive 

Instance above one 	of 	the 	upper mark, as 	Illustrated 	above. 	The 	other possible 

inconsistency illustrated above, a negative instance that is included by the version 

space. cannot be dealt with by introducing a new rule shell. This Is because 

negative instances apply to both rule shells, and the offending negative Instance will 

continue to cause an inconsistency in the old shell. 

Mitchell at at assume that such inconsistencies are caused by a disjunctive 

concept, rather than: poor choices during far miss Discrimination, noisy data or an 

Inadequate description space. 

Shell 	Creation creates 	a new 	rule shell, represented by 	a new 	version space, 

that 	accounts 	for the 	positive instance. The S 	set 	of the new vesion 	space is 	the 

positive training 	Instance. The 	description 	given doesn't 	tell us 	what 	the 	G set 

should be. 	If 	we adopt 	the 	procedure 	used 	by Mitchell 	at al 	for 	creating new 

rules. (see 	section 5). 	0 	Is the 	most 	gene'rai 	set. Note that the 	0 	set of the old 

version space can't be 	used, as 	the 	current 	positive training 	instance 	lies 	above it. 

In Focussing this means that the offending positive training Instance Is used to 

set the lower marks of the new rule shell, and the upper marks are set to be the 

roots of the trees. 

How are the subsequent positive instances divided between the old and new rule 

shells? 

Mitchell at al write: 
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"This new heuristic [rule] will be updated by all subsequent negative 
instances associated with operator 0. and by any subsequent positive 
instances associated with operator 0 and to which at least some member of 
Its version space applies." 

By "operator 0", they mean the shared conclusion of the two rule shells. 

Note that the new shell gets preferential treatment when it comes to allocating 

the new positive Instances between 	the 	shells, whereas the old shell 	gets preferential 

treatment when it 	comes to 	allocating 	the old 	positive instances. Negative 

instances, of course, apply to both shells. 

Even If LEX does eventually learn the disjunctive rule, which Is by no means 

certain, using Shell Creation can cause errors during training. This Is because the 

upper marks of the new rule shell might allow previous negative instances, so the 

ruse might be used in a situation that is already known to be a negative training 

instancel However, this is not the major flaw. 

There are several related major flaws with Shell Creation 

1. The old rule shell may contain a mixture of positive Instances, relating 

to both rules. 	When the new rule shell is formed it will be missing 

some of these positive instances, and Version Spaces will under-

generalize. 	Hence, some of the trees may never be firmed up. 

2. The Inclusion In the old rule shell of positive instances properly 

belonging to the new shell will cause Version Spaces to over-generalize 

the old shell. 	This will cause inconsistencies of the kind not mentioned 

by Mitchell at al: negative instances will be accepted by the version 

space 

3. The new rule shell may be credited with positive instances which should 

have been credited to the old rule shell. This will cause the old shell to 

be undergeneralized and the new shell to be over-generalized. 

We will demonstrate the problems by adapting Shell Creation to Focussing 

Shell Creation is very sensitive to the training order. 	if, 	in our running 

example, the instances are presented in the order (a). (b) . (c) 	(d) . (e). (t). 
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then it works correctly. 	After (a) , (b) and (c) . the situation Is as shown In 

figure 6-3. 	Then, just as explained in section 6. 1. an Inconsistency occurs when 

positive Instance (d) is presented - the current mark is already excluded by the 

upper mark In tree 2. 

Shell 	Creation now suggests 	creating 	a 	new rule 	shell, 	using 	(d) 	to 	determine 

the 	lower 	marks, and putting 	the 	upper 	marks on 	the 	roots 	of 	the 	relation 	trees. 

This Is shown 	In figure. 6-6. 

	

1. 	tnie(X,Y) (upper) 

/N 
actlon(x,Y) 

agent(X,Y) 	objec€(X,y) 
(lower) 

	

3. 	true(X) (upper) 

deflnite(x) indeflnjte(x) 
(lower) 

2. 	truupper) 

singular(X) 	plural(X) 
(lower) 

4. 	tnae(Y) (upper) 

past(Y) present(Y) future(Y) 
(lower) 

Figure 6-6: 	The New Description Space Following Inconsistency Detection 

The instances 	(e) and 	Cf) 	are 	now 	presented 	to this 	rule 	shell. 	These 	firm up 

trees 1. 	2 	and 	4. if 	the 	negative 	instance 	(c) were 	now 	presented 	to 	the new 

shell, then 	tree 	3 would 	also 	be 	firmed 	up 	and the 	new 	rule 	shell 	describes the 

rule: 

cfescrlbe(X) & actor(X,Y) & definite(X) -> use-actlon(x) 

However. Shell Creation does not 	provide for the re-presentation of negative 

Instances. U) should also 	be presented 	to the old shell, 	as 	It 	Is a negative 

instance, and 	such 	iUstances are negative 	for 	all 	shells. 	Also. 	(e) 	should 	be 	re- 

presented to 	the 	old 	shell, as It 	is 	a 	positive 	instance 	relevant 	to 	both 	shells. 

However, Shell Creation does not provide 	for 	either. 
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The new shell 	is 	not 	created at 	all 	If the 	instances 	are presented 	In the 	order 

(a). 	W. (d). 	(c). 	(e) . 	 Ct). with 	the positive 	instance (d) 	before 	the negative 

one 	(c). After 	the 	first 	two instances the 	situation 	is that 	shown in 	figure 

6-2 above. 	The next positive instance. (d). causes Generalization to produce the 

situation shown In figure 6-7. 

1. 	tnie(X,Y) (upper) 

/ 
action( X,Y) 	actor(X,Y) 

(lower) 

agent(X,Y) 	object(X,Y) 

3. 	tnae(X) (upper 
lower) 

defiñite(X) indefinite(X) 

2. 	tru (X) (upper 

/ '~~ 
r) 

eingular(X) 	plural(X) 

4. 	true(Y) (upper 

past(Y) present(Y) future(Y) 

- 	 Figure 6-7: 	The New Description Space After Three Positive Instances 

Trees 2. 3 and 4 are all firmed up at the true root. 	The next negative 

Instance 	(c) 	would cause the lower and upper marks to 	cross. 	In Version Spaces. 

this 	corresponds 	to members of 	the S set becoming more general than members of 

the 	G 	set. As explained 	above, this 	kind 	of 	inconsistency 	cannot 	be 	dealt 	with 	by 

creating 	a new rule 	shell. 

Note that there was no opportunity to 	take 	a copy 	of the 	description space to 

produce a second rule. The 	two kinds 	of positive instances, 	those due to 

slnguiarCX) 	and those due 	to 	definite(X) . 	 are 	both 	mixed in 	the 	one 	rule 	shell. 	if 

we 	consider that the first 	copy 	of 	the 	space 	should 	learn the 	slngular(X) 	part, 	the 

positive 	instance (d) due 	to 	the 	presence 	of 	definite(X) 	can 	be 	considered 	ialse. 

The lower marks are raised 	incorrectly 	in 	order to 	include this 	false 	instance. 

Negative Instances are not such a problem, because they are negative Instances 
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for all rule shells. 	However. in Shell Creation the negative instances which are 

gIven before the creation of the new rule shell do not get an opportunity to 

Influence it. 	To overcome this problem, all old negative Instances should be kept, 

and all new copies of the rule shell should be updated with them. 	This Is not 

enough, however. 	All the positive instances have to be kept as well! 

When the a 	new rule 	shell is 	formed the 	false positive instances should 	be 

removed from the 	old shell. There 	is 	no simple way 	to do 	thIs. A 	flawless 

solution requires that all instances both positive and negative, are stored. 	We 

outline such an extension to Focussing below, which we will call Refocussing 

The first time an inconsistency is detected: 

- a copy of the rule shell must be made, and the Focussing process must 

be restarted using the negative instances on both shells and the posItive 

instances on only one sheil. 

- On each iteration of generalization, the positive instance should be 

allocated to a shell so as to avoid an inconsistency. If possible. 

- Choice points must be saved for subsequent back-up, and back-up to re-

allocate the positive instances should be the first option if subsequent 

inconsistencies are detected. 

- Failing this, a further subdivision of the rule shell can be made, and the 

Focussing process restarted again. 

This process seems very inefficient, but something like it appears to be a 

requirement for all systems that learn disjunctive concepts. 
12 

 See sections 6.5 and 

6. 7 for further discussion. 

In conclusion. Mitchell et al have described how Version Spaces can be modified 

12Rofocusslng Is somewhat similar to another technique of M'tchell, described In (11], and Iba, [6], placed in 
a focussing context. Like Refocussing, the methods are computationally expensive, and require that all data must 
be kept. 

r 
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to learn disjunctive concepts using Shell Creation. 	We have shOwn how Focussing 

can be similarly adapted. 	However, these solutionC are far from perfect. and rely 

on very favourable training orders. 	It appears that any adaptation of Focussing to 

learn disjunctive concepts correctly. e.g. 	Refocussing above, must Include storage 

of all the training Instances. 

6.4. Shell Forking: The Disjunctive Technique of Langley and Brazdil 

If the rule being learned is disjunctive then certain training orders of the 

instances can cause a far miss to occur. Langley's and Brazdil's method of dealing 

with far misses will then create a disjunctive rule. We call this technique Shell 

Forking . To force such a far miss a positive instance must be given which is true 

for both disjuncts. followed by a negative instance. Langley's version of Shell Forking 

will then make two copies of the rule shell, and Brazdil's version will put a disjunct 

in the hypothesis. However, the technique is very training order dependent. if a 

positive instance is given which is true in only one disjunct. then the far miss will 

never occur. In addition, all the caveats given in the last section about the proper 

division of the positive instances between rule shells, also apply here. 

We can illustrate Shell Forking using our running example. 	A favourable training 

order is (e) followed by (c) . 	Figure 6-8 shows the situation after positive instance 

(e). Presenting the negative instance (c) produces a far miss . Discrimination 

can be applied in three ways. as shown be the new upper marks in the figure. 

Trees 1. 2 and 3 are grey. In Langley's formulation of Discrimination this suggests 

division of the existing rule shell into three shells, corresponding to the rules: 

(I) describe(X) & object(X,Y) -) uso-article(X) 

(ii) describo(X) & singular(X) -> uso-article(X) 

(iii) describe(X) & definite(X) -) use-article(X) 

Two of these. (ii) and (iii), are the representation of the disjunctive rule that 
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1. 	tj)(uper) 

action( X,Y) 	actcg()C,Y) 

agent( X, Y) 	object( X, Y) 
(current) 	(lower & 

new upper 
for rule (1)) 

3. 	true(X) (upper) 

/ 
definite(X) 	lndefinite(X) 
(lower 	 (current) 
& new upper 
for rule (iii)) 

2. 	true(X) (upper) 

/ 
slngular( X) 	plural( X) 
(lower & 	(current) 
new upper 
for rule (ii)) 

4. 

11~!7 ) <(Up  
past(Y) pres nt(Y) future(Y) 

(lower 
& current) 

Figure 6-8: 	Far Misses indIcate Some Possible Disjunctive Rules 

we 	want. The remaining 	rule. (I), 	is 	wrong. 	In the shell 	corresponding to 	this 

rule. 	tree 1 	has firmed 	up 	at object(X. V). 	instead of 	at actor(X. fl. 	This rule 	is 

an accident, which may or may not be downgraded by receiving a low numeric 

score. 

in Langley's program, these three rules will be thrown Into the p001 where their 

numerical 	strength 	will 	be 	determined 	by their 	subsequent 	success In 	prediction. 

This 	is also 	dependent 	on 	training 	order. If 	a 	large 	sequence 	of 	plural. 	definite. 

object. Instances 	Is 	given 	then 	the 	singular rule 	will 	be 	discriminated against. 	if 	a 

large 	sequence 	of 	singular. 	definite, 	agent. instances 	is 	given, 	then the 	object 	rule 

will 	be dIscriminated 	against. 	We 	want 	the latter 	to 	happen 	and 	the former 	not 	to 

happen, but there is no way of guaranteeing this. 

Langley's program doesn't have to keep all the data. However, it does keep all 

the rules! The possible haphazard nature of the learning process might be avoided 

If all the data was preserved, with some modIfIcatIon of the rule-ordering technique 

that takes into account the proportion of data explained. 

Although Brazdll's technique creates disjunctIve rules to deal with far misses (as 
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explained In section 4.2. 1) . this is only a temporary expedient. 	The technique is 

based on the assumption that the rule is really conjunctive, and, at the first 

opportunity. all but one of the disjuncts is pruned. 	Thus Brazdll's program does not 

really 	learn 	disjunctive 	concepts. It 	is 	possible 	that the program could 	be 	adapted 

to 	learn 	disjunctive 	concepts. 	but It 	might then 	suffer on conjunctive concepts. 

6. 5. Classification 

None of the programs discussed above can deal flawlessly with disjunctive 

concepts. 	However, there are concept learning programs which can do so, for 

instance. lD3. (171 and lba's program. (6). 	In this section we describe Quinlan's 

103, and in the next section contrast it with Focussing. 

103 can be fitted into the Focussing framework when it is working on conjunctive 

concepts. However, 	to 	discuss disjunction, we must depart 	from 	this 	framework, 

and 	describe the technique 	used by 	IDa, 	which we will call 	Classification 

Classification 	differs from Focussing 	In many 	Important 	respects. 	Firstly. 	It 	tests 

each 	relation 	in 	turn on 	all the 	training instances, 	whereas Focussing 	tests 	each 

instance 	in 	turn, 	on all 	the relations. Classification 	keeps all 	its 	data, 	whereas 

Focussing 	does not. 	Keeping all 	the data 	seems 	to 	be 	a 	necessary feature 	of a 

flawless 	learning technique 	for disjunctive concepts. 

Classification represents its concept via a decision tree . 	Each node of this tree 

is 	labelled 	by 	an 	attribute 	, and 	the 	branches below this 	are 	labelled by 	the 

different 	possible 	values 	of this 	attribute 	(see figure 6-9) . 	 An 	attribute in 

Classification 	corresponds 	to 	a Focussing 	relation 	tree of depth 	one. 	Each value 	of 

the 	attribute 	corresponds 	to 	a branch 	of the 	relation tree. For 	instance, 	the attribute 

'tense' might take values: 	past, present and 	future, 	which 	corresponds 	to 	the 	tense 

relation tree (see figure 	6-4). 

The decision tree is a representation of the partially learned concept. 	The tree 
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is initially empty. and Classification grows the tree. 	This involves the following 

stops: 

(a) 	if 	all 	the 	instances In 	the set 	are positive, 	then 	a 	node 	Is 	created 

marked 	as 	being 	within 	the concept. if 	they 	are 	all 	negative, 	then 	a 

node is created and marked as 	being outside 	the 	concept. 	if there 	are 

no 	instances 	in 	the set then a node is 	created 	and 	marked 	arbitrarily 	as 

within 	or 	outside 	the concept. 	In 	any of these 	cases 	the 	process 	then 

halts. 

(b) Otherwise, an attribute is chosen In a heuristic manner. 	(Quinlan uses 

an information theoretic method.) A new decision node is created. 	The 

node Is marked with the name of the attribute, and has a daughter node 

for each of the possibie values that the attribute can take. 

(c) The training Instances are partitioned into subsets according to the 

values of the attribute. 	For attribute A. we call this step splitting on 

A. 

(d) The process is applied recursively to each of the subsets. 

6.6. How Classification Handles Disjunction 

We now show how Quinian's program is able to learn disjunctive rules. 	Consider 

the 	problem defined 	by instances given in figure 	6-1 	above 	using 	the 	attributes 

adapted from the 	relation trees 	in figure 4-1. 

Each of the relation trees in figure 4-1 will give rise to an attribute . 	Tree 2 

gives an attribute number(X) . with values: 	singuiar(X) or plural(X) . 	Tree 3 gives 

the attribute deflniteness(X) with values: 	definite(X) and indefinite(X) . 	Tree 4 

gives the attribute tense(Y) with values: 	past(Y) 	presont(Y) and future(Y) . 	Tree 

1 must first be flattened to a tree of depth 1, and then gives an attribute 

case(X. Y) . with values: 	action(X. N') 	agent(X. N') and object(X. N') . 	Note that this 

process destroys the structure of tree 1. 	 - 

If Classification first splits on the number attribute, the singular subset contains 

only positive instances, so this branch is compiete. 	The plural subset contains both 
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typos 	of 	instances, 	and more Classification needs 	to be 	done. Splitting on the 

definite/indefinite 	attribute then completes 	the process, forming 	the decision tree in 

figure 6-9. 

root 

	

definite( )C) 	 lndefinite( X) 

/\ 
action(X,Y) agent(X,Y) 	object(X,Y) 	singular(X,Y) plural(X,Y) 
(e) -ve 	 () 	 (d, f) +ve 	(a, b) +ve 	(c) -ye 

	

Figure 6-9: 	A Decision Tree 

The tip nodes are labelled with the sot of instances that they represent, and whether 

the instances are positive or negative. 	This tree represents the rule 

descnibe(X) & 
f(defiriiteCX) & object(x)) v (indefinite(X) & singular(X))) 

-) use-articie(X) 
	

(v) 

The rule (v) is not quite the one we intended to learn, although it will always give 

the correct results. There Is no splitting order which will give us the form of rule 

we intended. The reason is: 

1. That some of the logical properties represented in the case relation tree 

were lost when it was flattened to depth one. 

2. That Classification is sometimes forced to include irrelevant attributes on 

one branch in order that they can appear on another branch, e. g. the 

number attribute above. 

However, a 	poor 	splitting 	heuristic 	can make 	the 	problem 	much 	worse. For 

example, if 	the 	tense 	attribute 	had 	been chosen 	first, 	then 	the 	hypothesis of 	rule 

(v) 	would 	be 	duplicated 	as 	two 	disjuncts: one 	headed 	by 	present(X) 	and one 	by 

past(X) . which 	is 	completely 	redundant. Quinlan's 	information 	theoretic splitting 

heuristic is 	quite 	good 	at 	avoiding 	such redundancy 	where 	possible. 	but 	it is 	not 

perfect. 
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6. 7. A Comparison of Focussing and Classification 	 * 

in this section we compare the performance of Focussing and Classification on 

conjunctive and disjunctive concepts. 

Because it uses both Generalization and Discrimination. Focussing is able to 

detect that a rule has been completely learned, because all the trees are firmed 

up. Classification cannot guarantee its output in this way. Further training 

Instances might always cause Classification to refine the rule further, splitting on a 

tip node which previously only contained instances of one type, but now contains 

mixed instances. 

Another drawback of Classification is that the decision trees It produces are often 

non-optimal. 	Classification will usually produce a disjunctive rule, even when 

Fodusslng would produce a conjunctive rule on the same data. 	The Classification 

decision tree will often contain attributes that are irrelevant to the concept being 

learned. Quinlan's use of an information theoretic technique to choose which 

attribute to split on, tends to keep down the number of irrelevant attributes in the 

decision tree, but It Is not perfect and does not exclude them all. As we have 

seen, even an optimal splitting order does not produce an optimal rule hypothesis. 

Classification 	needs 	to 	have 	access 	to 	all 	the 	training instances 	before it 	can 

learn 	the concept. 	Focussing 	incorporates 	all 	the 	information, contained 	in 	a training 

instance, into 	the 	current 	rule 	shell, 	and 	then 	discards 	it. Not only does 	this 	save 

storage 	space. 	but 	it 	means 	that 	it 	can 	use 	the 	partially 	learned rule 	before all 	the 

instances have 	been 	provided. 	However, 	the 	discussion above 	suggests that 	in 

• 	 order 	to learn 	disjunctive 	concepts. 	Focussing, 	or 	any other 	concept learning 

technique, would 	have 	to 	retain 	all 	the 	instances, 	and might 	have 	to rebuild 

structure. 

Classification, as we have described it above, does not need to rebuild structure. 
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Quinian describes In (171 how Classification can be adapted to learn where It only 

has access to part of the data at any time. 	in this case, the decision tree must 

be rebuilt when necessary. 	iba. [61, describes a program that can learn disjunctive 

concepts. 	Iba's program also spends much of the time rebuilding structures, and It 

keeps all its training instances for this purpose. 

Against these disadvantages. Classification is able to learn disjunctive rules and to 

avoid having to confront far misses. 	It is best for Focussing to generalize from all 

the positive instances before discriminating from any negative instances. 

Classification is not affected by the training order of instances, although the 

simplicity of its final decision tree is dependent on the order in which it splits on 
p 

attributes. 	Further, while ordering positive before negative instances may enable 

Focussing to avoid far misses, it makes it more susceptible to errors when using 

Shell Creation to learn disjunctive concepts. 

The comparison of Classification with Focussing shows that while Classification can 

learn both conjunctive and disjunctive concepts. the standard Focussing algorithm can 

only learn conjunctive concepts. 	On conjunctive concepts. however, Focussing has 

several advantages, 	seen above, the rules produced by Focussing can be much 

simpler than the decision trees formed by Classification. 	Also. Focussing can delete 

data once it has been used. Classification cannot do this. 

More details of the comparison between Classification and Focussing can be found 

in [161. 

7. Conclusion 

in this paper we have compared a collection of Al rule learning programs. 

Despite apparent differences of notation and terminology these programs are tackling 

similar problems in similar ways. Each of the programs consist of two main parts: 

a critic for identifying faults; and a modifier for correcting faults. 
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This analytic comparison set out to: abstract some rule learning techniques from 

the programs they were developed in; to identify their range: to locate and repair 

their flaws: to establish the relationship between them; and to extend their range. 

in this final section we summarise what we have achieved. 

7. 1. Techniques Abstracted 

In this paper we have abstracted the following rule learning techniques. 	Some of 

them have, of course, been previously abstracted by other authors, but some 

abstractions are original to this paper. 

- Criticism Techniques: Ideal Trace. Solution Extraction and Contradiction 

Backtracing. Contradiction Backtracing is only suitable for finding factual 

faults. Ideal Trace is suitable for both control and factual faults. Solution 

Extraction is a technique for automatically obtaining ideal traces. 

- Conjunctive 	Modification 	Techniques: 	Rule 	Ordering, 	instantiation. 

Discrimination. Generalization, Version Spaces and Focussing. 	Focussing 

and Version Spaces are very similar, and are suitable for both factual 

and control faults. 	They combine Discrimination and Generalization. 

Discrimination, in turn, subsumes Instantiation. 	Rule Ordering is only 

suitable for control faults. 

- Disjunctive 	Modification 	Techniques: 	Shell 	Creation, 	Shell 	Forking. 

Refocussing and Classification. Classification is an unflawed disjunctive 

learning technique. Shell Creation is a flawed attempt to modify Version 

Spaces to learn disjunctive rules. Shell Forking is a flawed attempt to 

modify Discrimination. We propose Refocussing as an unfiawed modification 

of Focussing for disjunctive rules. 

- Rule Creation Techniques: 	Modifying the Empty Rule. Guided Rule 

Creation. 	Modifying the Empty Rule is an unflawed technique. 	Guided 

Rule Creation is a potentially unflawed technique. but Waterman's 

implementation may be flawed as he doesn't seem to address the problem 

of rule ordering correctly. 

- Description Space Modification: Tree Hacking is a proposed technique for 

restructuring the Focussing description space in the face of apparently 

contradictory instances. 
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7. 2, Flaws Indentified 

We have Identified a number of flaws in those techniques or In the way they 

have been used in the ,programs we studied. 

- Langley used Rule Ordering for suppressing factual faults. 	He claims that 

this technique can help cope with noisy data. 

- 	Mitchell et 	al 	kept 	a 	set 	of lower 	bounds 	in 	each version 	space 

whereas only 	one 	lower 	bound will 	ever 	be 	needed 	in the 	situation 	that 

LEX 	was dealing 	with. 	Mitchell claims 	that 	a 	set 	of lower 	bounds 	is 

required where 	the 	relations 	in a version 	space form 	a lattice 	rather 	than 

a 	tree. 

- 130th Mitchell et al's Shell Creation and Langley's. Shell. Forking pe 

dependent on the training order, and can fail If this is unfavourabie. 

7. 3. Discussion 

Solution Extraction and Contradiction Backtracing, are interesting new criticism 

techniques, which are not in widespread use yet. 

Surprisingly, 	most of the techniques for 	correcting faults 	are 	equally applicable to 

factual 	and 	control faults. This 	is 	a consequence of 	the 	common technique of 

including control information in the rules. as extra conditions or instantiations, as if 

it were factual information. 

If 	the 	rules 	to 	be 	learnt 	are 	known to 	be conjunctive. then 	Focussing 	and 

Version 	Spaces 	are 	the 	most 	powerful 	modification techniques. Not 	only 	do 	they 

subsume 	most 	of 	the 	other 	conjunctive learning techniques. but 	they 	produce 	a 

simpler 	solution 	more 	efficiently 	than 	Classification. They do not require 	instances 	to 

be 	stored. 	Focussing 	emerges 	as 	one of 	the more 	powerful 	techniques 	of 	the 

paper, 	and clearly deserves 	more attention than 	it has 	attracted in 	the 	past. 
13 

13This lack of attention Is partly the fault of the Young et al, who have only reported It In a cryptic one page 
paper 

I 

r 
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If the rules may be disjunctive then Olassification . Refocussing or some similar 

•  technique must be used. It will be necessary to store all instances, and either to 

put off learning until all the instance are known or to be prepared to restart the 

learning process when apparently contradictory instances are input. 

All the techniques described in this paper are dependant for their success on the 

user-supplied, description space For instance. if the Focussing description space 

should contain surplus relation trees then the learning process will require extra 

instances and more time, and may get distracted by irrelevant far misses. If vital 

relation trees should be missing or be the wrong shape. then the description space 

will become contradictory and the learning process will fail. Automatic provision or 

modification of the description space is the most urgent open problem facing 

automatic learning. 	Our new Tree Hacking technique is a small contribution to the 

solution of this problem. 	Lenat's and Mitchell's recent work also offers an 

interesting approach to the problem. (8. 9. 12, 131. 
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