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Abstract

To become a mature science. Artificial Intelligence needs more theoretical work.
One form this should take is the analytic comparison of existing programs to extract
precise téchnlques from the code. compare similar techniques. expose fauits. and

.

extend successful techniques.

In this splrit. we compare the rule Isarning programs of Brazdil. [2].
l-.angley. {71. Mitchell ot al. [14. 15). Shapiro. (18], and Waterman. (21} Each of
these programs has two mailn parts: a crltlf.": for identifying faulty rules and a
modifier for correcting them. To aid comparison we describe the techniques of the
various authors using a uniform notation. We find several similarities in the

techniques used by the various authors and uncover the relations between them.

We compare the rule learning programs with the concept learning programs of
Quintan, ([17], and Young et al. [23]. The two types of program have much in
common. and many of the rule modifying techniques are subsumed by the technigues
of Young et al. Quinlan’s program is able to learn disjunctive concepts that are

more general than those that can be learned by most of the other programs.
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Learning. concept Iearning. rule learning. production systems,. PROLOG,
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1. Introduction

Artificial Intelligence is a young science. which is still developing its methodology. .

and its terminology. Currently, there is no universal agreement about many
technical terms. Some techniques have several different names or none. and some
names refer to several different techniques. Some technigues have not yet been

abstracted from the programs in which they were originally developed. The

relationship betwesn techniques is not well understood.

To correct this state of affairs, it is necessary to analyse existing Al programs

and techniques:

- to abstract techniques from programs by explaining them in a code free
manner:

- to identify the range of applicability of these tschniques:
~ to locate and repair flaws in these techniques:
- to establish the relationship between techniques for the same task: and

- to extend the range of existing techniques.

We call such research analytic comparison

This paper is an analytical comparison of the following work in the area of Al ¢

tearning programs:

- The ELM program of Brazdil. (1. 2]. which transforms a specification into
a program in the domains of: simple arithmetic. algebra and letter series



completion.

~ The AMBER program of Langley. [7}. which acquires the ability to
generate simple English utterances.

~ The LEX program of Mitchell et al., (14, 15], which acquires heuristics in
the domain of symbolic integration.

- The extension by Quinlan, [17]. of the concept learning system. CLS, of
Hunt et al, [5]. Quinlan’s program, ID3, was used by its author to
classify certain chess positions as lost or won.

- The Model Inforence System of Shapiro. [18l. which synthesizes logic
programs from examples In the domains of arithmetic. list processing.
ate.

‘- The P program of Waterman. {21], which acquires heuristics for betting In
the game of draw poker.

- The extension by Young. Plotkin and Linz, {23]. of Winston’s concept
learning program. {22}, which learns the definitions of simple structures.
e.g. an arch. from examples and near misses.

it seemed to us that the above listed researchers had provided. sometimes
complementary. sometimes alternative, techniques for solving isomorphic problems.

but that thls was obscured by thelr use of different formalisms and terminoiogy.

Our comparison Is analytical In that iﬁ order to clarify the similarities and
differences between the techniques we have described theh with a uniform formalism
and terminology. To keep the comparisons simple we have suppressed some of the
details of the technigques. but we hope we have retained their spirit. We have also
suppressed all domain specific aspects of the techniques. except for the use of
domain specific rules in our worked examples. ar_md even here we have deliberately

applied one person’s tachnique to another’'s rufes.

in this comparison. we include only those programs that are of direct relevance

to rule learning. and that are representive of key techniques. This differs from the



approach of non-analytical surveys. for example that in the Handbook of Artificial

-
Intelligence. (4], which attempt to cover a very wide range of diverse Iearning.
programs. describing each In the terminoclogy of the program’s author, Our -

approach differs from that of Smith et al, [20], as that survey concentrated on the

architecture of learning programs, rather than techniques.

Furthermore. we have avoided a .behavioural classification of learning. e.g. ‘rote
learning”. ‘“learning by being told“, “learning ‘from examples®. “learning from
analogy”. such as that found in [4]. We have tried to develop an algorithmic
classification. In our oxperience, programs in two diffe.rent behavioural class may
contain similar algorithms f_or some subtask, and there are often several different
algorithms for each béhavioural class. For instance: both "learning by being told"
and ‘learning from examples® programs may use the critic procedures described in
section 3. and the two, very different. techniques of Version Spaces . ([14]. and
Precondition Analysis, [19]. can be used for "learning from examples”. This makes
the behavioural classlification less‘ than helpful to the Al researcher whose main task

is to design algorithms.

2. The Learning Task

The programs surveyed are usually considered to fall into one of two groups.
The programs of Quinlan and Young et al are concept learning programs. all the
others' are rule learning programs. These iwo classes are in fact closely related:

concept learning is contained within rule learning.

2.17. Concept Learning Programs

A concept learning program has to learn a symbolic description that enables it to. )
determine whether or not an object is an instance of the target concept. Perhaps “'
the most famous example of a concept learning program Is that of Winston. [22]

that can learn the concept of an arch. The program of Young et al. [23] Is an

extansion of Winston’s.



2.2. Rule Learning Programs
The task tackled by the rule learning programs is to modify a set of rules of the

form hypothesls implies conclusion , 1. e.
H - C , ()

These pi'ograms often use concept learning techniques to modify the hypotheses of

such rules.

The case we will consider first is that the hypothesis H is a conjunction

H'1 & ... & H, : ' (i
whare each of the Hs Is a negated or unnegated atomic formula, We will call
such rules conjunctive ruies and each H‘. a condition of the hypothesis. In logic,

conjunctive rules are called Horn Clauses

Secondly. we will consider a more general class of rules In which the
hypotheé.is. H. may be made from conjunctions and disjunctions of negated or ..
unnegated atomic formulas, We will call such rules disjunctive -rules .. Disjunctive
hypotheses can always be put in conjur;ctlve normal form, as a single conjunction of

disjunctions. or In disjunctive normal form. as a single disjunction of conjunctions.

Alt the programs we consider are able to learn conjunctive rules. whereas only a
few can learn disjunctive rules. We wll malinly be concerned with conjunctive rules.

Disjunctive ruies will be discussed in section 6.

For each set of rules there is some target behaviour. i.e. how it should
behave once learning is complete. The rules are modified until this target behaviour

has been achloved.

Some example rules are given in figure 2-1. In the figure. and throughout this



1 .
paper. we adopt the PROLOG convention that identifiers beginning with a capitak

fetter denote variables. and those beginning with a lower case Istter denote.

constants.

in the case of Brazdil and Shapiro the rules are PROLOG clauses, which are run
in backwards chaining mode by the PROLOG Interpretar. Considar the first rule in

figure 2-1. if the current goal unifiles (matches) against
(X5 + X6) + X2 = X3.
the PROLOG interpreter attempts to solve the subgoals

X4, and

X5 + X6

X4 + X2 = X3.

In the case of Langley. Mitchell et al. and Waterman the rules are production
rules, which are run in forwards chaining mode. Consider the second rule In figure

2-1. it the relations
describe(X) & object(X.Y) & “~definite(X) & singular({X)

hold for the current state, the production system asserts

prefix(X. a).

This can be interpreted as AMBER saying "a". before X, where X Is the Indeafinite.

singular. object of some event Y.

2.3. Types of Fault
For our purposes it is necessary that the rules have a truth value. It will be _
convenient to consider the rules as being formulae of Predicate Calculus, with a

truth value assigned by a standard model using Tarskian semantics.

1
A description of PROLOG can be found Iin Clocksin and Mellish, [3].



A rule. subsl. for addition in Peano arithmetic. frem Brazdil,

(21.
X5 + X6 = X4 & X4 + X2 = X3 - (X5 + X6) + X2 = X3
whose procedure intarpretation is:

To add three numbers. add the first two and then add the result to the
third.

A rule for language generation., from Langley. [7].

doscribe(X) & object(X,¥Y) & “definite(X) & singutar(X)
= preofix(X. a)

which can be paraphrased as:

If you want to describe X and X is the object of ¥ and X is not definite
and X is singular then prefix X with "a”.

Figure 2-1: Some Example Rules

The rules are modified because they contain a fault. These faults can be of two

—

types:

- Factual faults : A rule is false. l.e. the rules constitute a program which
calculates incorrect answers.

- Control faults : The rules are true, but have undesirable control behaviour
when run as a program, e.g. they do not termlnate.

A rule which Is overly general will either be false In the standard model, In
which case it has a factual fault, or it will be true. in which case it has a control

fault.

We assume throughout that the rules can be modified into a consistent set that
successfully accounts for all the data. In particular. we will not discuss how the
programs deal with data that is noisy. or inconsistent for some other reason. Some

of the authors do discuss this., sse Mitchell’s [11] for example.



2.3.1. Factual faults

An example of a factual fault is
doscriba(X) & oblact(X.Y) & plural(X) — prellx(X, al.
This rule can be paraphrased as

If you want to describe X and X is the object of Y and X is plural, then
prefix X with "a".

The rule Is incorrect. plural objects should not be prefixed with “a"., this conslitutes

a factual fauflt.

2.3.2. Control faulits
As an example of a control fault. consider the following rule., modified from

Brazdil.

X1 + X2 = X3 — X1 + X2 = X3

This is factually correct. but if u‘sed in its current form is likely to cause a loop.

However, If weakened to the rule:
X5 + X6 = X4 & X4 + X2 = X3 =2 (X5 + X6) + X2 = X3

it will not cause a loop, and defines a usefuf procedure for specifying the order in
which addition is to be evaluated. The weakening is effected by instantiating X1 to

(X5 + X6) and replacing (X5 + X6) + X2 = X3 by X5 + X6 = X4 & X4 + X2 = X3.

It is a common device in rule based programming to Impose control on a
program by weakening a rule by instantiation or by glvlng.lt a sironger hypothesis.
Such weakening can also turn a factual incorrect rule Into a correct rule. This is
why the same learning techniques are often applicable to both factual and control

faults.



2.4. The Malin Control Loop
The faults In Langley and Shapiro’s rules were factual and those in Mitchell et
al's rules were c¢ontrol faults . Waterman and Brazdll consldered both types of

fault.

The programs listed, except for Quinlan’s and Young’s, above all used the

following main control loop.

Until the rules are satisfactory:

l. Identify a fault with a rule;
2. Modify the rule to remove the fault.

Note that the modification of the rule should not introduce new faults!

Some of the authors also tackied the problem of creating new rules. as opposed

to modlifying existing ones. This is discussed In section 5.

Following Smith et at., [20]. we wiil call the sub;;rogram rasponsible for identifying
fauits the critic . We will call the subprogram responsible for modilying the ruies
the modifier . In the next section we consider the criticism techniques used by
each of the above researchers and in the following section we consider the

modification techniques.

3. Criticism Techniques for Credit/Blame Assignment

All the programs we are comparing identify faults by running the existing rules on
a problem and then analysing the resuiting rule trace . The an-alysls must identify
where the rules behaved correctly, called positive training instances by Mitchell et
al. and where they behaved incorrectly. called negative training instances . Both
sorts of information can be used: the positive instances to generalize the rules and

the negative instances to correct them.
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Negative instances can be of two types.

- Errors of commission A rule fired incorrectly, because it was
insufficiently constrained. This may produce a factual fault, because the
rule produces an incorrect result, or it could f(ead to undesirable
behaviour, l.e. a control fault.

- Errors of omission A rule failed to fire, either because it was
incorrectly constrained. or the required rule simply does not exist. in

the first case the error could be due to either a factual or control fault.

The modifier requires three pieces of Information on each Instance.

The type of instance: “positive. negative-commission or negative~omission.
- The rule.

- The context, consisting of the variabie bindings when the rule was fired.
Following Brazdil. we will adopt the convention that the variable bindings of positive
Instances are called the selaction context and the variables bindings of negative

Instances are called the rejection context .

One of the purposes of a critic is to solve the credit assignment problem
This term was colned by Minsky, [10]. to describe the problem of deciding which °
rules are responsible for certain aspects of the program’s behaviour. desirable and

otherwlse.

In the following section we describe some criticism techniques for identifying

control faults and factual faults

3.1. Using ldeal Traces

One very common critic technique. in the programs we compared. is the use of
an ideal frace . i.e. an account of what rules should have fired and in what
sequence. This technique is appropriate for finding both control and factual faults.
and is the only technique used by the above programs to find control fauits

Some of the programs take the ideal trace as input. others work it out by analysis
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using problem solving and Inference techniques. The detalled study of these
techniques lies outside the scope of this paper. but we describe Mitcheli et al's

technique in the next section to Iillustrate the general idea.

The Ideal trace Is compared with the actual trace of the rules, the rule trace .
to locate the first point at which the traces differ. This enables the faulty rules to

be identifiad.

Running the rules causes a search tree to be grown (see figure 3-1). The rule
trace is a path through this tree. If this trace differs from the ideal trace it is
because. at some point, the rule that fired in the rule trace. R, diftfers from the
rules that fired in the ideal trace. Fii. R exhibits an error of commission and R,

exhibits an error of omission.

The question then arises of whether the current set of rules contains R. If not.
it must be created using the techniques described In section 5. in this section. we

deal with the case where F!i is in the current rule set.

Correcting the error of commission wili (eventually) correct the error of omission,

When the error of commission is corrected. R no longer fires. If another rule,
H'r. now causes an arror of commission, this will be corrected. Eventually. Hi
must be the most preferred rule, correcting the error of omission. We are

therefore free to concentrate on errors of commission

rule ideal
trace trace

Figure 3-1: Search Tree for Program’s Rulgs
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The technique can be summarised as follows:

(a) Grow the rule trace by running the rules on a problem.

(b) Compare with the ideal trace and find the first place at which they
differ.

(c) The rules which fired before this point, together with their associated
selaction contexts. are positive trainlng Instances

(d) The program rule which fired at this point, ‘together with its associated
rejection context . Is a commission error.

For instance. suppose the rule

subs: X1 = X4 & X4 + X2 = X3 - X1 + X2 = X3
fires In the context (3/X1, 2/X2, Ans/X3} but that the rule

subz: x2=><4&x1+><4=x3—>x1+_x2=x3

is ftired in the Ideal trace. then subs in the context {3/X1. 2/X2. Ans/X3}. is an

error of commission.

3.2. Constructing the Ideal Trace
Both Brazdif and Mitchell et al use their programs to produce the ideal trace

but the approaches differ in an' important way.

in Brazdil’s program, the ideal trace is constructed by a subprogram that is

essontially separate from the rest. It uses only correct rules. and applies them

only when appropriate. It exhibits the behaviour that the Ioarning component is
aiming towards. The learning component has no access this subprogram. The
learning process would be the same if the wuser supplied the trace. Brazdil's

subprogram essentially corresponds to the target rules. The assumption that such a
subprogram exists will rarely be appropriate. Brazdil’s ‘solution’ should be

considered to be ad hoc scaflolding which enables the rest of the program to run.
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Mitchell et al's program constructs its ideal trace by pruning the rule trace.- We
will call this technique Solution Extraction . The basic idea is to find a dasirable
branch of the program’s search tree. and prune away all other branches. In the
simplest case the desirable branch will be any branch Ileading to a solution.
Mitchell et al go further and try to find a least cost solution. Solution Extraction

does not assume access to the target rules.

The ruies used by the program are only partially épeclfied (seé section 4,3). A
numerical score is assigned to how well they apply in a situation and this score is
used as the evaluatibn function in a heuristic search. A resource llimit is given to
the problem solver.which puts an upper bound on the amount of c.p.u. time and
memory it may use.in a.ttempting to solve a problem. These limitations may prevent
the program finding the least cost solution and so lead to an erroneous ldeal trace

To mitigate this a further expansion Is made of negative training Iinstances
before they are finally sent to the rule modifier . This stiil doesn’t guarantes that

the least cost solution has been found.

3.3. Contradiction Backiracing

In this section we consider Shapiro’s technique. for locating factual faults . This
technique is called Coniradiction Backtracing . It is not suitable for finding control

faults

Suppose that the current rule set implies P. but that P is known to be false.
The falsity of P may be given by the program user or calculated from the standard
modal. Clearly, at least cone of the current rules Is factually fauity. but we may
not be able to teli which one from the model.2 If the faulty rule contains free
variables and the model has an infinite domain then an infinite series of instances

must be considered. - Contradiction Backiracing uses the rule trace and the

L

2Th!s Is another instance of the credit assignment problem .
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application of - the model to variable free rules. to identify the faully rule. Since the

model s only used to test a finite number of variable free rules. Contradiction

Backtracing always terminates.

Firstly “P is added to the set of rules. As P was implied by the original ruie
set, the new rule set Is Inconsistent. The empty clause can therefore be derived
by resolution. Once this derivation has been obtained, Contradiction Backiracing
uses it in reverse. Starting from the empty clause. tha process makes use of the
model (see below) to discover which parent of each resolution step Is faise.

Eventually, the false parent must be a rule, and this rule therefore has a factual

fault,

The technique can be summarised as follows:

(a) Add "P as a new rule. (The rules are now inconsistent.)

(b) Derive ->, the ompty clause. from the rules by resolution. {The
derivation is a rule trace., but unlike previous techniques wea will not
need an ideal trace.)

(c) Set ~» to be the current clause of the derivation and (} to be the
accumulated substitution,

(d) Until the current clause is a rule. do the folflowing:

() The current clause was derived by resolving clauses, C and D.
with  unifier @, The proposition K., from C. and negatecai
proposition L, from D, were resolved away. where “KO& = L&,
Apply the accumulated substitution to K® to form Q.

(iiy 1 Q contalns any free variables then Instantlate it to a variable
fre@ proposition. Q°. in any way. using the substitution O.

(i) Form a new accumulated substitution by combining It with ¢ and
o. :

3
= means 'Is syntacticafly Identical to",
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{iv) 1If- Q° is true the'n-let D be the currant clause.
(v) Otherwise Q° is faise. Let C be the current clause.

(a) The current clause Is a faulty rule, and applying the accumulated
substitution to it gives a false instance.

The decisiﬁn as to whether each Q' is true or faise can either be supplied by
the program user or calculated from the standard model. Note that the only calls on
.the mode! are to decide the truth value of formulae without free variables (or
quantifiers) . Shapiro uses the term ground oracle to describe something (e.g.

model or user) that can deotermine the truth value of such formulase,

Note also that the instantiation of Q to Q' will not be necessary If Q is variable

free. Differant choices of © may lead to different faulty rules, and may all be triad.

For instance, suppose the current rule set were:

describa(Y) & object(X.Y} —> describe(X)
dascribe(X) & object(X.Y) > prefix(X. a)
~> object(balis. event2)

-» doscribe(event2)

but that prefix{ballis.a) were known to be false. This might correspond to the child

having made the utterance: *The dog chases a balls”. Adding the new rule
prefix(bails, a) -»

we can derive the empty clause with the derivation given In figure 3-2. The
Contradiction Backtracing alfgorithm now goes through the stops tabulated in tabie

3-1. The rule
describe(X) & object{X.Y) -> prefix{X.a)

has now been Iidentified as faulty. with substitution ({balls/X. event2/Y} giving a false

Instance.



describe(X) & object(X,Y¥) —> prefix(X,a)
/ describe(Y) & object(X,Y) —» describe(X)
dgscribe(.x“) & obiject{(X,Y') & object(X,¥) —» prefix(X,a)
\/-—> object(balls,event2) |
describe(event2) —» prefix(balls,a)
/ ~> describe(event2)
-> prefixﬁballs,a)

/prefix( balls,a) —-»

->

Figure 3-2: Derivation of the Empty Clause from a Faulty Rule Set
Currant Clause Q' Truth Value
- prefix(balls. &) false
-> prefix{balis. a) describe(event2) true
descrtbe(evenm)b object(balls. event2) - true

~» prefix(bails, a)

describa(Y’) & obfject(X,Y") describe(balis) true
& object(X.Y) - prefix(X, a)

describe(X) & object(X.Y)
= prefix(X, al

Table 3-1: Backtracing Through a Contradiction

-

3.4. Summary

The critic procedures astablish the existence of a fault in the rules and locate
the faulty rule. the substitution that made it faulty and what type of fault it is. They
also identify circumstances in which a rule was correctly fired. They feed to the
modifiér procedures: the type of each instance., the rule in question. the context in

which it fired.

The major critic techniqus, used by nearly all the programs compared, and

applicable to both control and factual faults ., is comparison of the actual rufe firings
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with an ideal trace

1. Some programs have this Ideal trace directly input.

2. some have it provided by a program which corresponds to the
state of the rules being learned, and

3. some work out the ideal trace by a process of Solution Extraction.

(2) is just a convenlent automation of (1). and neither is Interesting as a learning
technique. We considered oniy one example of (3). the LEX problem solver,
although others may be found In the Iiterature.
4. Modification Techniques for Conjunctive Rulas

Once a fault has been located. the faulty rule can be modified. The following
modification t{echniques for coniunctivé rules . were used in the programs we

compared.

1. Ordering the rules. e.g. specifying that

H - C should always be fired in preference to H - C’

This technique is strictly onfy appropriate for control faults and was so

used by Brazdi! and Waterman. However. Langley also wused
suppress factua! errors.

2. |Instantiating a rule. e.g. transforming

H(X.Y) — C(X.Y) to HIX. XY = CIX.X)

This technique is appropriate for both factual and control faults and was

used by Brazdil and Shapiro.
3. Adding extra conditions to a rule's hypothesis. e.g. transforming

H - C to H&H —>C

This technique is appropriate to both factual and control faults. and was

used by Brazdil. Langley. Shapiro and Waterman.

4. Updating a rule’s hypothesis to take account of new instances.
transforming
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H--> C to H - C

where H' Is derived from H by concept learning . This technique Iis
appropriate to both factual and contro! faults. and was used by
Waterman and Mitchsell et al.

Methods 2 and 3 both make the modified rule more specific. Method 4 narrows the

range of uncertainty about the rule.

The techniques described above meodify conjunctive rules . The techniques of

Mitchell and Langley have a limited capacity to learn disjunctive concepts. which is
dependent on a favourable training order. Of the programs compared in this paper.
only Quinlan’s program learns disjunctive concepts flawlessly. Modification techniques

for disjunctive rules are doscribed in section 6.

4.1. Ordering the Rules

All rule based systems need a control stratogy to decids conflicts botween two or
more applicable rules. If a systerm wuses & prigrity ordering on the rules then
contral faults can often be corrected by re—ordering the rules. In this section we

explain the ordering technique used by Brazdil.

Brazdil's system started with an unordered set of rules, and imposed the partial
order required to keep the rule trace in line with the ideal trace . His critic and
modifier worked as co-routines. discovering conflicts and résoiving them by imposing

an order. The techniquea can be summarised as foliows:

(a) Suppose that ruies, P.....P,. are applicable and that rule P, is fired

in the ideal trace. In the following P > Q means that the system will
fire P before Q.

(b) If P] » F-‘l for © ¥} € {1.....n) then create a new rule P'l from P', by
lechniques to be described in subsequent sections. and impose the order
F"i > P’ for alt j. such that i Fj € {1.....n).

(c) Otherwise impose the order Pl > F" for all j. such that i F | €
{1.....n},
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\

For instance. suppose the rules:

subs: X1

= X4 & X4 + X2 = X3 > X1 + X2 = X3
subz: X2 = X4 & X1 + X4 = X3 - X1 + X2 = X3
eq: - X1 = X1

are ali applicable. but that the ideal trace records that subz should fire. then the

orders
subz > subs and subz > eq

will be Imposed.

If at some later stage the same rules are In conflict. but the Ideal trace records
that subs should fire. then we cannot impose the order subs > subz because this
. woufd contradict the existing order subz > subs. In this case a new rule, subsl. is

buijlt from subs ‘and the orders
subsl ? supz and subsl > eq

are Imposed. Since > is transitive these new orders also imply that subsl > subs.

The techniques for making subsl are described in the next two sections.

Langley uses rule re-ordering to deal with factual faults . Rules are ordered by
having an associated priority number. Fauity rules have their priority reduced so
that they are less llkely to flre In future. Consequently, the same fault may be

redetectoed several times before the rule‘'s priority drops so low that it Is never
selected. in {71, Langley justifies this strange technique with a rather dubious
psychological argument. In a personal communlcation. however, he points out that
the technique allows AMBER to learn disjunctive concepts, see section 6.4. and to

learn from noisy data.

In certaln situations Waterman’s program is unable to modify the existing rules
successfully, in this case the program obtalns the correct rule from the trainer,
The program then has to assign a priority to the rule to ensure it fires only when

needed. Waterman does not report .how his program deals with the problem of

|
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conflicting priority. Perhaps to try to avoid the problem. this tachnique is only used

as a last resort.

Of these rule ordering techniques. Brazdil's seems the neatest. He explicitly
records the partial order_' which is forced by the critic information. No unnecessary
c_)rderlngs are Imposed. as with the total orders of Langley and Waterman. Hence.
maximum wuse is made of ordering. and there is no unforced use of alternative

modification tachnlques.

4.2. Adding Extra Conditions to a Rule’s Hypothesis
In this section we will consider how a rule can be modified by adding an extra

condition to its hypothesis.

Suppose a rule. H — C, has given a commission error. but that this rule has
been applied correctly in the past. The variable bindings of the correct application
will give us a selection context and the variable bindings of the incorrect application
will give us a rejection context . The idea of this technique ié to find some
difference belween the selection and rejection contexts and use this difference as the
new condition. The technique is ‘realised in what, following Langley. we will call
Discrimination

(a) Apply tl;e sefection and rejection context substitutions to a fixed set of
literals. called the description space

{b) Find a literal. H’, which is true in the sslection context and false in the
rejection context. H’ is called a discriminating literai .

(c) Form the new rule H & H - C

The new rule is only applicable to the selection context .

For instance. suppose the ruls

+

4 .. '
A Ilteral Is efther & proposition, e.g. P{X}, or a negated proposition, e.g, "P{X).
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describe(X) & object(X.Y) -> prefix(X, a)

has been correctly applied to the word ‘ball’ and incorrectly applied to the word

‘balls’. We have:

Selection Context: {ball/X. eventl/Y}

Rejection Context: {balls/X. event2/Y)

To find the difference. H’. between these contexts we apply them as substitutions to

the iiterals In the description space
singular(X)., T“singular(X). definite(X). ~definite(X)

The only discriminating literal Is singular{X). Adding this to the rule as a new

condlition yields:

‘doscribe(X) & object(X.Y) & singular(X) -> prefix(X,a)

In section 4.2.2 we will describe a special case of Discrimination. -and In section

4-3 we will generalize Discrimination to a more powerful technique.

4.2.1. Far Misses

In the example above. this particular combination of selection context . rejection
context and description space . yields only one discriminating Ilteral. Following
Winston we call such a situation a near miss . If there is more than one
discriminating literal then we will call the situation a far miss . A far miss would

ariso If we added to the description space the Ilteral. past(Y)., meaning event Y
happened "in the past. If past(eventl) was true but past(event2).- was false then
past(Y) would also be a discrimlnating literal for the above contexts, and there
would be a choice of new rules to form, Clearly the description space Is of pivotal
importance in determining whether a discriminating literal is found and what sort of
new rti_.les are formed. In all the programs considered here the description space is

user supplied, and It is difficuit to see how [t could be otherwise.

Waterman deals with far misses by demanding extra information from the user
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which will settle the ambigquity (see section 4.3).

Langley deals with far misses by creating a new rule for each discriminating

fitarai. e.g. . a 3 » . .

describe(X) & object(X.Y) & singuiar(X) -> prefix(X,a)
describe(X) & object(X.Y) & past(Y) -> prefix(X, a}

Any useless creations (like the past ruie) would eventually be criticised as faulty and

fall low in thse priority ordering.

Brazdil deals with far misses by including all the discriminating literals In a

disjunction. e.g.

describe(X) & object(X.Y) & (singular(X) v past{Y))
- prefix(X, a)

He wuses a modified version of Discrimination which trles to prune such

disjunctions before adding new conditions, For instance. If the following contexts

arise: >
Selaction Context: {ball/X. eventl/yY)
Rejaction Context; {balis/X, event3/Y)

where past(event3) is true then Brazdil’s Discrimination aligorithm drops past(Y) from

the disjunction to form the rule:

doscribe(X) & object(X.Y) & singular(X) -> prefix(X.a)

In section 6.4 we discuss how the Langley and Brazdil far miss techniques can

be used to learn disjunctive concepts.

4.2.2. Instantiating a Rule
An alternative to adding an extra condition to a rule is to instantiate it. This s
really a special case of adding an extra condition. but can lead to more efficlent

rules since the extra condition Is handled by the pattern matcher. For Instance.

,5-
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suppose we are modifying the rule:
subs; X1 = X4 & X4 + X2 = X3 = X1 + X2 = X3

in the contexts

Selection Context: {3+ /X1, 1/X2}

Reojection Context: (3/X1, 2/X2)
and the description space contains X1 = X5 + X6. X1 = X5 + X6 Is a discriminating
literal . so we could add It as an extra condition . Alternatively., we could

instantiate the rule with the substitution. {(X5+X6) / X1) to form
subsl: X5 + X6 = X4 & X4 + X2 = X3 —> (X5 + X6) + X2 = X3

Instantiation with the substitution (t/X) is always an altarnative when the discriminating

literal iIs X = t. for some variable X and term t.

4,3. Concept Learning of the Rule Hypothesis

in this section we consider how a rufe can be modified by updating its hypothesis
using concept learning techniques. like those used by Winston, (22]1. for learning the
concept of an arch from examples and near misses. This technique can be
regarded as a natural extension of the one described in the last section. This
relationship is most clearly seen by considering the technique of Young et al,
because it generalises much of the Winston and - Brazdil/Langley/Waterman
techniques. and is similar to. but more easily expfained than, the Mitchell et al

technique.

We thérefcre adopt the strategy of explaining first the Young et al technique.
pointing out the differances from the other techniques as we go. We will be
defining an algorithm which we will call Focussing . We describer Quinlan’s
technique. Classification . for learning disjunctive concepts in sections 6.5 and 6.8,

and compare Classification with Focussing in section 6.7.°
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4.3.1. The Description Spacé

The description space . In Focussing. tries to capture the notion of a partially
specified concept, in which some situtations are know to lle outside the concept.
some inside, and some, in a grey arca, are yet to be decided. The Focussing

process works to reduce this grey area.

The description space consists of a set of raelation trees (see figure 4-1). Each
node of the tree is labelled with a relation: relations in the same tree being applied

to the same arguments. The label of the root node is the relation which is always

true. The label of a node Is logically equivalent to the exclusive disjunction of the
labels of its daughters., i.e. tha arrangement
p(X)

/[\-

a(X) r(X) s(X)

.

implies that

PIX) <> (Q(X) Vv r(X) v s(X))

where v means exclusive or. Thus, any given Instance will cause the relation
iabelling exactly one tip node to be true. The Instance Is sald to specify this
relation.

These trees make explicit the relationship between a proposition and its negation
by arranging them as the labels on the two daughters of the root node. A tree
consisting only of a root node with two daughters will be called a minimal tree

The singular/plural and dofinite/indefinite trees of figure 4-1 are minimal,

This dascription space allows a partially specified rule hypothesis to be
represented. During the course of rule learning this partially formed hypothesis is
gradually firmed up untii It is completely specitied. The partlal repraesentation Is
achieved by placing two r;'larkers in each tree: an upper mark and a lower mark as

in figure 4-1. The partiatlly specified rule is represented by the rule conclusion and
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1. true(X,Y) 7 2. ~ true(X) {(upper)
action(X,Y) actor(X,Y) singular(X) plural(X)

{upper) ( lower)

P

agent{X,Y) object{X,Y)
( lower)

3. Nper) 4. mﬂ
definite(X) indefinite(X) past(Y) present(Y) future(Y)

{ lower) { lower)

Figure 4-1: Description Space for Language Acquisition

the description space together with its marks. We will call this a rule shell

A_ny relation above the upper marks is outside the concept, e.g. action(X.Y)
and true(X.Y). Any relation In the tree below the ilower mark Is inside the
concept. a.g. object(X.Y). Any relation between the upper and lower marks is in
a grey area, about which the program Iis not sure, ©.g. agent(X.Y) and
actor(X.Y). The condition is firmed up when the upper and lower marks coincide.
The rule shell Is firmed up into a rule when each of its conditions Is firmed up.
Focussing works by moving the upper marks down and/or the lower marks up. until

they coincide.

Since the rule shell only partially specifys the rule. there is some ambiguity about
what rule to use when {orming rule traces. in particufar. we can take two extreme
views!

- The Most General View : that the hypothesis is specified by the

conjunction of relations labelling its upper marks. which leads the rule to
make errors of commission @ and. ‘

5

Here, we say that a relation ts above a mark If it is cutside the subtree dominated by that mark. Simitarly, a
rajation Is below a mark if it Is in the subtree dominated by that mark. A relation is between the upper and
lower marks if it Is above the lower mark and balow the upper mark.
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- The Most Specific View . that the hypothesis is specified by the
conjunction of relations [abelting its lower marks, which leads the rule to
make errors of omission

For the sake of dsfiniteness and to facilitate comparison with the fast section. we

will adopt the most general view, Note that this will force all negative training
instances to be errors of commission rather than errors of omisslon. Furthermore.
since root relations are always true ,we will omit them from the hypothesis. Thus

the rule represented by the description space in figure 4-1 is
describa(X) & actor(X.Y) -> prefix(X, a) i
rather than

describe(X) & object(X.Y} & singular(X) & indefinite(X) & past(Y)
- prefix(X, a)

Also, for the sake of definiteness. we will assume that the rules are fired forwards.
Neither of these restrictions Is serious. since the algorithms for the other cases are

duals of the one described below.

The partial representation of a rule provided by a rule shell is similar to the

6

varsion space representation used by Mitchell et al in the Version Spaces algorithm,
They record two sets: S, the set of most specific ruies implied by the evidenca so

tar: and G, the set of most general rules implied by the evidence so far.

For instance. the varsion space corresponding to the description space in figure

7
4-1. is:

S: {describe(X) & object(X,Y) & singular(X) & indefinite(X) & past(Y)
—> prefix(X,a))

G: {describe(X) & actor(X,Y) —» prefix(X,a))

sThroughout this paper, 'Version Spaces' denotes the algorithm of Mitchoell et al, whlle 'version space’
denotes the object,

7 .
Note that we have omitted the true(X) conditions as these are always true,
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The verslon space representation is more compact that the descrlpt'ion.space
representation, ‘but the explanation of Focussing Is more messy. Version spaces do
not explicitly record a plece of information vital to Version Spaces namaely the
correspondence belween the conditions iIn "the different rules. e.g. between

object(X.Y} In S and actor(X.Y) In G.

The Brazdii/Langley/Waterman Discrimination technique of the last section
corresponds to moving the upper mark down from the root to a tip of a minimal
tree . We will enrich the meaning of Discrimination to cover ail cases in which

near/far misses cause the upper mark to descend.

The .ascending of lower marks does not correspond to any technique used by
Brazdil or Langley. It Is done when the critic provides a positive training Instance
qf a rule and It generalizes the hypothesis of tt:lat rule. In Winston’s program.
[22]. it corresponds to the generalization of a concept when new examples of the

concept are provided. We will call thls step Generalization

Focussing does not just compare the current context with 'a single previous
 context, but with all previous contexts. This is possible because all previous
contexts, both selection and rejection, are summarised by the posltions, of the upper
énd lower marks In the relation trees . we need only compare the current context
with the current positions of these marks. If the critic has provided us with a
positive training Instance then we will have a selection context, and will apply
Generalization. If the critic has provided us with a commission error then we will
have a-re]ection context ., and will apply Discrimination. To some extent

Generalization and Discrimination are dual processes. but this duality is not complete

and the reader should beware of assuming that it is.

The description space is initialized by providing a positive training instance. For

each tree in the description space. exactly one of its tip relations will be specified
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by (i.e. be true In) the selection context of this Instance. The Ilower mark is

placed on this tig. The upper mark Is placed on the root of the tres.

Weo now consider Generalization and Discrimination in more detall.

4.3.2. Generallzgtlon

The input to Generalization consists of: the selection context of a correct
application of a rule: and the description space of the rule. The output consists of
new lower marks for some of the trees. Each tree s considered In turn and the
following steps executed.

(a) For each of the relations labelling a tip node. determine Its truth value
ln the selection context.

(b)Y Exactly one of these relations wiil be specified by the selection context.
tabel its node. the current node

{(c) Find the least upper bound of the current node and the current lower
mark and make this the new lower mark.

For Inslance, suppose that the rule
doscribe(X) -> prefix(X. a) -

has been corractly applied In the selection context y
{dog/X. eventl/Y)

and that position of the marks in the relation trees are as In figure 4-2. The tip

relations which are true in the selection context are:

agent(dog. evantl},
singular(dog).
indefinite(dog) .
present(eventt)

These specify the current nodes marked in figure 4-2, and might correspond to the
child making the utterance: "A dog chases the ball". Taking the Ileast upper

bound between each current node and lower mark gives the new lower marks given
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in flgure 4-2. Note that the lower mark for trees 2 and 3 is unchanged. but that
the lower mark of tree 1 moves to ‘actor(X.¥Y)’ and the lower mark for tree 4

moves to ‘true(Y)’.

Despite these changes to the Iower; marks of the description space. thelrufe does
not change form. because It is determined by the upper marks. However.
Geoneralization does have an effect on the rule learning process, because the iifting
of the lower marks can limit the cholces avallable to Discrimination . as we will see

In the next section.

1. true(X,Y) (upper) 2. true(X) (upper)
action{X,Y) actor(X.,Y) singular(X) plural(X)
{new lower) { lower
& current)
agent(X,Y) object(X,Y).
{current) ( lower)
3. true(X) (upper) 4. true(Y) (upper &
i ew lower)
definite(X) indefinite(X) past(Y) present(Y) future(Y)
{ lower (lower) (current)
& current)
Figure 4—2‘:. Applying Generalization to the ODescription Space

The version space corresponding to the new lower marks of figure 4-2 is:

S5: {describe(X) & actor(X,Y) & singular{X) & indefinite(X)
-> prefix(X.,a)}

G: {describe(X) —» prefix(X,a)}

4. 3. 3: Discrimination

The Input to Discrimination consists of: the rejection context of an incorrect
application of a rule: and the description space of the rule. The output consists of

8
a new upper mark for exactly gne of the treses. Since we are dealing with a

8Nole tack of duality.
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conjunctive rule. all lts conditions must be true for the rule to fire. Thus making
one condition false for an instance is enough to prevent the rufe firing. Each troe

ts considered in turn and the following steps executed.

o

(a) For each of the relations labelllné a tip node, determine its truth value
in the rejection context. '

(b) Exactly one of these relations will be true In the. rejection -context. label
its node, the current node . Note that the current nods must lie beolow
the upper mark , otherwise the rule could not have fired.

(c) if the current node lies below the lower mark then mark the tree as a
white tree . )

(d) Otherwise. the current node must lie between the upper and f{ower
marks. Mark the treg as a grey tree .

At least one of the trees must be grey. otherwise the rule application wouid be
correct. If just one tree Is grey then we have a near miss . If more than one
tree Is grey then have a far miss . 'Only one of the grey trees can have Iits upper
mark lowered. Wa call this grey tree the discriminant . Far misses can be deall

with by at least five strategies:

- depth first : We can pick one of the grey trees as discriminant;
- breadth first: Or create a new rule for each grey tree:

- taeacher option. Or we can be told which tree to plck.:

- zero option: Or we can do nothing.

- avoldance option: Or we can arrange the training order so that far
misses do not arise.

Either of the first two cholces may lead to the creation "of rules which are over

constralned and may give rise to errors of omission . Such rules should be
deleted. In the case of depth first search the prograrﬁ should then backup and
chose another discriminant. The breadth first option corresponds to Langley's

sofution to far misses. as doscribed In section 4.2.1. The third cholce Is that
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adopted. by Waterman, with the relevance Information Indicating which grey tree to
pick (see below). The fifth choice is that adopted by Winston. In fact, he made a
feature of the' dependence of his method on the ‘training order. If there are enough
instances to firm up all the trees. then far misses can be avoided by presenting all
the positive Instances first. However, presenting all the positive instances first can
cause errors with some approaches to disjunctive rules (see section 6.3). Brazdil's
sofution cannot be adopted here without violating the relation tree representation of

the ruie hypothesis. but it s similar to the Version Spaces solution (see below).

Once the discriminant has been picked its upper mark is lowered. just enough to

exclude the current node . This Is done by setting the new upper mark to be the
) 9

least upper bound of tha current node and the lower mark . To itlustrate

Discrimination suppose that the rule
describa({X) - prefix{X. a)

has been incorrectly applied in the rejection context
(chases/X. event2/Y)

and that the position of the marks in the relation trees are as In figure 4-2. The

tip relations which ars true in the rejection context are:

action(chases. event2) .,
singular{chases).
indsfinite{chasas) .
present{event2)

These specify the current nodes markeg in flgure 4-3. and might correspond to the
chiild making the utteraﬁce: "The dog .a chases the ball". Trees 2 and 3 are
white and trees 1 and 4 are grey. If tree 1 Is chosen as the discriminant then
action(X.Y) can be execluded by lowering the wupper mark from true(X.Y) to

actor(X.Y). Thae now rule is:

9Note fack of duality with Generalization , [.e¢. we do not vse the greatest lower bound of the upper and
current mark.
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describa(X) & actor(X.Y) -> preflx(X. a) ) Clv)
1. true(X,¥) (upper) 2. . true(X) (upper)
{(grey) (white)
L . £
action(X,Y) actor(X.Y) - singular{X) plural{X)
(current) {(new upper) ( lower
& current)
agent(X,Y) object(X,Y)
{ lower)

3. true(X) (upper) ‘ 4. true(Y) (upper)
(white) {grey)
definite(X) indefinite(X}) past(Y) present(Y) future(Y)

{ lower (lower) (current)

& current)

Figure 4-3: Applying Discrimination to the Description Space

4.3.4. Far Misses
If tree 4 had been picked as the discriminant then the new rule would have

been: N
describe(X) & past{¥) — prefix(X, a)

Since the tense of an utterance does not affect whether the article "a® should prefix
actors then this rule wodld eventually be guilty of an error of omission., e.g. In the
context {dog/X. event4/Y}.. where present(event4)., the rule would not fire when it
should. At this stage the rule should be deleted., and if the alternative rule. (iv).

has not already been formed. then it shouid now.

Note that Iif the Generalization of past(Y) and present(Y) to true(Y)., had
preceded the current Discrimination step. then tree 4 would not have been a grey
tree and., hence, not available as the discriminant. Thus Generalization can prevent
the occurrence of far misses. and the consequent creation of erroneous rules. For

this reason it is best to make Genaeraiization steps before Discrimination steps.

When Waterman’s program makes a wrong decision. either a control or factual

arror, It s given information additional to -that provided by the lIdeal trace
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Waterman calls this Information relevance Information . This is a set of the troees
that need to be considered to make a correct decision. In the sltuation of figure
4-3, the relevance information would Indicate that tree 1 is to be considered. and

that tree 4 is not.

The version space corresponding to the new upper marks of figure 4-3 is

5: {describe(X) & object(X,.Y) & singular(X) &
indefinite(X) & past(Y)
~> prefix(X,a)}

G: {describe(X) & actor(X,Y) —> prefix(X.,a),
describe(X) & past(Y) —»> prefix(X,a))

Note that the correspondence between object(X.Y) and actor(X.Y) is not axplicitly
recorded and must be rederived before further Generalization/Discrimination can be

applied. This is a disadvantage of the version space representation.

In this version space G is a doubleton; the .two members representing the
outcomes of the twofold cholcé of discriminant In the far miss situation. Thus the
varsion space can simultaneously represent severa-l'alternative varsions of a rule.
This explains why G Is a set. However, It does not explain why S Is a set.
Geoneralization never involves choices. aven -when the version space Is representing
several rules. so S will always be a singleton! Allowing S to be a set appears to

be a minor flaw in the LEX program.10

4.3.5. Differences between Version Spaces and Focussing
Focussing and Version Spaces are similar in many ways. most importantly they
both combine Generalization and Discrimination . However. there are a few

differences.

- The Focussing relation trees explicitly store the correspondences between

10 - '
Mitchell, (personal communication), states that while this is the case for the rule language used (n this
paper, (and for the rule language used in LEX), with other rule languages, such as that used in Meta-
DENDRAL, S can be a non-singleton set.
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relations. and this must be rederived in Version Spaces.

~ As shown in section 5.1 below. the two representations differ in the rule-
creation phasse. The specific boundary of the version space represents a
more specific concept than that represented by the lower marks In the
Focussing algorithm.

- In the Focussing algorithm, Generallzation and Dlscrimlhation affect only

one set of marks, the lower and upper marks respectively. Version
Spaces actually requires the updating of both boundary sets for both
processes. The extra operations prune the boundary sets: patterns

matching negative instances are removed from the specific boundary set.
and patterns not matching positive - instances are removed from the general
set. None of the examples given for LEX use these pruning operations.
and they seem to be needed only when dealing with graph-like description
spaces and for noisy data.

4.4, Summary of Conjunctive Modification Techniques

The following relationships hold beiween the techniques .presented above:

- Focussing combines Generalization and Discrimination in a clean manner.
They are near duals. but Discrimination is non-detarministic. whereas
Generalization is not.

- Focussing is similar to Version Spaces. excep't that the Focussihg _relation
trees explicitly store the correspondences between relations, and this must
be rederived in Versicn Spaces

- The firming up of a rule shell in Focussing and the meeting of § and G
in Version Spaces. provide guarantess that the Iearning process has
toerminated. No such guarantees are provided by  Generalization or
Discrimination used alone.

- Focussing contains a generalization of Langley’'s Discrimination so that it
can deal with non-minimal relation trees ;

- Discrimination is a generalization of Brazdil’'s rule instantiation.

- Rule ordering is independent of the other modification techniques.

Discrimination on far misses introduces choice and search inlo the modification

processes.
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Two possible flaws were detacted in the published research: Langley’'s use of
rule ordering for factual faults , and Mitchell et al's use of a set of most specific
rules. when there can never be more than one, Both authors have told us that
while th-ese aro flaws In the programs referenced in this paper., they can be f{eatures

in programs designed to tackle more difficult problems. e.g. cope with noisy data.

5. Cre.ating New Rules

In this section we describe how new rufes are created. in contrast to the
modification of existihg rules. Some of the programs don’t address this task. Nons
of the programs actually create new rules in the sense of deriving new conditions
and conclusions. Instead. they use a degenerate form of rule modification, on a

rule with no conditions.

5. 1. .Modlfying the Empty Shell
One obvious technique for creating a rule is to treat its absence as an error of

omission. and use the standard techniques to correct this error.

The Idea Iis to modify rules that have no conditions from the description space.

only a conclusion. (The lack of conditions can cause both factual and control
faults .} We call such rules empty rules . An empty rule. together with Iits

description space. constitule an empty shell . Mitchell and Shapiro adopt this

approach. which we call Modifying tho Empty Shell

In our example,
describe(X) -» prefix(X, a)

will be an empty rule. The condition describe(X) does not take part in learning. it

{s not in the description space.

We describe the method used by LEX, Shapiro’'s method is similar.
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LEX creates a néw rule shell when the process of Solution Extraction discovers an
error of omission the first time that a new rule Is used in the ideal trace . in
Focussing terminology. the lower marks are Initialized to the current marks., the .

upper marks are Initialized to the roots of the trees.

If the most speclfic view Is adopted, the rule shell Implies that the rule should
only be used in the current context. The most general view implies that the rule

should always be used.

For example, suppose that LEX Is [earning when it should use the empty rule
describe(X) -> prefix(X.a). .
The ideal trace uses the rule for the first time in the context

agent(dog. eventl),
singular(dog).
indefinite (dog) .
present(eventi) .

(This corresponds to e.g. "A dog chases a ball.") LEX creates the new rule

shell shown in figure 5-1.

1. true(X,Y) (upper) - true{X) (upper)
action(X,Y) actor(X,Y) singular(X) plural(x)
{ lower)

agent(X,Y) object(X,Y) . _

{ lower)
3. Npper) 4, trye(Y) (upper)
de finite_( X) indefinite(X) Past(Y) present(Y¥) future(Y)

(lowex) ( lower)
Figure 5-1: The Initialized Rule Shell

This corresponds to the verslon space
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S: describe(dog) & agent{dog,eventl) & singular(dog) & indefinite(dog)
->» prefix(dog,a).

G: describe({X) -»> prefix(X,a).

Note the rule S is more specific than that represented by the Focussing algorithm.
The version space representation allows the representation of very specific concepts,

these will usually be generalized by further examples.

Note that LEX also creates new rule—shells when the concept it is trying to learn

is disjunctive, ses section 6.3.

Shapiro adopts a similar approach, although he Is dealing with factual faults.
MIS begins with the empty program. This fafls to account for a positive instance,

(an_error of omission), and so it Is modified using his standard technique.

5.2. Guided Rule Creation

Waterman’s program is given training information by the user'' This information
aflows the program to directly construct the training ruie . the rule that should have
been used in the current situation. The program first tries to modify the existi‘ng
rule set to cover the training rule. but if it is unable to do this. it adds the
training rule to its set, thus obtaining a new rule. We cail this approach Guided

Rule Croeation

The addition of the training rule can lead to control faults . Waterman adopts
the approach likely to minimize this possibility by adding the new rule just before the
rule that fired incorrectly, correcting both an error of commission and an error of
ormission, The technigue Iis rather ad-hoc, and there seems nothing to prevent

further instances causing the program to loop, but Waterman does not discuss this.

1 .
Thera are several different versions of Waterman's program. In some, the role of tha user is played by an
expert program, in another the program uses a type of database to get this information. However, for our
purposes the distinction is unimportant.
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Langley’s Rule Creation approach is somewhat similar to Watarman’s. However.
AMBER obtalns its training rule from a set of meta-rules rather than the user. The

"

distinction doesn’t appear to be very significant.

5.3. Summary

We have described two rule creation techniques:
- Modifying the Empty Shell

— Guided Rule Creation.

Both of these techniques are strongly dependent on the description space . which

supplies the conditions of the new rule.

Modifying the Empty Shell is also strongly dependent on the ideal trace The ideal
trace is needed to discover the conclusion of the new rule. Of course, it also
shows that an 'érq'erJ-rmh"és occurred. and thus indicates the need for a new rule.

This technique thus combines conclusions provided by the ideal trace with
conditions from the description space. apparently a rather ftrivial form of rule
creation. However. it would. perhaps be too much to expect the program 1o

somehow discover new conditions and conclusions for itself.

Guided Rule Creation obtains the conditions and conclusions of the new rule from
the user. This is really an uninteresting way of creating new rules. and Walerman's

implementation may be flawed.

6. Modification Techniquas for Disjunctive Rules

The techniques discussed above have all been for conjunctive rules or conjunctive -
concepts. In this section we consider the’extens!on of these techniques to Ilearn
disjunctive rules and concepts. {.e. concepts that Involve disjunction, as well as

conjunction and negation.
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In one sense the extension to disjunctive concepts Is trivial. Any conceapt
involving conjunction. negation and disjunction can be put in disjunctive normal form,
i.e. rewritten into a logically equivalent form consisting of a disjunction of
conjunctions of negated or unnegated atomlc formulae. Each dlisjunct can then be
learned separately using conjunctive learning techniques. From the viewpoint of rule
learning this means that any disjunctive rule can be split Into a number of

conjunctive rules, e.qg.

describe(X) & actor(X.Y) & I[singular(X) v deafinite(X)]
- use-article (X}

(meaning: "Use an article when describing a singular or definite actor") is logically

equivalent to:

doscribe(X) & actor(X) & singufar(X) —> use-article(X)

describe(X) & actor(X) & definite(X) => use-article(X)

The problem of learning disjunctive rufes thén becomes one of knowing when to
split & rule shell Into two or more rule shells, and which posltive I[nstances to
associate with which shelis. (Negative instances are countergxamples to all rules
and apply to all shelis) Since the Focussing concept learning technique subsumaes
the other techniques discussed above. we will compare various techniques for dealing
with disjunctive concepts by considering what modifications they suggest to Focussing.
The only exception to this Is Quinlan’s Cilassification, whlc-h cannot be described in
terms of Focussing. We dlscuss this In sectlons 6.5 and 6.6, and compare it 1o

Focussing in section 6.7.

Of the programs discussed above. only Langley’'s AMBER, Mitcheli's LEX and

Brazdil's ELM, attempted to deal with disjunctive concepts.
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How Focussing Falls on Disjunctive Rules

What difficulties arise when Focussing is applied to a disjunctive concept?

First note that Focussing has some limited scope for disjunction.

the rule

dascribe(X) & actor{X.¥Y) —» prefix(X, a)

offectively represents a rule containing an (exciusive)

disfunction:

[ ]
describe(X) & (agent(X.Y) v object(X.Y)) — prefix(X, a).

However,

example of such a rule is:

describa(X)

—> use-article(X).

We now consider how Focussing might ba adapted to learn this rule.

the same description space as before.

concepts containing disjunctions beiween trees cannot be represented.

& actor(X.Y) & (singular(X) v definite(X})

For example

An

We use

Suppose that we have the instances given in

figure 6-1.

(a) agent(dog,eventl}, () object(ball, event2),
singular(dog), singular(hall},
indefinite(dog), indefinite(ball),
present(eventl). past(event2).

(cC) agent(dogs,event3), (d) object(balls,event4d),
plural{dogs), plural{balls}, .
indefinite(dogs), definite(balls),
present(event3). past(event4).

(e} object(ball,events), (f) action(chases,events),
singular(ball), gingular{chases),
definite(ball), definite({chases),

pPregent(events).

: \
Flgure 6-1:

present(eventé},

Training Instances for a Disjunctive Concept

Instances (a). (b). (d) and (@)

negative onos.

(a) "A dog chases

are positive training instances

(c) and ()

They might correspond to the child making the utterances:

are
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(b) ".... chased a bail"

(c) *a degs chases

(d) ".... chased the balls”
{(e) ".... chases the ball.”
() “.... the chases "
Suppose the training order is Instance (a). followed by Instance (b). The

description space will now contain the marks shown in figure 6-2. Tree 4 Is firmed

up.
1. true(X,¥) (upper) 2. true(X) (upper)
action(X,Y) actor(X,Y) ) gingular{X) plural({X)
: { lower) (lower)
agent(X,Y) object(X,Y)
3. true(X) {(upper}) 4, true{Y) (upper
/\ Ner)
definite(X) indefinite(X) past(¥Y) present(Y) future(Y)}
{ lower)
Figure 6-2: The Description Space After Two Positive Instances
Now Instance (c¢) is presented. This is a negative instance. so Discrimination
occurs. Only Tree 2 Is grey. so it becomes the discriminant and is firmed up.

while trees 1 and 3 remain unchanged. The situation is shown In figure 6~3.

Suppose that we now present the instance (d), a positive instance. Focussing
falls because the current instance on tree 2 Is above the upper mark., but the
instance is positive, If the Instances were presented in another o'rder. different
behaviour would be produced. but a simifar problem would always occur. For
example, if the first three instances weré (a). (b) and (d), trees 2, 3 and 4 all

become firmed up. Then instance (c) causes the algorithm to fail as It is bslow
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1. true(X,Y¥) (upper) 2. true(X)
action(X,Y) actor(X,Y) singular({X) plural{X)
( lower) ] {upper
& lower)
agent(X,Y) object{X,Y)
3. true(X) (upper) 4, true(Y) (upper
. & lower)
definite(X) indefinite(X) ' past(Y) present(Y) future(Y}
( Jower) ) : )
Figure 6-3: The Description Space Aftor a Negatlive Instance
the lower mark on all four trees.
6.2. Other Causes of Inconsistencies in Focussing
Unfortunately. it is not just disjunctive concepts that can cause such

inconsistencies. Each of the other possible causes suggests different ways of
repairing the situation. contributing to a combinatorial explosion in the Iearning

process.

One obvious cause is noisy data. The positive instance that appears above the
upper mark., or the neggative instance that appears below the lower mark may just be
wrongly classified. Thke solution in this case is just to ignore the evidence. and
continue. Possibly, the noisy data occurred earlier in ;he learning process. in

which case the solution is to back up and ignore the earlier evidence.

A cause we have already met (see section 4.2.1) is a wrong choice of
discriminant when discriminating against a far miss . The solution in this case is

to back up to the choice point and choose another grey tree as discriminant.

An inconsistency can also be caused by an inadequate description space . For

instance. suppose the correct form of the rule is:
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describa(X) action(X.Y) & {[present(Y) v future(Y)]
—» use-praesant{Xx)

Since the tense tree Is ternary (see figure 6-4) then positive instances for 'present’

and ‘future’ will cause Generalization to move the lower bound to the root node.

true(Y) (new lower)

past(Y) present(Y) future(Y)
(current ) (old lower)

Figure 6-4. The Tense Tree Before Manipulation

A negative instance for ‘past’ wiil now be beiow the lower bound and hence cause
an inconsistency. The solution In this case is to manipulate the tense tree into the

form given in figure 6-5.

true(Y) (upper)

past(Y) not-past{Y) (new lower)

(current) / \

Present(Y)} future(Y)

{current) {old lower)
Figure 6-5: The Tense Trea After Manipulation
We have developed a technique to do this which we cali Tree Hacking . ft can be

summarised as follows:

(a) Mark each tlip that has been specified by a positive training instance with
a +. If the tree has ever been used as a discriminant for a negative
training instance. then mark the tip specified with a -. (NB these
marks will be inherently contradictory.) Mark any unmarked nodes either
+ or -, nondeterministically. '

(b) Remove from the tree all arcs and all nodes except the root and tip .
nodes. o

(c) It there is only one + node. then join this to the root node.
Otherwise, create a new node named P, say. and join it to the root
and all + nodes to It
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(d) If there is onty one - node., then join this to the root node.
Otherwise., create a new node named N, say., and join it to the root
and all - nodes to it.

This procedure is correct. but might be improved by making it preserve any of the

existing structure of the tree which does not need to be altered.

The description space may aisc be inadequate because a relation Is missing. For
instance, suppose the tense tree is missing, but a positive and negative instaﬁce
differ only In the specification of present(Y) In the positive instance and past(Y) in
the negative instance. The two instances will specify identical marks in the relation
trees, and thus are bound to cause an inconsistency., The solution in thls case Is

to create a new relation tree. but we know of no technique for doing this.

Note that each of these possible causes of what might be Identical Iook:’ng
Inconsistencies, suggests a different solution, Thus an inconsistency causes a
cheoice point in the learning process. leading to search and a possible combinatorial
erxplosion. In the rest of this section we will assume that inconsistencies are

caused only by disjunctive rules.

Note that the detection of Inconsistencies Is only possible when the learning
technique combines Generalization and Discrimination, and not when one of these
techniques s used on Its own. Since Langley wused Discrimination without
Generalization. his program had to adopt a different method of creating disjunctive

ruies.

6.3. Shell Creation: The Disjunctive Technique of Mitchell et al

To cope with inconsistencies caused by disjunctive rules it is necessary to
introduce a new rule shell and to divide the positive instances between the old and
the new shalls. Negative instances should apply to both shells. Both rule shells
have the same basis. e.g. prefix(X,a). but will firm up to different hypotheses.

e.g. present(X) and future(X). Mitchell et al, [15}, have implemented a technique



for doing this for version spaces. which can be easily adapted to Focussing. We
call it Shell Craation . However, it seems to suffer from some serious flaws. We

describe Shell Creation in this section and discuss its flaws.

LEX detects- an inconsistency by the occurrence of a positive Instance that is
exciuded by the version space . In Focussing. this corresponds to a poslitive
instance above one of the upper mark, as Hlustrated above. The other possible
inconsistency lllustrated above, a negative Instance that is included by the version
space. cannot be dealt with by introducing a new rule shell. This is because
negative instances apply to both rule shells, and the offending negative instance will

continue to cause an Inconsistency in the old shell.

Mitchell et al assume that such Inconsistencies are caused by a disjunctive
concept, rather than: poor choices during far miss Discrimination., nolsy data or an

inadequate description space.

Shell Creation creates a new ruie shell, represented by a new version space,
that accounts for the positive instance. The S set of the new version space is the
positive training instance. The description given doesn’t tell us what the G set
should be, It we adopt the procedure used by Mitchell et al for creating new
rules. (see section 5). G is the most general set. Note that the G set of the old

version space can‘t be used. as the current positive training instance lies above It.

In Focussing this means that the offending positive training instance is used to
set the lower marks of the new rule shell. and the upper marks are set to be the

roots of the trees.

How are the subsequent positive instancaes divided betwsen the old and new rule

shells?

Mitchell et al write:
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"This naw heuristic {rule] will be updated by all subsequent nhegative
instances associated with operator O. and by any subsequent positive
instances associated with operator O and to which at least some member of
its varsion space applies.*

By “operator O, they mean the shared conclusion of the two rule shelis.

Note that the new shell gets preferential treatment when it comes to allocating
the new positive Instances between the shelis. whereas the old shell gets prefarential
treatment when it comes to aliocating the old positive Instances. Negative

instances, of course. apply to both shelis.

Even if LEX does eventually learn the disjunctive rule, which Is b;( no means
cartain, using Shell Creation can cause ‘errors during training. This is because the
upper marks of'the new rule shell might allow previous negative instances, so the
rule. might be used In a situation that s already known to be a negative tralning

instance! However. this is not the major flaw.

There are sevaral related major flaws with Shell Creation

1. The old rule sheli may contain a mixture of positive instances. relating
to both rules. When the new rule shell Is formed it will be missing
some of these positive instances. and Version Spaces will under-
generatize. Hence. some of the trees may never be firmed up.

2. The Incluslon In the old rule sheil of positive Instances properly
belonging to the new shell will cause Version Spaces to over—generalize

the old shel. This will cause inconsistencies of the kind not mentioned
by Mitchell et al. negative Instances will be acceptad by the version
space

3. The new rule shell may be credited with positive Instances which should
have been credited to the old rule shell. This wlil cause the old shell to
be undergeneralized and the new shell to be over-generalized.

We will demonstrate the problems by adapting Sheif Creation to Focussing

Shell Creation is very sensitive to the training order. if, In our running

example. the Instances are presented in the order (a), (b). (¢). (d). (e&). (),
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then It works correctly. Aftar (a). (b) and (c). the situation Is as shown In
figure 6-3. Then, just as explained in section 6.1, an inconsistency occurs when
positive instance (d) is presented - the current mark is already excluded by the

upper mark in tree 2.

Shell Creation now suggests creating a new rule shell. using (d) to determine
the lower marks, and putting the upper marks on the roots of the relation trees.

This is shown in figure. 6-6.

X. true(X,Y) (upper) 2. true(X) (upper)
action(X,Y) actor(Xx,Y) ' singular({x) plural(Xx)
' ( lowerx)
agent(X,Y) object(X,Y}
{ Jower)

3. true(X) (upper) 4. true(Y) (upper)

/\
definite(X) indefinite(X) past(Y) present(Y) future(¥)
( lower) (lower) -

Figure 6-6: The New Description Space Foilowing Inconsistency Detection

The instances (@) and (f) are now presented to this rule shell. These firm up

trees 1, 2 and 4. If the negative instance (c) were now presented to the new
sheli. then tree 3 would aiso be firmed up and the new rule shell describes the

rule:
describe(X) & actor(X.Y) & definite(X) -> use-action(X)

However, Shell Creation does not provide for the re—presentation of negative

instances. () should aiso be presented to the old shell. as it is a negative
Instance, and such instances are negative for all shells. Also., (e) should be re-
presented to the old shell, as it is a positive instance relevant to both shells.

However., Shell Creation does not provide for eithar.
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The new shell is not created at ali if the instances are presented in the order

(a). (b, (d). (c). (e). (f), with the positive instance (d) before the negative

one (c¢). After the first two instances the situation Is that shown in figure
6-2 above. The next positive Instance. (d). causes Generalization to produce the
situation shown in figure 6-7. )
1. true(X,Y) (upper) 2. true(X) (upper
& lower)
action(X,Y) actor(X,Y) ginqular{X) plural(X)
(lower)
agent(X,Y) object(X,Y¥) !
3. true(X) (upper 4.  true(Y) (upper
& lo_wer) & lower)
definite(X) indefinite(X} past(Y) present(Y) £future(Y)
Figure &6-7: The New Description Space After Three Positive Instances
Trees 2, 3 and 4 are all firmed up at the true root. The next negative
Instance (c) would cause the lower and upper marks to cross. In Version Spaces.

this corresponds to members of the S set becoming more general than members of
the G set. As explained above, this kind of inconsistency cannot be dealt with by

creating a new ruie she,

Note that there was no~opportunlty to take a copy c;f the description space to
produce a second rule. The two kinds of positive instances. those due to
singuiar(X) and those due to definite(X). are both mixed in the one rule shell. if
we consider that the first copy of the space should fearn the singular(X) part. the
positive instance {(d) due to the presence of definita(X) can be considered “false”.

The lowsr marks are ralsed incorrectly in order to include this false instance.

Negative instances are not such a problem, because they are negative instances
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for all rule shells, However, {n Shell Creation the negative Instances which are
glven before the creation of the new rule shell do not get an opportunity to
influence It. To overcome this prc;blem. all old .negatlve instances should be kept.
and all new copies of the rule shell should be updated with them. This Is not

enough. however. All the positive instances have to be kept as well!

When the a new rule shell is formed the false positive instances should be
removed from the old shaell. There is no simpile way to do this. A flawless
solution requires that all instances both positive and negative. are stored. We

outline such an extension to Focussing below. which we will call Refocussing

The first time an Inconsistency is detected:

~ a copy of the rule shell must be made. and the Focussing process must
‘be restarted using the negative instances on both shells and the positive
Instances on only one sheil.

- On each iteration of generalization, the positive Instance should be
allocated to a shelli so as to avoid an Inconsistency. if possible.

- Cholce points must be saved for subsequent back-up. and back-up to re-
allocate the positive instances should be the first option if subsaquent
inconsistencies are detected. '

— Falling this. a further subdivision of the rule shelli can be made. and the
Focussing process restarted again.

This process seems very inefficient. but something like it appears to be a
12
requirement for all systems that learn disjunctive concepts. See sections 6.5 and

6.7 for further discussion.

in conclusion, Mitchell et al have described how Version Spaces can be modified

12
Refocussing Is somewhat similar to another technique of Mitchell, described in [11], and iba, [6], placed in
& focussing context. Like Refocussing, the methods are computationally expensive, and require that all data must
be kept.
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to learn disjunctive concepts using Shell Creation. We have shown how Focussing
can be similarly adapted. However. these "solutions" are far from perfect. and rely
on very favourable training orders. it appears that any adaptation of Focussing to *
learn dlsjunctive concepts correctly. e.9. Refocussing above. must iInclude storage

of all the trainlng instances.

6.4. Shell Forking: The Disjunctive Technique of Langley and Brazdil

If the rule being learned is disjunctive then certain training orders of the
instances can cause a far miss to occur. Langley’s and Brazdil's method of dealing
with far misses will then create a disjunctive rule. We call this techniqus Shell
Forking . To force such a far miss a positive instance must be given which is true
for both disjuncts. followed by a negative instance. Langley’s version of Shell Forking
will then make two copies of the rule shell. and Brazdil's version will put a disjunct
in the hypothesis. However. the technique is very training order dependent. If a
positive instance is given which is true in only one disjunct, then the far miss will .
naver occur, In addition. all the caveats given in the last section about the proper

division of the positive instances between rule shells. also apply here.

We can illustrate Shell Forking wusing our running example. A favourable training
order is (o) followed by (c). Figure 6-8 shows the situation after positive instance
(e}, Presenting the negative instance (c) produces a far miss . Discrimination
can be applied in three ways. as shown be the new upper marks in the figure.
Trees 1., 2 and 3 are gray. in Langley’s formulation of Discrimination this suggests

division of the éxlsting ruie shell into three shells, corrasponding to the rules:

(i) describa(X) & object{X.Y) - use-article(X)
(il) describe(X) & singular(X) - use-article(X)

(iii) describe(X) & definita{X) -> use-article(X)

Two of these. (ii) and (iii}. are the representation of the disjunctive rule that
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1. tKY)(uPPer)
action(X,Y) ?QQ

agent(X,Y) object(X,Y}
{current) ( lower &
new upper
for rule (i))
3. true(X) (upper)
definite(X) indefinite(X)
(lower (current)

& new upper
for rule (iii))

Far Misses Indicate Some Possible Disjunctive Rules

)
2. true(X) (upper)
singular(X) plural{X)
(lower & {current)
new upper

for rule (ii))

3, yﬂ(\upper)

past(Y) presént{Y) future(Y)
( lower
& current)

Figure 6-8:
wa want. The remaining rule. (i},
rule, tree 1 has firmed up at object(X.Y).

an accidant,

score.

in Langley’'s program,

is wrong.

these three rules will

In the shell corresponding to this

instead of at actor(X.Y). This rule Is

which may or may not be downgraded by recelving a low numeric

be thrown into the pool where their

numerica! strength will be determined by their subsequent success in prediction.
This is also dependent on training order. If a large sequence of plural. definite.
object, Instances is given then the singular rule will be discriminated against. It a

large sequence of singular.. definite.
will be discriminated against.

happen,

Langley’s program doesn’t have to keep zll

the rufesl!

agent,

Wo want the

instances is given, then the object rule

latter to happen and the former not to

but there Is no way of guaranteeing this.

the data. However, It dces keep all

The possible haphazard nature of the learning process might be avoided

if all the data was preserved. with some modlfication of the rule—ordering technique

that takes into account the proportion of data explained.

-

Although Brazdli’s technique creates disjunctive

rules to deal with far misses (as
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i

explained in section 4.2.1), this is only a temporary exped!ent. The technigque is
based on the assumption that the rule Is really conjunctive. and. at the first
opportunity, all but one of the disjuncts is pruned. Thus Brazdil’'s program does not
really learn disjunctive concepts. It is possible that the program could be adapted

to learn disjunctive concepts. but it might then suffer on conjunctive concepts.

6.5. Classification

None of the programs discussed above can deal flawlessly with disjunctive
concepts. Howsver, there are concept learning programs which can do so. for
instance, D3, [i17] and tba's program, [6]. In this section we describe Quinian’s

iD3. and in the next section contrast it with Focussing.

ID3 can be fitted into the Focussing framework when it is working on conjunctive
concépts. However, to discuss disjunction. we must depart from this framework,

and describe the technique used by ID3. which we will call Classification

Classification differs from Focussing In many Important raespects, Firstly, It tests
each relation in turn on all the training instances. whereas Focussing tests each
instance in turn. on all the relations. Classification koeps all iis data. whereas
Focussing does not. Keeping all the data seems toc be a necessary feature of a

flawless learning technique for disjunctive concepts.

Classification represents its concept via a decision tree . Each node of this tree
is labelled by an attribute . and the branches below this are labelled by the
different possible values of this attribute (see figure 6-9). An attribute in
Qlassification corrgsponds to a Focussing relation tres of depth one. Each valus of
the attribute corresponds to a branch of the relation tree. For instance. the attribute
‘tense’ might take values: past., present and future, which corresponds to the tense

ralation tree (see figure 6-4).

The decision tree Is a representation of the partially learned concept. The tree
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iIs Inltially empty. and Classification grows the tree. This Invoilves the following

steps:

(a) If ail the Instances In the set are positive. then a node Is created

marked as being within the concept. If they are all negative, then a
node is created and marked as being outside the concept. If there are
no instances In the set then a node is created and marked arbitrarily as
within or outside the concept. In any of these cases the process then
halits. l

(b) Otherwise. an attribute is chosen in a heuristic manner. (Quinlan uses

an Information theoretlc method.) A new declslon node Is created. The
node is marked with the name of the attribute., and has a daughter node
for each of the possible values that the attribute can take.

(c) The training Instances are partitioned Into subsets according to the
values of the attribute. For attribute A, we call this step splitting on
A.

(d) The process Is applled recursively to each of the subsets.

6.6. How Classification Handles Disjunction
We now show how Quinlan’s program is able to learn disjunctive rutes. Consider
the problem defined by instances given in figure 6-1 above using the attribuies

adapted from the relation trees in figure 4-1.

Each of the relation trees in figure 4-1 will give rise to an attribute . Tree 2
gives an attribute number(X). with values: singular(X) of plural(X). Tree 3 gives
the.attribute definiteness(X) with values: definite(X) and Indefinite(X). Tree 4
gives tﬁe attribute tense(Y) with values: past(Y), present(Y) and future(Y). Tree

1 must first be flattened to a iree of depth 1. and then gives an attribute
case(X.Y). with values: action(X.Y). agent(X.Y) and object(X,Y). Nate that this

‘process destroys the stru'cture of tree 1.

If Classification first splits on the number attribute. the singular subset contains

only positive instances. so this branch is complete. The plural subset contains both
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types of instances., and more Cla_sslticatlon needs to be done. Splitting on the

definite/indefinite attribute then completes the process., forming the decision tree Iin

figure 6-9.
root
//“\
definite(X) indefinite(X)
action(X,¥Y) agent(X,Y) object(X,Y) singular(X,Y) plural(X,Y)
{e} ~ve {) {da, £} 4ve {a, b} +ve {c} ~ve
Figure 6-9: A Declsion Tree

The tip nodes are labelled with the set of instances that they represent, and whether

the Iinstances are positive or negative. This tree represents the rule

.describe(X) &
{(definite(X) & object{X)) v (Indefinite(X) & singular(X))}
- use-articla{(X). {(v)

gk, 1

The rule (v) s not quite the one we intended to learn. although it will always give
the correct resuits. There is no splitting order which will give us the form of rule
we intended. The reason is:

1. That some of the logical properties represented In the case relation tree
were lost when It was flattened to depth one.

2. That Ciassification is sometimes forced to Include irrelevant attributes on
one branch In order that they can appear on another branch, e.g. the
number attribute abovae.

However, a poor splitting heuristic can make the problem much worse. For
example, If the tense attribute had been chosen first. then the hypothesis of rule
(v) would be duplicated as two disjuncts: one headed by present(X) and one by
past(X), which is completely redundant. Quinlan’s information theoretic splitting
heuristic is quite good at avoiding such redundancy where possible. but it Is not

perfact.
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6.7. A Comparison of Focussing and Classification
in this section we compare the performance of Focussing and Classification on

conjunctive and disjunctive concepts.

Because it uses both Genseralization and Discrimination, Focussing Iis able to
detect that a rule has been completely learned, because all the trees are firmed
up. Classification cannot guarantee its output Iin this way. Further tralning
instances might aiways cause Classification to refine the rule further, splitting on a
tip node which previously only contained instances of one type. but now contains

mixed instances.

Another drawback of Classification is that the decision trees It produces are often
non—-optimal, Classification will usually produce a disjunctive rule, even when
Focussing would produce a conjunctive rule on the same data. The Classiication
dacision tree will often contain attributes that are Irrelevant to the concept being
iearnaed. Quinfan‘'s use of an [nformation theoretic technique to choose which
attribute to splt on. tends to keep down the number of irrelevant attributes in the
decision tree. but It Is not perfect and does not exclude them all. As we have

seen. even an optimal splitting order does not produce an optimal rule hypothesis.

Classification needs to have access to all the training Iinstances before it can
learn the concept. Focussing Incorporates all the information. contained in a tralning
instance. into the current rule shell, and then discards it. Not only does this save
storage space. but it means that it can use the partially learned rule before all the
instances have been provided. Howsver. the discussion above suggests that in
order to learn disfunctive concepts, Focussing, or any other concept Ilearning
technique, would have to retain all the Iinstances. and might have to rebuild

structure.

Classification. as we have described it above. does not need to rebuifld structure.
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Quinlan describes In [17} how Classification can be adapted to learn where it only

has access to part of the data at any time. In this case., the decision tree must”
be rebuilt when necessary. Iba. [6)., describes a program that can learn disjunctive *
concepts. Iba’s program also spends much of the time rebullding structures. and [t

keeps all its tralning Instances for this purpose.

Against these disadvantages. Classification is able to I;arn disjunctive rules and to
avold haylng to confront far misses. It is best for Focussing to generalize from all
the pc;gitive instances  before  discriminating from any negative Instances.
Classification is not affected by the training order of instances. although the
simplicity of its final decision tree is dependent on the order in which |t splltf- on
attributes. Further, while ordering positive before negr;ltive instances may enable
Focussing to avold far misses. it makes it moro susceptible to errors when using

Sheil Creation to learn disjunctive concepts,

The comparison of Classification with Focussing shows that whlle Classification can
learn both conjunctive and disjunctive concepts., the standard Focussing algorithm can
only learn conjunctive concepts. On conjunctive concepts, however, Focussing has
several advantages. sean abova, the rules produced by Focussing can ‘be much
simpler than the decision trees formed by Ciasslfication. Also, Focussing can delets

data once it has been used. Classification cannot do this.

More detalls of the comparison between Classification and Focussing can be found

in [16).

7. Conclusion

In this paper we have compared a collaction of Al rule Iearning programs.
Despite apparent differences of notation and terminology these programs are tackling
similar problems in similar ways. Each of the programs consist of two main parts:

a critic for identifying faults. and a modifier for correcting faults.
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This analytic comparison set out to: abstract some rule learning techniques

from

the programs they were developed in: to (dentify their range: to locate and repair

thelr fiaws: to eostablish the relationship between them: and to extend their range.

fn this final section we summarise what we have achieved.

7.

1.

In this paper we have abstracted the following rule tlearning techniques.

Techniques Abstracted

them have. of course, been previously abstracted by other authors. but

abstractions are griginal to this paper.

4ox

Criticism Techniques: Ideal Trace. Solution Extraction and Contradiction
Backtracing. Contradiction Backtracing is only suitable for finding factual
faults. Ideal Trace is suitable for both control and factual faults. Solution
Extraction is a technique for automatically obtaining ideal traces.

Conjunctive Modification Techniques: Rule Ordering. Instantiation.

‘Discrimination., Generalization., Version Spaces and Focussing. Focussing

and Version Spaces are very similar., and are suitable for both factual
and control faults. "They combine Discrimination and Generatization.
Discrimination, in turn, subsumes Instantiation. Rule Ordering is only
suitable for control faults,

Disjunctive  Modification Techniques: Shell Creation, Shell  Forking.

‘Refocussing and Classification. Ciassitication is an unflawed disjunctive

learning technique. Shell Creation is a fiawed attempt to modify Version
Spaces to learn disjunctive rules. Shell Forking is a flawed attempt to
modify Discrimination. We propose Refocussing as .an unflawed modification
of Focussing for disjunctive rules.

Rule Creation Techniques: Modifying the Empty Rule. Guided Rule
Creation. Modifying the Empty Rule is an unflawed technigue, Guided
Rule Creation is a potentially unflawed technique. but Waterman’s
implementation may be flawed as he doesn’t seem to address the ‘problem
of rule ordering correctly.

Description Space Modification: Tree Hacking is a proposed technique for
restructuring the Focussing description space in the face of apparently
contradictory instances.

Some of

some
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7.2. Flaws tndentified
We have ldentified a number of flaws in these techniques or in the way they
have been used In the programs we studied.

- Langley usoed Rule Ordering for suppressing factual faults. He claims that
this technique can help cope with noisy data.

— Mitchell et al kept a set of lowser bounds In each version space
wharess only one lower bound will ever be neseded In the situation that
LEX was dealing with. Mitchell claims that a set of lower bounds /s
required where the relations in a version space form a lattice rather than
a iree.

~— Both Miichell et al's "Shell Creation and Langley’s, Shell Forking .are .
dependent on the training order, and can fail if this is unfavourabie.

7.3. Discussion
Solution Extraction and Contradiction Backtracing. are interesting new criticism

techniques. which are not in widespread use yet.

Surprisingly. most of the techniques for correcting faults are equally applicable to
factual and control faulis. This is a consequence of the common technique of
including control information in the rules. as extra conditions or instantiations., as if

it were factual information.

If the rules to be learnt are known to be conjunctive. then Focussing and
Varsion Spaces are the most powarful modification techniques. Not only do they
subsume - most of the other conjunctive learning techniques, but they produce a
simpler solution more efficiently than Classification. They do net require instances to
be stored. Focussing emarges as ona of the more powerful techniques of the

13
paper. and clearly deserves more attention than it has attracted in the past. .

13
This lack of attention Is partly the fault of tho Young et al, who have only reported it In a cryptic one page
paper
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If the rules may be disjunctive then Classlification . Refocussing or some similar
technique must be used. It will be necessary to store all instances. and either to
put off learning until alf the instancgs are known or .to be prepared to rastart the

learning process when apparently contradictory instances are input.

All the technigues described In this paper are dependant for their success on the
user—supplied. description space . For instance. if the Focussing description space
should contain surplus relation trees then the learning process will require extra
Instances and more time, and may get distracted by irrelevant far misses. it vital
relation trees should be missing or be the wrong -shape. then the description space
will become contradictory and the learning process will fail Automatic provision or
modification of the dascription space is the most uréent open problem facing
automatic flearning. Our new Tres Hacking technique is a small contribution to the
solufion of this problem. Lenat's and Mitchell’s recent work aiso offers an

interesting approach to the problem, (8, 9, 12, 13].
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