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ABSTRACT

The 3D Mosaic system is a vision system that incremenially reconstructs complex 3D scenes from a
sequence of images obtained from muwlriple viewpoints. The system encompasses several levels of the
vision process, starting with images and ending with symbolic scene descriptions. This paper
describes the various components of the system, inc/uding stereo analysis, monocular analysis, and
constructing and updating the scene model. In addition, the representation of the scene model is
described. This model is intended for tasks such as matching, display generation, planning paths
through the scene, and making other deciswns about the scene environment. Examples showing how
the system is used to interpret complex aerial photographs of urban seenes are presented.

Each view of the scene, which may be either a single image or a stereo pair, undergoes analysis
which results in a 3D wire-frame description tAar representsportions of edges ond venices of objects.
The model is a surface-based description constructed from the wire frames. With each successive
view, the model is incrementally updated and gradually becomes more accurate and complete.
Task-specific knowledge, involving block-shaped objects in an urban scene, is used to extracr the
wire frames and construct and update the model.
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The model is represented as a graph in terms of symbolic primitives such asfaces, edges, vertices,
and their topology and geometry. Thispermits the representation of partially complete, planar-faced
objects. Because incremental modifications to the model must be easy to perform, the model contains
mechanisms to (1) add primitives in a manner such that constraints on geometry imposed by these
additions are propagated throughout the model, and (2) modify and delete primitives if discrepancies
arise between newly derived and current information. The model also contains mechanisms thas
permit the generation, addition, and deletion of hypotheses for parzs of the scene for which tkere is

linle data.

1 Introduction

It is important for a general vision system to derive three-dimensional (3D)
information about a given scene from images and store the information in a
coherent manner so that it can be used for various matching, planning, and
display tasks. Our goal in developing the 3D Mosaic system has been to build a
full vision system, that is, one that goes all the way from images to symbolic 3D
descriptions. Further, we wanted to investigate this process in the context of
complex scenes. The result is really a first pass at such a system, and provides
us with a better understanding of the components required. This paper
describes the system and presents examples of how it is used to interpret
complex aerial photographs of urban scenes.

The paper is organized as follows. First, we present the motivation for our
approach of incrementally acquiring the scene model, together with an over-
view of the system. Then we discuss the two components used to extract 3D
information from the images: the stereo analysis and monocular analysis
components. Finally, we describe the representation, construction, and updat-
ing of the scene model, along with the task-specific knowledge used here.

2. Description of System

The goal of the 3D Mosaic system is to obtain an understanding of the 3D
configuration of surfaces and objects in a scene. The significance of this goal
may be demonstrated by the following tasks.

(1) Model-based image interpretation. A known 3D scene model can provide
significant aid in interpreting arbitrary images of the scene [7,27]. The D
Mosaic system performs the task of acquiring such a model of the scene.

(2) 30 change detection. Change detection is a task that determines how the
geometry and structure of a scene change over time. The conventional
approach to this task involves comparing and detecting changes in images.
However, because of different viewpoints and lighting conditions, changes in
the images do not necessarily correspond to changes in the geometry and
structure of the scene. If 3D scene descriptions were obtained from the images
first, such descriptions could be compared in 3D to determine changes in the
scene.
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A large number of views will, in general, be required to obtain a fully accurate
and complete description of a complex scene. Typically, all these views will not
be simultaneously available, while some may never become available. Many of
them will only be obtained gradually through interaction with the scene
environment. Our system must therefore have the ability to utilize partial
descriptions and incrementally update them with new information whenever a
new view happens to become available. As a practical example, consider a
robot (perhaps a mobile ground robot or an automatically guided airplane)
which is attempting to navigate through an unknown environment. The robot
would sequentially acquire images of the environment as it moves about.
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Information derived from each new image would serve to update its internal
model, and this partial model would be used to decide where to go next, or
where to analyze in more detail.

We have adopted an approach in which the 3D scene model is incrementally
acquired over the multiple views. The views of the scene are sequentially
acquired and processed. Partial 3D information is derived from each view. The
initial model is constructed from 3D information obtained from the first view,
and represents an initial approximation of the scene. As each successive view is
processed, the model is incrementally updated and gradually becomes more
accurate and complete.

In our approach, the scene model plays the role of a central representation
with two primary functions. First, it incrementally accumulates information
about the scene. Second, at any point along its development, it represents the
current understanding of the scene. As such, it may be used for tasks such as
matching, display generation, planning paths through the scene, and making
other decisions about the scene environment. Two such tasks are important for
the incremental acquisition process itself (1) 3D information derived from a
new view must be matched to the model so that updating can occur, and (2)
higher-level components should be able to use the model to determine which
parts of the scene to analyze in more detail, and from which viewpoints to take
the next images.

Most previous research at acquiring 3D scene descriptions from multiple
views have dealt with relatively simple scenes in controlled environments [2,8,
9, 22, 25, 28]. This has led, in some cases, to only utilizing occluding contours
in the image to form the 3D description [2, 8, 9, 22]. The work of Moravec [23]
deals with complex indoor and outdoor scenes, but the 3D descriptions
generated by his system consist of sparse sets of feature points. Our system, on
the other hand, generates full, surface-based descriptions.

2.2. Overview

A flowchart for the 3D Mosaic system, showing the major modules and data
structures, is displayed in Fig. 1. The input is a new view of the scene, which
may be either a stereo image pair or a single image. The stereo pair undergoes
stereo analysis, while the single image undergoes monocular analysis. The
purpose of these analyses is to obtain 3D scene features such as portions of
surfaces, edges, and comers. The stereo analysis component currently matches
junctions extracted from the two images, and generates a sparse 3D wire-frame
description of the scene. The monocular analysis component currently extracts
linear structures from the image and converts these to 3D wire frames using
task-specific assumptions.

The central scene model is a surface-based description which is constructed
and modified from these features. It is represented as a graph in terms of
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Fi. 1. 3D Mosaic flowchart, showing major modules (boxes) and data structures (ellipses). The
dashed lines represent components that have not yet been implemented; the solid lines represent
components already implemented.

primitives such as faces, edges, vertices, and their topology and geometry. It
also has mechanisms to add and delete hypotheses for parts of the scene for
which there are partial data. Before modifications to the scene model can
occur, the 3D features from the new view must be matched to the current
model. The scene model may, at any point along its development, be used for
tasks such as image interpretation, planning, or display generation. A new view
may then be acquired which may further modify the model.

For example, when the stereo analysis component is applied to the images in
Fig. 4, the result is the set of wire frames in Fig. 33. The scene model
constructed from these wire frames is shown in Fig. 36. When the monocular
analysis component is applied to the image in Fig. 11, the result is the set of
wire frames in Fig. 23. These, in turn, are converted into the scene model in
Fig. 37. Finally, the result of modifying the model in Fig. 36 with a new view is
shown in Fig. 43.

3. Stereo Analysis

Most stereo matching methods involve matching low-level image features, such
as image intensities [3, 14, 21, 24] or image edge points {3, 13, 24]. Points to be
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matched may also be chosen as “interesting points,” e.g., those with high
variance in all directions [6,23]. Our method involves matching structural
fceat\tihr_es—i.e., junctions-extracted from the images. There are several reasons
or this. -

First, feature-based matching results in more accurate 3D positions for
occlusion boundaries than gray scale area matching. Second, by extracting 3D
information dealing with scene vertices and edges emanating from them, we
obtain portions of boundaries of scene buildings, particularly building corners.
These boundaries are then used to construct 3D approximations of the
buildings.*

Finally, because of our wide-angle stereo images, there are large disparity
jumps and large portions of the scene are visible in one image but not the
other. Because most stereo systems do not distinguish these from other regions
of the image, they try to find matches for them and therefore have trouble
(3,5,6, 13,14, 21].

In our approach, rather than attempting to find matches for scene faces
occluded in one of the images, we match face boundaries visible in both
images. We do this by explicitly taking into account the way junction appear-
ances change from one image to the other, using the knowledge that in urban
scenes, roofs of buildings tend to be parallel to the ground plane, while walls
tend to be perpendicular to this plane. Edges in the scene perpendicular to the
ground will appear in each image to be directed towards the vertical vanishing
point [19].

If a feature in an image lies on a roof, its appearance in the other image as a
function of position along the epipolar line can be predicted if the normal to
the ground plane is known.? To see why, consider Fig. 2. Suppose the junction
P,P P, in Imagel is given, and our goal is to predict the junction Q,0,Q. in
Image2, where the point Q, lies anywhere (inside the infinity point) on the
epipolar line corresponding to P,. For the position Q,, the 3-space position of
V, can be computed as the intersection of the rays through P, and Q. This
uniquely determines the position of the plane parallel to the ground that
contains V;. The 3-space positions of the points V, and V, can now be
computed as the intersections of this plane with the rays corresponding to the
points P, and P,, respectively. Finally, the points Q, and Q, are uniquely
determined as central projections of the points V, and V;, respectively.’
Although this analysis is independent of the camera geometry relative to the
scene, vertical aerial photography is in general more useful than oblique aerial

! For a different approach developed for the same domain, see [15].

% In stereo images, it is known that for each point in one image, the corresponding point in the
other image lies along a line, called the epipolar line, which depends only on the camera model (3].

* Note that this analysis is valid not only for features lying on horizontal planes in the scene. but
for any family of parallel planes.
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Epipolar line

image1 tmage2

Fie. 2. For junction P,P,P,, its apprearance In Image2 can be predicted as a function of position
Q, along the epipolar line. The normal to plane V,¥,V, must be known.

photography because of the greater probability that an arbitrary junction in the
image lies on a roof or on the ground. In oblique aerial photography, larger
portions of horizontal surfaces would be occluded by vertical walls.

Therefore, when an L-junction is found in one image, it is initially assumed
to arise from a corner of a roof, and its appearance in the other image can be
predicted. When an ARrRow or FORK junction is found, the leg of the junction
directed towards the vertical vanishing point is initially assumed to arise from a
scene edge perpendicular to the ground, while the other two legs are initially
assumed to arise from scene edges lying on a roof or on the ground. Again its
appearance can be predicted.

Structural relationships between scene vertices are also used to aid in the
matching. If two junctions in an image arise from scene vertices at the same
height above the ground, the positions of the corresponding junctions in the
other image, as a function of position along the epipolar line, can be predicted
f the normal to the ground plane is known. This can be shown using similar
arguments as before. In Fig. 2, pretend that the points P, Q,, and V, corre-
spond to positions of separate junctions and vertices. For example, if P, and P,
are two separate junctions in Imagel, then for some point Q, on the epipolar
line corresponding to P,, the position of the junction Q,, corresponding to P,
can be predicted if V, and V, are assumed to lie at the same height. We make
the assumption that junctions close to one another in the image often corre-
spond to vertices lying on top of the same building and therefore have
approximately the same height. In this way, the configurations within the
neighborhoods around junctions in the two images are used in the matching.
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Fic. 3. The vector fram the focal point to the vertical vanishing point is a 3-space vector in the
vertical direction.

These matching techniques assume that the vector normal to the ground
plane is known. To obtain this vector, we form a vector from the focal point to
the vertical vanishing point. As shown in Fig. 3, this results in a 3-space vector
in the vertical direction [4]. The vertical vanishing point is the central projec-
tion of the “infinite” point of any vertical line. In other words, a line
containing the focal point and vertical vanishing point intersects any vertical
line at “infinity.” Therefore they must be parallel.® The focal length and
vertical vanishing point are currently manually obtained.

3.1. Steps in stereo analysis

We now provide an example showing how the stereo analysis is performed on
the stereo pair of images in Fig. 4.

The first few steps in the stereo analysis involve (1) extracting linear
features, (2) extracting junctions, and (3) finding potential matches between
the junctions in the two images. These steps are described in detail in (17].
Figure 5 shows junctions that have been found in the two images. Notice that
many of these junctions correspond to building comers.

The step that involves finding potential junction matches uses the junction
prediction technique described earlier. Each L-junction, for example, is initial-
ly assumed to lie on a horizontal scene plane. The shape and orientation ofits
corresponding junction in the other image can therefore be predicted. In this
way, each L-junction in the first image is associated with a set of potentially
matching junctions in the other image.

* This analysis, of course, holds for all vanishing points, not only the vertical one.
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Fic. 4. Gray scale stereo images of a region of Washington, DC.

The next step is to find the best potential matches, resulting in a single match
for each junction. Two criteria are used i determining the best matches:

(1) If the image intensities inside two potentially matching junctions are
similar, the likelihood that they really match is increased. This is because the
two junctions will often have similar intensities if they arise from the same face
comer. To measure the degree of similarity, we compute the average inten-
sities of regions along the two legs of the L-junction in each image. As depicted
in Fig. 6, let A and B be the average intensities of these regions in one image,
and let A' and B' be the average intensities of corresponding regions in the
other image. Then the degree of similarity, called the local cos:, is defined as

Ciocat =|A - A'|+|B~B'|.
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Image 1 Image2

Fic. 6. Intensities of correspondingregions of L-junctions in the two images are used to compute
the local matching cost.

Similar intensities in the two junctions result in small local cost, while diverse
intensities result in large local cost.

(2) As described previously, if two junctions in an image arise from scene
vertices that are at the same height, the relative positions of the corresponding
junctions in the other image, as a function of position along the epipolar line,
can be predicted. We use this to determine whether two sets of junction
matches are consistent with one another. Suppose, in Fig. 7, that the junctions
J, and J, in Imagel arise from scene vertices that are at the same height.
S:UPDOSG also that the junction matches (J/,,J;) and (J,,J;) have been
hypothesized. To measure the degree of consistency between these two sets of
matches, we predict the position of the junction in Image2 that corresponds to
(say) J,. Let us refer to the predicted position asJ;. If the vector from J; to J;
is (a,,b,) and the vector from J; to J; is (a,, b,), then the degree of
consistency between the two sets of matches, called the global cost, is defined
as

Cglobal = ,al - a2| + ,bl - b2| .

Two sets of junction matches whose relative positions are near the prediction
result in small global cost, while positions far from the prediction result in large
global cost.

To arrive at a unique set of junction matches, the space of potential matches
is searched using a beam search [27], which is guided by the above two criteria.
The search space is represented by a network whose nodes are the possible
pairs of junction matches. This is depicted in Fig. 8, where each junction in
(say) Imagel (i.e., J, K, L, ...)is paired with each of its potential matches in
Image2 (i.e., J;, K}, L}, ...). The junctions in Imagel are ordered so that the
junction in column k is within an M x A window of the junction in columnk - 1.
M is chosen so that there is a good probability that junctions within the window
arise from vertices on top of the same building. -
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Fi6. 7. Positional vectors of predicted and actual positions of two junction matches are used to
compute the global matching cost.

Column
Number 1 2 3

Junction
in Imagel J K L

Candidate
junctions
in Image2

Fi6. 8. Each column contains a junction from Imagel and its candidate matches from Image2. The
candidates form the nodes of a network which is searched by a beam search.
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In Fig. 8, each junction and its candidates lie in a single column, and each
candidate is represented by a node in the network. Any path through the
network that visits a single node at each column represents a set of unique
junction matches. Associated with each such path is a cost obtained by adding
all the local costs of the nodes visited by the path and all the global costs
between each successive pair of nodes in the path. The goal of the search is to
find the minimum cost path. With beam search, only a limited number of paths
are explored.

The search starts at column 1 (Fig. 8) and proceeds successively to each
column. At each column K, the best N partial paths from column 1to k are
extended to column k + 1as follows. Suppose that each node in column & has a
cost corresponding to the minimum cost path from column 1to the node. Then
for each of the N lowest cost nodes J; in column Kk, compute the cost of the
path when extended from J; to each node K in column & + 1. This cost is the
aum of the cost of the partial path to node J:, the global cost between nodes J;
and K, and the local cost of node K. Then add a link in the network between
nodes J; and K.

At the end of this set of steps, there will be a link from each of the best N
nodes in column K to each node K} in column k + 1, and each node K will
nov have several costs associated with it, one for each link into the node.
Suppose the link from node J; has the lowest cost to K;. A backpointer from
K, to J] is added, and the associated cost is stored. All other links and costs
associated with node K; are discarded. Each of the best N nodes in column
k+ 1 are then extended to column k + 2. Notice that this search is not
guaranteed to result in the lowest cost path in the network. A path discarded at
colum K because it is not among the best N may have been part of the best
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Fic. 9. Matches that have been found for the junction in Fig. 5. Actually. not all matches are
correct. For example, although the junction matches (J,, J,) and (J,, J,) are correct, the match
{Js, J,) is incorrect.
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path at column & +; if it were extended that far. The results of this procedure
are displayed in Fig. 9, which shows junctions in one image that have matches

in the other image.
The final steps in the stereo analysis involve (1) finding lines in the images

that might be the third leg of matched junctions and that might represent scene
edges perpendicular to the ground plane, and (2) using triangulation to derive
3D coordinates of vertices and equations of edges. Figure 10 shows a perspec-
tive view of the 3D vertices and edges that result. We call this a wire-frame
description of the scene.

4. Monocular Analysis

Although stereo is a major source of 3D information, some views of the scene
will be only single images. We can also extract 3D information from these

*images by exploiting task-specific knowledge. We assume that the objects in

the scene are trihedral polyhedra containing only vertical and horizontal faces,
i.e., faces perpendicular and parallel, respectively, to the ground plane. Our
monocular analysis extracts linear structures in the image that represent
boundaries of buildings, and then converts these structures into 3D wire

frames.

4.1. Steps in monocular analysis

This section provides an example showing how the monocular analysis is
performed on the image in Fig. 11. This is a different view of the same scene

shown in the earlier stereo pair (Fig. 4).

Extracting lines and junctions. The first step in the monocular analysis is to
extract linear segments and junctions from the image. The method used here is

Fic. 11. Aerial photograph showing part of Washington, DC. This is a different view of the same
scene as in Fig. 4.
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the same as that used during stereo analysis (as previously described). Thinned
edge points are shown in Fig. 12, and the result of extracting lines and
junctions is shown in Fig. 13.

Locating 2D structures. Next we form linear connected structures in the
image by hypothesizing new lines to connect the previously extracted junctions.
These connected structures are meant to represent buitding boundaries and the
hypothesized lines are meant to correspond to building edges. The process of
hypothesizing connecting lines consists of two steps. First, two junctions may
be connected only if a leg of one points at the other, that is, the extended leg
meets the other junction. Second, the two junctions must appear to be
connected by line segments in the line image.

The first step involves finding all pairs of junctions such that one has a leg
pointing at the other, and proceeds as follows. First, if two junctions share the
same leg, they are connected. Next, for each leg of each junction J;, a thin
rectangular window is located in the direction along the leg (Fig.14). Of the
junctions within this window and within an angle a from the direction of the
leg, the one closest to J; is retained as a candidate for being connected to J;.
Figure 15 shows a graph with all candidate connections drawn.

The second step involves determining which connections shown in Fig. 15
appear as connections in the line image (Fig. 13). For each pair of connected
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Fic. 12. Result of thinning the edges obtained by applying a Sobel operator to the image of Fig. 11.
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Fic. 13. Lines fitted to the edge points of Fig. 12 after they are linked. Junctions in the image are
classified as L, A (arrow), F (fork), or T.

junctions J; and J, (Fig. 16), we find all segments in the line image that are
contained within a thin rectangular window connecting J; and J,, and project
these segments onto the line connecting the two junctions. Then we consider
how much of this line is covered by projected segments. The connection
between J; and J, is retained only if the percentage of coverage exceeds a
threshold. The result of this pruning step is shown in Fig. 17. Note that it does
agood job in eliminating unwanted connections. These two steps illustrate how
useful a hypothesize-and-test method can be for low-level image processing. In
the first step, candidate connections are hypothesized on rather preliminary
evidence. In the second step, the candidates that do not pass a rigid test are
eliminated.

The junction legs originally extracted in the junction finding step are then
added to the result of Fig. 17, and extraneous legs are deleted. The final
connected structures are displayed in Fig. 18.

Obtaining 3D wire frames. The next step is to convert the 2D structures into
3D wire frames. In order to do so, we assume that all lines that form the 2D
structures arise from either vertical or horizontal scene edges. Furthermore, we
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Fic. 14. The closest junction to J; within the thin rectangular window of length d and height W, and
within the angle 2a, is a candidate for being connected to J,.

™~

N \’—q <S
Fic. 15. Each line represents a possible connection between the junctions at its two end points.
Each end point corresponds to a junction in Fig. 13.
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line segments

line A

Fic. 16. All line segments within the thin rectangular window connecting junctions J, and J, are
projected onto line A to determine the amount of coverage.

<~ § ( - 7
Fie. 17. Result of pruning the junction connections in Fig. 15 by determiningwhether segments in
Fig. 13 adequately cover the area between each pair of connected junctions.

use several features that aid us in relating an image to the 3D scene depicted in
the image, including vanishing points, the ground plane constraint, propagation
of 3D constraints and colinearity (i.e., alignment of lines).

First, the lines that form the 2D structures are labeled as either “vertical” or
“horizontal” depending on whether or not they are directed toward the vertical
vanishing point [19]. Next, we use the position of the vertical vanishing point to
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FIG. 18. Result of adding to Fig. 17 the junction legs that were origirally extracted in the junctioo
finding step, and then deleting extraneous legs.

calculate the vector in the vertical direction, as described previously. Let us
now consider how to recover the 3D configuration of the junction p, p,p;p, in
Fig. 19. Suppose that line p, p, has been labeled “vertical” and lines p, p, and
Pp.p5 have been labeled “horizontal.” Let u be the unit vector in the vertical
direction. This vector is normal to all horizontal planes. First we would like to
determine the 3-space position of u,, corresponding to the junction point p,.
Since it is impossible to determine the actual position of this point from a single
image without special information, the position is determined as some arbitrary
point lying on the ray through p,, i.e., the depth a of v, is arbitrarily chosen.
The horizontal plane v,v,v5 can now be established, since it contains v, and its
normal vector is u. The 3-space positions of the points v, and v, can then be
computed as the intersections of this plane with the rays through p, and p;,
respectively. Finally, the 3-space position of the point v, is computed as the
intersection of the ray through p, with the line through v, along the vector u.

Although this technique permits us to recover the 3D configuration of any
junction relative to some arbitrary depth, it is not useful to apply it directly to
the junctions in the original line image (Fig. 13) because the relative heights
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Fic. 19. The 3D configuration of the junction p,p,p,p. G be recovered under assumptions
explained in the text.

above the ground plane of the corresponding vertices cannot be determined;
the height of each vertex is arbitrarily chosen without relation to the heights of
other vertices. It is more useful, however, to apply the technique to the 2D
structures in Fig. 18, since the heights of the vertices within each structure can
be related. To see how this is done, consider the example in Fig. 20, which
shows a 2D structure. The solid lines are part of the extracted structure (while
the dashed lines are for the reader’s convenience to make the 3D shape more
apparent). Suppose lines p, p, and p, p, have been labeled “vertical,” while the
other solid lines have been labeled “horizontal.” Applying our technique to
(say) point p,, the 3-space positions of the vertices corresponding to points p, ,
p, and p, can be determined relative to some arbitrary depth a for p,. If the
technique is applied next to point p,, the 3-space position of point p, can be
determined as a function of the depth a. This procedure continues with points
Ps, P4, and so on, utdl the 3D configuration of the whole structure has been
determined, relative to some arbitrary depth.
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Fic. 20. The solid lines represent a connected 2D structure. The dashed lines are for the reader's
convenience to make the 3D shape more apparent.

In order to obtain a coherent scene description, the depths of the different
structures in the scene must be related. We use two methods to do this. The
first method involves finding structures that lie on the ground plane. Suppose a
junction point p of such a structure is hypothesized to arise from a vertex lying
on the ground. Then the 3-space position of the vertex may be obtained as the
intersection of the ground plane with the ray through p. The normal vector u
to the ground plane is known, but the distance d from the focal point to the
ground plane is arbitrarily chosen. Since the 3-space position of all junctions
arising from ground points can be calculated in this manner, the depths of all
structures containing such points can be related to one another through the
parameter d.

To hypothesize junctions that arise from vertices lying on the ground plane,
we use the observation that if a line labeled "*vertical** connects two junctions
(e.g., line p, p, in Fig. 20), the line is directed toward the vertical vanishing
point with respect to one junction, but away from this vanishing point with
respect to the other junction. The latter junction is assumed to represent a
vertex lying on the ground plane. Points p, and p, in Fig. 20 are examples of
such junctions. The 3-space positions of these junctions are then calculated,
and their values are propagated throughout their structures as described
previously. Figure 21 depicts a perspective view of the 3D wire frames obtained
in this manner.

There are many structures in Fig. 18 that do not contain points lying on the
ground plane, either because such points are occluded in the scene or because
they have not been properly extracted from the image. Nevertheless, the
heights of some of these structures can be determined using the rule that if two
lines are aligned in the image, they are often aligned in 3-space. This rule has
been used in other systems {20] and in fact is a restricted version of the parallel
line rule [18] which states that parallel lines in the image often arise from
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Fic. 21. Perspective view of 3D wire frames generated from Fig. 18 using the method of finding
junctions arising from vertices lying on the ground plane.

9, 10

Fic. 22. If the 3D configuration of the structure on the left has been determined, the relative 3D
position of the structure on the right may also be determined because lines psp, and pgp,, are

aligned.

parallel lines in 3-space. To see how this rule is used, consider Fig. 22. Suppose
that points p, through p, have already been assigned 3D coordinates, and we
want to obtain the 3-space position of the 2D structure pgpyp,op,;- Since the
lines p,p, and pyp,, are aligned in the image and both are labeled “horizon-
tal,” they are assumed to be aligned in the Scene and to lie in the same
horizontal plane. The 3-space position of (say) point p; is therefore determined
as the intersection of this plane with the ray through p,. The 3D coordinates of
this point may then be propagated to points pg, p,,, and p,, as described
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Fic. 23. Perspective view of firal set of 3D wire frames generated from Fig. 18.

previously. Note that all 3D positions are functions of the parameter d, which
is arbitrarily chosen for the equation of the ground plane.

Figure 23 depicts a perspective view of the firel 3D wire frames obtained
using both the methods of hypothesizing points on the ground plane and
applying the alignment rule.

5. Representing and Manipulating the 3D Scene Model

The representation we have developed for the 3D scene model draws on ideas
from geometric modelling used in computer-aided design systems {1, 26]. In
these systems, however, the 3D models are usually derived through interaction
with a user. Our case is different in that (1) the 3D models are derived
automatically from 2D images, and (2) many portions of the scene are
unknown or recovered with errors because of occlusions or unreliable analysis.

The following factors have determined how the Scene model is represented
and manipulated.

(1) Partially complete, planar-faced objects must be efficiently described by
the model. It is therefore represented as a graph in terms of symbolic
primitives such as faces, edges, vertices, and their topology and geometry.
Information is added and deleted by means of these primitives.

(2) The model must be easy to use in matching.

(3) Because scene approximations are often more useful if they contain
reasonable hypotheses for parts of the scene for which there are partial data,
we introduce mechanisms that permit hypotheses to be generated, added, and
deleted.
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(4) Because incremental modifications to the model must be easy to per-
form, we introduce mechanisms to (a) add primitives to the model in a manner
such that constraints on geometry imposed by these additions are propagated
throughout the model, and (b) modify and delete primitives if discrepancies
arise between newly dérived and current information.

The 3D structure in the scene is represented in the form of a graph, called
the structure graph. The nodes and links represent primitive topological and
geometric constraints. The structure graph is incrementally constructed
through the addition and deletion of these constraints. As constraints are
accumulated, their effects are propagated to other parts of the graph so as to
obtain globally consistent interpretations.

The current structure graph representation models surfaces in the scene as
polyhedra. The components of a polyhedral surface are the face, edge, and
vertex. We distinguish the topology of the polyhedral components from their
geometry [1, 12]. The geometry involves the physical dimensions and location
in 3-space of each component, while the topology involves connections be-
tween the components.

Nodes in the structure graph represent either primitive topological elements
(i.e., faces, edges, vertices, objects, and edge groups (which are rings of edges
on faces)) or primitive geometric elements (i.e., planes, lines, and points).
Face, edge, vertex, and point nodes are tagged as either Confirmed or
unconfirmed. Confirmed means that the element represented by the node has
been derived directly from images. Unconfirmed means that the element has
only been hypothesized. An edge may actually be partially confirmed and
partially unconfirmed. For example, a confirmed edge, extracted from the
image, may later be hypothesized to extend further in length. In this case, the
confirmed portion of the edge will lie between two confirmed points, while the
unconfirmed portion will lie between a confirmed and an unconfirmed point.

The primitive geometric elements serve to constrain the 3-space locations of
faces, edges, and vertices. Plane and line nodes contain plane and line
equations, respectively. Point nodes contain coordinate values. The structure
graph contains two types df links: the part-of link, representing the part/whole
relation between two topological nodes, and the geometric constraint link,
representing the constraint relation between a geometric and topological node.

Figure 24 shows a simple example of a structure graph consisting of two
objects, obl and ob2. Arrows with single lines represent part-of links, and
arrows with double lines represent geometric constraint links. The faces are
represented as f;, the edge groups as g;, the edges as e, and the vertices asv;.
The graph shows one point node pt and one plane node pl.

6. Modifications to the 3D Scene Model

Modifications to the structure graph are made by adding or deleting nodes and
links, or changing the equations of line and plane nodes, or the coordinates of
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point nodes. All effects of modifications are propagated to other parts of the
graph. These modifications, to be described next, are the basic processes used
in constructing the structure graph representation as described in Section 7,
and in modifying the structure graph by incorporating a new view, as described
in Section 8.

6.1. Propagation due to geometric modifications

may be considered to constrain such vertices since they must lie on a line going
through the point. This constraint, however, is not useful until another
constraint on the line is derived, such as another point that lies on the edge. In
this case, our system generates the equation of the line that constrains the edge
and propagates the line constraint down to the vertex, as explained in the next
paragraph. A more direct and useful constraint is thus imposed on the vertex.

face

14 t
edge ' 1 J

4 | |
ventex , # * '

Fic. 25. Rectangular boxes indicate geometric constraints on topological modes. Arrows indicate
direction of propagation of constraints.
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Similarly, when a point constrains a face, no useful constraint is implied for
arbitrary edges or vertices that are part of the face.

As indicated in Fig. 25, line constraints propagate outward. A line that
constrains an edge must also constrain all faces containing the edge and all
vertices that are part of the edge. Finally, plane constraints propagate down-
ward. A plane that constrains a face must also constrain all edges and vertices
that are part of the face. Similarly, a plane that constrains an edge must also
constrain all vertices that are part of the edge. Whenever a geometric
constraint link is added, propagation occurs as indicated in Fig. 25.

When a geometric constraint link is deleted, the rest of the structure graph
must be made consistent with this change. Our approach to this problem is
based on the TMS system [10], using the notion that when an assertion is
deleted, all assertions implying it and all assertions implied by it that have no
other support should also be deleted. To see this, consider Fig. 26. Let
{x,,x;, ...,x,,} be a set of assertions, each of which independently implies
the assertion y. The assertion (y A v, A v, A - .+), in turn, implies each asser-
tion in the set {z,, z,,. ..,z,}. Furthermore, for each i, z, is independently
implied by each assertion in the set {w,}. Now suppose the assertion y is
deleted, i.e., it is declared false. Then:

(1) Since each assertion z, depends on the truth of y, z, is deleted unless it
has other support w,;.

(2) All assertions x, are made false. None of them can be true, for if one
were, Y must be true. Since x,; may consist of a conjunction of assertions, at
least one of them is deleted to make x, false.

We obtain assertions that imply a given assertion by following backwards
along the arrows in Fig. 25, and we obtain assertions implied by a given
assertion by following forward along the arrows.

/wl,
x; - 2] 12
/ y
Xy A
v 2y me— ]
1 A
A / Wy g
VZ . E
Xm
W
W,

n?

Fic. 26. The assertiony & independently implied by each x,. Each assertion z, is independently
implied by (y a v, Av, A ..-) and w,.
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(c)

vispanofe (link 1)
eis pan of f(link 2)
pconstrains v (link 3)
peonstrains e (link 4)
pconstrains f(link 5)

Fic. 27. (a) Initial structure graph. (b) Link 4 i deleted. (c) Resulting structure graph after effects
of deletion have been propagated.

Consider the simple example in Fig. 27(a), which depicts three topological
nodes (vertex v, edge e, face f) constrained by one geometric node (point p).
Suppose now that link 4 is deleted (Fig. 27(b)), that is, the assertion “p
constrains e’ is deleted. All assertions which have implied this must now be
deleted, for if one were to hold, link 4 would also hold. To find these
assertions, we locate the box in Fig. 25 that represents a point constraining an
edge and follow backwards along the arrow. The result is the box that
represents the point constraining any vertex of the edge. In Fig. 27(b), this
corresponds to the assertion “p constrains v, and v is part of e.” This assertion
must therefore be made false. To do so, we may delete either link 1, link 3, or
both from Fig. 27(b). Our intuition tells us that part-of links (link 1) should
dominate constraint links (link 3), and thus link 3 is deleted. This seems to
work well for our examples.

We now must determine the assertions implied by the one initially deleted.
All these assertions must also be deleted unless they have other support. To do
so, we follow forward along the arrow fram the box in Fig. 25 that represents a
point constraining an edge, and the result is the box that represents the point
constraining all faces containing the edge. In Fig. 27(b), this corresponds to the
assertion “p constrains f,” which is link 5. This link should therefore be deleted
since it has no other support. One possible source of other support is external
to the structure graph. Link 5 may have been derived, for example, directly
fromimage data, rather than through structure graph propagation. We rule out
the possibility that links 4 and 5 are unrelated, and thus delete link 5. The
resulting structure graph is depicted in Fig. 27(c).
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6.2. Propagation due to topological modificatias

When a topological part-of link between two topological nodes is added or
deleted, the effects are propagated to other parts of the structure graph. In the
following, we will consider both geometric and topological effects.

6.2.1. Geometric effects

When a topological part-of link is added between two topological nodes, the
geometric constraints on each node must be propagated to the other node in
accordance with the chart in Fig. 25. There are three main cases to consider:
(1) adding a part-of link between a vertex and edge node, (2) between an edge
and face node, and (3) between a vertex and face node. These three cases are
explicitly covered in Fig. 25. The remaining cases fall into two classes: (a)
adding a part-of link between some topological node and an object node, and
(b) between some topological node and an edge-group node. Since object
nodes cannot be geometrically constrained directly, actions in class (a) have no
geometric effects. Since geometric constraints can be propagated through
edge-group nodes, actions in class (b) do have geometric effects. These effects,
however, can be reduced to the three cases above, as explained in the next
paragraph.

Consider the example of adding a part-of link between an edge node E and a
face node F. From Fig. 25, we see that all point and line constraints on E must
be propagated to F, while all plane constraints on F must be propaged to E.
Plane constraints propagated to E are, in turn, propagated to vertices of E. As
another example, consider adding a part-of link between an edge-group node
G and a face node F. This situation results in the same geometric propagation
as the following two cases: (1) add a part-of link from each edge of G to £, and
(2) from each vertex of G to F. Similar rules can be established for the other
two situations involving edge-group nodes (i.e., adding a link between a vertex
and edge-group node, and between an edge and edge-group node).

When a part-of link between two topological nodes is deleted, an attempt is
made to nullify any geometric propagation that occurred through the link. This
is done by deleting, fram the two nodes connected by the link, all geometric
constraints that have propagated through the link. The effects of deleting these
geometric constraint links are, in turn, propagated to the rest of the graph in
the manner described in the previous section.

As an example, consider deleting a part-of link between an edge node E and
a face node F. As seen in Fig. 25, all point and line constraints on F that also
constrain E were either (1) propagated up from E, (2) propagated up from
another edge or vertex of F, or (3) derived from an external source. We rule
out the possibility that the same constraints on E and F are unrelated, thus
ruling out the external source. Therefore, points and lines that constrain both F
and E, but do not also constrain another edge or vertex of 7, are deleted from
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F since we just cut off the only path through which they could have propagated
to F. The effects of deleting the point and line constraints from F are, in turn,
propagated to the rest of the graph. Similarly, all plane constraints on E that
also constrain Fare deleted from E unless they also constrain another face that
contains E (which would be unusual). The effects of deleting plane constraints
from E are then propagated.

An example of a link with more than one source of support is shown in Fig.
28(a). Suppose the part-of link between e, and f, link 4, is deleted (Fig. 28(b)).
According to the chart in Fig. 25, link 8 is a candidate for deletion since the
point node p constrains both e, and f. However, since p also constrains the
edge e,, which is part off, link 8 is still valid.

6.2.2. -Topological effects

A topological modification sometimes implies topological changes elsewhere in
the structure graph. This is best illustrated through an example. Figure 29(a)
shows the graph representing the situation in Fig. 29(b). The edge e has two
vertices, v, and v,, and v, is known to be part of the face f. Now suppose a
part-of link is added between v, and T (link 4 in Fig. 29(c)). Since both vertices
of e are now part of f, e must also be part of f, as shown in Fig. 29(d).
Therefore link 5 in Fig. 29(c) is added.

Another kind of topological effect results from the desire to eliminate
redundant part-of links. Part-of links serve as paths in the structure graph
along which effects of geometric changes are propagated. In order to simplify
this process, the number of paths between each pair of topological nodes is
minimized using the following rule: Two topological nodes may not be directly

(a) (b)

Fic. 28. Example of a link with more than one source of support. (a) Initial structure graph. (b)
Link 4 is deleted, but link 8 remains because of support from links 3 and 7.
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Fic. 29. Topological propagation. (a) and (b) Initial situation. (c) and (d) Link 4 is added, resulting
in addition of link 5. (e) Redundant links are eliminated.

connected (i.e., by means of a part-of IrK) if they are also connected through
one or more intermediate topological nodes. For example, suppose a part-of
lirk is added between the edge node e and the face node f in Fig. 30(a). To
avoid redundancy, all lirks connecting vertex nodes of e and the node f (lirnk 1
in Fig. 30(a)) and vertex nodes of e and object nodes containing f (link 2) are
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{a) {b)

Fic. 30. (a) Initial configuration. (b) When a link is added from e to £, links 1 and 2 are deleted to
eliminate redundancy.

\

0

(a)

Fic. 31. (a) Initial configuration. (b) Final result after link 1 is deleted.

deleted. In addition, if there were any links between e and object nodes
containing f, they would also be deleted. The final configuration is shown in
Fig. 30(b). In the example of Fig. 29, the graph in (c) has redundant links.
Links 1and 4 are therefore deleted, resulting in the graph of Fig. 29(e).

Although adding a part-of link can result in topological changes elsewhere in
the graph, deleting a part-of link does not change the topology anywhere else.
No attempt is made to recover previous states of topological connections.
Figure 31(b) shows the result of deleting link 1 from the graph in Fig. 31(a).
This technique seems to work well in our experiments.



322 M. HERMAN AND T. KANADE

7. Constructing and Updating the 3D Scene Model

Each view of the scene (which may be either a single image or a stereo pair)
undergoes analysis which results in a 3D wire-frame description representing
3D vertices and edges corresponding to portions of boundaries of objects in the
scene. The goal of the updating process is to merge the wire-frame description
with the current model. In general, this process will result in a partial 3D
model which may consist of surfaces at some places but only portions of
boundaries at other places. This partial 3D model must then be converted into
a full surface-based description by hypothesizing new vertices, edges, and
faces. Our current techniques for making such hypotheses exploit task-specific
knowledge that falls into two categories: (1) knowledge of planar-faced
objects, and (2) knowledge of urban scenes.

Both the wire frames and scene models are represented by structure graphs.
The wire-frame description extracted from the first view forms the initial state
of the scene model, and all of its edges, vertices, and points are tagged as
confirmed. This wire-frame model is then converted into a full surface-based
model using task-specific knowledge. All elements of the model that were not
present in the initial state are hypothesized and tagged as unconfirmed.

When a wire-frame description is extracted from a new view, all of its edges,
vertices, and points are tagged as confirmed. This description is then matched
to the current model (in order to find corresponding elements in the two and
the scale and coordinate transformation from one to the other) and merged
with the current model. In the merging process, confirmed elements in the wire
frames and model that match are “averaged’ together, resulting in new
confirmed elements. The parts of the wire frames that have no match in the
model are then added to the model. Hypothesized elements in the model that
are no longer consistent with confirmed parts are deleted. At this point,
task-specific knowledge is again used to fill out the model and to form a full
surface-based description.

7.1. Knowledge of planar-faced objects

Since the structure graph has been designed for scenes that can be modelled as
collections of planar-faced objects, knowledge of such objects is inherent in the
representation and propagation rules, as described above. We now discuss how
knowledge of such objects is used to construct a scene model from wire frames.

When new wire-frame information (derived either from the first or a
subsequent view) is added to the model, many object descriptions will be
incomplete. A goal of the model construction process, of course, is to complete
these object descriptions using task-specific knowledge. The notion of an
object description being complete is best expressed in the context of the
structure graph. An object node in the structure graph is considered complete
if it meets certain requirements, which may be expressed in terms of complete



INCREMENTAL RECONSTRUCNON OF 3D SCENES 323

nodes contained by the object node. Each type of node in the graph, therefore,
must meet certain requirements to be considered complete. Even though these
requirements are only implicitly followed during the model construction pro-
cess, it is useful to state them explicitly.

(1) An object node is complete if it is closed, i.e., each edge node of the
object is part of two face nodes, both of which are complete.

(2) A face node is complete if it is constrained by a plane node and contains
one or more complete edge-group nodes. One of these edge-group nodes must
represent a bounding ring of edges on the face. The other, optional edge-group
nodes represent inner edge rings, which would be holes in the face. In
addition, each edge node of the face must be part of an edge group of the face.

(3) An edge-group node is complete if it contains a single, connected, closed
ring of complete edges on a face.

(4) An edge node is complete if it is constrained by a line node and contains
two complete vertex nodes.

(5) A vertex node is complete if it is constrained by a point node.

The following techniques applicable to planar-faced objects are used in
constructing the model (see [17] for more details): (1) combining edges (Fig. 32
and E, and E, in Fig. 33), (2) generating a partial face, called a web face, for
each adjacent pair of legs ordered around a vertex (Fig. 34(a)), (3) merging
partial faces, and (4) finding and constructing holes in faces (Fig. 34(b)).

The procedure that merges partial faces distinguishes those that touch each
other from those that do not. Two partial faces that touch each other (e.g., Fig.
34(c), and F, and F, in Fig. 33) should be merged if (1) they share exactly one
edge, (2) the edge serves as a boundary of both faces, but does not partition
them, and (3) the planes of the faces are nearly parallel and very close to each

other.
The procedure for merging two touching faces provides a good example of

how the basic modification techniques described in Section 6 are used to
construct the structure graph representation. The merging of two touching

{a) {b)

Fic. 32. Combining edges. (a) Edges e, and e, are very close to each other, and each has a

i confirmed vertex (v, and v,, respectively). These vertices are on opposite ends of each other. (b)
The new edge is shown as the result of merging e, and e,.
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Fic. 34. Obtaining a surface-based description from wire frames.

faces F, and F, involves (1) finding the two edge groups G, of F, and G, of F,
that contain the shared edge, (2) subtracting edges and vertices from G, (i.e.,
deleting part-of links in the structure graph) and adding them to G, (adding
appropriate part-of links), (3) subtracting edge groups, edges, vertices, lines,
and points from F, and adding them to F,, and (4) recalculating the plane
equation of F, as a least-squares fit to all the points now constraining F,. As
elements are added or subtracted from the structure graph, their effects are
propagated to other parts of the graph, as described in Section 6.

Two partial faces that do not touch each other (e.g., Fig. 35(a), and F; and
F, in Fig. 33) should be merged if (1) each face has a single chain of edges that
is not closed, (2) each of the two end points of the edge chain of one face is
uniquely matched with those of the other face, where unique matching is
determined by the distance between the two points being less than a threshold
(in Fig. 35(a), p, uniquely matches with p,, and p, with p,), and (3) the planes
of the faces are nearly parallel and very close to each other. When merging two
faces that do not touch, the two edges on which each matching pair of end
points lie are intersected. The intersection points form two new vertices on the
resulting face (vertices v, and v, in Fig. 35(b)). Notice in Fig. 35(b) that the
edge e, has been shortened in the process, while the other edges have been
extended.
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FiG. 35. Merging of nontouching faces. (a) f, and f, satisfy the conditions for merging. (b) Result
of merging f, and ;. (c) and (d) The complete face f, is merged with the partial face f;. (¢) The
complete face f,, which contains a hole, is merged with the partial face f,.
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Up till now, we have only discussed the merging of partial faces. However, if
the confirmed parts of two faces, each of which may be partial or complete,
satisfy the conditions for merging nontouching faces, then the faces may be
merged. For example, suppose the face f; in Fig. 35(c) contains the confirmed
edges e, and e, and the hypothesized edges e, and e,. Now suppose that the
web face £, in Fig. 35(d) is new information that becomes available, say, from a
new view. The confirmed parts of f; may then be merged with f, if they satisfy
the conditions for merging. In the process, hypothesized parts of f;, must be
deleted. The mechanisms for doing this will be discussed later.

Another interesting example is depicted in Fig. 35(e), whose situation is
similar to that in Fig. 35(d) except that the web face f, is merged with
confirmed parts of the face f,, which has a hole in it. Notice that the condition
that the confirmed parts of each face must have two end points which are
uniquely matched to those of the other face is satisfied by p, and p,, and by p,
and p,. As a result of merging, £, aids in completing the boundary of the hole
inf,.

7.2. Knowledge of urban scenes

Because the wire-frame data extracted fram images represent a partial and
sparse description of the scene, knowledge of planar-faced objects by itself is
generally not adequate for completing many of the objects in the model.
Knowledge of urban scenes that contain block-shaped objects has been useful
for this task. This knowledge is described in [17], and involves (1) completing
the shapes of faces in the form of a parallelogram (Fig. 34(d)) or other poly-
gon (Fig. 34(e)), and (2) hypothesizing vertical faces for incomplete objects

(Fig. 34(f)).

7.3. Examples of generating the 3D scene model

When the techniques described above are applied to the output of the stereo
analysis component depicted in Fig. 33, we obtain the scene model shown in
Fig. 36. Notice that one of the buildings has a hole in it, through the roof. The
planar patches at the “front” of the scene are part of the ground. Because they
were not high enough above the ground plane, they were not treated as
building roofs. When these techniques are applied to the output of the
monocular analysis component shown in Fig. 23, we obtain the scene model
shown in Fig. 37. Note that all vertices, edges, and faces which have been
hypothesized by the procedures described above are marked as such, and will
ke replaced by more correct versions as more information becomes available
from new views.

Figures 38 and 39 show the result of adding gray scale to the faces of the
models in Figs. 36 and 37, respectively. The technique for doing this is
described in [17].
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Fic. 38. Reconstructed buildings of Fig. 36 with gray scale, derived fiam the top image in Fig. 4.
mapped onto faces. On a color display, faces and portions of faces occluded in the original image
are colored red.
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Fic. 39. Reconstructed buildings of Fig. 37 with gray scale, derived firam Fig. 11, mapped onto
faces.
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Although the stereo, monocular, and model generation components of the
system have been applied to several other images of downtown Washington,
DC, the results presented in this paper are the best we have obtained. We are
currently working on improving the system so as to make it more robust.

8. Combining New Views with the Current Model

The process of incorporating a 3D wire-frame description extracted from a new
view into the current scene model can be divided into three main steps:

(1) The wire-frame data must first be matched to the current model. This
process provides (a) the scale transformation and coordinate transformation
from the wire-frame data to the model, and (b) corresponding elements (i.e.,
vertices and edges) in the two.

(2) The new wire-frame data is then merged with the current model. This
process includes (a) merging pairs of corresponding elements, and (b) adding
to the model wire-frame elements for which no correspondences were found.
The latter procedure is aided by knowledge of the scale and coordinate
transformations. During the merging process, hypothesized parts of the model
that are inconsistent with the new wire-frame data are deleted.

(3) At this point, many objects in the model may be incomplete because (a)
new wire-frame data has been added, and/or (b) some hypothesized elements
have been deleted. These objects are completed using the techniques described
in the previous section.

To see how these steps are carried out, consider the example of incorporat-
ing the information from a second view into the scene model of Fig. 36. This
scene model was constructed from the set of wire frames (Fig. 33) automatical-
ly extracted from a “front” view of the scene (Fig. 4). The second set of wire
frames, shown in Fig. 40, was manually generated to simulate information
available from an opposing point of view (viewing the scene from the “back”).
Notice that the information in Fig. 33 emphasizes edges and vertices facing the
front of the scene, while those facing the back of the scene are emphasized in
Fig. 40.

8.1. Matching

We assume in this example that the scale and coordinate transformations from
the new wire-frame data to the current model is known; the data and model
may therefore be described in the same coordinate system. We have not yet
implemented a general matcher that provides these transformations between
the two (but see [16]).

The next step is to determine corresponding edges and vertices in the data
and model. First we label each connected group of edges in the wire-frame
data as a distinct wire-frame object. Next, wire-frame objects are matched with
model objects. Two objects are said to match if they have confirmed parts that
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Fic. 40, Perspective view of manually generated vertices and edges which simulate information
available fromimages showing an opposite point of view from that shown in Fig. 4. The viewpoint
for this drawing is chosen_to be similar to Fig. 33. Poirts P,, £,, and P;, for example, correspond
to points P,, P,, and P, i Fig. 33.

match. Matches are sought only for edges and vertices, since these constitute
the only confirmed parts of a wire-frame object. The requirements for two

. confirmed vertices, one from each object, to match are: (1) they must be very

close to each other, or (2) they must be part of matching edges whose other
two vertices match. The requirements for two confirmed edges, one from each
object, to match are: (1() the two confirmed vertices of one edge must match

' the two of the other, or (2) one confirmed vertex on one edge matches one on

the other, and the two edges are close together and overlap in their lengths.
These rules are used in a relaxation algorithm to obtain matching vertices and
edges.

As an example, consider Fig. 42. Suppose the object in Fig. 42(a) is part of
the model. Suppose also that the wire-frame object in Fig. 42(b) has been
derived from a new view, and it has been transformed to register with the
model object. The following algorithm is used to match the two.

Step 1. Find pairs of confirmed vertices that match by determining which
ones lie within a threshold distance of one another. The vertices v, and v,,, are
found to match, but let us suppose the distance between v, and v,,, exceeds the
threshold.

Step 2. Find pairs of confirmed matching edges that contain previously
found matching vertices. The edges e, and ey, and e; and e,, contain
matching vertices and., using the distance and overlap tests, are found to match.

Step 3. For each new matching pair of edges found, if they contain a single
pair of matching vertices, match their other vertices (if they exist and are
confirmed). The vertices v, and v,,, match because e, and e,,, match. No new
matching vertices result from the matching edges e, and e,,, sincee,, has only
one vertex.
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Step 4. Proceed by repeating Step 2, i.e., find new pairs of confirmed
matching edges that contain previously found matching vertices. The edgese,
and e,, are compared with e,,, and e,,,, respectively. Using the distance and
overlap tests, e, and e,,,, as well as e,, and e,,,, are found to match.

Step 5. Next, Step 3 is repeated. New matching vertices are sought that lie
on newly found matching pairs of edges. The matching edges found in Step 4
contain no new matching vertices, since v, and v, are unconfirmed. The
algorithm therefore halts at this point; it would have continued with Step 2 if
new matching vertices had been found. The following pairs of matches are

returned:(v,, Uy49), (V35 Ui01)s (€25 €100)5 (€35 €101)5 (€45 €102)5 (€125 €104)-

8.2. Discrepancies

We must now merge the new wire-frame data into the model. An important
issue here is how to handle discrepancies between the two. We consider the
following two types of discrepancies:

(1) After the coordinate system of the wire-frame data has been transfor-
med to that of the model and scale adjustments have been made, correspond-
ing pairs of confirmed vertices and edges may not register perfectly in 3-space.
In order to merge them into single elements, we perform a “weighted
averaging” of their positions.

(2) Hypothesized elements in the model may be inconsistent with newly
obtained elements. We handle this by deleting such hypothesized elements
using the structure graph modification techniques described in Section 6.

To determine whether or not hypotheses are still valid when confirmed
elements in the model are modified or deleted, we consider the elements which
gave rise to the hypotheses. A hypothesis is dependent on all elements whose
existence directly resulted in the creation of the hypothesis. If one of these
elements is modified or deleted, the hypothesis must also be modified or
deleted since the conditions under which it was created are no longer valid.
The dependency relationships for hypothesized elements are explicitly recor-
ded at the time of their creation using dependency pointers [11].

We currently record these relationships for the following situations:

(1) When two nontouching partial faces are merged (Fig. 41(a)), each face
has two partial edges which are intersected with their counterparts in the other
face. The intersection points form two new hypothesized vertices, each of
which is dependent on the two edges whose intersection gave rise to it. In Fig.
41(a), the arrows indicate the dependencies. Vertex v, is dependent on edges e,
and e,, and vertex v, is dependent on edges e, and e,. If one of the edges were
to be modified (e.g., if its position were to be displaced), the vertex that
depends on that edge would no longer be a valid hypothesis, and would
therefore be deleted. A new vertex might then be hypothesized.

(2) When an incomplete face is completed in the shape of a parallelogram
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(a)

(e) (d)

Fic. 41. Generating dependencies for hypothesized edges and vertices. The dependence of an
clement on another is depicted as an arrow from the former to the latter. (a) Two nontouching
partial faces are merged. (b) A face is completed in the shape of a parallelogram. (c) A face is
completed by connecting its two end points. (d) Vertical edges are dropped from a floating face.

(Fig. 41(b)), two new edges and three new vertices are hypothesized. Each of
the new edges e, and e, is dependent on both of the old edges e, and e, The
edge e,, for example, is dependent on e, in the sense that its end point is
constrained by the end point of e,. It is dependent on e, in the sense that it is
constrained to be parallel to e,, The new vertex v, is dependent on the two
hypothesized edges e, and e,, while the new vertices v, and v, are dependent
on the confirmed edges on which they lie.

(3) When a face is completed by connecting its two end points (Fig. 41(c)),
two new vertices and one new edge are hypothesized. The new edge e, is
dependent on both e, and e,, while the new vertices v, and v, are dependent on
the edges on which they lie.
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(4) When a vertical wall is dropped from a face, the first step is to drop
hypothesized edges from vertices of the face. Such edges are dependent on the
vertices from which they are dropped. In Fig. 41(d), the new edges e, and e,
are dropped from, and are dependent on, the vertices v, and v,, respectively.
A dropped edge is constrained to be perpendicular to the ground plane, and
would therefore no longer be a valid hypothesis if the vertex it depends on,
which is one of its end points, were to be displaced. After edges are dropped
from all vertices of the face, vertical faces are generated. This results in more
hypothesized edges and vertices. The situations under which these are created
fall under categories (2) and (3) above.

When a confirmed edge or vertex in the model is modified or deleted, the set
of ail hypothesized elements that depend on it are deleted. Recursively,
elements depending on deleted ones are also deleted. When hypothesized
vertices and edges are deleted in this manner, it is possible for hypothesized
faces to lose minimal support, i.e., they may no longer be constrained by at
least three noncolinear points. Such faces are also deleted.

8.3. Merging

The procedure that merges corresponding wire-frame and model objects takes
into account the fact that the 3-space positions of end points of edges that are
confirmed vertices are generally much more accurate than the positions of
nonvertex end points. Therefore, confirmed vertices are given more weight
during merging. As an example, consider again Fig. 42, where the wire-frame
object in Fig. 42(b) is to be merged with the model object in Fig. 42(a).

The merging procedure starts by merging corresponding vertices. Pairs of
such vertices ((v,, Uyg0) and (vs,vy,) in Fig. 42) are combined into single
vertices with coordinates of the midpoint between them. If the distance
between an initial pair of such vertices exceeds a threshold, all hypothesized
edges and vertices that recursively depend on the initial model vertex are
deleted. Hypothesized faces that have lost minimal support are also deleted.
At this point, all corresponding pairs of edges will share at least one vertex.
The corresponding edges are merged next as follows:

(1) If the two edges share both their vertices ((e,, e,,;) in Fig. 42), the new
edge connects the two new vertices already generated.

(2) If one edge has two confirmed vertices but the other does not
((e5, e,,,) and (e,, €,5;) in Fig. 42), the new edge is the same as the former.
Notice that the nonvertex end point in this case is given zero weight.

(3) If the two edges share one vertex and the other end points are not
confirmed vertices ((e,,, €,44) in Fig. 42), the new edge is the “average” of the
two edges, obtained using a least-squares fit.

Before merging, a model edge may contain either one or two confirmed
vertices. If it contains one confirmed vertex, then all hypothesized edges and
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Fic. 42. The wire-frame object in (b) is to be merged with the model object in (a). The confirmed
edges of the model object (indicated by solid lines) aree,, e,, e,, €,, and e,,; the confirmed vertices
(indicated by circles) are v,, v,, and v,. Dashed lines represent hypothesized edges. (c) The result

after merging.

vertices in the model that recursively depend on this edge are deleted.
Hypothesized faces that have lost minimal support are also deleted. In Fig. 42,
this occurs for the edges e, and e,,. The hypothesized elements in the figure
that recursively depend on, say, e, are the vertices v, and v,, and the edges e,
e, & ande,,. If a model edge to be merged contains two confirmed vertices
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obtained from the new data, and many confirmed vertices and edges are
merged with corresponding ones in the data by “averaging” their positions,
generally decreasing the amount of error.

The shape of the large hole in the roof of one of the buildings has changed
from a rectangle in the initial model to an almost triangular quadrilateral in the
updated version. When compared with the source images in Fig. 4, the
rectangular shape would seem more accurate. However, the positions of the
edges and vertices that form the hole are more accurate in the updated model
in the sense that they are more faithful to the wire-frame descriptions derived
from the images.

This experiment demonstrates how information provided by each additional
view allows the model to be incrementally made more complete and accurate.

9. Conclusions
Wé set out to develop an entire vision system to interpret complex images, one
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system that moves about and interacts with its environment in order to obtain
the multiple views will be able to gradually add more information to its scene
model at the same time that it carries out its other tasks.

(3) Scene descriptions are often more useful if they contain reasonable
hypotheses for parts of the scene for which there are only partial or no data.
For example, path planning cannot be done for occluded regions of the scene
without a good guess about what lies in these regions. If the hypotheses turn
out to be incorrect, they should eventually be modified. Computer vision
systems must therefore have mechanisms for intelligently generating hypoth-
eses, verifying them, and modifying them.

(4) Task-specific knowledge is very useful at all levels of complex image
interpretation, from low-level image analysis to high-level formation of sym-
bolic descriptions. Knowledge of block-shaped objects in an urban scene is
used in the 3D Mosaic system for stereo analysis, monocular analysis, and
reconstructing shapes from the wire frames.

(5) Stereo matching of 2D structural features (such as junctions) may be
important for complex images and should be further investigated.
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