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Abstract

Blending surfaces smoothly join two or more primary surfaces that otherwise would
intersect in edges. We outline the potential method for deriving blending surfaces, and
explain why the method needs to be considered in projective parameter space, concentrating
on the case of blending quadrics. Let W be the quadratic polynomial substituted for the
homogenizing variable of parameter space. We show that a blending surface derived in pro-
jective parameter space is the projective image of a different blending surface derived in
affine parameter space, provided that W =U? for some linear U. All blending surfaces may
therefore be classified on basis of the projective classification of W.
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The Geometry of Projective Blending Surfaces

1. Introduction

In computer-aided design, geometric models of objects in manufacture are created and
manipulated. Virtually all manufactured solid objects contain surfaces meant to round
sharp edges or smoothly connect surface areas that otherwise would intersect in creases.
These connecting surfaces are known as blending surfaces in the literature on solid model-
ing.

Traditional solid modeling systems have not been successful at incorporating blending
surfaces, and only recently successful attempts have been made at identifying surface
classes that can be used conveniently as blending surfaces [3—8]. In general, blending sur-
faces joining curved algebraic surfaces must have algebraic degree higher than 2, and

extensive classifications of useful blending surface families are not widely available.

In a sequence of papers [3, 4, 5], we have identified a class of blending surfaces derived
by substitution into base polynomials, and have analyzed some of their geometric proper-
ties. Our principal derivation procedure is called the potential method and is capable of
deriving in a standardized manner blending surfaces for any two intersecting algebraic sur-
faces. We have explored primarily the properties of blending surfaces when derived from a
quadratic base polynomial, due to the practical importance of this case. Higher degree base
polynomials could be used equally well and would permit higher order continuity between

the blending surface and the primary surfaces connected by it.

When we introduced the potential method in [3], we used a quadratic base polynomial
in which three free parameters had to be chosen in order to derive a specific surface. These
parameters have a very intuitive interpretation: two control the relative distance of the
curves at which the blending surface joins the primary surface, i.e., they control the width
and centering of the blending surface about the intersection curve of the primary surfaces.
The third parameter controls the shape of the blend. In [4] we have investigated the gen-
erality of this procedure, for blending quadrics. We found that in order to derive as general
a surface class as possible, the quadratic base polynomial must be homogeneous. That is,
the underlying parameter space must be projective. However, this introduces additional
parameters to be instantiated. The consequences of the additional choices for the resulting

surface shapes are not fully understood.



In this paper we summarize and extend our previous work on the properties of blend-
ing surfaces derived from homogeneous quadratic base polynomials. Our ultimate goal is to
gain a comprehensive and intuitive interpretation of the parameters that must be instan-
tiated in the base polynomial in order to derive specific blending surfaces. To this end, we
characterize generic subclasses of our blending surfaces that are invariant under projective

transformation.

The paper is structured as follows: After reviewing the necessary background and
notation, we summarize in Section 3 the results of [4], leading to a succinct formulation of
all quartic surfaces that serve as blending surfaces for two quadrics in general position.
Then we review the potential method by considering first the affine formulation, marked by
its intuitiveness, and subsequently the projective formulation. We then show the
equivalence of the projective formulation for blending quadrics and the surfaces derivable
by the methods of Section 3. In Section 6 we investigate how projective transformations
map blending surfaces. In Section 7 we finally summarize the other methods proposed, and

discuss the prospects for deriving blending surfaces automatically.

We do not explore techniques and configurations for blending corners that require join-
ing more than two blends. From a theoretical perspective, this topic is exceedingly simple,
for one could solve it by recursively blending the arising surfaces. There is, however, a prac-
tical matter: Proceeding systematically in this way, one quickly arrives at surfaces of very
high algebraic degree, thereby seriously complicating the representation and manipulation

of such surfaces. In [5] we have considered this problem and proposed practical solutions.

2. Notation and Background

Given two surfaces S; and S,, a blending surface is any surface S; that is tangent to
S, in a space curve C, and tangent to S, in a space curve C,. All surfaces are considered
in three dimensional x,y,z-space. For parts of our analysis, we must consider the surfaces
in three dimensional complex projective space. It is our experience, however, that the intui-
tive content of the results we derive is not distorted by this needed generality. For exam-

Ple, we have never needed surface equations with complex coefficients.

We will consider blending algebraic surfaces of arbitrary degree. Such surfaces
always have an implicit equation of the form F=0, where F is a polynomial in x, y, and z.
Note that some, but not all such surfaces may possess a parametric representation. For

example, all quadric surfaces have a rational parameterization, but only some quartic



surfaces can be so parameterized.

We must distinguish between the surface S(F) with implicit equation F=0, and the
polynomial F. The surface S(F) consists of all points (x,y,2) that are zeros of the polyno-
mial F. The distinction is necessary so as to avoid confusing geometric and algebraic argu-

ments.

We will consider algebraic curves and surfaces in other spaces as well. We call these
spaces parameter spaces and consider mapping them to the x,y,z-space by substitution of
polynomials in x, y, and z for the principal parameter space coordinates. We use r, s, and ¢
as coordinates of affine parameter space, and r, s, ¢ and u as coordinates of Projective
parameter space. These coordinates need to take on only real values. Polynomials in
parameter spaces are denoted in lower case letters, e.g, f, g, k..., and polynomials in x,y,z-

space by upper case letters, e.g., F, G, H....

2.1. Algebraic Geometry

In Section 3, methods from algebraic geometry are needed. This requires that we con-
sider F a polynomial over the ground field C of complex numbers. Unfortunately, the field
R of reals is not algebraically closed, so most of the results of algebraic geometry no longer

hold when only the real roots of F are considered.

The set of all polynomials in x, y, z, and with real or complex coefficients is denoted
Clx,y,z2]. The complete intersection of two surfaces S(G) and S(H) is denoted by S(G,H),
and is in general a space curve. Its algebraic description is provided by an ideal. Briefly, a
set I of polynomials is an ideal if, for all polynomials G and H of I , and an arbitrary poly-
nomial A in C[x,y,z], the polynomials AG and G +H are again in . It is not hard to see
that the curve S(G,H) is described by the ideal I =(G,H) generated by G and H, that is, by
the set of all polynomials of the form AG +BH, where A and B are polynomials in C[x,y,z].

Given an ideal I, the set of points at which all polynomials in I vanish simultaneously
is called the algebraic set of I and is denoted S(I). As we have mentioned, the algebraic set
S(G.H) of the ideal (G,H) is in general a space curve, whereas the algebraic set S(G) of the
ideal (G) generated by G is a surface.

An ideal I may have the property that for all product polynomials AB in I at least one
of the factors is also in /. In that case I is called a prime ideal. An algebraic set S() is
irreducible if it is not the union of two proper algebraic subsets. One knows that an alge-

braic set S() is irreducible if and only if the ideal I is prime (see, e.g., [2]).



- For example, a quadric surface is irreducible if it does not consist of two planes. The
space curve S(G,H) is irreducible if the curve does not have separate branches that indivi-
dually are algebraic sets. Note that the two real branches of the hyperbola are not two
separate algebraic sets, so that the hyperbola is irreducible. However, the intersection
curve of two parallel circular cylinders has two lines each of which may be described

separately as the intersection of a pair of planes, so that this intersection curve is reducible.

If S(G,H) is a space curve and the surface S(F) contains this curve, then there is a

connection between the ideal (G,H) and the polynomial F, given by

Hilbert Nullstellensatz:

If S(F) contains S(G,H), then there is an integer k& such that F*=AG +BH. Moreover, if
S(G,H) is irreducible, then k£ =1.

2.2. Projective Space

The reader will be familiar with affine three dimensional space as the set of all points
(x,y2) where x, y, and z have values from a ground field, e.g., are real or complex numbers.
Projective three dimensional space consists of all lines (rx,ry,rz,rw) where x, y, z and w
again have values from a ground field and r#0. The case x= y=z=w=0 is excluded. By
identifying the affine point (x,y,z) with the projective line (rx,ry,rz,r), r#0, three dimen-
sional affine space is embedded into three dimensional projective space. Then the only addi-
tional "points" in projective space are lines of the form (rx,ry,rz,0) and are called points at

infinity. The points at infinity form a plane called the plane at infinity.

If F is a polynomial, S(F) its algebraic set in affine space, then the corresponding set
in projective space is the algebraic set of the associated homogeneous form F, of F. This
form is obtained by substituting x/w for x, y/w for ¥, and z/w for z, followed by multiply-
ing with w* to eliminate the denominator. For example, if F=x2+y%+22—2x—9, then its

homogeneous form is Fy=x%+y2+2%—2xw —9w?2,
In complex projective space a number of algebraic and geometric statements are true
without exception. An example is the following standard result

Theorem

If F is a homogeneous polynomial of degree n, then any line L intersects S(F) in n points or

is contained in S(F).

In real affine space, n is only an upper bound on the number of intersection points.

The geometric degree of a surface S(F) is the number of intersection points the surface has



with a line L in general position. The theorem states that the geometric degree of S(F) is
equal to the algebraic degree of F. The geometric degree of a space curve is the number of
intersections with a plane in general position. An important result is the following

theorem:

Bezout’s Theorem
A surface S(G) of degree m and a surface S(H) of degree n intersect in a space curve of

degree m-n or have a common component.

A projective transformation is a nonsingular linear transformation of projective space.
Some projective transformations are familiar from computer graphics where they have been
used to change stereographic projection to orthographic projection. Moreover, all nondegen-
erate conics may be projectively transformed into a circle of unit radius. See also Section 5

below.

When the matrix of the projective transformation is real-valued, then we speak of a
real projective transformation, otherwise of a complex projective transformation. According
to [1], the projective classification of all irreducible quadric surfaces under real projective
transformation is as follows:

(1) The imaginary sphere x2+y2+22+ w2
(2) The real sphere x*+y%+22—w? This class includes the ellipsoid, the two-sheeted

hyperboloid, and the elliptic paraboloid.

() The one-sheeted hyperboloid x2+y2—22—w2. This class includes also the hyperbolic

paraboloid.
(4) The imaginary cylinder x%+y%+w?2,
(6) The real cylinder x2+y%—w?2. This class includes all conic cylinders and cones.

Under complex projective transformation the classes (1), (2) and (3) are no longer distinct,

as well as the classes (4) and (5).

3. A Completeness Theorem for Blending Quadrics

Approaching the blending problem abstractly, we consider how to determine all degree
4 surfaces S(F) that are tangent to two quadrics S(G) and S(H) at prescribed space curves.
This problem was explored in detail in [4], and some preliminary considerations are needed

before we can give it an exact formulation. Of course, we will assume that the quadrics



S(G) and S(H) are not degenerate. That is, neither splits into a pair of planes.

Recalling Bezout’s Theorem, a quartic surface intersects a quadric in a space curve of
degree 8. If we require tangency, however, the curve in which the two surfaces are tangent
must be counted double as it is the limit of two separate components, infinitesimally apart.
In consequence, a quartic surface S(F) is tangent to a quadric S(G) in a curve S(F,G) of
degree 4. According to [9], the space curve S(F ,G) now must be of one of the following
types:

(1) The curve S(F,G) is irreducible but not planar, and so is the intersection of two qua-
drics.
(2) The curve S(F,G) is irreducible and planar, and so is the intersection of a quartic sur-

face and a plane.

(3) The curve S(F,G) is reducible, and so is one of the following: Four lines, two lines and

a conic, two conics, or one line and an irreducible degree 3 space curve.

We study the case when S(F,G) is of type (1). S(F,G) cannot be of type (2), since it then
could not lie on S(G) as planar curve of degree 4. When S(F,G) is of type (3), we will need
to catalogue a number of special cases, depending on the curve components. This curve
type does arise, but neither its practical significance nor its mathematics has been
sufficiently explored. With this in mind, we formulate the classification problem for blend-

ing quadrics with quartic surfaces as follows:

Given two irreducible quadric surfaces S(G) and S(H), and given on each an irreduci-
ble degree 4 space curve, S(G,H') and S(H,G') as the complete intersection with auxi-
liary quadric surfaces S(H') and S(G'). Characterize the set of all quartic surfaces
S(F) where S(F) is tangent to S(G) in the curve S(G,H') and S(F) is tangent to S(H)
in the curve S(H,G").

Note that the irreducibility of a space curve S(G,H) in projective space implies that the
degree 2 terms of G and of H are coprime polynomials. For if these polynomials are not

coprime, then S(G,H) has a planar component at infinity, hence is not irreducible [10].

We solve the above problem under the additional assumption that the two quadrics
S(G) and S(H) have an irreducible intersection curve S(G,H). That is, the curve S(G,H) is
of type (1) above. Moreover, we assume that the intersection curve S(G,H) is different from
S(G,H') and from S(H,G'). Clearly this is the case for all blending surfaces considered in

practice.



- Completeness Theorem
Let S(G) and S(H) be irreducible quadrics. Let S(G') and S(H') be two quadrics such that
S(G,H') and S(H,G') are irreducible, and assume that S(G ,H) is irreducible and coincides
neither with S(G,H’) nor with S(H,G’). Then every degree 4 surface S(F) tangent to S(G)
in the curve S(G,H') and tangent to S(H) in the curve S(H,G') has the equation

K*—uGH=0
where p is a constant and S(K) is a quadric containing both S(G,H') and S(H,G").

The proof of this theorem in [4] proceeds as follows: Since S(G,H') and S(H,G') are
irreducible and S(F) contains these curves, the polynomial F can be written as
F=AG+B'H' and as F=BH+A'G’, for some polynomials A, A’, B, and B’. These equa-
tions follow from Hilbert’s Nullstellensatz. By considering the partial derivatives of F, the
requirement of tangency to S(G) and S(H) in the curves implies further that B'=CH' and
A'=DG’, where C and D are some other polynomials. That is, we may write

F=AG+CH'*=BH+DG'?.

It would be a mistake to make a priori assumptions about the respective degrees of the
polynomials A, B, C and D. However, irreducibility of S(G,H’) and S(H,G') in projective
space has the consequence that that A and B must be polynomials of degree 2, and that C
and D must be constants. The proof is combinatorial in nature, and makes use of the fact
that the degree 2 terms of G and H', as well as the degree 2 terms of H and G’ are

coprime.

Having so deduced the form of the polynomial F, the difference polynomial
(AG+CH'*»—(BH +DG'?) is considered modulo the ideal (G,H). Since this polynomial is
zero, CH'2—DG'?=0 mod (G,H). Moreover, since C and D are constants, the polynomial
CH'®*-DG'? factors over the field of complex numbers. At this point the irreducibility of
S(G,H) enters into the proof, for it allows us to conclude, by primality of the ideal (G,H),
that one of the factors is in (G,H), i.e., that it can be written oG +bH , where @ and b are
constants. Now it is simple to bring F into the required form F=K2—uGH.

The existence of the quadric K is of considerable interest. For if the two curves of
tangency S(G,H') and S(H,G') do not lie on a common quadric surface S(K), then no quar-
tic blending surface S(F) will be found in general. This does not preclude the existence of
special cases when one or several of the assumptions of the theorem do not hold. We will

demonstrate such an exceptional case:



- Example
In (3], color plate 6, a blending surface is shown that smoothly joins two elliptic cylinders.
The two cylinders are given by G=x2+4y2—4 and H=9x%+y2-9. They intersect in four
parallel lines, hence S(G,H) is not irreducible and the Completeness Theorem does not
apply. The blending surface has the equation
F=(x?+4y2 - 4)(2—3)2+(9x2+y? - 9)(2+3)2=0.
We show that F cannot be of the form K?—uGH, for any quadratic polynomial K.

We seek a quadratic polynomial K such that S(K) contains the curves of tangency
S(G, 2+3) and S(H, z—3), two ellipses in parallel planes. Clearly, K =(z—3)(z+3) defines
the only reducible quadric containing these curves. But aK?+BGH contains no x2z2 term,

so that K=(z—3)(z+3) does not qualify.

Next, let us assume that an irreducible quadric contains the curves S(G, z+3) and
S(H, z—3). Since S(K) contains S(G, z+3), we have K(x,y,—3)=aG, for some a#0.
Without loss of generality we assume a=1 and conclude that K =x2+4y2+2K,, where K| is
linear. Next, the containment of S(H, z—3) implies K (x,y,3)=BH for B#0. Comparing the
x? and y? terms on both sides, we have x2=98x? and 4y2=8y%. Hence there is no irreduci-
ble quadric containing both S(G, z+3) and S(H, z—3). It follows that F cannot have the
form GH-uK? [

In principle, the Completeness Theorem provides a constructive procedure for deriving

blending surfaces, as follows:

(1)  Given the quadrics S(G) and S(H), pick a quadric S(K) intersecting the other two sur-

faces in the desired curves of tangency.
(2) Pick a parameter p and set F=K - iGH. Then S(F) is a blending surface.

After so determining F, only the area between the curves of tangency is of interest as
blending surface. Consequently, S(F) must be suitably clipped. We will see later how this
is done with the help of S(K).

How should K and p be selected? Picking S(K) obviously specifies the curves at which
we tangentially connect the blending surface to the primary surfaces. The numerical
parameter p then controls the curvature of the resulting blending surface. However, con-
siderable experience is necessary before a designer can skillfully manipulate blending sur-

faces so derived. Therefore, we explore alternative formulations.



4. Affine Parameter Space Derivations

The blending surfaces characterized above can be derived by substitution from a
parametric base curve, as we now explain. The resulting derivation procedure is called the
potential method [3]. According to whether the base curve is viewed in affine or projective
space, we speak of the affine or the projective potential method, respectively. We now

explain the affine potential method.

The potential method derivation has the advantage that a greater intuitive under-
standing of the resulting shapes is obtained. Moreover, it becomes clear that this formula-
tion can be used to blend arbitrary algebraic surfaces, and that higher order continuity to

the primary surfaces could be achieved should the application require it.

A simple introduction to the parameter space formulation is provided by a two-
dimensional  example. Consider  the circle specified by the polynomial
fls,)=(s—1) 2+(¢t—1)% -1 in the s,t-plane. This circle may be considered a blending curve

for the intersecting coordinate axes t=0 and s=0, as shown in Figure 4.1.

At | |

In analogy to the three dimensional case, denote the circle by S(f), the s-axis by S(¢), and
the t-axis by S(s). Substitute the polynomial G(x,y) for s, and the polynomial H(x,y) for ¢.
Then f becomes the polynomial F=(G —1)2+(H—1)2—1. What is the shape of S(F) in x,y-
space? The answer is illustrated in Figure 4.2 where the circles S(x2+y2—1) and
S((x—1)2+y2—1) have been used. Intuitively, we have redrawn S(f) in a curvilinear coor-
dinate system. Moreover, we note that S(F) remains tangent to S(G) and S(H). Since G
and H have degree 2, F has degree 4.



Figure 4.2

Consider the point (x,0) on S(f). This point is the intersection of the lines S(s—u)
and S(¢t—v). Corresponding to (u,v) in s,t-space are all points of the intersection of S(G —u)
with S(H—v), in x,y-space. We therefore can think of the substitution for s and ¢ as a
deformation of the coordinate system. Note, however, that different points in the curved

x,y-space may have the same coordinates (G —u,H —v), as is the case in Figure 4.2.

We embed s,t-space into three dimensional r,s,t-space. Now S(s) and S(¢) are planes,
and S(f) is a circular cylinder that is tangent to these planes in the lines S(s,t—1) and
S(s—1,t), respectively. If G and H specify surfaces in x,yz-space and F is obtained from f
through substitution as before, then S(F) will be a surface tangent to S(G) and S(H). In
particular, S(F) is tangent to S(G) in x,y,z-space in the curve S(G,H—-1).

Intuitively, the reason tangency is preserved can be understood as follows: A transfor-
mation through substitution maps intersection points to intersection points. Now tangency
is a double intersection, hence tangency is preserved. A formal proof is easily found.
Briefly, the partial derivatives of F on the curves S(G,H—-1) and S(H-1,G) must agree
with the corresponding derivatives of G and H. It is then easy to see that the tangent

planes must coincide along the curves; see also [3].

We extend the underlying parameter function f to include all conic cylinders tangent
to S(s) and S(¢). Assuming tangency at S(s—a,t) and S(s,t—b), where a and b are given

constants, all such conic cylindérs are given by
f=b%s—a)2+aX(t—b)2—a?b2—2\abst

Here A is a number that should be greater than —1. In the range —1<A<1 we obtain an
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elliptic cylinder, for A=1 a parabolic cylinder, and for A>1 a hyperbolic cylinder. See also
Figure 4.3.

—-

]:L\

Figure 4.3

For A=-1 the cylinder degenerates into the double plane S((bs+at—ab)?). For A< —1 we
obtain hyperbolic cylinders that are positioned as shown in Figure 4.4. Due to their posi-

tion, the hyperbolic cylinders for A< —1 are not useful for deriving blending surfaces.

At

—

Figure 4.4

Substituting quadric surfaces S(G) and S(H) into this family of cylinders yields quar-
tic blending surfaces. The relationship to the normal form F=K 2— uGH derived previously
for blending quadrics is seen directly from the equation for f when it is rewritten as

f=(bs+at—ab) 2—2(1+N)abst
Hence S(K) is the image of the plane S(bs +at—ab), and pE=2(1+A)ab. Referring again to
Figure 4.3, it is easy to see that the plane S(bs+at—ab) can be used to identify the part of
S(F) that is used for blending: Clip those points of S(f) for which bs+at—ab>0, or,
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equivalently, clip S(F) when K(x,y,2)>0. This will suffice for all elliptic and parabolic base
cylinders, but for the hyperbolic cylinders the other branch of the hyperbola must be clipped

when 5s<0 or when ¢ <0, or, equivalently, S(F) is clipped when G <0 or when H <0.

We see now that blending surfaces may be derived by substituting the primary sur-
faces to be blended in the parametric polynomial f. Intuitively, this is a deformation of the
coordinate system in which the coordinate planes S(s) and S(¢) are mapped to the primary
surfaces S(G) and S(H). The conic cylinder S(f) blending the planes is mapped to the sur-
face S(F) blending S(G) and S(H). Finally, the plane S(bs+at—ab) is mapped to the sur-
face S(K), familiar from the normal form equation for quartic blends. This surface S(K)
plays an important role both in defining the curves of tangency, as well as in providing the

criterion for clipping S(F).

The blending method described works equally well for blending surfaces of degree
higher than 2. No intrinsic property of quadrics is needed to prove tangency of the result-
ing surfaces S(F), given the primary surfaces S(G) and S(H) [3]. Moreover, one may use
other parametric polynomials f. In [5] we have advocated quadratic polynomials for the
simple reason that the resulting blending surfaces S(F) have a small degree. If degree is of
no concern, or if higher order continuity to the primary surfaces is needed, higher degree

polynomials f may be used. For example, [7] has used the super ellipses as a parametric

base polynomial.

It is not necessary to think of a three dimensional parameter space. In [3], a two
dimensional s,t-space is used instead, and an intuitive interpretation of the substitution
process given. However, for other purposes such as corner blending the three dimensional

view seems more natural.

Clearly, the substitution paradigm yields a very intuitive derivation method, and for
quadratic base polynomials f the quantities a, b, and A are easily understood. Briefly, the
choice of a and b controls the distance the respective curves of tangency on S(H) and S(G)
have, from the intersection curve S(G,H). Enlarge a for example, and the curve at which
S(F) is tangent to S(H) is further apart from S(G,H). Of course, for a closed quadric sur-
face S(H) a maximum distance cannot be exceeded. Moreover, the choice of A controls the
"sag" of the blending surface, i.e., how closely it follows S(G)|JS(H). [5] contains a

number of pictures illustrating the choice of A.

The substitution paradigm with a quadratic base polynomial f provides a very intui-

tive procedure for deriving blending surfaces given G and H. At least in the case of
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quadrics it is easy to visualize the behavior induced by choosing @, b and A. Little addi-
tional work seems to be needed to automate the method and incorporate it into a solid
modeler. Difficulties to be faced for blending higher degree primary surfaces S(G) all have
to do with understanding the shape of the surfaces S(G —s) when 0<s<a. For quadrics it
is easy to see how these surfaces behave, with the cone perhaps exhibiting the most com-
plex behavior. For higher degree ‘surfaces this relationship may be much more complex,
and without a comprehensive surface classification an automated blending surface deriva-

tion appears to be difficult.

5. Projective Parameter Space Derivation

Tixe affine potential method described in the previous section is not general enough to
derive all quartic blends of the form K2—uGH. The limitation is due to the fact that we
formulated the derivation based on affine polynomials f. Only by using a projective base
polynomial f and substituting for the homogenizing variable u as well do we obtain the full

generality possible. We now describe the projective potential method.

Consider a projective parameter space with homogeneous coordinates r, s, ¢, and u.
The quadratic base polynomial is then
1=b%s—au)?+a’(t—bu)2—a2b2u?—2\abst
As before, we substitute G for s and H for ¢. However, we now choose a polynomial W to
be substituted for u. It is reasonable to limit the degree of W by the maximum degree of G
and H. Thus, when blending quadrics, we substitute a polynomial of degree no higher than

2 thereby obtaining quartic blending surfaces.

This projective method of deriving blending surfaces subsumes the affine method, since
by substituting the polynomial W=1 for u the affine method is recovered. This is to be

expected, for it corresponds to the usual way of embedding affine space into projective space.

Before exploring the generality of the projective derivation procedure, we seek to sim-
plify the base polynomial. It is well known that in projective space all nondegenerate conics
are related by projective transformation. In particular, the base polynomial f; above can be
transformed into the polynomial

fo=(s"—u) 2+ —u)?t—u'?

by the projective transformation



r=r
s=35_
be
tl
t=—
ac

’

_(d=c) 1—-o¢ u’
u abce + abe + ab

where ¢c=V1+A. For A=—1 the conic degenerates, and the projective transformation

becomes singular. We again assume that A>—1, hence V1+A is real.

We claim that the choice of W already includes the role of a, b, and A. That is, let F;
be the. result of substituting G, H and W for s, ¢t and u in f; above. Then we can find a
polynomial W’ such that substituting G, H and W' for s’, ¢ and «’ in fo we obtain F, such
that S(F)=S(F,). To see this, we rewrite the polynomials as

fi=(bs+at—abu)2—2(1+N)abst
fo=(s+t—u)?-2st
Let W' =(abW —bG —aH)/ Vab(1+\) + G + H. Substituting G, H and W' for s', ¢ and u’
in fo we obtain
Fy=(bG +aH —abW)*/(ab(1+N))—2GH
Since substitution of G, H and W for s, ¢ and u in f; yields
F1=(G +aH —abW)%®—2ab(1 +\)GH

we have S(F|)=S(F), unless A\=—1. Hence for nondegenerate conics the projective base

polynomial f, suffices.

Now consider a quartic blending surface S(F) where F=K2?—uGH, S(G) and S(H) are
quadrics, and K is of degree 2 or less. Then with W=G+H-K/ \/_p. we have S(F)=S(F'),
where F' is obtained from f, by substituting G, H, and W. Hence every quartic surface
obtained through the methods of Section 3 is also derivable from f, using the projective

derivation method.

Although based on substitution as in the case of the affine derivation method, the role
of W is difficult to visualize. More work is needed to interpret how the form of W influences
the shape of the resulting blending surfaces, and automating the projective procedure
appears difficult. A specific difficulty arises from the form of polynomials as follows: Given
a#0, the surfaces S(G) and S(aG) are clearly equal. Yet using aG in place of G when

substituting alters the resulting blending surface.
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6. Projective Transformation of Blending Surfaces

We investigate the behavior of the blending surface S(F) under projective transforma-
tion of the projective x,y,2,w-space. In particular, we settle the question when a projec-
tively derived blending surface can be obtained by first deriving an affine blending surface
followed by a projective transformation of x,y,z,w-space. As in Section 3, we concentrate on

quartic blends of quadrics.

Since we embed the blending surfaces into complex projective space, we assume
throughout that all polynomials F, G, H, etc., are homogeneous in x, y, z, and w. Because
of the results of the previous section, we make the following definition:

Definition
A blending surface S(F) with F=K2—-2GH is projective if it is obtained from
fo=(s+t—u)?—2st by substituting G for s, H for ¢, and W for u. Moreover, if W=aw?,

a#0, then S(F) is an affine blending surface.

First, let us exclude substituting the zero polynomial for u, for it leads to a degenerate
blending surface: If W=0 is substituted into fo, then F=G2?+H? hence
F=(G+iH)(G —iH), where i=V —1. Since F factors, it is in general a surface that inter-

sects G and H transversally, i.e, it is useless as a blending surface.

Given a projective blend S(F) of the quadrics S(G,) and S(H,), is there a projective
transformation p such that S(F) is the image of an affine blend S(F), i.e., Fy=p(F)? We

solve this problem with the following theorem:

Theorem
Let S(Fy) be a projective blend where Fo=K¢g—2G,H,, and G,, H,, and K, are quadratic.
Let p be a projective transformation such that p(F)=F, p(G)=G,, p(H)=H,, and
p(K)=K,. If F is an affine blending surface, then Wo=Go+H,—K,=U?, for a linear form
U. Conversely, if Wo=Gy+Ho—Ko=U? then p may be chosen such that F is an affine

blending surface.

Proof: Assume F is an affine blend, so that F is obtained from f, via the substitution
$s=G, t=H, u=G+H—-K=aw?. Let ,B:-‘/;. The transformation p effects a substitution
w=ax'+by' +cz'+dw'=U. Since p is not singular, U is not the zero polynomial. Then

p(G+H-K)=p(G)+pH)-p(K)=(BU) 2
Moreover, since F=K2?—-2GH, we have p(F)=Fo=p(K) =pG)p(H). With G¢=p(G),
Hy=p(H), Ko=p(K), and with W=(8U)? the projective blend has the required structure.
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~Conversely, assume that Fy is a projective blend with W,=G,+H 0o—Ko=U? Let
U=ax' +by +cz' +dw’. If d#0, consider the transformation q given by x' =x, y' =y, 2/ =z,
and w'=(w—ax—by—cz)/d. Then q(Wy)=q(U)2=w? Since Wo=Go+Hy—K, we have
q(Fo)=q(Go+Hy—Wy)?—2q(Go)q(H,). Consequently, q(Fy) is an affine blend. If d=0 we
may assume without loss of generality that a=0. We take as ¢ the transformation
' =(w—cy—bx)a, y=x, 2=y, w' =2. Then q(Wy)=w? The theorem follows with p the
inverse transformation of q. []
It is interesting to note that not all projective blending surfaces are the image of affine
blending surfaces. Rather, the proof of the theorem suggests classifying the quartic blends
S(K*—-2GH), based on the form of W=G+H—K. This classification is precisely the projec-

tive classification of quadrics [1], already mentioned in Section 2:
(1) W=x?+y%+22+w? the imaginary sphere.

(2) W=x2+y%+22—w?, the real sphere.

(8) W=x%+y2—22—w? the one-sheeted hyperboloid.

(4) W=x2+y2+w? the imaginary cylinder.

(6) W=x2+y2—w? the real cylinder.

(6) W=x2+w? two imaginary planes.

() W=x2-w?, two real planes.

(8) W=uw? the double plane.

The last class consists of all affine blends and the projective blends characterized by the

theorem. The other classes can be elaborated similarly.

Note that purely imaginary surfaces are of practical interest as W. For example, we
may blend two intersecting cylinders as follows: Let G =2x2+2y%2—2w?2, H= 2y2+222—2uw?2,
and W=x2+y2+22+ w2 The resulting blending surface is tangent at the intersection of
the cylinders with K=x2+3y2+22—-3w?2, and does not have the undesirable "bulge" near
the points (0,1,0,1) and (0,—1,0,1) seen in the illustration in [6]. This bulge cannot be

avoided for affine blending surfaces, i.e., when using W=w?.

7. Other Work and Conclusions

Perhaps the most natural class of blending surfaces are the canal surfaces [8]. These

surfaces are obtained as envelope of the volume swept by a moving sphere of fixed radius
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that is kept in contact with both primary surfaces to be blended. There are major

difficulties associated with this approach:

(1) Canal surfaces typically are of high algebraic degree. For example, the canal surface
blending two circular cylinders intersecting at right angle has degree 16 in the sim-

plest case.

(2) Generic derivation of canal surface equations is computationally very expensive.
Since the surface degree is high and since a generic formulation must make explicit
the dependency on shape parameters, very complicated symbolic forms are needed.

Expressions with several thousand terms are not uncommon.

(3) As the radius of the moving sphere is increased in an attempt to obtain a broader
blending surface, unexpected self intersections may result and a surface with creases

may be obtained.

In [8], Rossignac and Requicha give a method to approximate canal surface blends with
torus and cylinder segments. By approximating the canal surface, the degree and deriva-
tion problems are nicely side stepped. However, while the segments join each other
smoothly, the resulting surface is not tangent to curved primary surfaces to be blended.
The method is used in a CSG modeler with standard primitives, and much of the charm of

the work derives from the fact that the underlying set of primitives needs no extension.

In [6], Middleditch and Sears outline a blending method remarkably similar to the
affine potential method. The method is based on conics tangent to coordinate lines in affine
s,t parameter space. The conics used are restricted to be tangent at points equidistant from
the coordinate lines, i.e,, a=b is assumed. Moreover, our parameter A is expressed as dis-
tance of the apex of the conic from the lines. Since Middleditch and Sears seek to derive
blending surfaces for which the curves of tangency lie at a fixed Euclidian distance from the
other surface, they must substitute complicated offset equations into the underlying conic.
In consequence, fairly complex blending surface equations are obtained. For instance,
blending a cone and a plane results in a surface of degree 6. Middleditch and Sears observe
that substituting the implicit equations of the surfaces to be blended leads to algebraically
simpler surfaces. This class of simpler blending surfaces is a subset of the affine blending
surfaces. It is a proper subset since a =b is assumed for the underlying conic. The paper

also discusses in detail how to integrate the blending method into a CSG modeler with stan-

dard primitives.
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Rockwood and Owen give a blending method in [7] that is also based on substitution.

The basic curve used is the super ellipse
A-s/a)* + A—t/b)* = 1,

where the parameters a, b, and A are analogous to the parameters in the affine potential
method. The surfaces to be blended are substituted for s and ¢. The constants a and b can
be replaced with functions of the gradients of the primary surfaces. This seems to have the
effect of making the curvature distribution more uniform along the length of the blending
surface. When A>2, or when gradient functions are used in place of the constants ¢ and b,
blending surfaces of fairly high algebraic degree are obtained. Moreover, for large values of
A the order of continuity of the blend with the primary surfaces increases. In both cases

numerical difficulties should be expected.

The methods of [6, 7, 8] each have been incorporated into some experimental solid
modeling systems. This requires some degree of automating the blending process whose
prospects we now discuss briefly. Our insights are limited by the fact that so far we have

not had the opportunity to experiment with these systems.

Two problem types are encountered when incorporating a blending method into a solid

modeling systems:

(1)  Local control problems: The blending surface(s) to be interpolated must be specified in
an intuitive and concise manner that delivers predictable results anticipated by the
user. This requires an intuitive interpretation of all parameters in the underlying

polynorial.

(2) Blend-blend problems: When blending edge cycles bounded by different faces, a con-
tiguous blending surface can only be piecewise algebraic. This not only complicates
blending in that smooth transitions between the pieces are required, but also intro-
duces additional complexities for clipping. In particular, in CSG type modelers blend-
ing operations must be analyzed for sequence dependency which must be understood
fully by the user.

All authors have acknowledged the existence of the two problem types, but concentrate
mostly on blend-blend problems. Perhaps this is because these problems must be faced

immediately by any implementation.

In the case of [8], it appears reasonable to concentrate on blend-blend problems, since
the only parameter that is specified for local shape control is the radius of the moving

sphere. Nevertheless, additional results would be desirable that provide information about
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the precision to be expected when choosing the number of primitive segments with which
the canal surface is to be approximated. For instance, when blending two intersecting cir-
cular cylinders of radius 10 with a canal surface of radius 1, what precision can be expected

from an approximation of, say, 100 segments of tori and cylinders?

The blending method of [6] aims at solving the local control problem by giving the
base polynomial a restricted form and explicitly linearizing distance control parameters.
However, such a formulation shifts the problem to finding suitable potential functions that
conform with the shape expectations based on Euclidian distance measures. When the set
of underlying primitives is simple and fixed, this appears to be reasonable. However, the
potential functions needed to blend blending surfaces recursively, e.g., when blending at

corners, quickly complicate the problem, as acknowledged by the authors.

Also in [7] the local control problem remains largely unexplored. One is left with the
impression that the user must determine the desired shape parameters interactively,
perhaps by inspecting the resulting surfaces visually. However, [7] also suggests a blending
method similar to the homotopy technique we have outlined in [3] for which the local con-

trol problem seems more tractable.

All blending methods based on substitution face the difficulty that the deformation
effected by this substitution has very few intrinsic properties that would allow solving local
control problems in general. Therefore, we believe that the geometric properties of blending
surfaces for specific surface classes must be explored first, e.g., for the class of all quadrics,
or for the class of all CSG primitives. Clearly, these properties must be fully understood
and interpreted in the context of the primitive class considered before the method should be
automated. Only then is it possible to give to the casual user a clear understanding of the

range of specification choices and their results.
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