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ABSTRACT

Mathematical reasoning provides the basis for problem solving and learning in many complex
domains. A model for applying explanation-based learning in mathematically-based domains is
presented, and an implemented learning system is described. In explanation-based learning, a specific
problem’s solution is generalized into a form that can be later used to solve conceptually similar
problems. The presented system’s mathematical reasoning processes are guided by the manner in which
variables are cancelled in specific problem solutions. Analyzing the cancellation of obstacles - variables
that preclude the direct evaluation of the problem’s unknown - leads to the generalization of the specific
solution. Two important general issues in explanation-based learning are also addressed. Namely,
generalizing the number of entities in a situation and acquiring efficiently-applicable concepts.
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1. INTRODUCTION

All the mathematical sciences are founded on relations between physical laws and laws of numbers, so that the aim of
exact science is to reduce the problems of nature to the determination of quantities by operations with numbers.

James Clerk Maxwell

Mathematically-based domains present several unique challenges and opportunities for machine
learning. Many scientific and technical domains — physics, electronics, chemistry, and economics, for
example — share the common formalism of mathematics, and much of the reasoning in these fields
involves understanding the constraints inherent in mathematical descriptions. Mathematical models of
real-world situations are constructed, and these mathematical abstractions are used to predict behavior in
the domain being modelled. Hence, solving quantitative problems in these domains requires a
competence in symbolic mathematical manipulation. Furthermore, since mathematics is the underlying
formal language, many important domain concepts can be adequately captured only through a
mathematical specification. Thus, concept learning in these domains is also rooted in mathematics.

The research reported here focusses on learning new concepts from examples in mathematically-
oriented domains, using the explanation-based learning paradigm [7, 20]. A computer system,
Physics 101, has been implemented that embodies the theories of learning and problem solving developed.
The system is fully implemented and its performance is offered as an illustration of a number of
theoretical points. It is intended to model the acquisition of concepts taught in a first-semester college
physics course [30, 31, 32] — hence, the name Physics 101. However, the focus of the Physics 101
implementation is not physics per se. Very little knowledge about physics is in the system. In fact, all of
its initial physics knowledge is contained in a half-dozen or so formulae, listed later in this section, which
capture Newton’s laws and a few definitions. None of the system’s algorithms utilize knowledge about
physics, except that which is captured in these initial physics formulae. Rather, the focus is on
mathematical reasoning, and the domain of physics is used as a testbed, since it is an elegant domain that
stresses the use of complicated mathematics. The mathematical competence built into Physics 101 is
approximately at the level of someone who has completed one semester of calculus.

Physics 101 improves its own problem solving ability by analyzing its teacher’s solutions to specific
physics problems, and then generalizing the solution. The generalization process is driven by an
explanation of why the particular solution worked for the particular problem. Knowledge about the
domain allows the explanation to be developed, and then generalized. The example problems, as well as
a broad class of conceptually similar problems, can be solved autonomously by Physics 101 using the new
schemata.

Mathematically-based domains are an area where the strengths of explanation-based learning are
particularly appropriate, because explanation-based learning supports the construction of large concepts
by analyzing how smaller concepts can be pieced together to solve a specific problem. Combining small
concepts to form larger ones is the basis of progress in mathematical domains.

There are three significant results of this research. The first is the notion of obstacles and their
cancellation. Analyzing the cancellation of these obstacles focusses the system’s attention and guides
learning. The second is a solution to the problem of generalizing the structure of explanations [6, 27,
33]. Itis claimed that an explanation-based learning system must be able to reformulate its explanations
if it is to learn concepts involving an arbitrary number of objects or actions [35]. Third, an approach to
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the operationality/generality problem [7, 12, 20, 29, 32] in explanation-based learning is presented. The
notion of a special case is advanced to achieve operationality without sacrificing any generality of the
concept.

2. THE LEARNING MODEL

Figure 1 illustrates the learrlirig model reflected in Physics 101. After a physical situation is

described and a problem is posedl, the an attempt to solve the problem is made. Focus in this research is
on the process of leamning during a successful solution; particularly on learning from a teacher’s example.
When the learner cannot solve a problem, a solution from the instructor is requested. The solution
provided must then be verified; additional details are requested when steps in the teacher’s solution
cannot be understood. The process by which an example is understood is divided into two phases. First,
using current knowledge about mathematics and the task domain, the student verifies that the solution is
valid. At the end of this phase the student knows that the instructor’s solution solves the current problem,
but does not have any detailed understanding of why the teacher chose these steps to solve the problem.
During the second phase of understanding, the student determines a reason for the structure of each
expression in the teacher’s solution. Especially important is understanding new formulae encountered in
the solution. After this phase the student has a firm understanding of how and why this solution solved
the problem at hand. In the third and final phase the student is able to profitably generalize any new
principles that were used in the solution process, thereby increasing knowledge of the task domain.

The remainder of this section provides additional introductory details about the Physics 101 system
and elaborates the research issues addressed.

2.1. Some Terminology

Before the concept of an obstacle can be motivated it is necessary to introduce some terminology.
The following definitions are used in Physics 101:

Can the current
problem be solved?

Present yes
Solution

| vo

request Request and Verify

additional . .

information Teacher’s Solution
v

l Explain Solution l
U

I Generalize Solution I
1

| Update Knowledge I

Figure 1. An Overview of the Learning Model

! Problems are expressed in the language of mathematics, not in ordinary English. The important problem of translating *‘word
problems’’ into mathematical descriptions is not addressed. However, it has been addressed in the work of others [4, 24, 26].
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(1) A problem is a set of variables, with specifications of some of the properties of these variables,
together with a mathematical expression (called the unknown) for which the value of some
property is desired. (A single, isolated variable is the simplest form of an unknown.) The
properties of expressions can include such things as their value at specific points or their
dependence on some other variable, such as time.

(2)  An unacceptable variable is one whose value for the desired property of the unknown is also not
known. For example, if it is desired to know the value of the variable X at time ¢, and the value
of Y at time ¢ is not known, then Y is an unacceptable variable in this problem.

(3) An equation schema is an inference rule which specifies a conjunction of antecedents (the
preconditions) and a consequent (an equation). The equation can be used to rewrite terms in some

. .n . X .
expression. For example, the precondition of the equation e 1 is that x be non-zero.

(4)  Problem-solving schemata describe strategies used to solve problems. They guide the problem
solver in its task of applying equation schemata in order to solve the problem.

(5)  Background knowledge consists of equation schemata describing general mathematical laws (e.g.,
equations of algebra and calculus), equation schemata describing properties of the domain at hand
(e.g., force =mass Xacceleration), problem-solving schemata, and miscellaneous inference
rules. The domain-specific equations specify the variables known to the system (e.g. force, mass,
and acceleration) that are not mentioned in the problem description.

(6) A primary obstacle set for a problem is a group of unacceptable variables which, if the values of
their specified properties were known, would permit the system to solve the problem (that is,
directly determine the value of the unknown’s property). Section 3.4 provides a fuller definition
of obstacles.

2.2. Obstacles and Their Cancellation

Reasoning about obstacles plays a major role in the Physics 101 system. For an intuitive grasp of the
technique, consider the following elementary physics problem:
A massless point particle of charge 16 esu experiences an attraction to a charged sphere whose radius is 3 cm. The

particle is 7cm from the surface of the sphere. The sphere’s charge is uniformly distributed about its surface with a
density of 0.2 esu / cm®. What is the force experienced by the particle?

Assume the background knowledge includes the formula for the electrostatic force between point
charges, formulae for the volume and surface areas of a sphere, superposition of forces, etc. There are
two ways to work this problem. The first is to grind through the equations, performing a surface integral
over the sphere of the force contribution of each differential area. The second is to compute the total
charge on the sphere and treat it as an equivalent point charge located at the sphere’s center.

The second solution is much simpler, but it is not immediately apparent from the background
knowledge that it is a valid solution. Somewhat sophisticated mathematical reasoning is needed to
confirm this approach. Basically, it works for two reasons. First, due to the symmetry of the situation,
the net force on the particle lies on the line connecting the particle and the center of the charged sphere.
Forces in all other directions are cancelled. Second, the particle is attracted to the near portion of the
sphere just as much as the far portion. This is a bit counter-intuitive. Even though the front of the sphere
is closer to the particle, any differential solid angle cone from the particle through the sphere intercepts a
slightly larger area on the far side than the near side. The larger size of the rear differential exactly
balances the closeness advantage of the front differential.

If a student is shown the second, easier solution, and if he can convince himself that the simplifying
transformation is correct, then he can learn an important new problem-solving technique. His
performance will be improved for a class of conceptually similar, but possibly superficially very different,
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problems.

The notion of obstacle is related to that of impasse [3]. The difference is that obstacles are inherent
in problem descriptions while impasses arise during the process of problem solving. Additional
reasoning may lead to a way to resolve the impasse, and if so, problem solving can continue. Obstacles
may lead to impasses if the problem solver does not know how to surmount them, but this is not
necessary. Obstacles continue to exist in completed solutions and provide a focus with which the steps in
a solution can be explained.

The notion of obstacles is central to determining the range of applicability of the new concept. The
concept’s generality is dictated by the generality of the inference rules participating in obstacle
cancellation. Any problem which allows the same obstacle cancellation treatment will be covered by the
new concept. The above trick works, for example, in a problem involving a gravitational force instead of
electrostatic force - both are inverse square forces, but it would not work if the particle were inside the
sphere as the obstacle cancellation structure is no longer supported.

2.3. Generalizing the Structure of Explanations

Understanding obstacle elimination provides the focus by which Physics 101 explains solutions.
Explanations that suffice for understanding a specific example are not always satisfactory for generalizing
the example [35]. Often, the explanation structure must be generalized if a useful concept is to be
produced.

Generalizing the structure of an explanation can involve generalizing the number of times a
technique is employed, the number of objects involved, the order techniques are applied [22], or the
actual techniques used. This article largely focusses on the topic of generalizing number or generalizing
to N [34].

The need for generalizing number in EBL can be seen by considering the LEAP system [19]. This
system is shown an example of using NOR gates to compute the boolean AND of two OR’s. It discovers
that the technique generalizes to computing the boolean AND of any two inverted boolean functions.
However, LEAP cannot generalize this technique to allow constructing the AND of an arbitrary number of
inverted boolean functions using a multi-input NOR gate. This is the case even if LEAP’s initial
background knowledge were to include the general version of DeMorgan’s Law and the concept of
multi-input NOR gates.

Ellman’s system [8] also illustrates the need for generalizing number. From an example of a four-
bit circular shift register, his system constructs a generalized design for an arbitrary four-bit permutation
register. A design for an N-bit circular shift register cannot be produced. As Ellman points out, such
generalization, though desirable, cannot be done using the standard EBL technique of changing constants
to variables.

Many important concepts, in order to be properly learned, require generalization of number. For
example, physical laws such as momentum and energy conservation apply to arbitrary numbers of
objects, constructing towers of blocks requires an arbitrary number of repeated stacking actions, and

setting a table involves a range of possible numbers of guests. In addition, there is recent psychological
evidence [1] that people can generalize number in an explanation-based fashion.

2 These concepts are among those acquired by the systems described in [35].
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Repetition of an action or object is not a sufficient condition for generalization to N to be
appropriate. Compare two simple examples. Generalizing to N is necessary in one but inappropriate in

the other. The examples are: ) i
e observing a previously unknown method of moving an obstructed block, and

e seeing, for the first time, a toy wagon being built.
The initial states of the two problems appear in figure 2. Suppose a learning system observes someone
achieving the desired states. In each case, consider what general concept should be acquired.

In the first example, the person wishes to move, using a robot manipulator, a block which has four
other blocks stacked in a tower on top of it. The manipulator can pick up only one block at a time. The
demonstrated solution is to move all four of the blocks in tumn to some other location. After the
underlying block has been cleared, it is moved. In the second example, the person wishes to construct a
movable rectangular platform, one that is stable while supporting any load whose center of mass is over
the platform. Given the platform and a bin containing two axles and four wheels, the solution is to first
attach each of the axles to the platform. Next all four of the wheels are grabbed in turn and mounted on
an axle protrusion.

This comparison illustrates an important problem in explanation-based leaming. Number
generalization should only occur when justified. Generalizing the block unstacking example should
produce a plan for unstacking any number of obstructing blocks, not just four as observed. The wagon-
building example, however, should not generalize the number ‘‘4.”” It makes no difference whether the
system is given a bin of five, six, or 100 wheels, because only four wheels are needed to fulfill the
functional requirements of a stable wagon.

Standard explanation-based learning algorithms (e.g., [20, 21]) and similar algorithms for chunking
[13] cannot treat these cases differently. These algorithms, possibly after pruning the explanation to
eliminate irrelevant parts, replace constants with constrained variables. They cannot significantly
augment the explanation during generalization. Thus, the building-a-wagon type of concept will appear
to be correct but the unstacking-to-move concept will be undergeneralized. The acquired schema will
have generalized the identity of the blocks so that the target block need not be occluded by the same four
blocks as in the example. Any four obstructing blocks can be unstacked. However, there must be exactly

four blocks.> Unstacking five or more blocks is beyond the scope of the acquired concept.

e —
O000

Figure 2. Initial States for Two Sample Problems

3 The SOAR system [13] would seem to acquire a number of concepts which together are slightly more general. As well as a
new operator for moving four blocks, the system would acquire new operators for moving three blocks, two blocks, and one
block, but not for five or more.
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Note that EBL systems do not work correctly on the building-a-wagon kind of problems either —
they just get lucky. They do nothing to augment explanation structures during generalization. It just
happens that to acquire a schema to build a wagon, not generalizing the explanation structure is the
appropriate thing to do.

One could simply define the scope of EBL systems to exclude the unstacking-to-move concept and
those like it. This would be a mistake. First, the problem of augmenting the explanation during
generalization, once seen, is ubiquitous. It is manifested in one form or another in many real-world
domains. Second, if one simply defines the problem away, the resulting system could never guarantee
that any of its concepts were as general as they should be. Even when such a system correctly
constructed a concept like the building-a-wagon schema, it could not know that it had generalized
properly. The system could not itself tell which concepts fall within its scope and which do not. The
analysis of obstacle cancellation provides the motivation by much Physics 101 properly generalizes
number.

2.4. Operationality, Generality, and Special-Case Schemata

Acquiring the definition of a new general concept is only half of the problem faced by a machine
learning system. To usefully contribute to improved problem solving, the system must be able to later
apply the new concept effectively [12, 29, 32]. That is, the concept must be operational [23].

One can merge aspects of context with a general schema to yield a more specialized version. This
more specialized schema is more operational. Less effort need be expended in satisfying its precondions;
however, it applies in fewer contexts. For example, consider the general schema eat-at-restaurant. It
applies to many restaurant types including fancy French restaurants, smorgasbord buffets, and pizzerias.
Applying the schema in a particular context requires a substantial number of consistent decisions, and,
therefore, a considerable amount of computation. Compare this to a more-narrowly applicable schema,
eat-at-fast-food-restaurant. In it many decisions concerning cost, duration of meal, menu items, et cetera
have already been made. Thus, the specialized schema is more operational, requiring less computation
than the more general version.

In leaming a new schema, it would seem that the system must weigh operationality against
generality. However, this need not be the case. By acquiring several schemata, operationality can be
preserved without sacrificing generality. In addition to the general schema, specializations of the concept,
called special-case schemata, are formed and stored. Later in this article, a method for forming special
cases, which guarantees improved operationality and yields schemata with potentially high utility, is
presented.

2.5. Initial Knowledge of the System

Physics 101 possesses a large number of mathematical problem-solving techniques. For example, it
can symbolically integrate expressions, cancel variables, perform arithmetic, and replace terms by
utilizing known formulae. Figure3 contains a portion of the system’s hierarchy of calculation
techniques. A calculation step may either rearrange the entities in the current expression, simplify the
current expression, or replace terms in the expression by substituting formulae. Rearrangement involves
such things as moving constants into and out of integrals and derivatives. Simplification involves
algebraic cancellation, numerical calculation, and the solving of calculus. The formulae that may be used
to replace variables existing in an expression are determined by the domain being investigated.
Appendix A contains some of the general mathematical rewrite rules known to the system. (Further
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FactorAlgebra
DistributeAlgebra
ConstantsIntoCalculus
ReArrange
ConstantsOutOfCalculus
SeparateCalculus
CombineCalculus
Integrate
SolveCalculus
< Differentiate
SolveMath MultiplyNumbers
Calculate
SolveArithmetic AddNumbers
Simplify
Removeldentities
MultiplyByZero
CancelAlgebra SubstAddIdentities
Substldentities
< SubstMultIdentities
SubstToCancel
SubstSameType SubstToMultByZero
SubstFormulae SubstValues < SubstZeroInSum
SubstCalculus SubstOneInProduct

SubstBlindly

Figure 3. Some of the System’s Mathematical Techniques

details on Physics 101’s problem solver appear in [35].)

Figure 4 contains the initial physics formulae provided to the system, along with the conditions on
their applicability. The first two formulae in figure 4 define the physical concepts of velocity (V) and
acceleration (A ). An object’s velocity is the time rate of change of its position (X) and its acceleration is
the time rate of change of its velocity. Newton’s second and third laws are also included. (Newton’s first
law need not be included because it is a special case of his second law.) The second law states that the
net force (F) on an object equals its mass (M) times its acceleration (A). The net force is decomposed
into two components: the external force (F,,, ) and the internal force (F;,,). External forces result from
any external fields (e.g., gravity) that act upon objects. Object ?i’s internal force is the sum of the forces
the other objects in the world* exert on object ?i. These inter-object forces are constrained by Newton’s
third law, which says that every action has an equal and opposite reaction.

Position, velocity, acceleration, and force are spatial vectors. Hence one of their indices (?c)
indicates which vector component is being discussed (x, y, or z). All of these physical variables are
functions of time. Mass, however, is a time-independent scalar. It is only indexed by the physical object
whose mass is being specified.

When the number of objects in the world is specified, expanded versions of summations (3's) and
products (J]’s) are used. For instance, if there are three objects in a world, the second from last equation
in figure 4 becomes:

* The term world is used to refer to physical systems and situations. The term system is reserved for referring to computer
programs.
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d
Vaipe @ = — Xpi pc (1)
Preconditions: Member(?i,0bjectsinWorld) NsaComponent(?c)

Apipct) = ‘5; Vi zc)

Preconditions: Member(?i,0bjectsInWorld) NIsaComponent (?¢)

Frer pi2c (1) = My ™ Ap; 5. (1)
Preconditions: Member(?i,0bjectsinWorld) N1saComponent(?¢) ANsaTime(?f)

Fret 2i,2c (1) = Fogy 0 20 (Pt) + Fipy 5 2 (7t)

Preconditions: Member(?i,0bjectsinWorld) NIsaComponent(?c) NsaTime(?£)

Fint 2i 2o (7t) = > Fj 2i pc (1)
jeObjectsinWorld
j£2i

Preconditions: Member(?i,0bjectsinWorld) NsaComponent(?c) AsaTime (?1)

Fij2ipc (1) = —Fp; pj 2. (1)
Preconditions: Member(?i,0bjectsinWorld) AMember(?j, ObjectsinWorld) A
2i# ?j NsaComponent(?c) AIsaTime(?t)

Figure 4. The Initial Physics Formulae of the System

Fing i ¢ () = Foj1 i o0 (1) + Fpjo pi 5 (1)

Preconditions:
Permutation({?i ?j1 ?j2}, ObjectsinWorld) NsaComponent(?c ) NsaTime(?t)

Expanded equations are used because of their greater psychological-plausibility as a model of learning by
a college freshman.

Problem-specific equations can also be provided when a new problem is posed. For example, it
may be stated that the external force on object k is M g X; ;. Generalization of solutions involving
equations of this type is described in [35].

2.6. Other Approaches to Learning in Mathematical Domains

There is a substantial literature describing computer models of learning in mathematical domains.
Before further describing the Physics 101 system, these other approaches are compared to that taken in this
research.

Some approaches have been inductive (e.g., [14, 16, 17]). They learn new concepts that are
consistent with the examples presented to or generated by them, by analyzing the similarities and
differences among the examples. Confidence in the accuracy of the acquired results grows as more
examples are seen. With only a few examples to analyze, irrelevant characteristics may appear irrelevant
(because, for example, they appear in all of the positive examples seen) or necessary characteristics may
appear unnecessary (because, for instance, they do not appear in any negative examples). Physics 101,
being explanation-based, produces intertwined descriptions of the role of each aspect of a problem. These
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explanation structures allow the system to produce, from a small number of examples, new concepts that
are as certain as the underlying concepts from which the explanation is constructed. The explanation-
based approach allows Physics 101 to incorporate into new concepts descriptions of the effects of problem
characteristics not seen in the example from which it learns. For example, although it experiences an
example involving momentum conservation, it learns the more general equation describing how external
forces affect momentum, as described later in this article.

Using analogy to learn new concepts in mathematically-based domains is another heavily
investigated approach (e.g., [9], [10]). In analogical learning, new knowledge is acquired by mapping old
knowledge from a well-understood domain to a novel situation. One way analogy differs from the
approach taken in explanation-based systems is that in analogy attention is not focussed on combining
pieces of knowledge into larger knowledge chunks (schemata) and number generalization is not
addressed. Also, using analogy, no learning takes place the first time a problem is solved. Instead, an
analogous problem must be encountered before the solution to the first problem contributes to the
acquisition of knowledge.

There have also been a number of other explanation-based approaches to learning in mathematical
domains. LEX2 [18] is a system that learns heuristics under which an integration operator is useful. LP
[36] analyzes worked mathematics problems and leams information that constrains search through its
operator space. LA [25] learns new schemata for use in natural deduction proofs. Bennett’s system [2]
learns approximations that transform intractable problems into soluble ones. However, none of these
systems generalize number.

3. BUILDING EXPLANATIONS IN PHYSICS 101

In explanation-based learning, the solution to a specific sample problem is generalized and the result
saved, in the hopes of being applicable to future problems. The next section addresses the generalization
of explanations. This section addresses the construction of explanations in mathematically-based
domains. The focus is on understanding solutions, presented by a teacher, to problems the system could

not solve on its own.’ During this understanding process, gaps in the teacher-provided solution need
filling. The teacher must provide enough guidance so that the system’s limited problem solver can
successfully solve the problem. If the provided solution can be sufficiently-well understood, a new
schema may result, and the next time the system faces a problem related to the current one it will be able
to solve it without the need for external assistance.

Understanding a teacher-provided solution involves two phases. First, the system attempts to verify
that each of the instructor’s solution steps mathematically follows. If successful, in the second phase the
mathematical reasoning component of Physics 101 builds an explanation of why the solution works. A
sample collision problem illustrates these two phases.

3.1. A Sample Problem

In the one-dimensional problem shown in figure 5, there are three balls moving in free space,
without the influence of any external forces. (Nothing is specified about the forces between the balls.

5 Although the emphasis is on teacher-provided solutions, much of the discussion is this section also applies to the explanation of
the system’s own problem solving. It may take a substantial amount of work for Physics 101 to solve a problem, even when it
does not need external help, and this effort can be reduced in the future by creating a new schema from the analysis of its labors.
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State A
@@ @
M=3kg M=8kg
V=5m/s V=0mls V=0m/s

State B

V=2m/s V=1m/s

Figure 5. A Three-Body Collision Problem

Besides their mutual gravitational attraction, there could be a long-range electrical interaction and a very
complicated interaction during the collision.) In the initial state (state A) the first ball is moving toward
the other two, which are stationary. Some time later (state B) the second and third balls are recoiling
from the resulting collision. The task is to determine the velocity of the first ball after the collision.

Physics 101 cannot solve this problem with only the physics schemata shown in figure 5. Initially,
the formula V = —%X is tried, which leads nowhere, then the solution steps presented below are

attempted.

Vi) = jA 1,x )t

Fne ,l,x(‘)
o [rrents®

th

M,
The system’s problem solver is incomplete, for reasons detailed in [35]. One source of incompleteness
occurs because the problem solver never performs two unmotivated (‘‘blind’’) substitutions

consecutively. The problem solver possesses no motivated strategy to lead it past the second line in the
above calculation, and asks for a solution from its teacher.

The teacher’s solution to the collision problem is as follows:
MiVi;@)+MyVo, A+ M3V, ) = M Vi,B)+MVy,B)+M3V3,@B)
Bre)(=52) = 8k V1,3 + Ghke)(12) + (Ske) (1)

—15%’2 =8k Vy,@) + 8-’53;”-*-

V@) = 288~

Without being explicitly stated, the principle of conservation of momentum is being invoked, as the
momentum (M x V) of the balls at two different times is equated. This equation is not a variation of any
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formula known to the system (figure 4). A physically-consistent mathematical derivation is needed if
Physics 101 is to accept the solution provided.

3.2. Verifying a Teacher’s Solution

In order to accept a teacher’s answer, the system must verify each of the steps in the solution.
Besides being mathematically correct, the calculations must be consistent with its domain-specific
knowledge. To be valid, each of the solution steps must be assigned to one of the following four
classifications.

(1) Instantiation of a known formula: force = mass X acceleration is an example of this type.

(2) Definition of a new variable in order to shorten later expressions: resistance =voltage / current
would fall in this category.

(3) Rearrangement of a previously-used formula. These equations are mathematical variants of
previous steps. The replacement of variables by their values also falls into this category.

(4) Statement of an unknown relationship among known variables. These steps require full
justification, which the system must perform symbolically by reasoning about algebra and
calculus. Steps in this category are candidates for generalization.

Physics 101 possesses several methods for verifying equations falling into category 4. Two are
suggested when the two sides of an equation only differ as to the time at which they are evaluated (a
condition satisfied by the initial equation in the teacher’s solution). One method is to determine if the
common form underlying each side of the equation is constant with respect to time. The second
suggested method is to determine how the underlying form explicitly depends on time. If time can be
made explicit, it is easy to see if it is valid to equate the expression at two different times. This method
can handle more situations than the first, and is the one used by Physics 101 to understand the teacher’s
solution.

The remainder of this subsection briefly describes how the system verifies the first equation in the
teacher’s solution. If the teacher provides the calculations justifying the equation (e.g., the steps in
figure 6 below), Physics 101 determines which rewrite rules are used and then proceeds as if it had
performed the calculation itself. What is central to the explanation and generalization processes is the
final calculation and not the process that produced it.

The underlying time-dependent expression could be periodic, and hence could be equated at times
separated by some number of periods. Alternatively, the expression could be parabolic, hyperbolic,
cubic, etc. Here there would be some other relationship between times where it is valid to equate the
expression. Another possibility is that the expression is constant with respect to time. In this last case, it
is valid to equate the expression at any two times.

Once the system selects a method for verifying a new equation, it must perform the mathematics
necessary to determine any additional information required by the method. For example, it may need to
determine the derivative of an expression or legally eliminate all the terms whose time-dependence is not
known. In this phase, Physics 101 relies on its mathematical knowledge.

The trace produced by the system while it is verifying the new equation appears in figure 6. The
goal is to convert, via a series of equality-preserving transformations, the top expression into an
equivalent expression whose time dependence is explicit. Once this is done, the system can determine if
the first step in the teacher’s solution is valid. (The top expression in figure 6 is called the left-hand side
of the calculation, while the other expressions are termed right-hand sides.)
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Figure 6. Verifying the First Equation in the Teacher’s Solution

Three qualitatively different strategies are used by Physics 101 during various stages of problem
solving. The first strategy is to apply operators that will lead to definite progress toward the goal.
Attention is focussed by this strategy as long as some operator in this class is applicable. When clear
progress cannot be achieved, the problem solver must decide how best to proceed. The second strategy is
then invoked to select operators that preserve important characteristics of the current problem. These
operators are likely to keep the problem solver from diverging sharply from the goal while possibly
enabling the application of operators by the first strategy. When the problem solver can follow neither of
the first two strategies, the third strategy of arbitrarily applying legal operators is used. To minimize
blind search, the third strategy is never used more than once consecutively. This problem-solving model
is described more fully in [35].
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The annotations to the left of the expressions in figure 6 are produced by the system. These
annotations indicate which of Physics 101’s problem-solving schemata (figure 4) is used to perform each

calculation step. In the first step, the velocities are replaced by the integrals of acceleration.® In the next
step, the formulae substitutions are chosen because the mass terms can be cancelled. Before this
cancellation can take place, however, the cancelling terms must be brought together. The calculation
continues in a like manner until all the unknown variables are eliminated. Then the known values are
substituted and the ensuing arithmetic and calculus is solved. Since the initial expression is constant, it
can be equated at any two times. The first equation in the teacher’s solution is valid.

3.3. Explaining Solutions

At this point, the system has ascertained that its teacher’s use of a new equation is indeed valid.
Figure 6 can be viewed as an explanation structure. Underlying the calculation are a large number of
equation schemata, along with their associated preconditions. These schemata justify the transformations
from one line to the next. Between each pair of consecutive expressions are the equation schemata (and
their preconditions) used to rewrite one expression into the next. This is illustrated in figure 7. One side
of this figure shows the general structure existing between consecutive expressions, while the other
presents a simple, concrete example.

However, although figure 6 constitutes an acceptable explanation of the solution to the specific
example of figure 6, the underlying explanation does not directly suffice to produce the proper general
concept. Applying a standard explanation-based generalization algorithm does produce a generalization
of the specific solution (see section 4.2), and a number of attributes of the problem are generalized. For
example, the result does not only apply to colliding balls - it applies to situations involving any type of
physical object. Nor does the problem have to be in the x -direction, since none of the schemata used to

000

NOT(ZeroValued(a)) |

equation; equation, equation, LHS=expr; ala=1 x=ala+b
LHS = expr; x=1+b

o
o
o

000

Figure 7. The Underlying Structure of a Calculation

6 Initially, the system chooses to replace the velocities by the derivative of the positions. This leads nowhere and the system
backtracks. No other backtracking occurs during the calculation of figure 6. The system is guided by the goal of cancelling
variables, which greatly reduces the amount of unnecessary substitutions during problem solving.
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tie the calculation together constrain the component of the variables. A third property generalized is that
the external forces need not individually be zero; all that step 15 of figure 6 requires is that the external
forces sum to zero. However, since the explanation structure is not generalized, one unfortunate aspect of
the specific example remains. The new law only applies to physical situations involving three objects.
Without that property, adding the M V terms of three objects will not lead to the complete cancellation of
internal forces of the objects. The preconditions of the new schema would insist on a three-object world
without external forces, because only then will the sum of three momentum terms always be constant
across time. Unfortunately this result is not broadly applicable. The system would need to learn separate
rules when it encountered a four-object system, a five-object system, etc.

In order to produce the proper generalization to N, the system must determine a reason for
including each variable in this equation. This will determine which variables are required in its general
form.

In the explanation process, Physics 101 determines how the value of the desired property of the
current problem’s unknown is obtained. As stated earlier, the problem’s unknown is the expression about
which the value of some property is being sought; in the sample problem, V is the unknown and its value
in state B is being sought. During this process, the system determines the role of each variable in the
initial expression of the calculation.

During a calculation there are three ways to eliminate a variable:
(1)  its value can be substituted,
(2) it can be symbolically replaced during a formula substitution, or
(3) itcanbe cancelled.

Recall that obstacles are expressions appearing in a calculation but whose values are not known.
Primary obstacles are obstacles descended from the unknown. In the momentum problem the only
primary obstacles not replaced in a formula substitution are F, ; and F3 . If the value of the desired
property of each of the primary obstacles were known, the value of the unknown’s desired property would
be specified. The system ascertains how these obstacles are eliminated from the calculation. Cancelling
obstacles is seen as the essence of the solution strategy, because when all the obstacles have been
cancelled the value of the unknown’s desired property can be easily calculated.

Physics 101 can identify the first five of the following six types of variable cancellations:

additive identity

These are algebraic cancellations of the form x —x =0. Line 10 in figure 6 contains two additive
cancellations.

multiplicative identity

These are algebraic cancellations of the form x/x =1. Line4 in figure 6 involves two
multiplicative cancellations.

multiplication by zero

These are cancellations that result from an expression (which may contain several variables) being
multiplied by zero. None appear in figure 6.

integration (to a number)
This type of cancellation occurs when variables disappear during symbolic integration. When
integration produces new variables (other than the integration constant), this calculation is viewed
as a substitution involving the original terms. No cancellations of this type appear in figure 6.
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differentiation (to a number)
This is analogous to cancellation during integration.

assumed ignorable
A term can be additively ignored because it is assumed to be approximately zero or multiplicatively

ignored because it is assumed to be approximately equal to one.

Figure 8 illustrates the concept of primary obstacles. The goal in this sample problem is to
determine the value of V. Since this is not known, the problem is transformed to that of finding A, (for
simplicity, the integral sign is ignored here). However, the value of A, is not known either. This leads to
the substitution of F,,, ; divided by M. The mass is known, but the net force is not. The net force is
then decomposed into two components - a known external force and an unknown internal force. Finally,
the internal force is further decomposed into its constituents. These two inter-object forces are the
obstacles to knowing the value of V; ,. Physics 101 needs to determine how the solution in figure 6
circumvents the need to know the value of these two variables.

Figure 9 contains the cancellation graph for the three-body collision problem. This data structure is
built by the system during the understanding of the specific solution. The process by which this is done is
described in the next subsection. The graph holds the information that explains how the specific
example’s obstacles are eliminated from the calculation. This information is used to guide the
generalization process described in the next section.

To reason about a calculation, Physics 101 must be able to distinguish different instances of the same
variable. For example, the M, introduced in line 2 of figure 6 plays a different role than the M,
appearing in the left-hand side of the equation. In the system, variables are marked to record in which
solution step they first appear. This information is recorded in the above cancellation graph by the
subscript preceding a variable. Variables originating in the left-hand side are prefixed with zeroes.

To understand the calculation, the system first determines that the primary obstacles F, ; , and
F 34, are eliminated by being additively cancelled. Although cancelled additively, these variables

s . F .
descended from a multiplicative expression (A = ﬁ)' Hence, the system must determine how they are

additively isolated. Multiplication by M, performed this task. So an explanation of the M| term in the
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Figure 8. Decomposing the Unknown
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Figure 9. The Cancellation Graph

left-hand side expression of figure 6 is obtained.

The next thing to do is to determine how the terms that additively cancel F, ; , and Fj,q, are
introduced into the calculation. F5; , is cancelled by a force descended from V, ,. This Fy1,x, 100,
must first be additively isolated. Physics 101 discovers that the left-hand side’s M, performs this
isolation. The system now has explanations for the M, and the V, , terms in the left-hand side. Similar
reasoning determines the role of M3 and V5 .

Cancellation of the primary obstacles requires the presence of additional variables on the left-hand
side of the equation. These extra terms may themselves contain obstacle variables. These are called
secondary obstacles. The system must also determine how these obstacles are eliminated from the
calculation. The elimination of the secondary obstacles may in turn require the presence of additional
variables in the left-hand side expression, which may introduce additional secondary obstacles. This
recursion must terminate, however, as the calculation is known to have eliminated all of the unacceptable
terms.

Cancelling the inter-object forces involving ball 1 introduced one secondary obstacle — F 3,2.x
This secondary obstacle was additively cancelled by a force descended from V4 x- Cancelling this
secondary obstacle produced no new obstacles.

Once the system determines how all of the obstacles in the calculation are cancelled, generalization
can occur. At this time, Physics 101 can also report any variables in the left-hand side of a calculation that
are irrelevant to the determination of the value of the unknown. Those variables not visited during the



Learning in Mathematically-Based Domains 17

construction of the cancellation graph are not necessary, even though they are present in the teacher’s
solution.

3.4. Constructing the Cancellation Graph - Algorithmic Details

This section presents the cancellation graph algorithm and illustrates it with an algebraic example.
Although obstacle cancellation guides the system’s construction of calculations, this algorithm assumes
that a complete calculation has been produced. The cancellation graph algorithm then analyzes the
calculation and ascertains why it achieved its goal. Hence, the algorithm can also be applied to analyzing
complete calculations produced by an external agent.

The algorithm is expressed here in a pseudo-code, designed for readability. (The actual
implementation is written in Lisp.) In this algorithm, the notation record field is used to represent a given
field of a record, and back arrows («) indicate value assignment. The construct

for each element in set unless test do statement
means that element is successively bound to each member of set and, unless test is true, statement is
evaluated.

Figure 10 contains the algorithm for constructing cancellation graphs, while table 1 lists the fields
referenced and describes their setting when the algorithm commences. (Fields ending with question
marks are boolean-valued.) Further details on these fields are provided as the algorithm is discussed.

These graphs record the roles played by each of the variables in the calculation. A sample problem
is used to illustrate the algorithm. It is contained in table 2, and its cancellation graph appears in
figure 11. The features of this specific cancellation graph are explained as the algorithm is described.
Recall that the first expression in a sequence of calculation steps is called the left-hand side of the
calculation, while the subsequent expressions are termed right-hand sides.

In the sample calculation, Greek letters are used for variables that cannot appear in the final right-
hand side of the calculation. For example, it may be that the final right-hand side can only contain
variables whose value is known or variables that are time-independent. The goal is to rewrite the left-
hand side, via a series of equality-preserving transformations, into an expression containing no Greek
letters. The equation schemata used to produce each new expression are shown in the right column. A
mixture of domain-specific and general algebraic rewrite rules are used. [ is the variable about which
some information is sought, i.e., it is the problem’s unknown. In this example, subscripts are used to
differentiate various instantiations of the same variable (e.g., b, and b,). In other words, b, and b, both
refer to the variable b.

This sample calculation illustrates the major components and attributes of cancellation graphs. The
graph specifies the role of each variable in the left-hand side of the calculation. Combined together in the
given manner, these variables support the answer to the question about the unknown. One important
feature is that unnecessary variables (e.g., o in table 1) do not appear in the graph.

The first step in building a cancellation graph is to create the primary obstacle set for the problem’s
unknown. An obstacle set for a collection of variables consists of those variables possessing the
following properties:

(1) they are in the given collection or descended (via rewriting with equation schemata) from a
member of it,
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procedure CheckForObstacles (variable)
if variable.notChecked? then
variable.notChecked? « false
variable.obstacleSet «- FindObstacleSet({ variable})
AnalyzeObstacles(variable.obstacleSet)

procedure FindObstacleSet (variables)

answer < { } /* answer is a local variable. */
for each variable in variables unless variable.eliminated?
do if variable.replaced?
then answer « answer U FindObstacleSet(variable.descendants)
else if variable.unacceptable?
then answer < answer \ {variable}
return answer

procedure AnalyzeObstacles (obstacleSet)

for each obstacle in obstacleSet do Eliminate(obstacle)
for each obstacle in obstacleSet do CheckForSecondaryObstacles(obstacle)

procedure Eliminate (variable)
variable.eliminated? <« true
AnalyzeBlockers(variable.blockers)
AnalyzePartners(variable.partners)
AnalyzeCancellers(variable.cancellers)

procedure AnalyzeBlockers (blockers)
for each blocker in blockers unless blocker.climinated? do Eliminate(blocker)

procedure AnalyzePartners (partners)
for each partner in partners unless partner.eliminated?
do partner.eliminated? < true
AnalyzeBlockers(partner.blockers)

procedure AnalyzeCancellers (cancellers)
for each canceller in cancellers
do canceller.climinated? < true
AnalyzeBlockers(canceller.blockers)

procedure CheckForSecondaryObstacles (variable)
for each blocker in variable.blockers do CheckForSecondaryObstacles(blocker)
for each partner in variable.partners
do CheckForObstacles(partner.producer)
for each blocker in partner.blockers do CheckForSecondaryObstacles(blocker)
for each canceller in variable.cancellers
do CheckForObstacles(canceller.producer)
for each blocker in canceller.blockers do CheckForSecondaryObstacles(blocker)

CheckForObstacles(unknown) f* Construct the cancellation graph. */

Figure 10. Building the Cancellation Graph
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Table 1. Fields Used in the Cancellation Graph Algorithm

Field Initial Setting
notChecked? initially srue, reset in algorithm when checked for obstacles
obstacleSet initially {}, set in algorithm
unacceptable?  true if this variable cannot appear in the final right-hand
side of the calculation
eliminated? initially false, set in algorithm
replaced? true if replaced by a rewrite rule during the calculation
descendants variables introduced when this variable rewritten
blockers set of variables preventing cancellation of this variable
partners set of variables in the cancelled expression in addition to
this variable
cancellers set of variables that cancelled this variable
producer variable in the left-hand side of the calculation that

produced this variable

(2)  they cannot appear in the final right-hand side of a calculation,
(3) they are cancelled in the calculation, and
(4) they are not marked earlier in the algorithm as being eliminated from consideration.

The function FindObstacleSet assumes that the provided calculation is successful. This means that if an
unacceptable variable is not replaced, it must be cancelled, since there can be no unacceptable variables
in the final right-hand side of a calculation.

The next things to do are see how the obstacle is cancelled and then determine if there are any
undesirable side-effects of doing this. If there are side-effects, how they are circumvented in the specific
example needs to be determined.

An obstacle set is analyzed once it is constructed, and how each element of this set is eliminated
from the calculation is determined. This involves three steps.

(1)  Determining how those variables blocking the cancellation are eliminated. Blockers are variables
preventing additive or multiplicative access (depending on the manner of cancellation) to an
obstacle.

(2) Determining how the obstacle’s cancellation partners are brought into position for the
cancellation. Partners are variables that must be present in combination with the obstacle in
order for the obstacle to be cancelled.

(3)  Determining how the cancellers of the obstacle are brought into position. Cancellers are the
variables that directly cancel an obstacle.

Once all the members of an obstacle set are eliminated, a check is made (in the procedure
CheckForSecondaryObstacles) to see if this process lead to the existence of additional (secondary)
obstacle sets. Cancelling an obstacle requires the presence of its partners and cancellers, as well as those
variables that cancelled the blockers of the obstacle, the blockers of its partners, and the blockers of its
cancellers. Hence, additional variables must be present in the left-hand side of the calculation. These
producer variables are checked to see if their presence means additional obstacle sets are present in the
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Table 2. Sample Calculation

Calculation Steps Rewrite Rules Used
oc((a—bl)—cﬁ—+d)g B is the unknown
1
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calculation. If so, these secondary obstacle sets are analyzed in the same manner as the primary obstacle
set.

Notice that eliminating the secondary obstacles can also require additional variables in the the left-
hand side of the calculation. These variables may also have obstacles sets (again called secondary sets)
that need to be eliminated. Since the successful calculation contained a finite number of calculation steps
(and, hence, a finite number of potential obstacle variables), the algorithm always terminates.

Also notice that all of the variables, other than o, in the left-hand side of table 2’s calculation appear
in figure 10. This graph records the role of each variable in the determination of the desired property of
the unknown. The variable o does not appear in the cancellation graph because it serves no purpose in
the achievement of the goal. One of the important features of the cancellation graph process is that
irrelevant variables in the left-hand expression can be detected.

4. GENERALIZING SOLUTIONS IN PHYSICS 101

Once the solution to a problem is understood (via the construction of a cancellation graph), the
solution must be generalized so that it can be used to help solve similar problems in the future. In
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Figure 11. The Cancellation Graph for the Calculation in Table 2

Physics 101 this involves generalizing the structure of the specific problem’s solution, as well as
generalizing the constants in the specific example. This section presents the process by which the general
version of a specific problem’s solution is constructed. Also in this section the generalization produced
by standard explanation-based learning algorithms is presented, the construction of special-case schemata
is discussed, and performance improvement after learning is empirically analyzed.

4.1. The Generalization Algorithm

Physics 101 performs generalization by using its explanation of the specific solution (the
cancellation graph) to guide the determination of the problem’s unknown in the general case. This
entails reconstructing the specific solution in its general form under the guidance of the cancellation
graph. In other words, the structure of the explanation of the specific problem’s solution is generalized.
This section presents the algorithm and uses the three-body collision example to illustrate the
generalization process.

Figure 12 presents the algorithm for reconstructing the calculation. This algorithm is very similar to
that used for building the cancellation graph. Obstacles and their blockers, partners, and cancellers are
again the focus. Basically, the algorithm works as follows. First, the general version of the unknown is
used as the initial left-hand side of the calculation, and then the general versions of the equation schemata
used in the specific calculation are applied until the primary obstacles are introduced in their general
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procedure AnalyzeGeneralObstacles (variable)

for each obstacle in variable.obstacleSet do IntroducelntoGeneralCalculation(obstacle)

for each obstacle in variable.obstacleSet unless OR(obstacle.notUsed? obstacle.eliminated?)
do EliminateInGeneral(obstacle)

for each obstacle in variable.obstacleSet unless OR(obstacle.notUsed? obstacle.eliminated?)
do EliminateSecondaryObstacles(obstacle)

procedure FEliminateInGeneral (variable)
EliminateGeneralBlockers(variable.blockers)
IntroduceGeneralPartners(variable.partners)

IntroduceGeneralCancellers(variable.cancellers)
RecordGeneralCancellation(variable.generalVersion)

procedure EliminateGeneralBlockers (blockers)

for each blocker in blockers unless blocker.eliminated? do EliminateInGeneral(blocker)

procedure IntroduceGeneralPartners (partners)
for each partner in partners unless partner.climinated?

do IntroducelntoGeneralCalculation(partner)
EliminateGeneralBlockers(partner.blockers)

procedure IntroduceGeneralCancellers (cancellers)

for each canceller in cancellers
do IntroducelntoGeneralCalculation(canceller)
EliminateGeneralBlockers(canceller.blockers)

procedure EliminateSecondaryObstacles (variable)

for each blocker in variable.blockers do EliminateSecondaryObstacles(blocker)
for each partner in variable.partners
do AnalyzeGeneralObstacles(partner.producer)
for each blocker in parmer.blockers do EliminateSecondaryObstacles(blocker)
for each canceller in variable.cancellers
do AnalyzeGeneralObstacles(canceller.producer)
for each blocker in canceller.blockers do EliminateSecondaryObstacles(blocker)

procedure IntroducelntoGeneralCalculation (variable)
<described in text>
procedure RecordGeneralCancellation (generalVariable)

<described in text>

AnalyzeGeneralObstacles(unknown) /* Reconstruct the calculation. */
SimplifyCalculation( ) /* Simplify the new calculation. */

Figure 12. Building the General Version of the Calculation



Learning in Mathematically-Based Domains 23

form.” Next, the general versions of any blockers are eliminated, which may lead to the introduction of
more general variables in the left-hand side of the calculation. Following this, any partners of the
obstacle are introduced, also in their general form, and their blockers are eliminated. The general
versions of the cancellers are then introduced and their general blockers eliminated. After this, the
cancellation is recorded and the obstacles and their cancellers are eliminated from the calculation.
Finally, secondary obstacles are recursively analyzed.

Introducing a variable involves finding its producer in the general case, inserting the producer into
the left-hand side of the calculation, then performing the general versions of the substitutions performed
in the specific calculation into the general version of the variable appears in the general calculation.

Recording a cancellation involves altering the ranges of the variables involved in the cancellation,
removing the cancelled possibilities. The necessary unifications are also recorded. If the range of a
subscript becomes empty, the general variable is marked as being eliminated. To illustrate this, assume
that the range of one instantiation of the variable X ; 1s the singleton i, while the range of its canceller is
from 1 to n. After the cancellation is recorded, the first instantiation is cancelled and the second has the
new range of 1 to n excepti.

In the remainder of this subsection, the momentum example is used to illustrate the generalization
process. The system starts with the generalized unknown, V" 75, 7¢(7arg). It then performs the general
versions of the specific formulae substitutions that produced the first of the primary obstacles. This can
be seen, for the collision problem, in the equation below. (Appendix B presents the details on how the
equations in this section are derived by the system.)

1
V?s,?c(’) = M j(Fext,?s,?c(’)+ Z Fj,?s,?c(t))d‘
?s JeObjectsinWorld
Jj# s

While the general equation schemata are being applied, a global unification list is maintained, in the
manner of the EGGS system [21]. This process determines how the terms in the new general formulae
used must relate to ones already in the general calculation. For example, ?arg in the generalized
unknown is constrained to be ¢ and ?n is constrained to be 1, since the first step of figure 6 applies the
second equation of figure 4 to the unknown. Unifications that are needed to satisfy the preconditions of
the equation schemata are also maintained.

Recall from section 3.3 that the inter-object forces are additively cancelled in the specific case.
Hence, the next generalization step is to additively isolate each inter-object force. M,, is introduced into
the left-hand side of the general calculation in order to accomplish this isolation. The next equation
contains this generalization step.

M?s V?s,?c(t) = _,.(Fext,?s,?c(’)'*' E Fj,?s,?c(t))d‘
jeObjectsinWorld
J#?s
At this point the general versions of the primary obstacles are isolated for additive cancellation. To
perform this cancellation, those terms that will cancel the intra-object forces must be introduced into the

7 The unexpanded forms of equations are used. Recall that in solving the specific problem, indefinite summations (¥°) and
products (J]) are expanded into ordinary sums and products.
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general calculation. The system determines that in the specific solution each inter-object force acting on
ball 1 is cancelled by the equal-but-opposite inter-object force specified by Newton’s third law.

In the general case, all of the other objects in a situation exert an inter-object force on object ?s. All
of these inter-object forces need to be cancelled. In the specific case, M, XV, produced and isolated the
additive canceller of F,; while M;x V3 produced and isolated the additive canceller of F 3,1- S0 to
cancel object 7s’s inter-object forces, an M; XV; term must come from every other object in the
situation. The following equation contains the introduction of the summation that produces the terms that
cancel object ?s’s inter-object forces. Notice how the goal of cancellation motivates generalizing the
number of objects involved in this expression.

My Vg pet)+ P M; V; @)

JjeObjectsinWorld
Jj#?s

= J.(Fexl,?s,?c(’)+Fin1,?s,?c(’))d’ + Z J'(Fext,j,?c(')+Fint,j,?c(’))d’
j#?s

Once all the cancellers of the generalized primary obstacle are present, the primary obstacle itself
can be cancelled. This is shown in the next equation.

M?s V?s,?c(t)'*' Z Mj Vj,?c(‘)=I(Fext,?s,?c(l)"}'o"%‘z"i'*' Z[Fext,j,?c(‘)'*' Z Fk,j,?c(‘)])d’
jeObjectsinWorld Jj#?s k#j,?s
J#E s

Now that the primary obstacles are cancelled, the system checks to see if any secondary obstacles
have been introduced. As can be seen in the previous equation, the inter-object forces not involving
object ?s still remain in the expression. These are secondary obstacles. Figure 13 graphically illustrates
these remaining forces in a situation containing N objects. All of the forces acting on object ?s have
been cancelled, while a force between objects j and k still appears whenever neither j nor &k equal ?s.
This highlights an important aspect of generalizing to N. Introducing more entities may create new
interactions that do not appear and, hence, are not addressed in the specific example. Only when the
specific example illustrates how to circumvent all of the potentially troublesome interactions, does
Physics 101 learn a new schema.

uncancelled

inter-object

forces

Figure 13. The Remaining Inter-Object Forces
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Physics 101 cannot eliminate the remaining inter-object forces if the specific example only involves
a two-object collision. The system does not detect that the remaining forces all cancel one another, since
in the two-object example there is no hint of how to deal with these secondary obstacles. A collision
involving three or more must be analyzed by the system to properly motivate this cancellation. (More
details on the reasons for this are given in chapter 7 of [35], which presents a two-body collision
problem.) In the three-body collision problem, the system continues, producing

My Vg 2c )+ > M; Vi) = J.(Fext,?s,?c(’)'*' D Feu,joc®)a
JeObjectsinWorld J#?s
j£?s

Once all possible obstacle cancellations of the cancellation graph have been produced, Physics 101
produces the final result. The preconditions of each equation schemata are collected, the global
unification list is used to determine the final form of each variable in these preconditions, and the final
result is simplified. This process produces the restrictions that the masses of the objects be constant over
time (since each was factored out of a temporal integral — see figure 6), and that the objects cannot have
zero mass (since their masses appear in the denominator of expressions). The final result is shown in
figure 14. The new equation is recorded, along with its preconditions. In addition, the terms cancelled in
the general calculation are recorded. Although not implemented in Physics 101, the eliminated terms
could be used to help index the acquired formula. For example, when the inter-object forces are not
specified, this equation schema could be suggested as possibly being appropriate.

In addition to trancending situations containing exactly three objects, the newly-acquired formula
applies to situations where the external forces are not all zero. An appreciation of how the external forces
effect momentum is obtained. This process also determines that there is no constraint that restricts this
formula to the x-direction. It applies equally well to the y- and z-components of V. Hence, the acquired
formula is a vector law. Notice that those physics variables whose values are used in the specific solution
(e.g., the F,,,) remain in the general formula. The final equation is added to Physics 101’s collection of
general formulae. (If Physics 101 generalizes the two-body collision it would produce in an expression
still containing those inter-object forces that do not involve object i. However, this formula would not be
kept.) The new formula says: The rate of change of the total momentum of a collection of objects is
completely determined by the sum of the external forces on those objects. Other problems, which involve
any number of bodies under the influence of external forces, can be solved by the system using this

Equation
d M.V = F
o > i Vi) = p ext, i, 7¢ )
ie ObjectsinWorld ieObjectsinWorld

Preconditions
IsaComponent(?c) AV ieObjectsinWorld NOT(ZeroValued(M;)) N Y ieObjectsinWorld IndependentOf(M )

Figure 14. The Final Result
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generalized result. For example, it can be used to solve the three-dimensional collision problem
involving four objects, where there are external forces due to gravity.

Not all of the preconditions of the equation schemata in a calculation appear in the final result.
Each equation schema providing support in a calculation may have associated with it propositions that are

known to be true. Known facts are filtered out of the final result. For example, if >, appears

Jj€ObjectsinWorld
J#7
in an equation schema, that schema’s known facts include Member (j,ObjectsInWorld) and j #?i.
Preconditions of the equation schemata used in a calculation that match any of the known facts do not
appear in the final collection of preconditions. For instance, a precondition of the equation Fi i ==Fy ;
is j #?i. This precondition does not appear in figure because the use of another schema leads to this
precondition being a known fact.

4.2. The Result of Standard Explanation-Based Learning

Standard explanation-based learning generalization algorithms (e.g., [20, 21]) can be applied to the
explanation structure underlying a calculation. The result obtained by doing this with the calculation of
figure 6 is presented in figure 15,

A number of characteristics of the sample problem are generalized, many with the same result as in
the Physics 101 system. For example, the x-component of the velocities need not be used. The technique
applies to any vector component. Also, because of the equation schemata used, the masses of the three
objects must be non-zero and constant with respect to time. The cancellations of the inter-object forces

Equation

Mo; Voi, 00 Ct1) + Mo, Viy, 20 (701) + My, Vi 9 (711)

= My Vi, 2c Q)+ My, Vi, oc (212 + M Vi, 5 (71)
Preconditions
IsaComponent(?c) A2ty # 2t N
NOT(ZeroValued(M;,)) ANOT(ZeroValued(M;,)) \NOT(ZeroValued(M;,)) A
IndependentOf(M; , ¢) AIndependentOf(M ,; , ¢ ) NIndependentOf(M; , ) A
20y # 2ig N2y # i3 N 20y # 2is APermutation({ ?i ?i, ?i3}, ObjectsinWorld ) A

ZeroExpression(ValueOf(F .y »;, ».) + ValueOf(F oy »;, 7c) + ValueOf(F,y 5, 2.))

Figure 15. The Result of Standard Explanation-Based Learning
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(line 10 of figure 6) leads to the requirement that the general objects be distinct.® The property of the
specific example that each external force is zero is generalized. In the general case these forces need not
individually be zero. What is needed is that they sum to zero. Line 15 of figure 6 produces this constraint
because the integration rule used requires that the integrand be zero.

However, because the structure of the explanation is not generalized using standard generalization
algorithms, the result obtained in this manner only applies to situations where there are three objects in
the problem’s world. A separate rule must be learned for situations containing four objects, five objects,
etc. In addition, the acquired schema is not relevant when the external forces do not sum to zero. No
appreciation of the effect of external forces on a system’s momentum is obtained. By recognizing and
analyzing obstacle cancellations, then reconstructing the explanation in the general case, Physics 101
overcomes these shortcomings.

4.3. Learning Special-Case Schemata

One would expect that acquired schemata should be as general as possible so that they might each
cover the broadest class of future problems. Indeed, explanation-based learning research has been
primarily aimed at the acquisition of such maximally general schemata. However, an intermediate level
of generalization is often appropriate. The class of intermediate generality schemata improves the
performance of a system’s problem solver by supplying ‘‘appropriately general’’ schemata instead of
forcing the system to rely on its maximally general schemata. Storing both the maximally general
schemata and the intermediate level schemata results in much improved efficiency with no loss of
generality. This section describes how Physics 101 produces intermediate level schemata, which are
called special cases.

A major issue in explanation-based learning concems the relationship between operationality and
generality [7, 12, 20, 29, 32]. A schema whose relevance is easy to determine may only be useful in an
overly-narrow range of problems. Conversely, a broadly-applicable schema may require extensive work
before a problem solver can recognize its appropriateness. Most approaches to selecting the proper level
of generality involve pruning easily-reconstructable portions of the explanation structure. In Physics 101,
operational rules are produced by constraining a general schema in such a way that its relevance is easily
checked. Special cases are the result of composing the new, general equation schema with a problem-
solving schema. A successful composition results in a specialization which is guaranteed to work using
the composed problem-solving technique. This frees the problem solver from performing the planning
that would otherwise be required to elaborate the general schema to fit the current problem-solving
episode. The system can, of course, always resort to its collection of maximally general schema when no
special case is appropriate.

As illustrated by the result in figure 14, the explanation-based generalization of a sample collision
problem leads to a physics formula that describes how external forces change a system’s momentum.
This general schema is broadly-applicable, but ascertaining that it will lead to the solution of a given
problem requires a good deal of work. The external forces must be summed, then integrated, and the
constant of integration must be determined by using some initial conditions. As will be seen, all of this
work can be pre-packaged into a special-case schema, if assumptions about the external forces are made.

8 This constraint does not appear in the result of Physics 101 because it is a known Jact.
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The intermediate level schemata generated by Physics 101 are similar in scope of applicability to
those that human experts appear to possess. For example, the conservation of momentum problem results
in a special-case schema characterized by the absence of external forces and the specification of a before
and after situation. These features are those cited by experts as the relevant cues for the principle of
conservation of momentum (see table 12 of [5 ]).9

Although the motivation for this intermediate level of generalization is computational, the use of
this level helps to reconcile the approach with a variety of psychological evidence showing that problem
solvers use highly specific schemata [11, 28, 37]. Much of expertise consists of rapidly choosing a
tightly-constrained schema appropriate to the current problem. However, the difference between the
knowledge of an expert and a novice cannot be explained on the basis of number of schemata alone. The
scope and organization of these schemata have been shown in psychological experiments to be
qualitatively different [5, 15, 28]. In representing a problem, novices make great use of the specific
objects mentioned in the problem statement, while experts first categorize according to the techniques
appropriate for solving the problem.

Physics 101°s special-case algorithm is presented in figure 16. As in the basic model (figure 1), in
the extended model a known problem-solving schema is initially used to understand a solution to a
specific problem. The explanation-based analysis of the solution may lead to the construction of a new
broadly-applicable schema. Interestingly, the generalization process often produces a new schema that, in
its fullest form, is not directly usable by the originally applied problem-solving schema. For example, the
acquired momentum law describes how the external forces affect a physical system’s momentum. It is
not a conservation law, although the original calculation involved the problem-solving schema for
conserved quantities. Constraining the general result so that the originally-used problem-solving schema
does apply produces a special case. In the special-case schema, the constrained schema, its constraints,
and the original problem-solving schema are packaged together to produce a specialized equation schema.

Let primary = the primary problem-solving schema used in the specific example
equation = the newly-acquired equation schema
facts = specific facts about the current example
Step 1: Satisfy the preconditions of primary using equation and facts, producing a proof tree.
Step 2: Traverse the proof tree, locating subtrees whose root is a new equation (i.e., one not already known to
the system).
Step 3: Generalize the resulting subtrees using a standard EBL algorithm, extracting the general version of the

new special-case equation and its preconditions.

Figure 16. The Algorithm for Constructing Special-Case Equations

5 1t should be noted that it was not the explicit intent to model this psychological data. Rather, computational efficiency
considerations led to a system that produced results matching this empirical data.
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In the approach taken, automatically acquiring schemata of the intermediate level of generality
requires that the system’s schemata be organized into two classes:

(1)  Schemata that represent general problem-solving knowledge, which apply across many
application domains (e.g., a schema for utilizing a conserved quantity to solve a problem). In
Physics 101, these are the problem-solving schemata.

(2)  Schemata that represent declarative knowledge of the domain of application (e.g., Newton’s
laws). In Physics 101, these are the equation schemata.

Humans with mature problem-solving backgrounds possess the first type of schema and are told schemata
of the second type when introduced to a new domain. Through study they acquire a large collection of
schemata that combine aspects of both types, thereby increasing their problem-solving performance in the
domain. Combining general problem-solving techniques with domain specific knowledge produces
schemata that, when applied, lead to the rapid solution of new problems. This performance is modelled
in the Physics 101 system.

Special case concepts maintain pointers to the general concepts from which they arose and the
properties that distinguish the special cases from their general cases are recorded. These special-case
cues are checked first when selecting an appropriate schema during problem solving. If no special case is
applicable, the general concepts are then accessed. Besides being constructed when the general case is
acquired, a new special case can be created whenever the general case is used to solve a later problem.

In addition to improving a problem solver’s efficiency, special cases also indicate good assumptions
to make. For instance, if the values of the external forces are not known, assume they are zero, as this
will allow solution to an otherwise impossible problem. Physics problems often require one to assume
things like ‘‘there is no friction’’, ‘‘the string is massless’’, ‘‘the gravity of the moon can be ignored’’,
etc. Problem descriptions given in textbooks contain cues such as these, and students must learn how to
take advantage of them. Facts in the initial problem statement suggest possible problem-solving
strategies, while any additional requirements of the special case situations indicate good assumptions to
make (provided they do not contradict anything else that is known).

The schema used to solve the three-body collision problem is shown in figure 17. This schema
makes use of conserved quantities during problem solving. It says that one way to solve for an unknown
is to find an expression, containing the unknown, that is constant with respect to some variable,
instantiate this expression for two different values of the variable, create an equation from the two
instantiated expressions, and then solve the equation for the unknown. If the values of all but one
variable at these two points are known, simple algebra can be used to easily find the unknown.

Recall that the result in figure 14 is not a conservation law. It describes how the momentum of a
system evolves over time. Although this new formula applies to a large class of problems, recognizing its
applicability is not easy. The external forces on the system must be summed and a possibly complicated
differential equation needs to be solved. Applying this law requires more than using simple algebra to
find the value of the unknown.



Learning in Mathematically-Based Domains 30

Preconditions
CurrentUnknown(?unknown ) A ConstantWithRespectTo(?expression, ?x) N
SpecificPointOf(?x, 7x) ASpecificPointOf(?x,, 2x) A?x; # ?x5 A
?leftHandSide = InstantiatedAt(?expression, ?x1) A
?rightHandSide = InstantiatedAt(?expression, ?x,) N
?equation = CreateEquation(?leftHandSide , ?rightHandSide ) N
ContainedIn(?unknown , ?equation)

Schema Body

SolveForUnknown(?equation , 2unknown)

Figure 17. Conserved Quantity Schema

A portion of the proof that the originally used problem-solving schema (figure 17) can be used with
the new general formula appears in figure 18. (Arrows run from the antecedents of an inference rule to its
consequents.) In order for the conserved quantity schema to be applicable to this new formula, it must be
the case that momentum be constant with respect to time. This means that the derivative of momentum
be zero, which leads to the requirement that the external forces sum to zero. This requirement is satisfied
in the specific solution because each external force is individually zero, and this property is used to
characterize the special case. When this occurs, the momentum of a system can be equated at any two
distinct states. The special case schema for momentum conservation is contained in figure 19.

ConstantWithRespectTo( > M; Vi 2c0 , t)
’T i

d
~(i-t-ZMi Vi,?c(') = Ol‘_g_'.'l.

s
-
-—.-_.-N
d - k
EZMi Vit = ZFi, ext, 7¢(® ZF;, ext, 70 = 0 =ER
i T i 1 ?
IsaComponent(?¢) A Vi Fiext,2c0=0 5%}“—

Y ie ObjectsinWorld NOT(ZeroValued(M;) A
Y i€ ObjectsInWorld IndependentOf(M; , t)

Figure 18. Satisfying the Second Precondition of the Conserved Quantity Schema
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Equation
d k
Z2Mi Vi g0 = 02
i

Preconditions

IsaComponent(?¢) A
Y/ i€ ObjectsinWorld NOT(ZeroValued(M;) A
Y/ i€ ObjectsinWorld IndependentOf(M; , t)

Special Case Conditions
Vie ObjectsinWorld Foyy ; 7.(t)=0
Problem Solving Schema Used

conserved-quantity-schema

Figure 19. The Special-Case Momentum Law

Physics 101°s problem solving improvement after learning is reported in the remainder of this
subsection. Performance on several collision problems, differing as to the number of physical objects
involved, is measured before and after learning the concept of momentum conservation. The goal in each
case is to determine the velocity of one of the objects after the collision. In all of the problems, there are
no external forces, and sufficient, randomly-generated mass and velocity values are provided to make
each problem soluble. Nothing is stated about the inter-object forces. As mentioned in the previous
section, the standard system cannot solve collision problems before learning due to the incompleteness of
its problem solver. However, to gather the data presented below, the problem solver was slightly
extended. This was done by allowing as many ‘‘blind’’ substitutions as necessary. Ordinarily a search
path terminates before two of these unmotivated substitutions would occur consecutively.

The time to solve problems as a function of the number of objects in the situation is graphed in
figure 20. The solid line represents the system’s performance without learning, while the dashed line
represents its performance after learning. Without benefit of learning, the system uses only its
mathematical knowledge and the physics equations of figure 4. The special case law for momentum
conservation is used to solve the problem after learning. All points result from averaging five
measurements, and the choice of the number of objects is made randomly in order to reduce the effect of
inter-sample dependencies. The standard deviation for each point is less than 10% of the solution time.
It takes about 280 seconds to leam the general momentum evolution law and its special-case concept of
momentum conservation from the teacher’s solution to the three-body collision problem.

This graph demonstrates one of the main advantages of explanation-based learning, especially that
of a system that can generalize number. Even when a problem solver has sufficient knowledge to solve a
problem, an exponential amount of time may be needed, making solution infeasible. The increase of

efficiency provided by grouping inter-related schemata brings previously intractable classes of problems
within the capabilities of the problem solver.
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Figure 20. Performance on N-Body Collision Problems (averaged over five runs)

5. CONCLUSION

Physics 101 is a mathematical reasoning system that performs explanation-based leaming in
mathematically-oriented domains. This system’s understanding and generalization processes are guided
by the manner in which variables are cancelled in a specific problem. Attention focusses on how
obstacles are eliminated in the specific problem. Obstacles are variables that preclude the direct
evaluation of the unknown. Cancelling these variables allows the determination of the value of the
unknown. The explanation of a specific calculation closely guides the construction of a general version
of the calculation, from which a new general concept is extracted. New schemata are only leamned when
all of the obstacles in the general version of a problem can be eliminated.

Physics 101 presents a different perspective on the process of explanation-based generalization.
Rather than directly using the explanation of the specific problem’s solution as is done in more standard
algorithms, the explanation of a specific calculation closely guides the construction of a general version
of the calculation, from which a new general concept may be extracted. The new calculation is often
substantially more general, in terms of its structure as well as its variables, than the specific calculation.
Special cases of the generalized calculation, which can be more efficiently used during problem solving,
are also constructed.

Because explanation-based learning requires extensive domain knowledge, it clearly is not
appropriate for all learning in a new domain. Nevertheless, it may be useful even in early leaming if the
domain relies heavily upon a domain for which the leamned does have substantial knowledge. Because
mathematics underlies many other domains, a learner with some mathematical sophistication may be able
to make use of explanation-based techniques without extensive knowledge of the new domain.

The foundation of mathematics underlies many application domains. In such domains, a kind of
domain independence can be achieved by formalizing mathematical reasoning and strictly separating the
system’s initial application domain knowledge from its mathematical knowledge. Physics 101 offers a
conceptual vocabulary together with algorithms using that vocabulary to support explanation-based
learning in mathematical domains. The concepts of primary and secondary obstacles and the notion of a
cancellation graph are demonstrated in the domain of elementary Newtonian physics. But since these
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concepts are rooted in mathematics, they apply equally well in many other technical domains. Associated
algorithms that construct solutions to new problems, explain a teacher’s solution, and generalize
explanations into new concepts are also mathematically centered and, therefore, independent of
application domain. Together, these algorithms demonstrate how a system can acquire new application
domain concepts (such as conservation of momentum) which greatly enhance problem-solving
capabilities in the application domain.
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APPENDIX A - SAMPLE MATHEMATICAL KNOWLEDGE IN PHYSICS 101

Below are some of the general mathematical rewrite rules known to the system. Note some formulae belong
to more than one category (figure 3), depending on use. Terms beginning with a question mark are universally
quantified variables.

?expression — ?expression = (

Problem-Solving Schema: SubstAddldentities

?expression +0 = ?expression

Problem-Solving Schema: Removeldentities

?expression | ?expression = 1
Problem-Solving Schema: SubstMultIdentities
Preconditions: NOT(ZeroValued(?expression ))

1* ?expression = ?expression

Problem-Solving Schema: Removeldentities

(?independent * ?expression)d?x = ?independent |?expression d?x
D exp 74

Problem-Solving Schema: ConstantsOutOfCalculus
Preconditions: IndependentOf(?independent , ?x)

. . d . d .
+7? = 2.7 + 4.
j(?expresszonl ?expression,) d?x = oy Texpression oy L expression;

Problem-Solving Schema: SeparateCalculus

I? expressiony d?x + j?axpressionz d’x = f(?expressionl + Pexpression,) d?x

Problem-Solving Schema: CombineCalculus

d L7 . d . n—1
—— Pexpression’™ = ?n ?expression —— ?expression’"
are P P arx  F

Problem-Solving Schema: Differentiate
Preconditions: Number(?n)

f?axpression d?x = lindependent * ?x + constant

Problem-Solving Schema: Integrate
Preconditions: IndependentOf(?independent , ?x)
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APPENDIX B - GENERALIZING THE SOLUTION TO THE SAMPLE MOMENTUM PROBLEM

This appendix provides the details of the derivations of the equations in section 4.1. These calculations are
the general version of the solution to the three-body collision problem. The cancellation graph in figure 9 guides the
derivation. The figures in this and the next appendix are verbatim transcriptions of actual outputs of the
implemented Physics 101 system. The numbers associated with each line refer to the calculation steps of figure 6.

First, the primary obstacles are introduced into the calculation.

V?s,?c ®
= J.A?s, 2c ()t

j net ’s, 2c ()

dt
M,

1

& =g et 25, 2c 0t
1

©) =-M——j(Fext.?s,?c(t)"'Finl,?s.?c(‘))dt
?s

1
n = M J.(Fext,?s,?c(’)’}' E Fj,?s,?c(t))dt
?’s Je ()quctsyanarId
j#?s

Next My, is introduced into the calculation to additively isolate the primary obstacles.
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dt

1
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Following this, the cancellers of the primary obstacles are introduced.

Mg Vg e )+ > M;V; )

JjeObjectsinWorld

J#2s
O =My [Ay powa + ¥ M; [A; e 0a

J#?s
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The primary obstacles are then cancelled.
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Finally, the secondary obstacles - introduced during the cancellation of the primary obstacles - are eliminated.

(10) =J.(Fext,?s,?c(’)+o%,l+ Z [Fext,j,?c(’)'*'oﬁg;‘zﬁ])d‘
j#?s
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