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Abstract

An important problem for mechanism design and analysis is reasoning about the rela-

tionship between object shapes and their kinematic function. Such reasoning is difficult

because of the unstructured influence of the shapes’ metric dimensions. In this paper,

we show how a qualitative kinematic analysis can be based solely on symbolic reasoning

and evaluation of predicates on metric dimensions. This allows symbolic reasoning about

kinematics without explicit numerical representations of object dimensions, and automatic

generation of operators relating kinematic goals to shape modifications which may achieve

them.
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1 Introduction

Reasoning about object shapes and their interaction is an important unsolved problem in Artificial

Intelligence. Mechanisms such as the mechanical ratchet shown in Figure 1 are good examples

of complex interactions of shapes, and can not be reasoned about using traditional theories of

qualitative physics ( [DKL75, HAY79, FOR84]).

INSERT FIGURE 1 ABOUT HERE

The ratchet consists of two parts, a wheel and a pawl, both of which are hinged at fixed

axes. Its function, to restrict motion of the wheel in the clockwise direction while freely allowing

it in the counterclockwise sense, is achieved by the interaction of the shapes of its parts, its

kinematics. In earlier work on qualitative kinematics ( [FNF91, FALT87a, FALT90]) we have

developed methods for the qualitative representation of kinematic function. In this paper, we

investigate the task of first-principles reasoning about how changes in the objects’ shapes affect

this kinematic function.

As an example of the type of reasoning we are addressing in this paper, consider the pair

of gearwheels shown in Figure 2. People can readily state some conditions that the distance

between their centers must satisfy in order for the gears to mesh.

INSERT FIGURE 2 ABOUT HERE

This type of reasoning is important in many spatial reasoning problems including mechanical

design, troubleshooting, learning new physical phenomena, and reasoning under uncertainty. The
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Figure 1: A ratchet.
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Figure 2: A pair of gears meshes only when the distance d between their centers is a) small

enough for the gears to touch, and b) large enough so that the teeth fit into each other. Note

that these conditions are necessary but not sufficient - the shapes of the teeth must also be

compatible, for example.
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fact that people can state conditions for behavior with such apparent ease is surprising and not

explained by any existing theory of spatial reasoning.

In this paper, we propose a computational theory of such reasoning based on the idea of

inverting dependencies between shape features and states of the kinematic behavior. Object

shapes are represented by a metric diagram, in which a metric for the shapes’ dimensions is

defined as a set of lumped parameters. The dependency of kinematic function on the shapes is

given by metric predicates defined in terms of these parameters, similar to the conditions shown

in Figure 2. In the kinematic analysis, all access to object dimensions is formulated in terms of

metric predicates. Every kinematic property is marked with the metric predicates and thus the

metric parameters it depends on. This provides a basis for reasoning about the relation between

shape and kinematic function.

The predicates could be constructed and evaluated by independent parallel processes, and on a

massively parallel computer the computation could actually be faster than a sequential numerical

simulation. Besides allowing explicit reasoning about the relation of shape and kinematic function,

the approach presented in this paper could therefore provide powerful methods for qualitative

kinematic analysis.

1.1 Reasoning about shape and function

The most difficult problem for reasoning about the relationship of shape and function is the

influence of the metric object dimensions on kinematic function. Because the dimensions of
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physical objects are not naturally defined as scalar quantities, we represent all information about

the objects and their shapes in a metric diagram, an example of which is shown in Figure 3.

INSERT FIGURE 3 ABOUT HERE

The metric diagram consists of three parts:

• a symbolic representation of the boundaries of each of the objects, defining a symbol

for each metric dimension. This is similar in sprit to a primal sketch in computer vision

( [MARR81]).

• a representation of knowledge about the metric dimensions. In Figure 3, this is simply a

list of approximate numerical values. However, it could also be a set of intervals, or even

a measurement procedure which only determines a value when needed, similar to the idea

of visual routines ( [ULL84]).

• additional annotations, such as the freedom of motion of an object or the fact that a shape

is periodic.

The metric diagram separates the symbolic representation of the shapes and their dimensions from

that of the actual numerical values of the metric parameters. However, this is not yet sufficient

for applying the traditional formalisms of qualitative physics to kinematic analysis, because sign or

interval representations of metric dimensions do not express useful kinematic distinctions. Useful

qualitative categories are established by metric predicates, where the qualitative distinction is

made according to the sign of a nonlinear expression involving the individual dimensions. This
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Figure 3: The metric diagram for the ratchet example.
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is the key idea which makes general symbolic reasoning about qualitative kinematics possible.

Based on the values of these predicates and the symbolic description, a qualitative kinematic

analysis can be computed by purely symbolic reasoning.

Metric predicates are evaluated by an abstract access procedure, which could be implemented

in a variety of ways: numerical calculation, measurements in an image, or even experiments on

the objects. When the information is not sufficiently precise to determine the predicate value,

kinematic function can be predicted based on assumptions about the predicate value.

The most important aspect of structuring the computation in this way is the fact that the

metric predicates constitute an explicit representation of the influence of metric parameters on

kinematic function. A predicate which is used to predict a particular aspect of kinematic function

can be interpreted as a condition for this function to exist. Just as for people, it is now easy to

derive conditions such as those in Figure 2.

The conditions can be used for reasoning in two ways. First, they indicate which of the metric

dimensions influence a particular kinematic function. Second, they provide a problem-dependent

qualitative representation of the continuous space of metric dimensions. Variation of a metric

dimension has an influence on kinematic behavior only through the predicates that it occurs in.

We use the term landmark values for the values of a metric dimension where a predicate changes

its value. The complete set of landmark values for a metric dimension defines a quantity space

( [FOR84]) within which it can be qualitatively represented. However, in contrast to quantity

spaces as defined in qualitative process theory ( [FOR84]), these landmark values depend on the
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values of the other system parameters. An important condition for the validity of such a quantity

space is that the predicate formulation itself is independent of the actual value of the dimension

which is being represented. We show in this paper that such independent predicates1 can be

found for the domain of elementary kinematic interactions.

The important aspect of the metric diagram model is that it allows a clean symbolic treat-

ment of metric information. This provides an alternative (and, on parallel computers, more

efficient) way of analyzing kinematics, but more importantly allows reasoning about the depen-

dencies between shape and kinematic function. Such reasoning is important for problems such

as intelligent computer-aided design, mechanism verification and diagnosis, and machine learning

about kinematics.

1.2 A qualitative functional analysis of the ratchet

There are two main qualitative characteristics that can be ascribed to a particular configuration

of a mechanism:

• the points of contact between its parts

• the way that forces and motions are transmitted by the contact points

We define a place vocabulary of a mechanism to be the graph of states which describe the different

possible values that these characteristics can take on, and the possible transitions between them.

1With some minor exceptions, for which there is nevertheless a solution using algebraic decision methods.
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Sample configurations of some of the states in the place vocabulary for the ratchet in Figure 1

are shown in Figure 4.

INSERT FIGURE 4 ABOUT HERE

The place vocabulary forms the basis for an envisionment of the qualitative behavior of

the device under external influences. When particular qualitative motions and forces are given,

the complete behavior of the device can be inferred using the information encoded in the place

vocabulary. As an example, the function of the ratchet can be explained using the states in Figure

4 as follows.

Under the force of gravity, the pawl is forced onto the wheel. Among the configurations where

it rests on the wheel, we can distinguish those where it points to the right from those where it

points to the left. When the lever points to the right, and rotation is counterclockwise, we find

the sequence of states e) → f) → e) → . . ., repeated for each tooth. When the lever points to

the left, and the wheel again turns counterclockwise, the behavior of the ratchet is characterized

by the sequence of states a) → b) → c) → a) → . . ., also repeated for each tooth. Now, consider

the case where the wheel turns clockwise. With the lever pointing to the right, the sequence of

states is f) → e) → f) → . . ., the reverse of the counterclockwise sequence. However, when the

lever points to the left, the sequence of motions is b) → a) → d). From state d), there is no

further transition in which the wheel could turn clockwise; the ratchet is blocked. When the lever

is in a configuration where it points to the left, the ratchet thus blocks turning the wheel in a

clockwise direction, but does not affect its motion in the counterclockwise direction. This is the
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Figure 4: Examples of possible states of the ratchet.
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kinematic function of the ratchet.

The place vocabulary which allows such reasoning is a graph representing a region decompo-

sition of the device’s configuration space, the space spanned by the position parameters of the

parts. Each point in the configuration space represents a particular configuration of the parts,

and the complicated geometric constraints on their motion are reduced to constraints on the

motion of a point. Configuration space was invented by Heinrich Hertz to formalize the laws of

mechanical motion, and has since been widely used as a theoretical tool by physicists and me-

chanical engineers. A similar formalization used in theoretical kinematics is the soma of Study,

which differs from configuration space in the coordinates used to describe the configuration.

As an explicit computational device, configuration space has been used as a tool for robot

motion planning ( [LPW79, LMT83, SHS83]). The computational techniques developed by these

researchers have been combined with the place vocabulary idea of Forbus ( [FOR80]), resulting

in the place vocabulary theory of qualitative kinematics ( [FALT90]) which has been used for

qualitative simulation of mechanisms such as a clock ( [FNF91]). In contrast to the theories de-

veloped in theoretical kinematics, the theory of qualitative kinematics is a computational theory

whose main focus is to provide a functional representation which is efficiently computable. In

this paper, we show how this computation itself can be exploited for reasoning explicitly about

the relation between object shapes and kinematic function. Such reasoning about how changes

in object geometries affect the configuration space have not been investigated so far by other re-

searchers using configuration space. For example, in robot motion planning this would correspond
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to reasoning about changing the object or robot geometry to make certain motions possible or

impossible. It is likely that the methods developed in this paper could be generalized to such

applications, but we have not investigated this possibility yet.

1.3 Limitations

The methods presented in this paper are subject to the same limitations as the place vocabulary

theory of qualitative kinematics itself ( [FALT90]). The first restriction, which is essential to the

algorithms underlying the theory, is that in handles interactions of two objects with one degree of

freedom each. However, we are currently working on techniques which will allow generalization

to interactions involving more degrees of freedom.

The second restriction, which can be relaxed without fundamental changes to the methods

presented in this paper, is that the object shapes have to be two-dimensional, with boundaries

consisting of straight lines and circular arcs.

While the restrictions appear severe, they still allow the theory to handle a large set of inter-

esting mechanisms, such as certain mechanical clocks ( [FALT90]). Furthermore, the methods

proposed in this paper may be applicable to many other domains, and mechanism kinematics is

just an example of their usefulness.
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2 Qualitative Representation of Metric Dimensions

Restricting the use of the metric object dimensions to the evaluation of predicates makes it possible

to reason about their influence on kinematic behavior by analyzing the predicate expressions. The

metric dimensions which determine a particular kinematic function are identified by the set of

predicate expressions that are used in the computation of the places corresponding to the function.

On the other hand, variation of metric dimensions can influence kinematic function only if

it changes the value of one of the predicates involved. Let the metric space be the (many-

dimensional) space spanned by all the metric dimensions defined in the metric diagram, and let

x be a point in metric space, i.e. a vector of all the metric parameters. Each predicate can

then be characterized as the test of the sign of an expression C(x). The curve where C(x) = 0

divides metric space into two or more regions distinguished by different values of the predicate.

Now consider the complete set of predicates used in the computation of the place vocabulary

for a particular device. It divides metric space into a set of regions such that within each

region, the values of all the predicates - given as the signs of the algebraic expressions - are

constant. An example of such a division for a (hypothetically simple) two-dimensional metric

space is illustrated in Figure 5. Because kinematic function is completely determined by the

set of all predicate values, this region structure defines all meaningful qualitative distinctions of

metric object dimensions which can be made for the shapes. In principle, it would be possible to

represent the metric dimensions of objects qualitatively in this region structure.

In a practical case, the metric space has a very large number of dimensions. The shape of
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Figure 5: Metric space is subdivided into qualitatively equivalent cells by curves correspond-

ing to the predicate expressions. When only a single parameter is variable, the cells are

projected onto intervals separated by landmark values, as shown here for x1.
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a simple ratchet wheel has at least three independent parameters (radius and the lengths of the

two sides of the teeth), and at least three are required to specify the dimensions of the pawl.

More realistically, metric parameters are defined as unknown coordinates in the metric diagram,

resulting in 18 parameters for the ratchet. Moreover, in general it is not possible to define a

complete set of truly independent parameters, so that metric space is non-Euclidian. All these

features make the explicit computation of the region structure of metric space appear to be a

very hard problem. However, existing algebraic cell decomposition techniques ( [BKR85, KY85])

can compute this region structure, but they are extremely inefficient.

The problem is simplified if we consider only subsets of the metric dimensions, in particular

single parameters. The projection of the complete region structure onto the axis of a single

dimension is given as a set of landmark values of this parameter. Rather than by explicit

projection of the regions in metric space, the landmark values can be computed directly as roots

of the predicate expressions using well-developed and efficient techniques of numerical analysis,

and often closed-form solutions are possible.

2.1 Enumeration Analysis

A sampling of the metric space along a single parameter axis defines the set of intervals for this

parameter within which the place vocabulary is constant. A set of sample place vocabularies

for each interval thus defines a complete enumeration of all possiblities that can be achieved by

varying the parameter. An example of such an enumeration analysis for the ratchet shown earlier
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in Figure 1 is illustrated in Figure 6. The parameter which is varied in Figure 6 is the distance

between the centers of rotation of wheel and pawl, represented by the parameter Y0-LEVER in

Figure 3. Restricted to the interval between 30 and 802, the system finds a total of 14 landmark

values, at 51.0045, 52.479, 53.1375, 58.30565, 59.0998, 59.2725, 59.28925, 59.38427, 60.72458,

61.62136, 62.0, 67.7359 and 70.28427. Below the landmark value at 51.0045, there exist no legal

configurations of the objects, and beyond the landmark value at 70.28427, no contact between

the objects is possible. The changes that become apparent as Y0-lever varies between these

bounds are illustrated in Figure 6.

INSERT FIGURE 6 ABOUT HERE

A symmetric set of landmark values exists for placements of the lever below the wheel, in the

interval between 8.9955 and -10.28427, but are not considered because of the restriction to

the interval between 30 and 80. The most significant changes in behavior occur at 59.38427,

where it becomes possible for the wheel to turn, and at 62.0, where the wheel can turn freely

in both directions. Choices of Y0-LEVER in the interval between 59.38427 and 62.0 result in a

functioning ratchet. The other landmark values reflect changes in possible contact relationships

and qualitative inference rules associated with places.

The fact that there are only 14 different landmark values for the variation of a parameter as

central as the distance between the centers of rotation is a surprising fact. The total number

of predicates considered in this example is far higher, namely 10278. However, only very few of

2A bounding interval is imposed so that roots can be found by binary search.
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Figure 6: Enumeration analysis lists all the changes in the ratchet place vocabulary as

Y0-LEVER increases from 30 to 80.
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these predicate expressions actually have roots in the given interval. Because of the periodicity of

the device, many of the remaining roots actually fall on the same value. Finally, several landmark

values reflect changes in unreachable configurations, resulting in the same place vocabulary, and

can also be eliminated. In the current program, this is detected by explicit computation of the

place vocabulary. However, it would also be possible to explicitly maintain the dependencies

between landmark values and the parameter intervals where they are applicable.

Enumeration analysis has numerous applications in mechanism design and analysis. It can

also be useful for modeling devices with variable geometries, such as that shown in Figure 7.

INSERT FIGURE 7 ABOUT HERE

The large lever in Figure 7 can either leave the wheel completely free to rotate, enable rotation

in one direction only, or block rotation completely. We assume that the position of the large lever

is fixed by some device and only changed by the operator of the device. It functions as a switch

for selecting different dynamic behaviors of the mechanism, and changing its setting is not part

of the normal duty cycle. It should therefore not be modelled as part of the dynamic behavior,

but as a condition for selecting the appropriate device model. This is the idea of a graph of

models proposed by Penburthy and Addanki ( [PEN87, ADA87]). Enumeration analysis can find

or verify this graph of models.
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Figure 7: The ratchet is either disengaged, active, or blocks the wheel completely, depending

on the position of the lever.
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3 Maintaining Dependencies

Enumeration analysis provides the set of landmark values required for reasoning about the influ-

ence of a particular parameter on kinematic function, but does not help with identifying which

of the many object dimensions are responsible for a particular aspect of this function. This iden-

tification is important for kinematic problem solving, where the goal is to achieve or modify a

particular aspect of the kinematic function. It can be achieved by maintaining an explicit de-

pendency structure relating object dimensions, evaluated predicates and elements of the place

vocabulary, similar to a reason maintenance system ( [DOY79]).

We assume that desired modifications or explanations of kinematic behavior are stated in

terms of the place vocabulary as either places to be added or eliminated, or as changes in the

characteristics of places or transitions. In the computation of the place vocabulary, each such

element is marked with the predicate expressions and values it depends on. Each dependency is

marked with its particular role, distinguishing predicates that determine the existance of a place

from those that determine different aspects of its form.

In contrast to the dependencies used in reason maintenance systems ( [DOY79]), which give

sufficient conditions for a conclusion, the metric predicates attached to a particular place are

necessary, but not sufficient conditions3 for achieving the particular function. The reason for this

is that it is usually possible to add or change completely unrelated shape features and thereby

3With the possible exception of some predicates which determine local characteristics, which could be

considered both necessary and sufficient.
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create new interactions which subsume the place in question. This allows eliminating the place

while still satisfying all its conditions, which therefore cannot be sufficient. As this argument

applies independently of the particular way the conditions are defined, it means more generally

that it is impossible to formulate sufficient conditions for the presence of a kinematic function.

Given a particular place which currently exists in the place vocabulary, the necessary conditions

for its existance in this form define the possible local shape modifications which would eliminate

or modify it. For each predicate, the set of parameters required for its evaluation in turn defines

the object dimensions whose variation could effect the modification.

3.1 Perturbation Analysis

Besides determining which parameters to change, it is also possible to calculate how much a

parameter has to change to affect kinematic behavior. Given that all other parameters remain

constant, the variation of the chosen parameter has to be sufficient to change the value of the

predicate. This is the case only if it is perturbed at least beyond one of the closest roots of

the predicate expression. We call such an analysis of possible local changes of parameters a

perturbation analysis of the device. Note that this perturbation analysis is different from that of

Daniel Weld ( [WEL88]), who uses the term for the analysis of the differential relation between

system parameters. His analysis is complementary because it is based on continuous variations,

whereas our methods address discontinous, qualitative changes of behavior.

By such inversion of dependencies, it is possible to construct a set of specialized operators



3 MAINTAINING DEPENDENCIES 22

for kinematic problem solving. As an example, consider the ratchet shown in Figures 1 and 3

in the introduction, and the task of changing the device to suspend the ratchet function. This

requires eliminating the state where the pawl blocks rotation of the wheel, represented in the

place vocabulary as the place named IP-2 and shown in Figure 8.

INSERT FIGURE 8 ABOUT HERE

The perturbation analysis for IP-2, shown in Figure 9, shows that two predicates were used in

predicting the existance of IP-2.

INSERT FIGURE 9 ABOUT HERE

Picking the first of the two predicates for modification4, we find that it involves the following

parameters:

• The placement of wheel and lever in the workspace, described by parameters Y0-WHEEL,

Y0-LEVER, X0-WHEEL and X0-LEVER.

• The coordinates XL2 and YL2 of the tip of the lever

• The coordinates XW1 and YW1 of the bottom of the teeth of the wheel

By perturbation analysis, it is possible to compute specialized operators for modifying each of

these parameters. An algebraic simplifier substitutes the actual values for all except the chosen

4It turns out that the value of the second does not change within the range of feasible modifications of

object dimensions.
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Figure 8: The configuration where the pawl blocks the wheel, described by place IP-2.

Figure 9: Ouput of the program for perturbation analysis of IP-2.
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parameter and simplifies the expression. An approximation of the closest landmark value is then

found by binary search within a user-specified interval5.

Three examples of this process are shown in Figure 9. One possible way to eliminate the

ratchet function is to place wheel and pawl further apart, for example by variation of Y0-LEVER

(see Figure 3 for the precise parameter definitions). Perturbation analysis finds a landmark value

at Y0-LEVER= 62 (slightly inaccurate because of the numerical approximation), which is the

value where the tip of the lever can just touch the bottom of the wheel. Choosing a greater value

will eliminate the place IP-2. Other possible variations are the length of the lever, by changing

the value of XL2 beyond the landmark value at XL2=10, and the coordinates of the bottom of

the wheel’s teeth, by changing YW1 beyond the landmark value of 18. Both landmark values

again correspond to a design where the tip of the lever can just touch the bottom of the wheel’s

teeth.

Many design modifications require changing only local details of the place vocabulary. In the

ratchet example, the state where the side of the pawl rests on the wheel exists in two different

versions, one in which the counterclockwise motion of the wheel pushes the pawl up (turning it

clockwise) and one where it allows it to descend (turning it counterclockwise). A configuration

corresponding to this latter state is shown in Figure 10.

INSERT FIGURE 10 ABOUT HERE

In this state, represented in the place vocabulary by a place called CSEG-17, the wheel can be

5This process could be improved by using more advanced numerical analysis techniques.
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Figure 10: The lever, pulled down by gravity, pushes the wheel in the counterclockwise

direction.
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driven forward (counterclockwise) by a positive moment on the pawl. If it is linked to a gear

transmission, the play between the gears leads to unncecessary rattle and wear. Thus, we might

want to eliminate this state from the place vocabulary.

There are two predicates associated with the existance of CSEG-17. It turns out that the

landmark values for the first of them correspond to radical changes in the place vocabulary and

are not useful for local modifications. Perturbation analysis of the parameters in the second

predicate results, for example, in the following modifications:

• Shorten the pawl, by varying XL2 beyond the landmark value of 6.975.

• Decrease the height of the teeth, by lowering YW2 below 26.5248.

• Increase the distance between the objects, by increasing Y0-LEVER beyond 61.62135.

Of these suggested operators, shortening the pawl also eliminates the blocking state crucial to

ratchet function. The other two, however, have exactly the desired effect, without any other

modifications to the place vocabulary.

As a final example, we might want to change the way that the objects touch each other in

a particular configuration. In the ratchet example, it is possible for the tips of the wheel’s teeth

to touch the sides of the pawl, as shown on the left in Figure 11. Suppose we wanted to avoid

this type of touch, instead letting the tip of the pawl touch the wheel, as shown in the center of

Figure 11.

INSERT FIGURE 11 ABOUT HERE
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Figure 11: In the state on the left, the tips of the wheel’s teeth touch the side of the pawl.

Another possible touch in a similar configuration is the one shown in the middle. Which

situation is present depends on the situation at IP-12, shown on the right.



4 KINEMATIC ANALYSIS USING THE METRIC DIAGRAM 28

Depending on the situation at the place IP-12, shown on the right in Figure 11, one of the two

types of touch is more constraining and subsumes the other. The selection between the two is

tested by one of the predicates which determine the adjacencies between IP-12 and neighbouring

places. One of the metric parameters involved in this predicate is YW2, expressing the height of

the wheel’s teeth. Perturbation analysis finds a landmark value of 21.7328, and indeed it turns

out that changing YW2 accordingly results in a functional ratchet in which only this particular

type of touch has been replaced.

In each of the examples shown, perturbation analysis has found at least one operator which

actually achieves the goal. However, success can not be guaranteed: a mechanism with the desired

characteristics may simply not exist, or may require simultaneously changing several parameters.

With some exceptions, such as that of the last example, it is also impossible to add functions to

the place vocabulary, as dependencies are only constructed for already existing functions. Using

perturbation analysis to add functions would require local conditions for their absence. It would

be very surprising if such conditions existed: functions can be added by shape features elsewhere

on the mechanism, independent of any local conditions for their absence.

4 Kinematic Analysis using the Metric Diagram

The methods for symbolic reasoning about kinematics presented in the previous sections depend

crucially on the fact that the qualitative kinematic analysis can be based on metric predicates.

In this section, we discuss the metric predicates required for computing place vocabularies in the
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metric diagram framework. For lack of space, the discussion can not be exhaustive. A full and

detailed description of the algorithms is found in [FALT87b]. We also limit the discussion to

the kinematic interaction of a pair of two-dimensional objects, both of which have rotational

freedom. The same methods and considerations apply, with minor changes, to interactions of

objects with translational freedom ( [FALT87b]).

4.1 Configuration space representation

The configuration space (c-space) of a mechanism is the space spanned by the degrees of freedom

of its parts. Each configuration of the mechanism corresponds to a point in c-space; if the

configuration is legal, i.e. free of overlaps, we say that the corresponding c-space point falls

within free space, otherwise it lies in blocked space. In our case of mechanisms consisting of

two parts with one rotational degree of freedom each, the configuration space is a torus surface,

spanned by the orientations of the two parts.

Kinematic function is achieved by the fact that configurations of the device are restricted to

free space, i.e. constrained by the boundary between free and blocked space. Configurations on

this boundary are characterized by the condition that the objects are in contact. With the object

boundaries restricted to arcs and straight lines, the only possible contacts are (i) between a vertex

on one object and a boundary on the other, and (ii) between a circular arc boundary and another

boundary segment. The two types of touch are illustrated in Figure 12.

INSERT FIGURE 12 ABOUT HERE
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Figure 12: Types of touch defining vertex constraints (left) and boundary constraints (right).

Note that the condition defining a boundary constraint amounts to that of a vertex constraint

in which the center of the arc touches an imaginary offset boundary.
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Each of the possible contacts defines a constraint in configuration space as the set of config-

urations where the objects touch at the point in question. We call the constraints generated

by a vertex contact vertex constraints and those generated by a boundary contact boundary

constraints. The boundary between free and blocked space, which is responsible for kinematic

function and represented by the place vocabulary, is given as the envelope of the set of constraints.

The algebraic equation of the curve of a vertex constraint is obtained by substituting the

coordinates of the vertex in the equation of the boundary segment, where both coordinates have

been transformed into a common global coordinate system. As this transformation involves the

configuration space parameters, the result is a curve equation in two parameters: C(φ, ψ) = 0.

Boundary constraints for circular arcs are obtained using the analogy to a vertex constraint with

an imaginary boundary shown in Figure 12.

For a particular pair of objects, the symbolic part of the object descriptions is sufficient to

define the finite set of possible constraints: each pair of a boundary segment of one object and

either a vertex or a curved boundary on the other defines a constraint. Because constraints are

algebraic curves, there are only a finite number of ways they can intersect each other, and thus a

finite number of envelopes and place vocabularies they can form. The role of metric information in

the computation of place vocabularies can be understood to be the selection of the correct place

vocabulary using a set of metric predicates. The fact that the metric predicates are responsible

for selecting the correct solution is fundamental to the methods presented in this paper.

However, explicit selection among the possibilities is not possible because their number is
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far too large: Even for a pair of 2 rotating triangles, there are 18 possible constraints, up to

18(18−1)
2

= 153 possible intersections between constraints, and therefore up to 2153 possible inter-

section patterns! Metric information must be used incrementally during the computation to avoid

generating such a huge number of possibilities. However, the predicates this computation uses

are exactly those that would be required for a selection among explicitly generated possibilities6,

and therefore satisfy the assumptions underlying the reasoning methods.

Metric predicates can be grouped into three categories, for determining the set of active

c-space constraints, the local properties of constraints, and free subsumptions.

4.2 Indexing points of touch

Many of the metric predicates refer to particular touch configurations, best described by a pa-

rameterization of constraints. Consider thus the touch configuration of a pair of points on two

plane objects which are free to rotate around fixed centers, as shown in Figure 13.

INSERT FIGURE 13 ABOUT HERE

The dashed lines in Figure 13 indicate the location of fixed “zero-directions” on the objects, and

the angles ψ1 and ψ2 between them and the (fixed) connection between the centers of rotation

are the two configuration space parameters. ψ1 and ψ2 can be calculated using the five geometric

parameters:

6However, in the analysis of free subsumptions, more predicates than really necessary are generated.
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Figure 13: Configuration of touch of points P1 and P2 on two rotating objects.
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• the distance d between the centers of rotation, a constant.

• the distances r1 and r2 of each of the points from the center of rotation of its object, called

the radius.

• the offset angles φ1 and φ2 between the radius vector to each point and the fixed ”zero-

direction” on its object.

Both the radius and the angle φ can be used for designating the point on an edge (and thus

on the constraint) where the touch occurs. Most metric predicates are formulated in terms of

radius values, and we therefore parameterize constraints by radius. The offset angle is given by a

function depending on the form of the edge. Because an edge may contain several points with the

same radius, it is often necessary to break edges in half7 to make the identification unambiguous8.

We assume that edges are broken up at radius extrema at the level of the symbolic description, so

that the relation between offset angle and radius is always a function. Using this parameterization,

for any constraint and radius value, we can compute the configuration of touch in closed form,

provided it exists (as shown in [FALT87b]).

For any touch between a pair of points on rotating objects there exists a mirror image

symmetrical to the axis between the two centers of rotation, as indicated by the dotted lines in

Figure 13. For this reason, any configuration (and any constraint) exists both as an original,

7Up to three parts for arcs.

8This might seem a disadvantage of this parameterization. However, we shall see that there are additional,

independent reasons why this breakup is required.
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for which the touch is to the right of the vector between object 1 and object 2, and a mirror

image, for which it falls on the opposite side.

4.3 Selecting active constraints

A vertex constraint generated by a vertex V and and edge E can have an influence on the

kinematics only if there actually exist configurations where V touches E, in which case we call

the constraint active. Letting rV stand for the radius of V and d for the distance between the

centers of rotation, V can touch a point on E with radius r if the two following conditions are

satisfied:

d < rV + r and d > |rV − r|

If the edge E contains points whose radii lie in the interval [rmin..rmax], there is at least one such

configuration whenever the two conditions are satisfied by one of rmin or rmax. This defines the

condition for the constraint to be active:

(P1 ∨ P2) ∧ (P3 ∨ P4) , where

P1 = (d < rV + rmax)

P2 = (d < rV + rmin)

P3 = (d > |rV − rmax|)

P4 = (d > |rV − rmin|)

as an expression involving four predicates, where P2 is subsumed by P1 and can be omitted.

A vertex constraint is a smooth curve in configuration space whose extent is limited by a pair
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of endpoints. In most cases, a constraint ends in the configurations where the vertex V touches

one of the vertices at the ends of the edge E. At such configurations, which we call (vertex)

touchpoints, the constraint is connected to others which also end at the touchpoint, forming a

closed boundary. This is shown in Figure 14.

INSERT FIGURE 14 ABOUT HERE

When a touchpoint configuration does not fulfill the criteria for a possible configuration of

touch, the constraints end instead in extremal configurations where the vertex points either

straight towards or away from the center of rotation of the other object. The two possible

extremal configurations are shown in Figure 15.

INSERT FIGURE 15 ABOUT HERE

In an extremal configuration, the point of touch falls on the line between the centers of rotation of

the objects: they are thus identical for original and mirror image of a constraint, and an extremal

endpoint connects a constraint to its mirror image.

An unachievable touchpoint between vertices of radius rv1 and rv2 is replaced:

• by an extremal endpoint of type 1 whenever d > rv1 + rv2

• by an extremal endpoint of type 2 whenever d < |rv1 − rv2|

Because edges are subdivided so that the radius is a unique parameterization, a vertex at the

end of an edge has either minimum or maximum radius of the edge, so that these predicates are

already part of the set of predicates P1 through P4 above.
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Figure 14: A vertex touchpoint is a common endpoint of up to four different constraints.

Left, the types of touch corresponding to the constraints, right, the image in configuration

space.

Figure 15: Constraints ending in extremal configurations of type 1 (left) and type 2 (right).
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We have thus seen how the set of active constraints and their connections is determined using a

fixed set of metric predicates. As an optimization of the computation, it is also useful to eliminate

those constraints that would be generated by a concave vertex or arc, as any configuration on

them necessarily entails overlap of the objects and is thus illegal. However, this results in an

incomplete set of metric predicates, which then have to be recomputed whenever the underlying

convexity assumptions changes.

4.4 Local properties

As shown in Figure 14, a touchpoint is a common endpoint of up to four constraints. However,

only two of the four constraints can actually be part of the boundary of free space, the other

two are subsumed. The subsuming pair of constraints is determined by comparing the directions

of the constraint curves at the touchpoint. The tangent vector of a constraint at the touch-

point is obtained by differentiating the constraint equation and instantiating it at the touchpoint

coordinates.

A constraint C1 subsumes another constraint C2 if the direction vector dir(C1) points into the

free-space side of C2, as shown in Figure 16.

INSERT FIGURE 16 ABOUT HERE

The predicate that expresses this is that the scalar product of the direction vector of C1 with

the leftward normal of the direction vector of C2 must be positive. The four constraints at a
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Figure 16: Constraint C1 subsumes C2 when its direction vector forms a positive scalar

product with the leftward normal of C2.
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touchpoint define 6 different pairs of constraints and thus 6 predicates for relative subsumptions

which select the two constraints at the boundary of free space.

At their endpoints, boundary constraints connect smoothly to adjacent vertex constraints.

Describing the predicates which govern the selection of the constraint to which it is connected is

beyond the scope of this discussion. The reader is referred to [FALT87b].

Another local property of constraints is their qualitative direction in configuration space. As

described in [FALT90]), this qualitative direction determines the set of qualitative inference rules

that hold in the corresponding configuration of touch. At a touchpoint, the qualitative direction

is determined by instantiating the tangent vector and keeping the signs of its components, as

described above. However, the qualitative direction of a constraint can change at configurations

of nonmonotonicity, as shown in Figure 17.

INSERT FIGURE 17 ABOUT HERE

It turns out that the nonmonotonicity shown on the left in Figure 17 arises when the point of

touch falls on a minimum of the radius, and is thus already handled by the breakup imposed by

the boundary parameterization. The condition for the second kind of nonmonotonicity can be

expressed by the radius of the point of touch:

rnon−mon =
√

d2 − r2
v
± 2rvrmin

where rmin is the distance of the edge from the center of rotation, rv is the radius of the vertex,

and the sign is negative if the center of rotation lies to the inside of the edge, positive if it
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Figure 17: The two forms of nonmonotonicity. On both the left and the right, cases a) and

b) are examples of the same kind of contact, but require different inference rules.
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lies on the outside of the edge. An analogous expression exists for edges which are circular arcs

( [FALT87b]). Because the segments have been broken up to guarantee a unique parameterization

by the radius, there can be at most one such nonmonotonicity on a constraint segment.

Because of the fundamental importance of the qualitative direction for kinematic behavior,

constraint segments must be subdivided at points of nonmonotonicity. The predicates that

indicate whether or not a subdivision is required are based on the condition that the edge contains

a point whose radius value satisfies the above criteria, that is:

(rmin < rnon−mon) ∧ (rnon−mon < rmax)

When a nonmonotonicity exists, this indicates that the constraint consists of two segments whose

qualitative directions differ in the sign of the coordinate corresponding to the object containing

the vertex generating the constraint.

Note again that all the local properties described in this section - subsumptions at touchpoints,

connections to adjacent constraints and qualitative directions - are determined by a fixed set of

metric predicates.

4.5 Free Subsumptions

Besides the connections at their endpoints, which can be analyzed locally, constraints can subsume

each other anywhere along their valid segments. Such free subsumptions occur whenever there

are two distinct points of contact between the objects. For example, the configuration of the
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escapement shown in Figure 18 is a subsumption between the points of touch at the left and

right ends of the pallet.

INSERT FIGURE 18 ABOUT HERE

Because of their non-local nature, subsumptions must be hypothesized for any pair of constraints,

a potentially very large number. This makes finding all free subsumptions that occur in a kine-

matic pair the part of kinematic analysis which generates by far the largest number of metric

predicates. In practical mechanisms, free subsumptions occur mostly as design flaws, with the

notable exception of gearwheels. This reflects the fact that people have difficulty with analyz-

ing free subsumptions also. However, it may well be possible that mechanisms which use free

subsumptions could be better than traditional devices at certain tasks.

In configuration space, a free subsumption is an intersection of two constraint curves. A

single intersection between two non-closed curves appears or disappears exactly when one of the

endpoints falls on the other curve, as shown on the left in Figure 19.

INSERT FIGURE 19 ABOUT HERE

This condition can be formulated as a predicate by plugging the constraint endpoint coordinates

of one constraint into the equation of the other, resulting in a closed-form expression which

becomes zero whenever a subsumption appears or disappears. A pair of free subsumptions can

also arise when there is a pair of intersections between constraints. In this case, one of the

constraints is locally subsumed by the other, without global influence on the kinematics. Using
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Figure 18: A (nonfunctional) escapement. The lever can touch the wheel at both its left and

its right end.

Figure 19: A single intersection between constraints appears when one of the endpoints falls

on the other constraint (left). Double intersections can also appear elsewhere on the curve.
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algebraic decision methods, it is possible to formulate predicates that test for the existence and

number of intersections of algebraic curves (see [BKR85]). In our current implementation,

double subsumptions are ignored, and this resulted in no errors in the more than 20 examples we

analyzed.

The problem with the predicates generated by endpoint tests is that they are not sufficient to

determine the place vocabulary. The constraint equations define closed curves in configuration

space, of which the constraints themselves are only subsegments. Testing whether an endpoint

falls on a constraint curve does not distinguish between the valid and invalid segments of a

constraint curve. The predicates generated by the endpoints are thus not sufficient to reliably

determine all existing subsumptions, as illustrated in Figure 20.

INSERT FIGURE 20 ABOUT HERE

With respect to the generation of metric predicates, this phenomenon means that the predicates

generate too many distinctions. However, this does not cause any difficulty for the enumeration

analysis, because the presence of a actual distinctions is verified by computing the corresponding

place vocabularies.

For computing an actual place vocabulary, and for dependency-directed reasoning based on it,

it is necessary to construct a different set of predicates, called eval predicates. The eval predicates

we construct have the advantage that they reliably predict all single constraint intersections, but

the disadvantage is that their formulation dependends on actual parameter values and they thus

can not be used as a basis for enumeration analysis (which, however, is done correctly using
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Figure 20: Testing the relative location of constraint endpoints correctly predicts the inter-

section between A and C, as their endpoints lie on opposite sides of each other’s algebraic

curve. This is not the case for the intersection between B and C, where for each constraint

both endpoints lie on the same side of the other’s algebraic curve.



4 KINEMATIC ANALYSIS USING THE METRIC DIAGRAM 47

endpoint tests).

We can turn the endpoint tests into reliable intersection tests if they can be restricted to those

parts of the curves which are actually valid constraints. Such a restriction can be achieved by

constructing subdivisions as follows. We define the bounding rectangle of a constraint segment

to be the rectangle parallel to the coordinate axes whose opposite corners are the endpoints of

the constraint segment. We iteratively break each monotone constraint segment in half until the

configuration space area covered by each of the bounding rectangles contains only valid portions

of the constraint curve, as shown in Figure 21. For a pair of constraints, all intersections between

valid segments must fall within intersections of bounding rectangles of its subsegments. Let I

be the rectangle of intersection between the bounding rectangles of two different constraint seg-

ments. Using the points where the constraints enter I as endpoints for the intersection test, the

test is now reliable as no intersections with invalid portions of the curves can occur within I. The

required endpoint can be computed iteratively using the constraint parameterization, as discussed

in [FALT87b]. While these predicates can be used for dependency-directed perturbation analy-

sis, note that their formulation depends strongly on the actual parameter values, making them

meaningless for reasoning about large parameter variations as is done in enumeration analysis.

For constraints which have several free subsumption intersections, it is necessary to know in

which order they occur along the constraint. For cases where these intersections occur very close

to each other, so that no distinction by the bounding rectangles is made, this ordering is deter-

mined by locating points between the different intersections, as described in [FALT87b]. Gener-
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Figure 21: A constraint broken up into monotone subsegments whose bounding rectangles

contain only valid portions (left), and testing for subsumptions between a pair of constraints

using the subsegments (right).
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ating metric predicates for this case requires using algebraic decision methods (see [FALT87b])

and has not been implemented.

With respect to the generation of landmark values, it is important to note that our analysis is

incomplete in two respects: it does not take into account changes in the ordering of subsumption

intersections, and it also ignores double intersections between constraints. Both of these short-

comings could be corrected using algebraic decision methods ( [BKR85, KY85]). However, these

methods are very inefficient: an algebraic intersection test for a single pair of constraints would

involve thousands of metric predicates. Furthermore, the actual condition for intersection involves

a complicated logical combination of their values, making a straightforward inversion impossible.

The shortcomings of the current methods have caused no difficulties in any of the examples they

have been used on, and we have therefore not investigated the possibility of algebraic methods

any further.

4.6 Determining the Output Place Vocabulary

The place vocabulary is a description of the legal parts of configuration space and their boundaries.

The tests described earlier in this section define the graph of valid configuration space constraints

and their intersections. Tracing the cycles of this graph determines the regions of free space and

their boundaries, and thus the place vocabulary. No additional metric information is necessary

for extracting the place vocabulary from the graph, as described in detail in [FALT87b]).

In order to reduce reasoning ambiguities, it is sometimes useful to impose additional subdi-
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visions of the regions of free space ( [FALT90]). These subdivisions are determined by a partial

order of the coordinates of the constraint endpoints and intersections along both coordinate axes.

For constraint endpoints, this ordering is given by a set of predicates comparing the relative co-

ordinates. For free subsumption intersections, it must be determined by numerical computation,

and no landmark values can be given for them except by algebraic decision methods.

5 Other Work

Mechanism kinematics is an important area of study in mechanical engineering, and many methods

exist which have similar goals as the ones described in this paper. They can be grouped into two

categories: classification of mechanisms according to types of behavior, and analysis of particular

states to avoid undesirable properties or behavior.

A famous example of mechanism classification are Grashoff’s criteria for the classification

of four-bar linkages. The possible motions of a four-bar linkage, shown in Figure 22, can be

classified according to whether a full rotation is allowed (crank) or not (rocker) for links A and

C. This results in the categories

• double crank, when link D is shorter than all others

• double rocker, when link B is the shortest

• crank rockers, when link A or C is the shortest
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Figure 22: A four-bar linkage
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An additional condition is given by difference between the sum of the lengths of the shortest and

the longest links and the sum of the other two links. If this difference is greater than zero, only

double rocker mechanisms are possible. If it is equal to zero, a linkage with a singular state (two

possible behaviors) will result ( [HADE64]).

Similar to the approach described in this paper, the conditions for the different classes are

expressed as conditions on their dimensions, and correspond to a particular division of metric

space. However, an important difference is that the criteria have been defined by manual analysis

of a particular device topology, the four-bar linkage. They do not automatically generalize to other

mechanisms of the same class, as is the case for causal inversion methods.

The second category of mechanical problems for which similar results exist is the detection

(and avoidance) or singular or undesirable states in the behavior of a mechanism. As an exam-

ple, consider the singular state of a slider-crank mechanism shown in Figure 23. Mechanical

engineers know that such a state exists whenever link a is longer than link b. In general, singular

configurations exist whenever the mechanism’s system of kinematic constraint equations has a

singularity ( [HADE64]). This criterion can be expressed as a set of conditions on the metric

dimensions, and form the basis for a decomposition of metric space analogous to that constructed

in metric space. Again, the methods depend heavily on a manually constructed model of the

device and can not be automated in a straightforward way.

Our techniques of causal inversion could in principle be used to automate both kinds of anal-

ysis. However, the theory of qualitative kinematics which is used as a basis for our investigation
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Figure 23: A slider-crank mechanism, used to translate rotation of part A into translation

of part B. The state shown in singular in that a force on A will not allow it to move.
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is currently restricted to fixed-axis mechanisms, and excludes the domain of linkages in which

these criteria have been formulated.

As a computational analysis, the work of Kramer and Barrow ( [KRBA90]) on TLA has some

similarities with the approach in this paper. They show how suitable dimensions of linkages

can be chosen by continuous optimization of an initial guess, selected from a large catalog of

representative examples. The goal-directed generation of modification operators performed by

perturbation analysis is implicit in the optimization procedure, which is generated automatically.

The initial catalogue is somewhat similar to the global analysis embodied in enumeration analysis.

TLA is similar to causal inversion methods in that it uses an automatic first-principles analysis,

but adresses a very different domain (linkages instead of higher kinematic pairs), and does not

make behavior conditions or modification operators explicit.
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6 Conclusions

In this paper, we have presented methods to solve the problem of symbolic reasoning about

the influence of the metric dimensions of object shapes on kinematic interactions. Because of

the non-linear interdependence of the metric parameters, such reasoning is not possible using

independent qualitative representations commonly used in qualitative physics. Instead, we have

shown how the influence of all metric dimensions can be restricted to a set of predicates. The

set of predicates defines a combined qualitative representation of all metric parameters, out of

which individual qualitative representations can be extracted for reasoning.

This technique is an extension of the available representation formalisms of qualitative physics

and could be used for modeling other physical systems where the simultaneous influence of several

parameters is difficult to decouple. The only condition that has to be satisfied is that the functional

analysis is expressed in a finite symbolic structure, and that this structure can be derived using a

fixed set of metric predicates. This condition is not trivially satisfied for any system. For example,

it is typically not satisfied for unbounded dynamic parameters. Consider the example in Figure

24, in which the interesting question is whether the billard ball will make it into the pocket or

not.

INSERT FIGURE 24 ABOUT HERE

Depending on the number of traversals of the board that the ball can make before coming to rest,

there exist a variable number of possible intervals of initial directions of motion which will make
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Figure 24: A prediction problem in billard. The goal is to determine which combinations

of initial velocities will make the ball drop into the pocket. Depending on the number of

traversals, there are an infinite number of disjoint conditions.
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it enter the pocket. This results in an unbounded set of conditions which can not be expressed by

a fixed set of predicates. At this point, we do not have a characterization of the class of problems

to which the methods of this paper could be applied.

Besides its utility for reasoning, explicit calculation of metric predicates also explains why

people can so easily state the conditions on parameter values under which certain behaviors

occur. This capability is difficult to explain in a model where metric information is used in a less

structured way. The metric predicates also allow cases where metric information is insufficient to

be modeled as ambiguities, another interesting aspect of human behavior that is poorly explained

by numerical analysis methods.

We have shown how metric predicates make it possible to use dependency-directed reason-

ing techniques for reasoning about the relationship between metric dimensions and kinematic

function. However, the techniques are (and cannot be) as powerful as one would like. Because

unrelated object parts can interfere with each other’s kinematic interaction, operators based on

local dependencies can never be guaranteed to succeed. Furthermore, they can only change or

eliminate functions that already exist - no dependencies are provided for elements which are not

part of the place vocabulary of the current device9.

A limitation of our methods is that they only allow reasoning about a single parameter at

a time. This makes the system incomplete, as situations which require the simultaneous mod-

9With some exceptions: it is possible to give conditions for making inactive constraints active, and it is

possible to label subsumed constraints with the subsuming ones and their conditions.
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ification of several parameters are beyond its capabilities. Although there do exist algebraic

algorithms for analyzing the possibilities of simultaneous variation of several parameters, they are

so hopelessly inefficient that they do not seem practical even on extremely powerful computers.

Finally, all of the kinematic analysis methods presented in this paper are restricted to in-

teractions of pairs of two-dimensional objects, each of which has only one degree of freedom.

We are currently working on new methods which have the promise to be generalizable to higher

dimensions and more degrees of freedom.
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