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Abstract

Most approaches to model-hased diagnosis describe
a diagnosis for a system as a set of failing com-
ponents that explains the symptoms. In order to
characterize the typically very large number of diag-
noses, usually only the minimal such sets of failing
components are represented. This method of char-
acterizing all diagnoses is inadequate in general, in
part because not every superset of the faulty compo-
nents of a diagnosis necessarily provides a diagnosis.
In this paper we analyvze the concept of diagnosis in
depth exploiting the notions of implicate/implicant
and prime implicate/iruplicant.  We use these no-
tions to consider two alternative approaches for ad-
dressing the inadequacy of the concept of minimal
diagnosis. First. we propose a new concept. that of
kernel diagnosis. which is free of this problem with
minimal diagnosis. This concept is useful to both
the consistency and abductive views of diagnosis.
Second. we consider restricting the axioms used to
describe the system to ensure that the concept of
minimal diagnosis is adequate.

1 Introduction

The diagnostic task is to determine why a correctly de-
signed systeny is not functioning as it was intended —
the explanation for the faulty behavior being that the
particular system under consideration is at variance in
some way with its design. One of the main subtasks of
diagnosis 1s to determine what could be wrong with a
system given the observations that have been made.
Most approaches to model-based diagnosis [6] char-
acterize all the diagnoses for a system as the minimal
sets of failing components which explain the symptoms.
Although this method of characterizing diagnoses is ad-
equate for diagnostic approaches which model only the
correct behavior of components, 1t does not general-
ize. For example. it does not necessarily extend to ap-
proaches which incorporate models of faulty behavior
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[28] or which incorporate strategies for exonerating com-
ponents [20]. In particular, not every superset of the
faulty components of a diagnosis necessarily provides a
diagnosis. In this paper we analyze the notion of diagno-
sis in depth and consider two approaches for addressing
the inadequacy of minimal diagnoses. First. we consider
an alternative notion. that of kernel diagnosis. which s
free of this problem with minimal diagnosis. Second. we
consider restricting the axioms used ro describe the s
tem to ensure that the concept of minimal diagnosis is
adequate.

2 Problems with minimal diagnosis
Insofar as possible we follow Reiter’s [23] framework.

Definition 1 A system s a treple (SD.COMPS.0BS)

where:

[. SD. the system description. is a set of first-order sen-
tences.

2. COMPS. the system components. 1s a fintte set of con-
stants.

3. OBS. a set of observations. is a set of first-order sen-
tences.

Although our framework does not require a distinction
between SD and OBS. we do so because this is the
convention in the diagnosis literature.

Most model-based diagnosis papers [2: 5: 8. 9: 140 15:
20; 23; 27: 28] define a diagnosis to be a set of failing
components with all other components presumed to be
behaving normally. We represent a diagnosis as a con-
junction which explicitly indicates whether each com-
ponent is normal or abnormal. This representation of
diagnosis captures the same Intuitions as the previous
definitions but generalizes more naturally.

The definition of diagnosis is built up from the no-
tion of abnormal. We adopt Reiter’s [23] convention
that AB(c) is a literal which holds when component
¢ €C'OMPS is abnormal. (Some of the model-based di-
agnosis literature uses O R (¢) instead of AB(c) but this
is just a trivial terminological shift and does not affect
the results of this paper.) It is important to note that
we neither define nor place any conditions whatsoever




on how 4B is used. Researchers have used varyving defi-
nitions of abnormality —— each of which corresponds to a
different policy for how AB appears in SD. Our results
apply regardless of how 4B is used. A few of the ways
abnormality is used in current model-based research arve:

e In GDE [3]. if a component violates its hehavioral
model. then it must be abnormal. However, if it ap-
pears to be behaving normally. then it cannot logically
distinguish whether it is abuormal or not. Instead.
GDE uses probabilities to rank diagnoses.

e [21] extends GDE with a non-intermittency axiom
which requires that a component’s outputs are a func-
tion of its inputs even if it 1s abnormal. One of the
consequences of this axiom is that if a component is
belaving normally for all its nputs, then it cannot be
abnormal.

e In [20] a component is abnormal only if it violates its
hehavioral model at the observation time of interest.

o [22] expands the preceeding notion by requiring a com-
ponent to he abnormal only if it violates its behavioral
model at some known observation time.

Our general diagnosis framework encompasses all these
notions of abnormality. Throughout this paper we use
these differing policies in examples.

Definition 2 Girven two sets of components C'p and ('n
define D(C'p.Cn) to be the conjunction:

{/\ wuﬂ A { A —«.13@)}.

/*E('p e

A diagnosis is a sentence describing one possible state
of the system. where this state 1s an assignment of the
status normal or abnormal to each syvstem component.

Definition 3 Let N CCOMPS. A diagnosis  for
(SD.COMPS.OBS) ts DA COMPS — \) such that:

SDUOBSUDA.COMPS - A)}
is satisfiable.

The following important observation follows directly
from the definition (similar to proposition 3.1 of [23]):

Remark 1 4 diagnosis exists for (SD.COMPS.OBS)
HFSDUOBS is salisflable.

Unfortunately. there may be 21€°OMPST diagnoses.
Therefore we seek a parsimonious characterization of the
diagnoses of a system.

Definition 4 A diagnosis D(N.COMPS — N) is a
manimal diagnosis Uf for no proper subsct N of N s
DA .COMPS — N a diagnosis.

Thus a minumal diagnosis is determined by a minimal
set of components which can be assumed to be faulty,
while assuming the remaining components are function-
ing normally.

Note that these definitions subsume Reiter’s [23]. Re-
iter’s definition of the concept of diagnosis corresponds
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to our notion of mimal diagnosis. Reiter provides no
definition corresponding to our notion of a diagnosis.
All the results of [23] therefore apply to our concept of
a minimal diagnosis.

The following is an easy consequence of the above def-
mitions:
Remark 2 [fD(A. COMPS — A) is a diagnoses, then
there is a mimimal diagnosis D(AX'.COMPS — A such
that AV C AL

Many approaches to model-based diagnosis have as-
sumed that the converse holds:

Hypothesis 1 (Minmal Diagnosts Hypoth-
esis) If AN . COMPS — X)) s a minimal diagnosis
and f N C XNXZTCOMPS. then DIA.COMPS - A) s

a diagnosis.

As we see in section 7. the Minimal Diagnosis Hypoth-
esis holds under the assumptions usually made. How-
ever, as we relax these assumptions, for example by al-
lowing fault models or exoneration axioms. the Minimal
Diagnosis Hypothesis fails to hold and we must explore
alternative means for parsimoniously characterizing all
diagnoses.

Remark 3 The Minimal Diagnosis Hypothesis does not
always hold: If DX . COMPS — N is a mmmal di-
agnosis and N C N, then D(N.COMPS— ) need not

be a diagnosis.

Thus. not every superset of the faulty components of a
minimal diagnosis need provide a diagnosis. To see why.
consider the following two simple examples. The first
example arises if we presume we know all the possible
ways a component can fail such as in [28].

Example 1 Consider the simple two inverter circuit of
Fig. 1. If we are making observations at different times.
then we must represent this in 50 in some way. One
scheme is to introduce ohservation time f as a parameter.
Thus. a model for an inverter is:

INVERTER(r) —
—AB(r) —[in{r.t) =0

out{r.t) = 1]

We assume that SD is extended with the appropriate
axioms for binary arithmetic. ete. Suppose the input is
() and the output is L. in([;.Th) = 0. out(.Ty) = L.
There are three possible diagnoses:

DI} L)) AB(I) A ~AB(I)



DL} A1) = ABUL ) A ~AB(I)

DL L AN ABUL) A AB(I)
These three diagnoses are characterized by the first two
dlagnoses. which are minimal. Suppose we know that
the inverters we are using have only two failure modes:
they short their output to their input or their output
becomes stuck at (. We model this as:

INVERTER(e) AN AB(r) — [SA0(r) v SHORT (2)].
SA0(e) — out(r. t) = 0.
SHORT(x) — out(x. 4) = in(e. ).

From these models we can infer that it is no longer pos-
sible that both [; and [, are faulted. Intuitively. if [» is
faulted and producing the observed 1. then it cannot be
stuck at 0. and must have its input shorted to its out-
put. But then [; must be outputting a 1 and there is no
faulty behavior of I} which produces a 1 for an input of
0. Thus, AB(L;) A AB(I+) is no longer a diagnosis. but
the minimal diagnoses remain unchanged.

The only way to determine which of I} or [+ is actu-
ally faulted is to make additional ohservations. For ex-
ample. it we observed out([,. Ty}, we could distinguish
whether [} or [» is faulted. Suppose I is faulted such
that out(l,.7Ty) = 0. To identify the actual failure mode
of I} we have to observe out(l,. T\) or out(l.T}) given
(. Ty) = 1.

This example shows that the use of exhanstive fault
models such as in [28] leads to difficulties with the usual
definition of diagnosis. One way to avoid this difficulty
1s not to presume all the faulty behaviors are known
as in [9]. However. if we do not know all the faulry
behaviors. then nothing useful can ever be inferred from
a component being abnormal which defeats the purpose
of fault modes in the first place (this is addressed in [9]
by introducing probabilities).

Example 2 The usual definition of diagnosis encounters
similar difficulties with the TRIAL framework of [20]. In
this framework a component is considered faulty if it is
actually manifesting a faulty behavior given the current
set of inputs. If we are only concerned with one set of
inputs. then every component is modeled with a bicondi-
tional. Thus. the inverters of Fig. [ are instead described
by:

INVERTER(2) —
—AB(r) = [in(e) =0 = out(2) = 1]].
Suppose the input and output are measured to he 0.

There are only two diagnoses (the second of which is
minimal):

ABLY AN AB(Ly, =ABI)YA=AB().

It is not possible that one inverter is faulted and the
other not. Each inverter exonerates the other. In terms
of [20]. each inverter is an alibi for the other. Thus.
although = AB() A =4B(/[y) is a minimal diagnosis.

neither =AB(I YA AB(I>) nor AB(I)A=AB([4) are di-
agnoses. Agaln. we see that by including axioms which
restrict faulty behavior in any way. the Minimal Diag-
nosis Hypothesis fails to hold.

In the remainder of this paper we explore two ap-
proaches to address this problem: (1) find an alterna-
tive means to characterize all diagnoses, and (2) restrict
the form of SDUOBS such that the Minimal Diagnosis
Hypothesis holds. We first require some preliminaries.

3 Minimal diagnoses

The minimal diagnoses are conveniently defined in rerms
of the familiar [I¥] notions of implicates and huplicants
(see [17: 24] for similar uses of these notions).

Definition 5 4An AB-literal is AB(¢) or = AB(c) for
some ¢ € COMPS.

Definition 6 An AB-clause is a disjunction of AB-
literals contarning no complementary pair of AB-literals.
A posttive AB-clause is an AB-clause all of whose lit-
erals are posilive.

Note that the empty clause is considered a positive
AB-clause.

Definition 7 A conflici of (SD.COMPS.OBS) is an
AB-clause entaded by SD U OBS. 4 posiive conflict
s a conflict all of whose Literals are positive.

If SDUOBS is propositional. then a conflict is any
AB-clause which is an implicate of SDUOBS.

The conflicts provide an intermediate step in deter-
mining the diagnoses and are central to many diagnostic
frameworks. The reason for this can be understood in-
tuitively as follows. The diagnostic task 1s to determine
malfunctions. and therefore the primary source of diag-
nostic information about a system are the discrepancies
between expectations and observations. A conflict rep-
resents such a fragment of diagnostic information. For
example. the conflict AB(.A)V AB(B) might result from
the discrepancy between observing » = 1 while expect-
ing it to be 2. if components 4 and B were normal. As
a consequence, we infer that at least one of 4 or B is
abnormal, Le.. the conflict AB{(A) Vv AB(B). Most re-
searchers have focussed only on positive conflicts. (As
most previous research has focused on the positive con-
flicts, they usually represented conflicts as sets of ab-
normal components.) However, as we see in Section 4.
the non-positive conflicts are important when we model
faults and do exoneration.

Remark 4 4 diagnosis crists for (SD.
COMPS.OBS) iff the empty clause is not a conflict of
(SD.COMPS.OBS).

Theorem 1 Suppose (SD.COMPS.OBS) is a system.
IT is its sel of conflicts, and N C COMPS. Then
DA COMPS — ) is a diagnosis iff

TU{DA COMPS — A)}

s satisfrable.




Proof. = Consider a diagnosis D. Since SDUOBSU{ D}
is satisfiable. so is TU{D} for any set T of sentences en-
tatled by SDUOBS. Since I consists of clauses entailed
by SDUOBS. LU {D} must be satisfiable.

< Conversely. consider a A C COMPS for which
HU{D(A COMPS — A)} is satisfiable. Suppose SD U
OBSU{D(A. C'OM PS—\)}is unsatisfiable. Therefore,

SDUOBS |= =D(A.COMPS — A),

But ~D(A.COMPS— ) isan AB-clause so it must he
in [I. contradicting the fact that [TU{D(N. COXMPS —
A)} is satisfable. O

Definition 8 A nunanal conflict of (SD.COMPS. OBS)

ts a conflict no proper subclause of which s a conflict of

(SD.COMPS.OBS).

Thus. if SDUOBS is propositional. then a minimal
conflict 1s any A B-clause which is a prime implicate of
SDUOBS.

Theorem 2 Suppose (SD.COMPS.OBS) is a system,

I as ats set of mmmal conflicts, and N C COMPS. Then
DA COMPS — N) s a diagnosis iff

HNU{DA.COMPS - A)}
s satisfiable.

Proof. 11 1s logically equivalent to the set of conflicts of
(SD.COMPS.OBS). The result now follows from Theo-
rem 1. O

Remark 5 [f all the minimal conflicts
of (SD.COMPS.OBS) are non-empty and positive. then
DCOMPS A} is a diagnosis.

As the minimal conflicts determine the diagnoses, they
play a central role in most diagnostic franieworks.

Example 3 Consider the familiar circuit of Fig. 2. Sup-
pose the component models are:

ADDER(r) —

[CAB(r) — out(x) = inl(2) + in2(x)]
MULTIPLIER(») —

[CAB(e) — out(r) = inl(2) x in2(r)]

As before we assume that 5D is extended with the ap-
propriate axioms for arithmetic, ete. With the given
iputs, there are two minimal conflicts:

AB(A)V AB(M)V AB(Mo)
AB(AV ABM)V AB(Ms) v AB(A4),

and four famihar minumal diagnoses:
AB(ANA-AB(ANAABMOIA-AB(MO)A-AB( M)
DA} A A M M)
AB(MOA=ABANAAB( A A=ABM)A=AB(M3)
D({\[_). A\[;g}. {A]..’l'}, .‘[1}) :

ABLMYANAB(M) A= AB(ANA=AB(A)A=AB(M)

Figure 2: F = AC'+ BD.G=CE+ BD
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AB( ) A AB(M)A=AB(A)A=ABM)A—~AB(M3).

To prove the next two theorems we need the following
lemma.

Lemma 1 Suppose that Il s the set of minemal conflicts
of (SD.COMPS.OBS). and that X s a mimimal set such

that.
Mmu { A

FECOMPS—A
15 satisfiable. Then D(X.COMPS — A) s a mmemal

diagnosis.

~AB(e)}

Proof. By the minimality of A. we have. for each ¢/ € A,

that
mu{ A

FECOMPS~A

—AB(e)} U {=4B()}

is unsatisfiable. 1.e. for each ¢ € A.

mu{ A —~AB(c)} = AB()

CECOMPS-A

nmu{ A —AB(o)} = N\ AB().

SECOMPS~A EA

50

Moreover. by hypothesis,

mu{ A

FECOMPS=A

is satisfiable. Hence, DU {D(A. COMPS — A)} is sat-
isfiable. so by Theorem 2 D(A.COMPS — ) is a diag-
nosis. It remains only to show that A is a minimal set
such that D(A.COMPS — \) is a diagnosis. But this
is easy, for if D(AN . COMPS — ') were a diagnhosis for
a strict subset A’ of A. then

mu{ A

~ECOMPS—AY

—AB(e)}

~AB(c)}




would be satisfiable. contradicting the hypothesis of this
lemma. O

Definition 9 4 conjunction C of literals covers a con-
Junction D of Dterals off every literal of C occurs in D,

Definition 10 Suppose T is a set of propositional for-
mulas. A satisfiable conjunction of literals @ (i.e... a
conjunction contarning no pair of complementary liter-
als) s an vmplicant of ¥ ff @ entads each formula in <.
T s a prame amplicant of X ff the only implicant of ©
covering @ s w iself.

Theorem 3 (Characterization of minimal diagnoses)
DA COMPS — Ay s a mimimal diagnosis  of
(AS'VDA(V"O.UP‘HZOBS,) 1ff /\,,,EAAB({“) .1',9 a prome im-
plicant of the set of positive minimal conflicts of

(SD.COMPS.0BS).

A proof of this theorem is given by Corollary 4.5 of
[23]. The following is a direct proof in the terminology
of this paper.

Proof. = Suppose It is the set of positive minimal con-
flicts for (SD.COMPS.OBS). and that D(A. ('O PS —
A) is a diagnosis. By Theorem 2. MU {D(NX.COMPS —
A)} is satisfiable where 1 is the set of minimal con-
flicts of (SD.CONMPS.OBS). Since It C [I. It U
{D(A.COMPS — Ay} is also satisfiable. Since
DA . COMPS ~ A) contains every possible AB-literal
or its negation. every clause of II™ must contain a literal

of D(A.C'OMPS — \). Therefore.

N ABter A
CEA

ceCOMPS~-A

~AB(e) = I+,

Since I contains only positive literals. the negative lit-
erals are irrelevant:

/\ AB(c) [ 1.
cEA

Since D(A.COMPS — A) is a minimal diagnosis, no
subset of A has this property. Hence. A .\ AB(c) is
not only an implicant but a prime implicant of T{+.

< Suppose IT and It are the sets of minimal and
positive minimal conflicts for (SD.COMPS.OBS). and
that A,y AB(¢c) i1s a prime implicant of I[Tt. We prove
that A is a minimal set such that

mu{ A

cECOMPS~A

—~AB(c)}

1s satisfiable. The result will then follow from lemma 1.
Suppose then that

mo{ A

rECOMPS-A

—A4B(c)}

1s unsatisfiable. so that

I |= \V AB(c)

CECOMPS-A

which is a positive clause. Because Il consists of minimal
conflicts, it follows that some clause of [1T contains lit-
erals of \/ . c-oyps_a -AB(c). But this cannot be since
A.ea AB(c) is a prime implicant of [I*. Hence

mu{ A

CECOMPS-A

—AB(c))

is satisfiable.  We now prove X is a minimal set with
this property. Every conflict in [T has the form
V.oeawn AB(e) for some N C Nand A CCOMPS —
A. Moreover, for each & € A, some such conflict con-
tains D(A.COMPS — A) else A - AB(c) 15 not a
prime implicant of IIT. We prove that some conflict in
[T+ containing D(N. COMPS — A) must have the form
DA COMPS = M)V Vi AB(k). For if not. then
every conflict in TI*t which contains D(A.COMPS —
A) must have the form DN COMPS — \) Vv
D COMPS =8V -V o ABUR). where & € A
and & £ 6. But then /\peA_M} AB(e) i1s a smaller
implicant than A .\ AB(c). yielding a contradiction.
Hence, for each & & 2\ there is a conflict of the
form D(A.COMPS — X}V /o ABlA) where N C
COMPS ~ N, Hence, for each 6 € A

PA.COMPS — AV \ AB(¢)
rECOMPS~A
is a conflict so that.

nmu/{ A

cE{STUICOMPS~A)

—~AB()}

1s unsatisfiable. Since we have already proved that

nmuf{ A

CECOMPS-A

—A4AB(c)}

is satisfiable. \ must be a minumal set with this prop-
erty. 0O

This theorem underlies many model-hased diagnos-
tic algorithms. The first step. conflict recognition, finds
positive minimal conflicts. and the second step, can-
didate generation. finds prime implicants. Clearly. if
we were only interested in minimal diagnoses. then we
would only be interested in 1dentifving the positive min-
imal conflicts. but. in general. we must consider the non-
positive minimal conflicts as well.

We now have the machinery to state precisely when
the minimal diagnoses characterize all diagnoses.

Theorem 4 The following are equivalent:

L If DN . COMPS — XY s a mimomal diagnosis for
(SD.COMPS.OBS). then DA COMPS—N) s a di-
agnosts for (SD.COMPS.OBS) for every N such that
COMPS D AD N (ie. every supersel of the faulty
components of @ minimal diagnosis provides a diagno-
518).

20 Al moumal conflicts of (SD.COMPS . OBS) are posi-

five.




Proof. | = 2. Suppose, for Cp.C'n CCOIMPS, that

\/ AB(e)v \/ —4B(e)
~ECD ~ECn
i1s a conflict of (SD.COMPS. OBS). Then

v AB(c) Vv \/

EC) CECOMPS—(p

~AB(r)

is a conflict. so that the negation of this. which is

D(C'O. \[PS"——( . Cp).is not a diagnosis. We prove that
V.ecp AB(c) is a conflict. from which the result follows.
Suppose not. Then SDUOBSU{=AB(c) | ¢ € A} is sat-
isfiable. Let A D ("p be a maumal xulmet of COMPS
such that SDUOBSU {=4B(c) | ¢ € A} is satisfiable.
By lemma L. D(COMPS — AL _\ 15 a minimal diagno-
sis. Since A D ('p. then by property | of the theorem.
DCOMPS — Cp.Cp) is a diagnosis, contradicting our
previously established result.
2 = |. Suppose D(A', COMPS — N is a minimal di-
agnosts and COMPS 2 N D A By Theorem 2. if I1
18 the set of minimal conflict of (SD.COMPS. OBS).
then TTU {D(N.COMPS — A} is satisfiable. Sinee
for each ¢ € COM PN either AB(¢) or =AB(c) occurs
in DA COMPS — ). this means that every AB-
clause of IT contains a literal of D(N . COMPS —~ A')
and this literal is positive since the 4 B-clauses are pos-
itive.  Hence. because A D A’ each AB-clause of
IT contains a positive literal of D(N. COMPS — A).
so [T U {DA.COMPS — )} is satisfiable.
DA COMPS — A) is a diagnosis. O

In Example L. AB([))A—AB(]s) was a diagnosis, but
ABUL) A AB(I2). which has more faulty components.
was not. By Theorem 4 this must arise because one of
the minimal conflicts is not positive. In this example.
the negative clause. ~AB([| )V = AB([»). is a minimal
conflict. which follows directly from the fault models of
Iy and I,

whence

4 Partial diagnoses

Suppose we have the following two diagnoses for a three
component syvstem: AB(c;) A AB(co) A AB(e3) and
AB(ey) N AB(eo) A =AB(ez). We can interpret this as
saying that ¢; and ¢» are faulty, and that c3 may or may
not bhe faulty. Thus, the two diagnoses may he repre-
sented more compactly by AB(e;) A AB(ea). In fact,
we can view this as a ‘partial” diagnosis in which we
are uncommitted to the status of e3; no matter what
that status is. it leads to a diagnosis. This is the ba-
sis for Poole’s observation [19] that a diagnosis need not
commit to a status for each component swhenever that
status is a “don’t care’. Accordingly. we introduce the
concept of a partial diagnosis. This concept also has the
nice side effect of providing a convenient representation
characterizing the set of all diagnoses.

Definition 11 A partial diagnosis for
(SD,.COMPS. OBS) is a satisfiable conjunction P of

AB-literals such that for every satisfiable conjunction o

of AB-literals covered by P. SDUOBS U {0} is satisfi-
able.

Notice that as every conjunction covers itself that all
partial diagnoses are satisfiable.
The following is an easy consequence of this definition:

Remark 6 [f P s a partial diagnosis of (SD.COMPS.
OBS) and C s the set of all components mentioned in

P. then
PA A A(e)
cECOMPS—C

is a diagnosis. where each A(e) s AB(e) or = AB(¢).

Thus. a partial diagnosis P represents the set of all i-
agnoses which contain P as a subconjunct. It is natural
then to consider the minimal such P’s. which we call
kernel diagnoses.

Definition 12 4 kernel diagnosis ts a partial diagnosis
with the property that the only partial diagnosis which
covers il s itself.

The following easy result provides exactly the character-
izing property we have heen looking for:

Theorem 5 (Characterization of diagnoses)
D(A.COMPS — X)) s a diagnosis off there 1s a kernel

dingnosis which covers .

C'onsider the example of Fig. L. Without the in-
troduction of fault models there were three diagnoses:
ABUINA=AB(). nABUN)ANAB([2). ABUI)YANAB(I»)
which are characterized by the two kernel diagnoses:
AB(I) and AB(l.). With the addition of the fault mod-
els. the kernel diagnoses hecome: AB(I|)A=AB([+) and

=AB(I) N AB(L).

Partial and kernel di lagnoses can be particularly easily
characterized in terms of prime implicants and minimal
conflicts. Recall that a conjunction of literals 7 contain-
ing no pair of complementary literals is an implicant of
Y iff 7 entails each formula in ©.

Theorem 6 The partial diagnoses of (SD.COMPS,
OBS) are the mplicants of the mimimal conflicts of
(SD.COMPS.0OBS).

Proof. Let I be the set of all conflicts of
(SD.COMPS.OBS). Since [T is logically equivalent to the
set of minimal conflicts of (SD.COMPS.OBS). it is suf-
ficient to prove that the partial diagnoses arve the impli-
cants of I1. As a further simplification. we appeal to the
follomnb analog of Theorem 2. whose proof is similar:
K is a partial diagnosis iff [T U = is satisfiable for every
satisfiable conjunct = of A B-literals covered by K.

= Suppose I is a partial diagnosis. We prove N =«
for each € I, whence A is an implicant of [I. Suppose
not. Then N J& 7 for some 7w € II. which means that
no literal of = occurs in I\ Let £ be the set of those
literals of 7 which are not complements of literals of A,
Consider P = N A Al P A7 is unsatisfiable. But
I covers P. contradicting the fact that A is a partial
dlagnosis.




< Suppose that A is an implicant of IT. We prove N is
a partial diagnosis. Since KN [z Hforeach 7 eIl (' =7
for each satisfiable conjunct (" of A4 B-literals covered by
K. Hence MU {('} is satisfiable for any such ( so that
K is a partial diagnosis. O

Corvollary 1 (Characterization  of kernel diagnoses)
The kernel diagnoses of (SD.COMPS OBS) are the
prome tmplicants of the minemal conflicis of SD U-OBS.

Proof.  Let 11 be the set of minimal conflicts of
(SD.COMPS.OBS).

= If A 1s a kernel diagnosis. then by Theorem 6 it is
an implicant of 1. We prove it 1s prime. If not. then
for some (" distinet from A" but covering K, ("=« for
each 7 € I. Hence. for every satisfiable conjunct D of
AB-literals covered by (', D |= x. Thus TU {D} is sat-
isfiable for each such D. which means that I is not a
kernel diagnosis, contradiction.

< Suppose I\ 1s a prime tmplicant of . Then by Theo-
rem 6 it is a partial diagnosis. Suppose R is not a kernel
diagnosis. Then there is a conjunct (" covering K" but
distinet from /v such that (" is a partial diagnosis. By
Theorem 6. (" is an implicant of II. contradicting the
fact that N is a prime implicant of II. O

As a consequence of this corollary and Theorem 3. if
all minimal conflicts are positive, then there is a simple
one-to-one correspondence between minimal diagnoses
and kernel diagnoses.

Corollary 1 provides a direct way of computing the
kernel diagnoses froni the minimal conflicts (if SD is
propositional then the minimal conflicts can be com-
puted by a prime implicate algorithm. otherwise more
sophisticated inferential machinery must be brought to
bear). One way of doing this is to convert the CNF-form
of the minimal conflicts to DNF and simplifv as follows
(we omit the proof):

L. ~Multiply™ the minimal conflicts to give a disjunction
of conjunctions.

[

Delete any conjunction containing a complementary
pair of literals.

3. Delete any conjunction covered by some other con-
junction.

4. The remaining conjunctions are the prime implicants
of the original minimal conflicts, and hence the kernel
diagnoses.

Example 4a Consider Example 3. There are two min-
imal conflicts:

AB(A)V AB(M ) v AB(M.)
AB(A)V AB(M ) vV AB(Ms) v AB(Ay),
and four kernel diagnoses:
AB(4y)
AB(MY)
AB(Ma) A AB(M3)
AB(Ma)y A AB(A9).

As all minimal conflicts are positive. these diagnoses cor-
respond one-to-one to the familiar minimal diagnoses.
Example 4b Suppose we used slightly different compo-
nent models:

ADDER(x) —
[ﬁ.%B(.r) = [out(e)y=inl{r) + inZ(w)]}
MILTIPLIER(x) —
{ﬁABuqz[mmm):nuuqthuﬂ}

In this case the minimal conflicts hecome:
ABANY Y AB(M)) Vv AB(19)
AB(ANV Y AB(AL) Vv AB(M)) Vv AB(1My)
AB(AYV = AB(M) vV AB(M;)
AB(A») Vv AB(My) v = AB( ;)
=AB(As)V AB(Ms) vV AB(A).
and the kernel diagnoses hecome:
= AB(ANANAB(M)) A =AB(My) A - AB( ;)
AB(AN A ABM) A AB(M3)
AB(A) A AB(As) A =AB(M ) A - AB( ;)
AB{ANYA AB(As) A AB(M;3)
AB(A2) A AB(AMY)
AB(MaY AN AB(M3).

Note that because the positive minimal conflicts are
unchanged. the set of minimal diagnoses remains un-
changed.

In this example there are only a few more kernel di-
agnoses than minimal diagnoses (6 vs. 4). However. one
possible disadvantage of this approach is that there may
sometimes be exponentially more kernel diagnoses than
diagnoses.

[t is interesting to note that the set of minimal con-
flicts may be redundant. In Example 4b. the first and
third minimal conflicts entail the second:

AB(AND VYV AB(M)) v AB(M)
AB(A)V ~AB(M) vV AB(M;3)

AB(A)V AB(As) Vv AB(M) v AB( )

Therefore, the second minimal conflict is redundant.
Such redundancy can only occur if there are non-positive
minimal conflicts. Unfortunately. these observations do
not seent to be of much practical use because there is
no easy way to tell whether there are enough minimal
conflicts without first finding them all.

Definition 13 4 sel of kernel diagnoses is irredundant
off it ts a smallest cardinality set with the property that
cvery diagnosis s covered by at least one of s elements.

Theorem T [f all minimal conflicts are positive there is
eractly one irredundant set of kernel diagnoses. namely
the set of all kernel diagnoses.



A system can have multiple irredundant sets of kernel
diagnoses.

Example 5 Consider a circuit having three components
4. B. (" and the two minimal conflicts:

AB(A)YV AB(B) VvV AB(C)
—AB(A)V =AB(B) Vv =AB(()
These have six prime implicants (i.e.. kernel diagnoses).
AB(AYA=AB(B)
—AB(A) A ABC
AB(B) A=AB(C
“AB(A) A AB(B
(«
B

AB(A)A-AB

- AB(B) A
There are two irredundant sets of kernel diagnoses:
{AB(MA-AB(B). = AB(AANAB(C). AB(B)A-AB(C)}
1= ABAAAB(B). AB(A)A-AB(C).

Our analyvsis of kernel diagnoses corresponds to the
classical analysis in switching theory of so-called two-
level minimization of boolean functions (e.g.. the Quine-
MecCluskey algorithm [16: 18]). The problem there is to
synthesize a circuit realizing a given function as a dis-
junction of conjunctions of literals in such a way as to
minimize the number of conjunctions and literals. Such
circuits are characterized by irredundant sets of prime
implicants of the given function. In the case of diagno-
sis. the given boolean function is specified by II, the set
of conflicts of SD U OBS. The kernel diagnoses are the
prime implicants of II. and the minimal sets of kernel
diagnoses sufficient to cover every diagnosis are the irre-
dundant sets of prime implicants of II. It is well known
from switching theory that the minimization problem
is computationally intractable: there may be too many
prime implicants. and even if there aren’t, finding an
irredundant subset of them is NP-hard. Therefore. de-
signers of VLSI circuits have developed various approx-
mlatlon techniques [1]. Because of the correspondence
with diagnosis. we can expect to profit from the\e tech-
niques.

[t can be useful to construct irredundant sets of partial
diagnoses containing non-kernel diagnoses. For example.
for probability calculations it is useful (as far as possible)
to ensure that no two of the partial diagnoses have a
common superset. The probability calculus of [8; 9: 10:
20] computes the probabilities of outcomes by combining
the probabilities of partial diagnoses. For example. if
some outcome holds in two diagnoses 4 and B then its
probability is:

P(iv B) = P(AA B)

If 4 and B have no common superset, then P(1AB) =
0. This can result in an exponential speed up in the
probability calculations.

)
)
)
)
)

¢
c

P(4)+ P(B) -

~AB(B)AAB(C)).

5 Prime diagnoses

Raiman [20] proposes a notion of prime diagnosis to
characterize diagnoses. In his TRIAL architecture. com-
pouents are m(lnu lually incriminated and exonerated.
Therefore. he characterizes the diagnoses of a system in
rerms of the diagnoses involving its individual compo-
nents. The following is a generalization of his definition.

Definition 14 Given (SD.COMPS.OBS). a prime di-
agnosts for c€COMPS is a wmoimal diagnosis for
(SD.COMPS.OBSU{AB(c)}).

Prime diagnoses characterize all diagnoses as follows.

Theorem 8 (Raiman) Suppose D{N.COMPS — A)
s a diagnosis. Then for cach ¢; € N there s a prime
diagnosis D(N,.COMPS — \;} for ¢; such that A =

Ui A

Unfortunately, Example | shows that not every com-
bination of prime diagnoses leads to a diagnosis. The
prime diagnoses are:

P(I)) = {AB(I)) A =AB(I2)}
P(ly) = {AB([:) A =AB(1)}

However. AB([;) A AB([+) 1s not a diagnosis. Thus,
prime diagnoses are inadequate to characterize diag-
noses.

Raiman [20] implicitly assumes all minimal conflicts
contain at most one negative literal. In this case Raiman
shows that the converse of Theorem 8 holds which makes
prime diagnoses adequate for characterizing diagnoses.
This useful property holds if SDUOBS is Horn. but we
do not know of any more general practical condition on
SDUOBS which ensures it.

6 Abductive diagnoses

An alternative to the consistency-based approach is to
define diagnosis in terms of abduction [3: 4 12: 19]. In
order to do so we must differentiate those observations
which are about inputs from those which are about out-
puts. The intuition is that we sometilies want the di-
agnoses not only to be consistent with the observations,
but to also predict the outputs given the inputs. Using
the logical framework we have laid out thus far. it is
straight-forward to develop a characterization of abduc-
tive diagnoses.

In order to define the notion of abductive diagnosis
we must distinguish between those sentences in OBS
which are about inputs, [. from those which are about
outputs. Q. The terms “inputs™. “outputs” and “di-
agnoses  are here being used generically. Abduction in
general appeals to a built-in asymumetry based in part
on a distinction between cause and effect. In performing
abductive reasoning on causal systems. the observations
to be explained are taken to be effects of causal factors:
these causes are treated as though they are part of SD.
So for circuits. outputs would be the results of mea-
surements. while civcuit inputs, which are the normal




causes of the outputs are treated as though they were
m SD. In a medical serting. the “diagnoses™ might be
diseases (measles. malaria). while the “outputs™ might
be symptoms (fever, dizziness) and the “inputs™ might
be perturbations to the system. such as diet or lab tests.
These observations about abduction are intended as a
guide to formulating the contents of SD. [ and OBS
in order to achieve intuitively satisfving results — but
our framework and its conclusions apply whatever the
contents of SD. [ and OBS.

Definition 15 Let N CCOMPS. OBs = [ U
O. An abductive diagnosis for (SD.COMPS OBS) s
DN COXMPS — N) such that:

SDUTU{DA COMPS - A}
ts satisfiable. and
SDUTU{DACOMPS —~ A} =0.

Definition 16 A partial  abductive  diagnosis  for
(SD.COMPS . OBS) s a satisfiable conjunction P of
AB-literals such that for every satisfiable conjunction o
of AB-literals covered by P. SD U1 U {0} s satisfiable
and SDU U {o} = 0.

Definition 17 A kernel abductive diagnosis 1s a partial
abductive diagnosis with the property that the only partial
abductive diagnosis which covers it is itself.

The following comes almost directly from the defini-
tions:

Remark T Every partial abductive  diagnosis  of
(SD.COMPS.T U O) us also a partial diagnosis of
(SD.COMPS. 1S Q). The converse is not in general true.

Remark 8 (Characterization of abductive diagnoses)
DA COMPS — N) s an abductive diagnosis (ff there
ts a kernel abductive diagnosts which corvers if.

Definition 18 Suppose ¥ is a set of first order sen-
lences. A conjunction of ground litcrals = containing no
pair of complementary Literals is an tmplicant of © (ff =
entails each sentence in . A satisfiable conjunction of
ground lterals m is a prime implicant of  off the only
tmplicant of & covering © 15 7 itself.

Using the framework developed in this paper we can
relate kernel abductive diagnoses to prime implicants, at
least for finite axiomatizations:

Theorem 9 Suppose SD. [ and O are fintte scts (so
that we can treat each of these as a sentence consist-
myg of the conjunction of its elements). 4 conjunc-
tion I\ of AB-lLterals 15 a kernel abductive diagnosis
of (SD.COMPS TUO) iff N s a prime implicant of
OA{SDAT — O}, where I is the conjunction of the
mmimal conflicts of (SD.COMPS. [UQO).

Proof. < Consider any satisfiable conjunction o of AB5-
literals covered by N. Then {o} = TA{SD AT — O}.

in which case {0} = IT and

{oyESDATI —O. ' (1

By  Theorem 6. o s a partial diagnosis of
(SD.COMPS. T U O). and thus {o} U SD U I is satis-
fiable. Moreover. by (1), {o} U SD U = O. Hence.
by definition. A is a partial abductive diagnosis. We
must prove that A" is a kernel abductive diagnosis. To
that end. suppose A’ is a partial abductive diagnosis
of (SD.COMPS. IUQO) which covers . By Remark
7. K7 is a partial diagnosis of (SD.COMPS. [ U O),
whence by Theorem 6. {A’} |= II. Moteover. {N'} |=
SD AT — O by virtue of being a partial abductive diag-
nosis of (SD.C'OMPS. [UO). Hence. ' is an implicant
of UA{SD AT — O}. Since I is a prime mmplicant of
NALSDAL — O} A =K. Thus I must be a kernel
abductive diagnosis of (SD.COMPS. 1UO).
= We first prove that N is an implicant of IA{SDA[ —
O}. Since I is a kernel (and hence partial) abductive
diagnosis. A 1s a partial diagnosis of (SD.COMPS. U
0}. by Remark 7. By Theorem 6. { '} = I1. Moreover.
KNUSDUI = O since K is a partial abductive diagnosis.
Hence. { N} |= SDAL — O and { K} |= [1 so that A is an
implicant of TA{SDA T — O}. Next we show that A is
prime. Suppose A7 is an implicant of TA {SDAT — O}
which covers I\, and let o be any satisfiable conjunction
of AB-literals covered by N’. Then o is an implicant
of TA{SD AT — O}. Since ¢ is an implicant of I
by Theorem 6. {0} USD U T UO is satisfiable, whence
so also is {0} U SD UL, Moreover. {o}USDUIT = O.
Therefore. N 1s a partial abductive diagnosis. Since A
covers N and K is kernel. A = I so that ' is prime.
O

Poole [19] has developed a very particular definition
of "abductive diagnosis”™ which differs from that of defi-
nition 15. To prevent confusion we refer to his definition
as P-abductive diagnoses.
Definition 19 An P-abductive diagnosis of
(SD.COMPS T U O) s a conjunction P of AB-literals
such that: (1) SD U IU P s satisfiable. (2) SD U TU P
= O. and (3) it ts not covered by some other P-abductive
diagnosis.

This definition is different than the three notions we
have just seen. P-abductive diagnoses are not abductive
diagnoses as they do not include an AB-literal for every
component. Although partial diagnoses do not include
an AB-literal for every component. they are not min-
imal.  Although kernel diagnoses are minimal. Poole’s
definition does not require that everyv other conjunction
of AB-literals covered by it is also an P-abductive diag-
nosis.

P-abductive diagnoses do not characterize the space of
abductive diagnoses. Nevertheless, with the definitions
we have developed it is possible to state precisely what
P-abductive diagnoses are in terms of prime implicants.
Theorem 10 A conjunction of AB-literals K s an P-
abductive diagnosis of (SD.COMPS. T U O) ff K s a
preme implicant of SDUI — O and SD UL U {K} s
satisflable.

Proof. <= Let I\ be a conjunction of A B-literals which
is a prime implicant of SD U — O and SDUTUR




is satisfiable. Consider any o covered by K. By the
definition of cover. {o} = SDUT — O. If {0} E SD U
I — O.then {o}USDUI |= O by the deduction theorem.
SDUT U {o} is satisfiable. As R is a prime implicant.
it 1s not covered by any other conjunction of AB-literals
meeting these two conditions. Thus, A meets the three
conditions for P-abductive diagnosis.

= Let o be a P-abductive diagnosis. By definition
of P-abductive diagnosis we know that SD U/ U {o} is
satisfiable and that SDUTU {0} |= O. By the deduction
theorem. {0} = D U — O. Hence. o is an implicant
of SDU T — O. As the only conjunction of AB-literals
which covers o and meets these conditions is o itself. o
is a prime implicant of SDUT — 0. O

7 Restricting the system description

Our overall objective is to find methods of characterizing
all diagnoses. We saw that minimal diagnoses were in-
adequate for this task in general and we examined kernel
and prime diagnoses as alternatives. Another approach
is to restrict the form of the system so that the Minimal
Diagnosis Hypothesis holds. We know from Theorem 4
that a necessary and sufficient condition ensuring that
every superset of the faulty components of a minimal
diagnosis provides a diagnosis is that all minimal con-
flicts be positive. Unfortunately, we are not aware of
any simple necessary and sufficient condition on the syn-
tactic form of a system which ensures that all minimal
conflicts are positive. Clearly both OBS and S need
to be restricted hecause definition | allows non-positive
AB-clauses to be part of OBS and SD. In this section
we explore some commonly used practical restrictions
on OBS and SD that suffice to ensure that the Mini-
mal Diagnosis Hypothesis holds. In these definitions we
assume that OBS and SD can be expressed as a set of
first-order clauses.

Definition 20 The Ignorance of Abnormal Behavior
(IAB) condition holds for a system (SD.COMPS.OBS)
if in the clausal form of SDUQOBS every occurrence of
an AB-predicate s positive.

For example. if all axioms of SD in which AB appears
follow the schema:
“ABYA A A A Ay — LV
which is equivalent to the clause.
ABryv=A, v v =4, VO Vv O
where the 4; and (7 are literals not mentioning 4 B. and
if every A B-literal (if any) in O BS is positive. then [AB
holds. The [AB condition is used in all of the model-
based diagnosis frameworks which rely on knowing only
the correct behavior of components (where the 4; specify
the component type(s) and the % specify the various
possible normal behavior modes for the component). For
example.
~AB()ATRANSISTOR(2) —
ON()YVOFF(x)VSATURATED(x).

Theorem 11 If (SD.COMPS.OBS) satisfies the [AB
conditron and DIAN.COMPS - AN) us a diagnosis for
(SD.COMPS.OBS). then DN . COMPS — N s a di-
agnosis for (SD.COMPS.OBS) for every X D X where
A C COMPS. In partecular, the Minimal Diagnosis
Hypothesis holds for (SD.COMPS.OBS).

Proof. If AB only appears positively in SDUQOBS. then
only positive minimal conflicts are possible. The result
now follows from Theorem 4. O

The converse of this theorem is false. A less restrictive
and more useful definition is:

Definition 21 The Limited RKnowledge of Abnormal
Behavior Condition (LKAB) holds for a system
(SD.COMPS.OBS)f for cvery componentc € COMPS
and any D(Cp.Cn) where ¢ & Cp and ¢ & Cn and
Cp.Cn CCOMPS that if SDUOBS U {AB(e)} and
SDUOBS U {DICp.Cn)} are satisfiable. then SD U
OBSU{D(CpU{c}.Cn)} s satusfiable,

As shown later in Theorem 12, the LIKAB condition
provides a general characterization of a class of systems
for which there is insufficient knowledge of abnormal

[=]
hehavior to rule out any diagnosis implicating a set of
B 5 o
faulty components given a diagnosis implicating a subset
. o™ = Ll
of them.

Remark 9 [f (5D .COMPS.OBS) satisfies the [4B con-
dition. then it satisfies the LNAB condition.

Proof. Consider each AB(¢) c € COMPS. If AB occurs
only positively in SDUOBS. then AB(¢) cannot appear
negatively in any minimal conflict. Thus. SDUOBS U
{AB(c)} 1s always satisfiable. And. therefore. if SD U
OBS U {D(Cp.C'n)} is satisfiable where ¢ ¢ ('p and
e @& Cn. then SDUOBSU{DCp. Cn)y U {AB(e)} is
satisfiable. O

Theorem 12 If (SD.COMPS.OBS) saiisfies the LNAB
condition and D(N. COMPS — A) s a diagnosis for
(SD.COMPS.OBS). then D(N . COMPS — A is a di-
agnosis for (SD.COMPS . OBS) for every N D N where
AN CCOMPS and for eache € N SDUQBSU{ AB(c)}

is satisfiable.

Proof. Consider a diagnosis D(A. COMPS — A) and
each c € COMPS — A for whiche € N SDUOBS U
{AB(c)} 1s satisfiable. If D(A.COMPS — ) is a di-
agnosis, then {DIA.COMPS — N)} U SD U OBS is
satisfiable by definition of diagnosis. Then. by LKAB
(DA COMPS— A= {eH)} U AB(e)U SDUOBS s
satisfiable and hence {D(AU{c}. COAN PS—AN~{c})}U
SD U OBS is also. By iterating this process we prove
the theorem. O

Intuitively. this theorem shows that if a system obeys
LKAB and no component can be proved correct. then
the Minimal Diagnosis Hypothesis holds for that system.

Sherlock [9] exploits the LKAB condition. In Sher-
lock all axioms in 5D mentioning 4B have one of the
following two forms:

SAB(e)A Ale) — Ge) VeV G ()




ABleyA Ale)y — Fi{e)v -V F ey v i)

where (v;(x) describes a possible normal behavior for
component r. Fi(x) describes a possible faulty behav-
lor for a component ». () specifies an unknown be-
havior so the only occurrences of the literal {7(2) are in
clauses of the form. = A(2)V={"(2)V=Gi(e) and =A(r)v
=U(e) vV =Fi(e). Furthermore, Gi(e). Fi(a). () only
occur negatively in other clauses.

We show that by using resolution. a complete infer-
ence procedure, the LKAB conditions are met. Consider
every AB(c) c € COMPS. Weonly need focus on those
conclusions which follow from the axioms in which 4B
appears negatively. Notice that every axiom in which
AB(c) appears negativelv. [ (¢} appears positively. Clon-
sider the only two other tvpes of clauses in which 7(¢)
appears. The clause =A(e) VvV =l (¢) V =Fi{e) contains
the negations of two of the literals of the problematic
AB-clause. therefore these two clauses do not resolve
with each other. However, the problematic AB-clause
can resolve with —4(e) vV =l (c) V =(7;(¢) to produce

AB(e) AN Ale)y — Fi(e) v -V F(e) v ~Gi(c).
Gi(e) only appears positively in clauses containing
—AB(c). therefore these clauses cannot resolve as well.
As there are no other possible resolutions and the only
sentences containing AB in OBS are atomic. the addi-
tion of AB(¢) can never make some D(C'p. ('n) unsatis-
fiable unless = 4AB(c) € OBS. Thus LKAB holds.

For example. in Sherlock the axioms mentioning 4B
for an inverter are:

—AB(r)ANINVERTER(2) — Ga),
AB(e) NINVERTER(#) — Sl(2) vV S0(e) vIT(r).
And some of the other axioms for inverters are:
~INVERTER(2)V =Gle)V =S1(x)
=INVERTER(2)V =)V =50(r)
SINVERTER(2)V ~Gle) v =l (2)
—INVERTER(2)V —S0(r) v oST(e)
—INVERTER(2)V =S0(2)V =" (r)
~INVERTER(2)V =S1(r) v - (1)
INVERTER(YANG2) —[IN(x)=0=00T(x) = 1]
INVERTER(2)ASHe) —OUT(2r) =1
INVERTER(x)ASOr) —OUT(e)=0
From a purely logical point of view these clauses which
mention {(x) convey no information. however, in the
Sherlock framework every behavioral mode is assigned

a probability and [7(«) behavioral modes are typically
assigned very small probability.

8 Summary

The notions of minimal and prime diagnosis are inade-
quate to characterize diagnoses generally. We argue that
the notion of kernel diagnosis which designates sonie
components as normal. others abnormal. and the re-
mainder as being either. is a better way to character-
ize diagnoses. We avoid significant complexity if kernel
diagnoses contain only positive literals (i.e.. all minimal
conflicts are positive). This can be achieved by limit-
ing the description of the system to obey the TAB or
LKAB condition which formalize the intuitions underty-
ing many existing diagnosis systems.

Although there are many algorithms to compute
prime implicate/implicants [13: 17: 26: 29]. the task
is NP-hard and experience has been that most diag-
nostic tasks have a large number of minunal conflicts
and kernel diagnoses (or prime diagnoses., or minimal
diagnoses). Therefore, the brute-force application of the
techniques suggested by this paper 18 not practical. In
practice, some focussing strategy must be brought to
bear. One approach is to exploit hierarchical informa-
tion as in [13]. Another approach is to focus the rea-
soning to identify the most relevant conflicts in order to
find the most probable diagnoses [9: 11]. However. both
of these approaches require additional information: the
structural hierarchy and probabilistic information.

The central contribution of this paper is that it pro-
vides a clear formal framework for characterizing the
space of diagnoses which also corrects some of the prob-
lems of [23]. It thus provides the specification for
an ideal diagnostician and clarifies why systems such
as GDE [8] work. This paper establishes the connec-
tion between diagnosis and the notions of prime impli-
cate/implicant. The counection between prime impli-
cates/implicants and the ATMS [7] has been presented
elsewhere [24: 25]. Thus. we have constructed a logical
bridge from a formal theory of diagnosis to the ATMS
techniques that many diagnosis implementations use.
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