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Abstract 

Liau, C.J. and B.I. Lin Abstract minimality and circumscription (Research Note), Artificial 
Intelligence 54 (1992) 381-396. 

In this paper, we present an alternative approach to the generalization of circumscription. 
Traditionally, the generalization of circumscription involves the change of ordering among 
models, while in the present study we only try to generalize the minimality criteria of 
models. We define the notion of abstractly minimal (or (P, Z)-minimal) models by iso- 
morphism. Under this generalization we come up with the fact that some theories which are 
unsatisfiable in the original circumscription will be satisfiable now. Moreover, we prove that 
this generalization is completely coincident with the original circumscription in the case of 
well-founded theories. 

I. Introduction 

In 1977, McCarthy [12] proposed a circumscription formalism to capture the 
intuitive idea about the minimality of existing objects (in particular, abnormal 
ones) in commonsense reasoning. The original form he first proposed is called 
domain circumscription. Then he generalized this form to predicate cir- 
cumscription in 1980 [13], which, when applied to a sentence A and predicates 
P, restricts the extensions of P to the minimal ones that satisfy the sentence A. 
Since then, many different variants of circumscription have been proposed to 
improve the expressibility of the original circumscription. These include par- 
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allel circumscription, prioritized circumscription [8], pointwise circumscription 
[10], formula circumscription [14], and equality circumscription [16]. 

However, because it is possible that there do not exist any minimal models 
for a given sentence A, circumscription may result in an unsatisfiable theory. 
Davis [3] and Etherington [4] give such examples. In 1986, Lifschitz [9] 
provided some sufficient conditions under which predicate circumscription can 
always preserve satisfiability. Recently, Jager [6[ also defined a class of 
sentences, called positive disjunctive sentences, and proved that if a theory can 
be partitioned into two parts, one part being a consistent theory without 
involving P and the other part equivalent to a positive disjunctive sentence, 
then the whole theory is consistent under predicate circumscription. However, 
it still remains open to determine the largest class of theories in which 
circumscription can preserve consistency. On the other hand, some weaker 
versions of circumscription have been proposed to guarantee the preservation 
of consistency for all first-order theories. (E.g. Mott's closed and nonrecursive 
circumscription [15].) However, some researchers have observed that over- 
weakening of circumscription may lead to inadequacy in some cases [1]. 

In this paper, we present an alternative compromised approach to this 
problem. Wc weaken the original circumscription by taking model iso- 
morphism into consideration and prove that the new circumscription formulae 
are strong enough to coincide with the original ones in a large class of theories. 

I. 1. Preliminary knowledge 

In this subsection we give some preliminary knowledge about circumscrip- 
tion. In particular, we focus our attention on domain circumscription and 
parallel circumscription since they possess the most basic features of all 
circumscription formalisms. 

In what follows we assume that the reader is familiar with basic notations of 
second-order logic. For convenience we use P to denote a tuple of distinct 
predicates, i.e. P = ( P I , P 2  . . . . .  P,,). Two tuples of predicates, P =  
(P~, P2 . . . . .  P,,) and (2 = (QI,  Q2 . . . . .  Qm), are called similar if n = m and 
the arity of Pi is equal to that of Qi for each i. Following Lifschitz's notation, 
we write P < (2 to denote (P <~ (2)/x -3((2 ~< P), where P ~< (2 is the abbrevia- 
tion of A i_~i~,, Vx (Pi x D Qix). 

Let A(P, Z)  be a first-order sentence containing predicates P and Z; then we 
have the following definitions for domain circumscription [4] and predicate 
circumscription [8, 13]. 

Definition 1.1. 
(1) The domain circumscription of A is DCir(A) = Vd . (3x .dx  A 

Axiom(d) A A J D Vx.dx),  where A '/is the relativization ofA w.r.t, d and 
is formed by replacing each universal quantifer  Vx in A by Vx.dxD and 
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each existential quantifier 3x by 3x.dx A, and Axiom(d) is the conjunc- 
tion of sentences Vx. ( (A l~i~, dxi)D df(x)) for each n-ary function 
symbol f and n t> 0. 

(2) The parallel circumscription of P in A with variables Z is the sentence 

A(P, Z) A -a3pz(A(p, Z) A p < P) 

and is denoted by Cirw;z)(A ) (or Cir(,4) for convenience). 

Note that the definition of domain circumscription is Etherington's improved 
version which excludes a smaller model with empty domain by conjoining 
"3x .dx"  before "Axiom(d)".  

Now, let us turn to the model-theoretic counterpart of circumscription. We 
first give the following definition. 

Definition 1.2. Assume that M and N are two first-order structures. 
(1) We say that M is a substructure of N if IMI c_ IN[ and M[K] is the 

restriction of N[K] to ]M[ for each function or predicate symbol K. 
(2) We say that M is (P, Z)-less than N if 

( i)  IMI = INI; 
(ii) M[K] = N[K] for every symbol K not in P U Z; 

(iii) M[Pi] C N[Pi] for each Pi in P and there exists at least one, Pi so 
that M[P~] ~ N[Pi]. 

(3) A model M of sentence ,4 is called minimal (resp. (P, Z)-minimal) if 
there do not exist any models of ,4 which are proper substructures of 
(resp. (P, Z)-less than) M. 

From the two definitions above we have the following simple but important 
lemma [9, .12]: 

Lemma 1.3. The models of  DCir(A) (resp. Cir(A)) are exactly the minimal 
(resp. (P, z)-minimal) models of  A. 

Finally, we present some basic model-theoretic definitions for later ref- 
erence. 

Definition 1.4 [11, 16]. Given two first-order structures M and M' and a 
function h: IMI--~ [M' I, 

(1) h is a homomorphism from M to M' if h satisfies the following 
conditions for all function symbols f and predicate symbols P: 
(i) for all a EIM] n, h(M[f](a))=M'[f](h(a)) ,  where h(a)=  

(h(al) . . . .  , h(an) ) and n = arity(f),  
(ii) for all a E [MI n, if a E M[P] then h(a) ~ M'[P],  where n = arity(P), 
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(2) h is an isomorphism between M and M'  if h is 1-1 and onto, and 
satisfies condition (i) above and the following condition: 
(ii ') for all a E IM[", a E M[P] iff h(a) ~ M'[P],  where n = arity(P).  

The model M is said to be homomorphic to (resp. isomorphic with) M'  if 
there exists a homomorphism (resp. isomorphism) from M to M'. Moreover,  
two sets are equinumerous if there exists a 1-1 and onto function between 

these two sets. 

2. Abstract circumscription and minimality 

2.1. Some motivating examples 

In 1980, Davis [3] d i scovereda  first-order theory without minimal models. 
His example was presented in the context of domain circumscription and, later 
on, Etherington et al. [4] modified it to match the formalism of predicate 
circumscription. In this section we will present Etherington's example and two 
further examples from model theory and temporal reasoning literature. The 
latter two examples are presented in the context of domain circumscription but 
it is quite easy to find the corresponding examples in predicate circumscription. 

Example 1. 

T,, : 3 x . N x  /x Vy . [Ny  D x ~ succ(y)] ,  

Vx. Nx  D Nsucc(x) ,  

Vx.Vy.(succ(x)  = succ(y) D x = y ) .  

Then,  in any model of T O the extensions of N contain a sequence of elements 
isomorphic to the natural numbers. Hence T 0 has no N-minimal models since 
we can cut a finite initial segment of the sequence to construct a model which is 
N-less than the original model. 

Example 2 [2]. 

T 1 : Vxyz .  Rxy / x  Ryz  D R x z ,  

V x.-7 Rxx  , 

Vxy.  Rxy  v Ryx  v x = y ,  

V x y . R x y  ~ 3 z . ( R x z  A Rzy)  , 

Vx.  3y .  Rxy  , 

V x. 3y .  R y x ,  

then T 1 has no nonempty finite models and R can be interpreted as a linear 
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dense ordering without endpoints. Thus for each model M of T 1, if we remove 
finite elements from M, it remains to be the model of T I. In other words, T 1 
has no minimal models. 

Example 3. To model a time structure which is linear, discrete and unbounded 
in the future direction and has a starting point, Gabbay [5] proposes a fragment 
of first-order axioms which characterizes the so-called integer-like time. The 
following axioms are a slightly modified version of his: 

T 2 : V t u v . t < u A u < v D t < v  (transitivity of < ) ,  

Vt.-7(t  < t) (irreflexivity of < ) ,  

Vtu . t  < u v u < t v t = u (linearity), 

3 t . V u . ( 7 ( u  = t) D t <  u) (starting point of time), 

V t . 3 u . ( t <  u A 73V. ( t<  v A V < U)) (immediate successor), 

V t . [ ( 3 u . u  < t) D 3 u . ( u  < t ^ -~3v . (u  < v A V < t))] 
(immediate predecessor except the starting point). 

As pointed out by Gabbay this is not exactly an axiom system for integer 
time. Indeed, there exist some odd models for this set of axioms. For example, 
suppose that (N, <u) denotes the natural numbers and (Z', <z ' )  denotes a 
structure isomorphic to integer numbers so that NCq Z ' =  fJ, then we can 
construct a model M for the above axioms as follows: 

IMI = N u z', M [ < ]  = <N U <z '  U (N x Z ' ) .  

Thus, M has transfinite time points (i.e., Z'). Now, if we want to eliminate 
models with transfinite time points, domain circumscription may be helpful. 
However, as in the examples we have seen, the axioms have no minimal 
models since we can always cut initial segments of any models to construct new 
models. 

Some interesting features can be observed from these examples. First, every 
model of these theories has infinite submodels which form an infinitely 
descending chain under the orderings of Definition 1.2. Secondly, though these 
theories have no minimal models, they have some special models so that the 
infinitely descending chain starting from them consists of a class of isomorphic 
models. 

2.2. Abstract  minimali ty  

According to Definition 1.2, a model is minimal (resp. (P, Z)-minimal) if we 
cannot decrease the domain elements (resp. extensions of the predicates in P) 
properly. From the examples above we find that, in some cases, though a 



386 ('hurn Jung Liau, Bertrand I-peng Lin 

model can be decreased properly, the decreasing is not substantial in the sense 
of set equinumerous and algebraic homomorphism. This motivates the follow- 
ing definition. 

For notational convenience, we denote (P, Z)-less than by <(p,z~ (or < when 
P and Z are clear from the context), and ~<~p.z~ represents (t", Z)-less than or 
equal to. 

Definition 2.1. Let T be a theory. If P, Z are two tuples of predicates in T and 
M is a model of T, then: 

(a) M is an abstractly minimal model of T if all its submodels are isomorphic 
to it. 

(b) M is an abstractly (P,Z)-minimal model of T, if for each model 
M' <~ ¢e,z)M, M is isomorphic to M'. 

In what follows, the prefix (P, Z) is dropped when distinguishing domain 
minimality from ( t ,  Z)-minimality is irrelevant. 

To see how we generalize the original definition of minimal model, first 
notice that in the original minimality criterion a model M is minimal if the only 
model less than M is M itself. Now, contrary to other generalizations of 
circumscription (e.g. generalized circumscription [7]), we do not change the 
definition of "less than" into another new pre-order relation but we relax the 
requirement for ordinary minimality so that a model M is abstractly minimal if 
all models less than M have the same structure as M. Intuitively, isomorphism 
of two models guarantees that they are structurally equivalent. Therefore, if 
M'  is less than but isomorphic to M, then we say M' is not substantially less 
than M and if the only models less than M are those not substantially less than 
it, then M can be said to be abstractly minimal. 

Obviously, the definition of abstract minimality is compatible with ordinary 
minimality. This can be seen in the following lemma: 

Lemma 2.2. I f  M is an abstractly minimal model o f  T, then so are all models 

M '  <~ ~p.z)M. 

2.3. Abstract circumscription 

Corresponding to the minimality criteria is Definition 2.1, we have a weaker 
form of circumscription to express the idea of abstract minimality. 

To begin with, we present some notations for brevity. First, let F denote the 
set of function symbols in a theory T, (P, Z)  = (P~, P2 . . . . .  P,, Z, . . . . .  Zm)  

and (p,  z) be tuples of predicate symbols and variables respectively and Q be 
the tuples of predicates in T but not in (P,Z) .  Secondly, if h is a unary 
function, we denote (h (x l ) , h (x2 )  . . . . .  h(xk) ) by h(x). Then, we have the 
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following abbreviations: 

Fun(h) ~f  /~ V x . h ( f ( x ) )  : f (h(x))  
f ~ F  

(h satisfies Definition 1.4(1)(i)). 

1 - 1 ( h ) ~ f V x y . h ( x )  = h(y)=- x = y (h is a 1-1 function). 

O n t o ( h ) ~ f V x . 3 y . x  = h(y )  (h is an onto function). 

H o m o ( R ,  S, h) de=fVx.Rx =- Sh(x) 

(h satisfies Definition 1.4(2)(ii ')). 

Pred(h, p, = Homo(P,  P, h) /x /~ Hom°(Pi ,  Pi, h) 
l ~ i ~ n  

l ~ i ~ m  

We now can define abstract circumscription. 

Definition 2.3. 
(a) Let T be a first-order theory; then we define abstract domain circum- 

scription of T as follows: 

A B D C i r ( T )  

= T ^ V d [ ( 3 x . d ( x ) )  ^ T d ^ Axiom(d) 

D 3h(Fun(h )  A 1-1(h)/x Vx(d(x)  - 3 y . h ( y )  = x) 

^ /~ Homo(P,  P, h))] , 
P E P  _1 

where d is a predicate variable, T d and Axiom(d) are the same as in 
Definition 1.1, and P is the set of all predicates in T. 

(b) If T is a theory and (P, Z) is a tuple of predicates in T, we define abstract 
parallel circumscription of T as follows: 

ABCir~p,z)(T) 

= T(P, Z)  ^ Vpz. IT(P, z) ^ p < P 

D 3h . (Fun(h) /x  1-1(h) ^ Onto(h) 

^ Pred(h, p, z))]. 

Note that in A B D C i r ( T ) ,  the requirement of h being onto is expressed by 
"Vx(d(x )=- -3y .h (y )  = x" ,  since we require the isomorphism of two models 
with different domains. 

The intuitive meanings of the other abbreviations and definition will become 
clear after the following theorem and its proof are presented. 
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Theorem 2.4. The models of ABCirw,zl(T ) (resp. ABDCir(T)) are exactly the 
abstractly (P, Z)-minimal (resp. minimal) models of T. 

Proof. We prove that all abstractly (P, Z)-minimal (resp. minimal) models of T 
are models of ABCir(e.z)(T ) (resp. ABDCir(T)) in the following (1) (resp. 
(2)), and sketch the proof of the other direction in (3). 

(1) For abstract parallel circumscription, let M be an abstractly (P,Z)-  
minimal model of T. We want to show that M is a model of ABCir(e,z)(T ). 
Suppose a is an arbitrary variable assignment (including individual, predicate 
and function variable), then M, a ~ T(P, Z) for M is a model of T. Let M'  be 
another structure, defined as follows: 

IM'I=IM[, 
M'[Q] = M[Q] for symbols Q not in (P, z ) ,  

M'[P,] = a ( p , ) ,  

M'[ZJ = c~(z,) . 

If M, a ~ T(p, z) A p < P, then M'  will be a (P, Z)-submodel of M for T, so by 
abstract minimality of M we can find an isomorphism h 0 between M and M'. 
Since IMI = IM'[, h o is a unary function on IMI, so we can set a ' =  a[h *--ho] 
(i.e., a '  is identical to a except that h is assigned the function h0). Then, 
according to Definition 1.4: 

(i) for all a E In l" ,  

h,,(M[f](a)) = M'[f](h,,(a)) = M[f](ho(a)) (for M[f]  = M'[ f ] )  

~ M ,  a ' ~  h(f(a))=f(h(a)),  for all a ~  IMI" 
M, o~' ~ Vx. h(f(x)) : f(h(x)) , 

thus we have M, a' ~ Fun(h) since the result holds for all f ;  
(ii) for all a E ]Mj" and all predicate symbols P, 

and 

a ~  M[P] iff ho(a ) ~ M'[P] 

M, ~' ~ Vx.Qx ~- Qh(x) 

M, ~' ~ Vx. Pi x =- pih(x) 

if Q not in (P, Z), 
for M[Q] = M'[Q'], 

if P~ in P, for M'[P,] = a ' [p , ] ,  

M, a' ~ Vx.Zix=- zih(x ) if Zi in Z, for M'[Zi] = a ' [ z i ] ,  

thus we have M, a' ~ Pred(h, p, z); 
(iii) h o is 1-1 ==>for all a, b in IMI, ho(a ) = ho(b ) implies a = b, thus we have 

M, ~ ' ~  1-1(h). 
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Thus, 

h 0 is onto ~ Va E IM'I = IMI, 3b E IMI such that ho(b ) = a, thus we 
have M, a ' ~ Onto(h). 

M, a ~ 3h.(Fun(h) A 1-1(h) ^ Onto(h) A Pred(h, p, z)) , 

and M ~ABCir(e,z)(T ) since a is arbitrary. 
(2) For abstract domain circumscription let M be an abstractly minimal 

model and a be a variable assignment such that M, ~ ~ 3x.d(x)^  TdA 
Axiom(d) .  We can construct M'  as follows: 

IM'[--c~(d), and M'[S] is M[S] restricted to [M'I for all symbols S (i.e., 
M'[S] = M[S] "~ [M[). Obviously, M'  is a submodel of M, and by abstract 
minimality, we have an isomorphism h 0 from M to M'. Since IM'I is a subset of 
IMI, we can again set a ' =  a[h ~---h0]. Similarly, we can show M, a ' ~  1-1(h) 
A Fun(h). Moreover, 

(i) ho:[MI--~lM'l~for a in [MI, ho(a) is in IM'I = a(d)  
M, a' ~ Vx(3y(h(y) = x) D d(x)), 

(ii) h 0 is onto, Va E IM'I = ~(d) ,  3b ~ IMI such that ho(b ) = a 
M, a' ~ Vx(d(x) D 3y(h(y)  = x)), 

(iii) for all a ~ IMP, a E M[P] iff ho(a ) E M'[PI = M[P] n ~(d)" for all 
predicate symbols P 

l<_i<~n 

f f  M, ct' ~ Vxex =- eh(x) (since M, a' ~ Vx.d(h(x)) by (i)) 

M, a' ~ A Homo(P, P, h). 
P E P  

Consequently, 

M, a ~ 3h(Fun(h) ^ 1-1(h) A Vx(d(x) =- 3y.h(y) = x) 
/ 

A A Homo(P, P, h)) , 
P ~ P  

and M ~ ABDCir(T). 
(3) For the converse direction, we comment on the case of abstract parallel 

circumscription. Suppose M is a model of ABCir(e,z)(T ), and M' is a (P, Z)- 
submodel of M. Then M, a ~ T(p, z) A p < P with a being a variable assign- 
ment satisfying a(p, z ) =  (M'[P], M'[Z]). Thus, the existence of h guarantees 
the existence of an isomorphism between M and M'. This proves M is 
abstractly (P, Z)-minimal. [] 

We now go back to the three previous examples to see how abstract 
circumscription circumvents the unsatisfiability problem of these examples. 
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Example 1 (continued). For T~, we have a model M as follows: 

[M 1 = { . . . .  - 3 ,  - 2 ,  -1 , ( I ,  1, 2, 3 . . . .  }, 

i.e. the set of integers. 

M[succ]: [M[--+ IMI,  x ~  x + 1. 

MIN] = {0, 1, 2, 3 , . . . } ,  

i.e. the set of natural numbers. 
Then,  any N-submodels of M must have the same universe and interpreta- 

tion of "succ" with M and extensions of N must be {n, n + 1, n + 2 . . . .  } for 
some positive integer n. It is easy to construct an isomorphism between M and 
its respective submodels. In other words, it is an abstractly N-minimal model of 

T 0 . 

Note that M is not a model with minimal domain, i.e., the domain contains 
many junk elements - 1 ,  - 2 ,  - 3  . . . .  Thus McCarthy's claim [13] that domain 
circumscription can be replaced by predicate circumscription fails in the 
abstract case. This will be discussed further in Section 3.3. 

Example 2 (continued). According to the results from model theory [2], all 
countably infinite models of T~ are isomorphic to each other. Thus, any 
countable models of T~ are abstractly minimal models. This example is just an 

instance of Theorem 3.1 below. 

Example 3 (continued). It is easy to verify that the natural number structure 
(N, < x )  is an abstractly minimal model of T 2 and any model with transfinite 
time points contains this model as its proper  submodel. Therefore,  abstract 
domain circumscription has eliminated all odd models successfully since 
(N, <N) cannot be isomorphic to any transfinite model. 

3. Properties and comparisons with related work 

3. I. Satisfiability of abstract circumscription 

According to Definition 2.1, any minimal model is also abstractly minimal. 
Thus, any theory which is satisfiable under the ordinary circumscription must 
be also satisfiable under abstract circumscription. We provide a natural class of 
theories which may be unsatisfiable under the ordinary circumscription but is 
satisfiable under abstract circumscription. 

In classical model theory, a theory T is called K-categorical if all models of T 
with cardinality K are isomorphic. For a finite theory T, if T is satisfiable, then 
T has a model M with cardinality w by the Lowenhein-Skolem theorem [11]. 
Thus, if M has a finite submodel, then T has a minimal model; otherwise, if T is 
w-categorical, then all infinite submodels of M are isomorphic to M, so M is an 
abstractly minimal model. It follows that we have the following theorem: 
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Theorem 3.1. Each to-categorical theory has abstractly minimal models. 

An algebraic characterization of to-categorical theories has been given by the 
so-called Morley's theorem [2]. 

3.2. Coincidence with ordinary circumscription 

A theory is called suitable for a circumscription formalism if it is satisfiable 
under the formalism. Though we have a strictly larger class of suitable theories 
for abstract circumscription than for the ordinary one, there still exist satisfi- 
able theories which are not suitable for abstract circumscription. This can be 
seen from the following example: 

Example 4. A satisfiable theory which is not suitable for abstract cir- 
cumscription: 

3x.[ Bx ^ Vy.(  By D x ~ l( y) ^ x ~ r (y)) ] ,  

Vx. Bx ~ BI(x) ^ Br(x) , 

Vx.Vy. l (x)  = l(y)  D x = y ,  

Vx.Vy.r(x)  = r(y) ~ x = y , 

Vx.Vy. l (x)  ~ r( y) . 

Now, if we interpret x = l (y)  (resp. x = r(y)) as "x  is the left (resp. right) son 
of y" ,  then obviously, for each model M of this theory, M[B] must contain an 
infinite binary complete tree (i.b.c.t.). Thus, we have two cases: 

Case 1. M[B] contains infinite i.b.c.t. 's: let M'  be a B-submodel of M with 
only one i.b.c.t, in M'[B], then M' is not isomorphic with M. 

Case 2. M[B] contains finite (say n) i.b.c.t. 's: let [M' I = IMI, M'[S] = M[S] 
for all symbols S except B, and M'[B] = M[B]/{ro} ,  where r 0 is the root of 
one i.b.c.t, in M[B], then M' is a B-submodel of M and M'[B] contains n + 1 
i.b.c.t. 's, so M' is not isomorphic with M. 

Consequently, all models of this theory are not abstractly B-minimal, i.e., 
this theory is not suitable for abstract circumscription on B. 

However, abstract circumscription has another advantage, i.e., its coinci- 
dence with the ordinary circumscription. Recall that a theory T is called 
well-founded (w.r.t. (P, Z)) if for each model M of T, there exists a minimal 
(resp. (P, Z)-minimal) model M'  such that M'  is a submodel of M (resp. 
M' <~(l,,Z) M).  Then, we have: 

Theorem 3.2. Let T be a well-founded theory, then M is a minimal model of  T 
iff it is abstractly minimal. Here minimality refers to domain minimality or 
( P, Z ) -minimality. 
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ProoL The "only if" part is derived directly from Definition 2.1. To prove the 
"'if" part, assume M is an abstractly minimal model but not minimal. Since T is 
well-founded, there is a minimal model M' so that M ' < M ,  and M' is 
isomorphic with M by abstract minimality of M. However, since M' is 
isomorphic with M, and there exists a model less than M, there must be also a 
model less than M'. This contradicts the assumption that M' is minimal. Thus, 
M must be minimal and the result follows. [] 

Combining Lemma 1.3, Theorem 2.4 and the above theorem, we have the 
following corollary: 

Corollary 3.3. I f  T is a well-founded theory, then ABDCir(T) (respectively 
ABCir~e.z)(T)) is equivalent to DCir(T) (respectively Cir~e.z)(T)). 

As for non-well-founded theories, we still have some intuitively justifiable 
ground for the definition of abstract minimality. To explain this, we first 
partition the class of all models for a theory T into equivalence classes 
according to the isomorphism relation between them. Let [M] denote the 
equivalence class containing the model M. Then, define [M] < [M'] iff [M] 
[M'] and there exist M~ E [M] and M 2 E [M'] so that M l <~(e.z) M2 (or M~ is a 
submodel of M2). It can be verified that < is a well-defined partial ordering on 
these equivalence classes. Now, we have the following characterization of 
abstractly minimal models: 

Lemma 3.4. A model M is abstractly minimal iff [M] is a minimal equivalence 
class under the partial ordering < defined above. 

This lemma, though simple, is important since it guarantees that the 
abstractly minimal models are also minimal in some good sense. Thus, for 
well-founded theories, abstract circumscription is completely coincident with 
ordinary circumscription, and even for non-well-founded theories, the notion 
of abstract circumscription still matches the basic idea of ordinary cir- 
cumscription. 

Furthermore, Example 4 may motivate the following alternative definition of 
abstract minimality. 

A model M is an abstractly (P, Z)-minimal model of T, if for each model 
M' ~< ~e, z) M, M' has a (P, Z)-submodel which is isomorphic to M. 

Adopting this new definition of abstract minimality, the consistency of that 
example can be preserved, and Theorems 3.1 and 3.2 are still valid. However, 
the cost is that the axiomatic formulation in Definition 2.3 of abstract cir- 
cumscription will become more complicated. 
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3.3. The importance of domain circumscription 

In the above sections, we have treated domain circumscription and parallel 
circumscription separately. According to [13], where McCarthy claimed do- 
main circumscription can be replaced by predicate circumscription completely, 
it seems unnecessary to treat domain circumscription independently. McCar- 
thy's approach is as follows. First, he introduces a new predicate all and got 
T"', the relativization of T w.r.t, all (see Definition 1.1). Then DCir(T) can be 
replaced by Cir(,u. )(T air U Axiom(all)) tO {Vx.all(x)}. This approach, though 
feasible in principle, has some serious defects as pointed out by Etherington 
[4]. The main issue is that even Cir(a,,)(T "tl UAxiom(all) tO {Vx.all(x)}) is 
consistent, Circ,,, )(T "u LJ Axiom(all)) U {Vx.all(x)} may be inconsistent. From 
the viewpoint of abstract circumscription, we can reinforce the importance of 
domain circumscription. Consider the following theory T: 

3x.Vy.x ~ succ(y),  

Vx.Vy.succ(x) = succ(y) D x = y .  

Then, obviously, T has the abstractly minimal model M with IM[ = 
{0, 1, 2 , . . . }  and M[succ]:x---~ x + 1. However, T o = T a" tO Axiom(all) is es- 
sentially equivalent to our previous Example 1 with some modifications. These 
modifications do not change an important feature of T 0. This {eature is that in 
any abstractly (all,)-minimal model of T~, M, M[all] must be a proper subset 
of [M]. Otherwise, if M[all] = [M], then by cutting some initial segment of 
M[all], we can get M' so that IM'[ = [M[, but M'[all] is a proper subset of 
M[all], so it is impossible to construct an isomorphism between M' and M. 
Thus M is not abstract (all,)-minimal if M[all] = [M I. Then, by Theorem 2.4, 
ABCir(,u, )(T"" U Axiom(all)) U {Vx.all(x)} will have no models even though 
ABDCir(T) does. This example shows that abstract parallel circumscription 
cannot replace abstract domain circumscription though the former seems more 
powerful. Thus, a separate treatment of abstract parallel circumscription and 
domain circumscription is necessary. 

3.4. Comparison with other work 

In this subsection, we will compare abstract circumscription with closed and 
nonrecursive circumscription [15] and equality circumscription [16] according 
to the following points, (i) preservation of satisfiability, i.e., the suitable classes 
of theories for these circumscription formalisms, (ii) semantic characterization, 
i.e., what kind of models these formalisms can capture, and (iii) coincidence 
with the ordinary circumscription. 

First, let us review the basic notions of closed nonrecursive circumscription 
and equality circumscription. 
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Mott [15] adds to a theory T(P, Z) the following axiom schema, T(@, qt)/x 
q~ ~< P D P ~< q~, where q~ and qt are tuples of first-order formulae with the 
restriction that each q~i has no more free variables than Pi has (i.e., closedness) 
and all symbols in (P, Z) do not occur in any of q~g (i.e., nonrecursiveness). He 
proves that all consistent first-order theories are suitable for this form of 
circumscription. However, its semantic characterization is not clear, as pointed 
out by Etherington [4]. Furthermore, even in the cases of well-founded 
theories, it is strictly weaker than ordinary circumscription, For example, 
3x.P(x) is a well-founded theory w.r.t, the predicate P, but if we apply closed 
and nonrecursive circumscription to this sentence it is impossible to derive the 
results which ordinary circumscription can derive. This shows that open and 
recursive circumscription is necessary to derive some useful results in some 
c a s e s .  

Equality circumscription mainly aims at circumscribing equality predicate. 
Because, in the ordinary minimal model semantics, the ~ relation is defined 
between two models with the same interpretation of function symbols, it is 
impossible to circumscribe equality directly in this framework. Thus Rathmann 
et al. [16] present the equality circumscription formalism in a more general 
setting, i.e., the preferential model semantics [18]. Let M--* M'  denote that 
there exists a homomorphism from M to M'  where M and M' are models of 
some theory T, then M is said to be preferred to M'  iff M---~M' but not 
M ' - +  M. Then, they present the axiomatic formulation of equality circumscrip- 
tion and show that preferred models are exactly the semantic characterization 
of it. They also prove that equality circumscription preserves consistency for 
universal and existential theories. Moreover, if two models are isomorphic, 
equality circumscription will not prefer one over the other, so the theories in 
Examples 1 to 3 may have preferred models. However, they also provide an 
example which is suitable for ordinary circumscription but not for equality 
circumscription. In fact, equality circumscription is essentially incompatible 
with the ordinary circumscription. In other words, equality circumscription is 
neither stronger nor weaker than the ordinary one. This is because the 
preferred models are not necessarily minimal in the ordinary sense. Therefore, 
equality circumscription can derive some useful results about equality predi- 
cates, but it may also lose some information about other predicates. 

Now, we can compare the three different circumscription formalisms. First, 
undoubtedly, closed nonrecursive circumscription is best behaved in preserving 
the satisfiability of the theories being circumscribed. Moreover, it is well 
known that universal theories are well-founded under ordinary circumscription 
and because consistent existential theories have finite models, they must have 
minimal models in the ordinary sense. Thus, since all minimal models are 
abstractly minimal, abstract circumscription and equality circumscription ap- 
pear to be equally well-behaved in the preservation of satisfiability according to 
the present known results. Secondly, abstract circumscription is more coinci- 
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dent with ordinary circumscription than the other two formalisms are by 
Theorem 3.2 and Lemma 3.4. However, unlike closed nonrecursive cir- 
cumscription, the deviation of equality circumscription from the ordinary one is 
for deriving new sentences about equality, so, in this case, it is a tradeoff, not a 
weakness. Finally, abstract circumscription and equality circumscription both 
have clear semantic characterization, while Mott's formalism does not. 

Finally, we would like to mention another application of model isomorphism 
in the context of the closed world assumption (CWA, [17]). A concept similar 
to o~-categoricity, called weak categoricity, has been used by Jager [6] to 
provide a sufficient condition for the consistency of CWA. He defined a class of 
theories, called inductive databases which are the generalization of Horn 
sentences, and showed that if all countable models of an inductive database D 
are isomorphic modulo P (i.e., isomorphic in the sublanguage without involv- 
ing P),  then D is consistent under the P-relativized CWA (i.e., CWA applied 
only to the ground atoms involving P). This result, though not directly related 
to our work, also shows the potential interest of the notion of model morphism 
to nonmonotonic reasoning. 

4. Conclusion 

We have presented the concept of abstract circumscription and minimality in 
this paper. Instead of changing the set-inclusion ordering among models, we 
obtain abstract circumscription by relaxing the minimality criteria. Essentially, 
we let all isomorphic models be in the same equivalence class, and conse- 
quently, the model whose submodels (or (P, Z)-submodels) are all in the same 
class is the abstractly minimal one. The properties in Section 3 show that the 
idea of abstract circumscription is natural and completely matches the original 
circumscription in the cases of well-founded theories. 

Another point we have to mention is that, as in the original circumscription, 
a complete syntactic characterization of satisfiability of abstract circumscription 
remains to be decided. What we have provided is a sufficient condition for the 
satisfiability of abstract circumscription, i.e. to-categoricity. This, though not a 
syntactic characterization, has been well studied in classical model theory. 

In summary, we have improved the satisfiability of the original circumscrip- 
tion without deviating too far from the minimal model semantics. 
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