
Deutsches
Forschungszentrum
fOr KOnstliche
Intelligenz GmbH

Research
Report

RR-91-02

The Complexity of Existential Quantification

in Concept Languages

Francesco Donini , Bernhard Hollunder,
Maurizio Lenzerini , Alberto Marchetti Spaccamela,

Daniele Nardi , Werner Nutt

January 1991

Deutsches Forschungszentrum fOr KOnstliche Intelligenz
GmbH

Postfach 20 80
0 -6750 Kaiserslautern, FRG
Tel. : (+49631) 205-32 11/13
Fax: (+49631) 205-3210

Stuhlsatzenhausweg 3
0-6600 Saarbrucken 11, FRG
Tel.: (+49681) 302-5252
Fax: (+49681) 302-5341

Deutsches Forschungszentrum
fur

KOnstliche Intelligenz

The German Research Center for Artificial Intelligence (Deutsches Forschungszentrum fOr
KOnstliche Intelligenz, DFKI) with sites in Kaiserslautern and SaarbrOcken is a non-profit
organization which was founded in 1988. The shareholder companies are Atlas Elektronik,
Daimler Benz, Fraunhofer Gesellschaft, GMD, IBM, Insiders, Mannesmann-Kienzle, Philips,
SEMA Group Systems, Siemens and Siemens-Nixdorf. Research projects conducted at the
DFKI are funded by the German Ministry for Research and Technology, by the shareholder
companies, or by other industrial contracts.

The DFKI conducts application-oriented basic research in the field of artificial intelligence and
other related subfields of computer science . The overall goal is to construct systems with
technical knowledge and common sense which - by using AI methods - implement a problem
solution for a selected application area. Currently. there are the following research areas at the
DFKI:

o Intelligent Engineering Systems
o Intelligent User Interfaces
o Intelligent Communication Networks
o Intelligent Cooperative Systems.

The DFKI strives at making its research results available to the scientific community. There exist
many contacts to domestic and foreign research institutions. both in academy and industry. The
DFKI hosts technology transfer workshops for shareholders and other interested groups in
order to inform about the current state of research .

From its beginning, the DFKI has provided an attractive working environment for AI researchers
from Germany and from all over the world. The goal is to have a staff of about 100 researchers at
the end of the building-up phase.

Prof. Dr. Gerhard Barth
Director

The Complexity of Existential Quantification in
Concept Languages

Francesco Donini, Bernhard Hollunder, Maurizio Lenzerini,
Alberto Marchetti Spaccamela, Daniele Nardi, Werner Nutt

DFKI-RR-91-02

· © Deutsches Forschungszentrum fOr KOnstliche Intelligenz 1991

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to
copy in whole or in part without payment of fee is granted for nonprofit educational and research purposes
provided that all such whole or partial copies include the following: a notice that such copying is by
permission of Deutsches Forschungszentrum fOr KOnstliche Intelligenz, Kaiserslautern, Federal Republic
of Germany; an acknowledgement of the authors and individual contributors to the work; all applicable
portions of this copyright notice. Copying, reproducing, or republishing for any other purpose shall requ ire
a licence with payment of fee to Deutsches Forschungszentrum fOr KOnstliche Intelligenz.

The Complexity of Existential
Quantification in Concept Languages

Francesco M. Donini* Bernhard Hollundert

Maurizio Lenzerini* Alberto Marchetti Spaccamela+
Daniele Nardi* Werner Nutt t

Abstract

Much of the research on concept languages, also called terminologi­
cal languages, has focused on t he computational complexity of sub­
sumption. The intractability results can be divided into two groups.
First, it has been shown that extending the basic language F £- with
constructs containing some form of logical disjunction leads to co-NP­
hard subsumption problems. Second, adding negation to F £- makes
subsumption PSPACE-complete.

The main result of this paper is that extending F £- with unre­
stricted existential quantification makes subsumption NP-complete.
This is the first proof of intractability for a concept language contain­
ing no construct expressing disjunction- whether explicitly or implic­
itly. Unrestricted existential quantification is therefore, alongside dis­
junction, a source of computational complexity in concept languages.

*Dipartimento di Informatica e Sistemistica, Universita di Roma "La Sapienza", via
Salaria 113, 1-00198 Roma, Italy

tGerman Research Center for Artificial Intelligence (DFKI), Postfach 2080, D~6750
Kaiserslautern, Germany

tDipartimento di Matematica, Universita de L'Aquila, 1-67100 L'Aquila, Italy

Contents

1 Introduction 3

2 Preliminaries 5

3 U nsatisfiability in ALE 8

4 Subsumption in FLE- and ALE 12

5 Conclusion 18

2

1 Introduction

The interest in concept languages, also called terminological languages, origi­
nated from the study of knowledge representation languages, such as KL-ONE

[BS85]. In contrast to earlier formalisms like frames and semantic networks,
concept languages (see [BL84, Neb90, NS90]) have the advantage of a Tarski
style declarative semantics that allows them to be conceived as sublanguages
of predicate logic. In these languages, a concept is built up of two kinds
of symbols, primitive concepts and roles, which can be combined by various
language constructs yielding complex concepts. Given a domain, concepts
are interpreted as subsets of this domain, and roles are interpreted as bi­
nary relations. Different languages are distinguished by the constructs they
provide.

Reasoning about concepts is based on subsumption: a concept C is sub­
sumed by a concept D if in every interpretation C denotes a subset of the set
denoted by D. The subsumption relation implicitly defines a taxonomy of
concepts, which is used in designing and running knowledge-based systems.
Moreover, subsumption plays a key role in terminological reasoning in that
other deductive tasks can be reduced to it. For instance, a subsumption
checker can detect unsatisfiable concepts (also called incoherent concepts),
i.e. concepts which denote the empty set in every interpretation, since a con­
cept is unsatisfiable if and only if it is subsumed by the empty concept ~.
Analogously, equivalence and disjointness of two concepts can be reduced to
subsumption.

The central role of subsumption in terminological reasoning has motivated
the study of its computatioria.J complexity in several concept languages. The
goal was to identify languages for which the subsumption problem can be
computed efficiently while retaining a great expressive power.

Complexity analysis of subsumption originated with the seminal paper by
Brachman and Levesque [BL84]. They gave a polynomial algorithm for the
small language F£-, which includes concept conjunction, universal quan­
tification on roles, and a restricted form of existential quantification. They
also showed that by adding role restrictions to F £-, yielding the language
called F £, subsumption becomes co-NP-hard. Later, Nebel [Neb88] consid­
ered the extension of F £- with role conjunctions and number restrictions,
which again gives rise to a co-NP-hard subsumption problem.

In a recent paper Schmidt-SchauB and Smolka [SS91] investigate the lan­
guage A£C, that arises from FL- by adding negation of concepts . They pro­
vide a decision procedure for ALC that is based on a calculus of constraints.
By exploiting the features of this calculus they proved that subsumptionand
unsatisfiability in A£e are PSPACE-complete.

In addition they showed that unsatisfiability is co-NP-complete for a lan-

3

guage obtained from F £- by adding negation of primitive concepts and union
of concepts. This result is based on the observation that unsatisfiability in a
language with unions and negation of primitive concepts is at least as hard as
unsatisfiability in propositional logic. As noticed in [SS91], role restrictions
like in F £ contain an implicit form of disjunction. Finally, disjunction arises
also from number restrictions [HNS90].

From these results it became clear that the presence of disjunctive con­
structs, such as union of concepts, role restriction, and number restriction,
leads to co-NP-hardness. However, it was unknown whether other constructs
would make reasoning intractable. In particular, it was an open problem
whether subsumption and unsatisfiability were intractable for the language
A£t', which extends F £- with unrestricted existential quantification on roles
and negation of primitive concepts [SS88].

The key result presented in this paper is that subsumption and unsat­
isfiability in A£t' are NP-hard. In fact, subsumption is NP-hard for the
simpler language F £t'-, which extends F £- with unrestricted existential
quantification on roles. F £t'- is the first concept language not including
disjunctive constructs to be proved intractable. Moreover, in contrast with
the previous intractability results, subsumption in F £t'- is proved NP-hard
rather than co-NP-hard. Therefore, unrestricted existential quantification
must be considered, alongside disjunction, a source of computational com­
plexity in concept languag~s. Notice that since F £t'- is a sublanguage of
F£, subsumption in F£ is not only co-NP-hard, but also NP-hard.

A second result presented in this paper is that subsumption and unsatis­
fiability in A£t' have the same computational complexity, namely, they can
be solved in nondeterministic polynomial time. The NP-easiness of unsatis­
fiability of A£t' was proved in [SS91]. However, the result on subsumption
is somewhat unexpected for the following reason. Since C is subsumed by
D if and only if C n -,D is unsatisfiable (where n denotes conjunction of
concepts and -, denotes negation) subsumption can be rephrased in terms of
unsatisfiability. If D contains conjunction, which is a basic construct in A£t',
then disjunction is introduced into C n -,D via negation. Surprisingly, the
disjunction present in unsatisfiability problems of this kind does not cause
an increase in complexity.

To prove our results we adopt a rule-based calculus for deciding the un­
satisfiability of concepts that is similar in spirit to the one used in [SS91]
but employs a more concise notation, that points out its similarity to the
tableaux calculus for first order predicate logic [Smu68]. In fact, if one trans­
lates concepts into logical formulae and applies to them the tableaux calculus
with a suitable control strategy, one essentially obtains the calculus described
here.

The results reported in the present paper not only solve an open problem

4

but also provide an intuitive understanding of the computational complexity
of concept languages. Informally, we now can identify disjunction and ex­
istential quantification as tw.o different sources of complexity. The presence
of the former is reflected by co-NP-hardness results, whereas the presence
of the latter is expressed in NP-hardness results. The PSPACE-hardness of
subsumption in A£e can then be attributed to the interaction of both.

The above considerations do not take into account another source of com­
plexity in terminological reasoning which already shows up with the most
simple languages. Recently, Nebel has proved that subsumption in F£- be­
comes co-NP-hard if concepts are given by a so-called terminology, i.e. a set
of definitions of concepts [Neb90]. In the present paper, we assume that con­
cepts are given as expressions, and therefore we do not deal with the problem
of handling concept definitions.

The rest of the paper is organized as follows: in the next section we
formally define the syntax and the semantics of F £E- and A£E, and sketch
a calculus for deciding unsatisfiability of A£E-concepts. In Section 3, we
show that unsatisfiability in A£E is an NP-complete problem. In Section 4,
we first prove that subsumption in F£E- is NP-hard, and then we present
a nondeterministic polynomial-time algorithm for subsumption in A£E.

2 Preliminaries

In this section we provide the essential notions about the concept languages
considered in this paper; for a general presentation see [NS90].

We start by considering the language F£- [BL84]' where concepts (de­
noted by the letters C and D) are built out of primitive concepts (denoted
by the letter A) and roles (denoted by the letter R) according to the syntax
rules

C,D ---+ A I TIC n D I VR.C I :JR.T,
where T denotes the universal concept.

An interpretation I = (~I , .I) consists of a set ~I (the domain of I) and
a function .I (the interpretation function of I) that maps every concept to a
subset of ~I and every role to a subset of ~I x ~I such that the following
equations are satisfied:

TI

(C n D)I

(VR.C)I

(:JR. T)I

~I

CInDI

{a E ~I I Vb.(a,b) E RI -+ bE CI }

{a E ~I I :Jb.(a,b) E RI}.

5

An interpretation T is a model for a concept C if C T is nonempty. A
concept is satisfiable if it has a model and unsatisfiable otherwise. We say
that C is subsumed by D if CT ~ DT for every interpretation T. We say that
C is equivalent to D if CT = DT for every interpretation T.

The first extension of F £- that we consider results from the addition
of a suitable construct for expressing unrestricted existential quantification
over roles. The resulting language is called F ££-. Its syntax is obtained by
extending the rules for F £- with

C, D ---+ ~R.C.

The semantics of the new construct is defined by

A further extension to F ££- is obtained by providing one symbol for a
special primitive concept, namely the empty concept, and by allowing nega­
tion of primitive concepts. The resulting language is called A££. Its com­
plete syntax is as follows:

C, D ---+ A I T I ..1 I -,A len D I V R.C I 3R.C,

where the semantics of the additional constructs is defined by

Notice that an A££-concept may be unsatisfiable (for example, An -,A
is clearly unsatisfiable). On ·the contrary, every F ££--concept is satisfiable,
since no negative information can be expressed in this language [SS91].

In A££ only a restricted form of negation is available. If a language allows
for complements of arbitrary concepts, unsatisfiability and subsumption can
be reduced to each other. We denote the complement of an arbitrary concept
C as -,C, and we interpret -,C as ~T \ CT. Now, C is unsatisfiable if and
only if C is subsumed by ..1, and C is subsumed by D if and only if C n -,D
is unsatisfiable. Notice that, in general, even if C and Dare F ££- -concepts
(respectively, A££-concepts), C n -,D is not an F££--concept (resp. A££­
concept).

We now turn to our rule-based calculus for deciding the satisfiability of
A££-concepts. The calculus operates on constraints consisting of variables,
concepts, and roles. We assume that there exists an alphabet of variable
symbols, which will be denoted by the letters x, y, and z. A constraint is a
syntactic object of one of the forms

x: C, xRy,

6

where C is a concept and R is a role.
Let I be an interpretation. An I -assignment a is a function that maps

every variable to an element of tJ.I. We say that a satisfies x: C if a(x) E CI,
and a satisfies xRy if (a(x), a(y)) E RI. A constraint G is satisfiable if
there is an interpretation I and an I-assignment a such that a satisfies
c. A constraint system S is a finite, nonempty set of constraints. An I­
assignment a satisfies a constraint system S if a satisfies every constraint in
S. A constraint system S is satisfiable if there is an interpretation I and an
I-assignment a such that a satisfies S.

The following proposition as well as the other propositions in this section
can easily be derived from the results reported in [SS91 J.

Proposition 2.1 A concept C is satisfiable if and only if the constraint sys­
tem {x: C} is satisfiable.

Our calculus starts with a constraint system S = {x: C}, and, in sub­
sequent steps, constraints are added to S according to a set of propagation
rules, until either a contradiction is generated or a model of C can be obtained
from the resulting system. The propagation rules are:

1. S -tn {x: C1 , x: C2 } uS

if x: C 1 n C2 is in S, and either x: C 1 or x: C2 is not in S

2. S -t3 {xRy, y: C} u S

if x: 3R.C is in S, there is no z such that both xRz and z : C
are in S, and y is a new variable

3. S -tv {y: C} U S

if x: V R.C is in S, xRy is in S, and y: C is not in S .

. Proposition 2.2 Let S be a constraint system. If S' is obtained from S by
the application of a propagation rule, then S is satisfiable if and only if S' is
satisfiable.

A constraint system is said to be complete if no propagation rule applies
to it. Note that, up to variable renaming, only one complete constraint
system can be derived from {x: C}. A clash is a constraint system having
either the form {x: l..} or the form {x: A, x: -,A}.

Proposition 2.3 If C is an A£E -concept, then after finitely many appli­
cations of the propagation rules one obtains a complete · constraint system S
from {x: C}. Moreover, S is satisfiable if and only if it contains no clash.

7

By virtue of the above properties, the calculus can be easily turned into a
decision procedure that checks an AC£-concept C for unsatisfiability by ver­
ifying whether the complete constraint system derived from {x: C} contains
a clash.

Notice that, due to the form of the -t3-rule, the number of variables
generated by the procedure may be exponential in the size of C. For example,
it is easy to see that the complete system derived from {x: C}, where C is of
the form

contains at least 2n + 1 variables.

3 U nsatisfiability in ALE

In this section we prove that unsatisfiability in AC£ is an NP-complete prob­
lem. In order to show this, we need to refine the notion of constraint system
by identifying particular subsets of a constraint system called traces. Traces
are built using trace rules, which are defined as follows.

The trace rules consist of the -tn-rule and the -tv-rule given in the pre­
vious section, together with the rule

S -tT3 {xRz, y: C} U S

if x: 3R.C is in S, there is no constraint of the form xRz in S,
and y is a new variable.

The difference between the -t3-rule and the -tT3-rule is that the latter is
applied only once for a variable x. We are thus compelled to make a nonde­
terministic choice amongst the constraints of the form x: 3R.C.

Let C be an AC£-concept. A constraint system T is a trace of {x: C} if
T is obtained from {x: C} by the application of the trace rules. It follows
from the results in [SS91] that C is unsatisfiable if and only if there exists a
trace of {x: C} that contains a clash. Therefore, to prove that a concept is
unsatisfiable, it is sufficient to guess one trace containing a clash out of the set
of all possible traces of {x: C}. Since the size of a trace of {x: C} is bounded
polynomially by the size of C, it follows that there exists a nondeterministic
polynomial-time algorithm for checking the unsatisfiability of AC£-concepts.

To prove that deciding the unsatisfiability of AC£-concepts is an NP-hard
problem we introduce the following set traversal problem. A positive clause
is a finite set of positive integers. If M = {MI , ... , Mm} is a finite set of
positive clauses, then a traversal of M is a finite set of positive integers N
such that N n M/ is a singleton for 1 E l..m. The set traversal problem is

8

defined as follows: given a fin ite set M of positive clauses, decide whether
M has a traversal or not.

Theorem 3.1 The set traversal problem is NP-complete.

Proof. It is easy to see that the problem is a reformulation of ONE-IN-

THREE 3SAT (see [GJ79], p. 259). 0

We now show that the set traversal problem is reducible to unsatisfiability
of A££-concepts in polynomial time. T he reduction consists in associating
to every set of positive clauses M an A££-concept CM such that M has
a traversal if and only if C M is unsatisfiable. The key idea is to relate the
traversals of M to those traces of {x: C M} that contain a clash.

In the following we assume R to be a fixed role. Let M = {M1 , ..• , M m}
be a set of positive clauses, and let n be the maximum of the numbers
occurring in the clauses of M. We translate M into the concept

The c1's are inductively defined through the equations

C j _ { :JR.Ct+l
1 -)

YR.C1+1

ifj E M/
if j f/:. MI

and C j _ { :JR.C~+/+l . if j E MI
+1 -)

m Y R.Cm +I+1 if j f/:. M,

for I E l..m and by the equation C~m+l = T. The concept Dl is defined by
the equations

and

for I E l..m and by the equation D 2m+1 = .i.
Observe that for every number j occurring in M there is a corresponding

concept Cf, and for every clause M/ E M there are corresponding levels I
and m + I in the Cf's. The number j is present in the Ith clause if and only
if there is an existential quantifier in the concept Cf at level I and at level
m + 1. As we shall see later the two layered construction of C M is crucial for
the correctness of the reduction. The concept Dl is designed in such a way
that a clash for {x: CM} can only occur in a trace at level 2m + 1.

As an example, consider the following instance of the set traversal prob­
lem:

M = {{1 ,3,5}, {2,4},{4,5}}.

The corresponding A££-concept CM is given by the conjunction of

ct = :JR.VR.VR.:JR.VR.VR.T

9

cf VR.3R.VR.VR.3R.VR.T

Ci 3R.VR.VR.3R.VR.VR.T

ct v R.3R.3R.V R.3R.3R. T

Ct 3R.VR.3R.3R.VR.3R.T

Dl VR.VR.VR.VR.VR.VR.1...

Notice that the conjunction of the above concepts is unsatisfiable if and
only if the interplay of the various existential and universal quantifiers, rep­
resented by a trace, forces one object to belong to the extension of 1... As we
said before, the idea of the reduction is to create a correspondence between
such a trace and a traversal of M.

In order to formally characterize such a correspondence, we need to define
the notion of activeness of a concept in a trace. Let T be a trace and C be
a concept. We say that C is active in T if C is of the form 3R.D and there
are variables y, z such that T contains the constraints y: C, Y Rz, and z : D.
Therefore, an existentially quantified concept 3R.D is active in T if the ---+3-
rule has been applied to some constraint y: 3R.D in T. Intuitively, if ct is
active in a trace of {x: C M} containing a clash, then j belongs to a traversal
of M.

Lemma 3.2 Let T be a trace of {x:CM }.

1. Suppose ct is active in T. Then for all I E 1 .. k the concept C/ is active
in T if it is of the form 3R.C/+1 •

2. If T contains a clash, then for every I E 1..2m there exists exactly one
j such that C/ is active in T.

Proof. 1. It suffices to show the following for every k E 1.. (2m + 1): if T
contains the constraint Yk: Ck for some variable Yk then T contains constraints
YI: ct and YIRYI+l for alII E 1..(k - 1).

We proceed by induction on k. For k = 1 the claim trivially holds.
Suppose the claim holds for a given k. Assume that Yk+l: Ck+! is in T. We
distinguish two cases.

If ct = 3R.Ct+l' then the constraint Yk+l: Ct+l has been introduced
by the ---+T3-fule. From the conditions of application of this rule, it follows
that the constraint Yk: Ck is in T for some variable Yk. From the inductive
hypothesis we conclude that there are constraints YI: C/ and YIRYI+! in T
for all I E 1..(k - 1). In addition, the application of the ---+T3-rule has also
introduced the constraint YkRYk+l.

If ct = V R.Ct+l' then the constraint Yk+l: ct+! has been introduced by
the ---+v-rule. From the conditions of application of this rule, it follows that

10

the constraints Yk: ek and YkRYk+1 are in T for some variable Yk. Together
with the inductive hypothesis this yields the claim for k + l.

2. From the definition of traces it is easy to see that there is at most
one j such that et is active in T. It remains to show that there is at least
one such j. Assume on the contrary that for some I E 1..2m there is no j
such that et is active in T. Then for every k E (l + 1) .. (2m + 1) there is
no constraint in T of the form y: et or y: D k • Hence T does not contain the
only possible clash y: D 2m+l • 0

U sing the above properties, we are able to prove the correctness of our
reduction.

Theorem 3.3 A set M of positive clauses has a traversal if and only if eM
is unsatisfiable.

Proof. Suppose M = {MI , ... , Mm} is a set of positive clauses and
eM = eI n ... n er n DI is its translat ion.

":::}" Let N be a traversal of M . To prove that eM is unsatisfiable,
we show that there exists a trace T of {Xl : eM} that contains a clash. To
obtain T we inductively define a sequence of traces TI of {Xl : eM}, where
IE 1..(2m + 1), such that TI ~ T1+I and T2m+1 = T. Let

TI = {Xl: et I j E N} U {Xl: Dd

and

Ti+l = TI U {xIRXl+d U {XI+ l : et+l I j E N} U {XI+l: DI+d.

Obviously, T = T2m+1 contains a clash, because D2m+1 = ~.
To show that T is a trace we prove that TI+l can be obtained from TI

by application of the trace rules. Since N is a traversa.l, there is exa.ctly one
kEN such that et = ~R.el~l' Hence,

TI -+T3 T(= TI U {xIRxI+I' XI+I: el~l}

by application of the -+T3-rule. Since we have et = V R.e/+1 for j E N \ {k}
and DI = V R.D1+1 , it is easy to see that T1+1 can be obtained from T/ by
application of the -+y-rule.

"~" If eM is unsatisfiable, then there exists a trace T of {x: eM} such
that T contains a clash and for every I E 1..2m there exists exactly one j
such that et is active in T .

Let
N = {j I e~+1 is active in T for some 1 E l .. m}.

We show that N is a traversal. Let MI be a clause in M.

11

For every I E l..m, there exists a j such that C~+I is active in T. Hence
we have j E N. Furthermore, C~+I = 3R.C~+1+1 by the definition of active
concepts. By construction of CM, we have that j E MI. Thus j E N n MI.

Suppose there are i, j such that i, j E N n MI. Now we exploit the two­
layered construction of eM' Since i, j E N, by definition of N there are h, k
such that C:"+h and C~+k are active in T. Since i, j E MI, by construction

of CM we have Cf = -:JR.Cf+1 and Cf = -:JR.Cf+1' By 3~2.1, we know that Cf
and cf are active in T. Hence i = j by 3.2.2. 0

We can now state the main theorem of this section.

Theorem 3.4 Unsatisfiability in ACE is NP-complete.

Proof. The claim follows from the existence of a nondeterministic polyno­
mial algorithm for the problem (see [SS91]), and from the observation that ,
for every set of positive clauses M, the concept CM is in ACE. 0

4 Subsumption in :F £E- and A£E

In this section we show that subsumption is NP-complete both in ACE and
:F CE-. Let us first consider NP-hardness.

Theorem 4.1 Subsumption is NP-hard both in ACE and :F CE- .

Proof. The claim holds with regard to ACE, since ACE contains the
empty concept J.. and therefore unsatisfiability is a special case of subsump­
tion.

For :F CE- , observe that G M = Cf n ... n Cf n D1 is unsatisfiable if and
only if Cfn ... nCf is subsumed by ,D1 . The claim holds, since Gfn .. . nGf is
in :F CE- and ,D1 can be rewritten to the equivalent concept E1 , inductively
defined by

and

for I E l..m and E2m+1 = T. Obviously, E1 is in :F CE-. o
Let us now turn to the NP-easiness of subsumption in ACE and :F CE- .

Since :F CE- is a sublanguage of ACE, it is sufficient to consider subsump­
tion in ACE. In order to prove that subsumption in ACE can be solved in
nondeterministic polynomial time, we reduce subsumption between D and
C to unsatisfiability of C n ,D.

In general, the concept C n ,D is not in ACE, since ACE does . not
allow for negation of arbitrary concepts. To cope with arbitrary negations

12

we consider the language ACe [SS91], which is an extension of ACE with
complements and unions:

C,D -t -,C I CuD.

As already mentioned, the interpretation of complements is given by (-,C)I =

~ I \ cI . Unions are interpreted such that (C u D)I = CI U DI.
As in [SS91] we single out a special class of concepts as normal forms: a

concept C is called simple if negation inside C occurs only in front of primitive
concepts, i.e. negations have the form -,A. An arbitrary ACe-concept can
be transformed in linear time into an equivalent simple concept by means of
the following rewriting rules:

-,T -t .1

-,.1 -t T

-,-,C -t C

-,(C n D) -t -,C u-,D

-,(C U D) -t -,C n-,D

-,(VR.C) -t ~R.-,C

-,(~R.C) -t VR.-,C.

To check satisfiability of simple ACe-concepts a new rule dealing with
union must be added to the propagation rules 1- 3.

4. S --+u {x:D}US

if x: C U C' is in S, neither x: C nor x: C' is in S, and D = C
or D = C'.

In contrast to the rules 1- 3, the --+u-rule is nondeterministic. Therefore
several complete constraint systems can be derived from {x: C} if C is a
'simple ACe-concept that contains unions. To decide the satisfiability of C
all complete constraint systems that can be derived from {x: C} must be
inspected, which are- up to variable renaming- finitely many. From now
on we implicitly refer to the set of rules 1- 4 as propagation rules. The next
proposition follows immediately from results in [SS91].

Proposition 4.2 Let C be a simple ACe-concept. Then C is satisfiable if
and only if there is a complete clash free constraint system that can be derived
from S with the propagation rules.

Based on the above theorem, in [SS91] a PSPACE-algorithm is presented
for the satisfiability problem in ACe. The basic idea underlying the al­
gorithm is to generate traces, which require polynomial space, rather than

13

complete constraint systems, that may have exponential size. The A.Ce-trace
rules consist of the trace rules defined in the previous section together with
the -+u-rule. From now on we implicitly refer to ACe-trace rules as trace
rules and to constraint systems generated by means of these rules as traces.

As shown in [SS91], satisfiability in ACe is PSPACE-complete and hence
we do not expect it to be solvable in nondeterministic polynomial time. In­
tuitively, PSPACE-hardness can be explained by the presence of two sources
of complexity: unrestricted existential quantification, that may lead to com­
plete constraint systems of exponential size, and union, that may require the
generation of an exponential number of complete constraint systems.

In the sequel we show that, when G and D are ACE-concepts, due to
the special form of the ACe-concept G n -'D, union does not act as an
additional source of complexity. For this purpose we set up the s-rule calculus
that operates on sets of traces and behaves nondeterministically only for
existential quantification. It is interesting to observe that the s-rules provide
an alternative method for deciding the satisfiability of ACC-concepts.

The s-rules are (7 denotes a set of traces):

1. {T} U 7 -+~ {T'} U 7

if T ~ 7 and T -+. T' where * E {n, T:3, V}

2. {T} U 7 -+~ {T', Til} U 7

if T ~ 7, x: G U C' is in T, neither x: G nor x: G' is in T and
T' = {x: G} U T, Til = {x : G'} U T.

The s-rules eliminate the nondeterminism introduced by unions, since the two
traces that can be obtained by an application of the -+u-rule are put both into
the new set of traces. The nondeterminism in choosing a constraint to which
the -+T3-rule applies persists . The following lemma states two properties of
the s-rule calculus that will be used in the sequel.

Lemma 4.3 Let G be a simple ACe-concept.

1. Every s-rule derivation starting with {{x: G}} terminates.

2. Suppose that 7 has been derived from { {x: G}} with the s-rules. Th en
for every complete constraint system S derived from {x: G} with the
propagation rules there is some T E 7 such that - up to variable renam­
ing- T is a subset of S.

Proof. 1. Follows from the termination of the propagation calculus.
2. Follows by induction on the length of the derivation. 0

Next we prove correctness and completeness of the s-calculus, i.e. we
show that a simple ACC-concept G is unsatisfiable if and only if {{x: G} }

14

can be transformed by the s-rules into a set 7 such that each trace in 7
contains a clash. The critical steps in an s-rule derivation are those using
the --+h-rule, since they introduce nondeterminism. The idea behind the
completeness proof is to use the clashes in complete constraint systems to
guide the application of the s-rules.

Let S be a constraint system and x be a variable occurring in S. A vari­
able y is a successor of x in S if S contains constraints of the form xR1Yl,
y1R 2Y2, . .. , Yn-lRnY, where n ~ O. Note that every variable in S is a succes­
sor of itself. We say that x leads to a clash in S if x has a successor Y in S
such that S contains either the constraint y: ..L or the constraints y: A, y: -,A.

Let C be a simple unsatisfiable ACC-concept and let S be the set of all
complete constraint systems obtainable from {x: C} with the propagation
rules. Since C is unsatisfiable, every S E S contains a clash. Suppose 7 is
a set of traces that are derived from {{x: C} }. We say that 7 is covering if
for every T E 7 and S E S with T ~ S every variable occurring in T leads
to a clash in S.

Lemma 4.4 Let C be a simple unsatisfiable ACC -concept. Suppose that 7
has been obtained from {{x: C}} by means of the s-rules. If 7 is covering
and some s-rule is applicable to 7, then there is some 7' such that 7 --+s 7'
and 7' is covering.

Proof. Suppose 7 is covering and 7' is derived from 7 by application of
the --+~-, --+~-, or --+~-rule. Then 7' is covering, since neither of these rules
introduces new variables. . .

Suppose the --+h-rule is applicable to 7, and the --+~-, --+}, and --+~-
rules are not applicable. Then there is aTE 7 such that y: 3R.D is in T
and no constraint yRz is in T .

Let S be a complete constraint system such that T ~ S. The --+n-, --+",-,
and --+u-rules are not applicable to T. Therefore every constraint of the form
y: E contained in S is also contained in T.

Let y: 3R1.D}, . .. ,y: 3Rn.Dn be all constraints of the form y: 3R.D oc­
curring in T. For i E l..n let Ti = T U {yRizi' Zi: Dd, where Zl, .. . , Zn
are distinct new variables. We claim that there is a Ti such that for every
complete constraint system S with Ti ~ S the variable Zi leads to a clash
in S.

Assume that this is not the case. Then there exist complete constraint
systems S}, . .. , Sn with Ti ~ Si such that Zi does not lead to a clash in Si. For
i E l..n let S: ~ Si be the constraint system that consists of all constraints
in Si in which a successor of Zi occurs. Obviously, S: is complete and clash
free. Next, consider an arbitrary complete constraint system S with T ~ S.
Let S' be obtained from S by removing all constraints in which a successor

15

of y occurs that is different from y. Define 5" = 5' u 5~ u ... u 5~. The
system 5" is complete and contains T. By construction, y is a variable in
T that does not lead to a clash in 5". We thus have a contradiction to our
assumption, since 7 is not covering.

Hence there is some Ti with the desired property. Let 7' be obtained
from 7 by replacing T with Ti . Then 7' is covering and 7 -+h 7'. 0

Using the above lemma we can now prove correctness and completeness
of the s-rules.

Theorem 4.5 Let C be a simple ACe-concept. Then C is unsatisfiable if
and only if { {x: C}} can be transformed by the s-rules into a set T such that
each trace in T contains a clash.

Proof. "=>" Suppose 7 has been derived from {{x: C}} by means of
the s-rules. If every element of 7 contains a clash, then by Lemma 4.3
every complete constraint system derived from {x: C} contains a clash. By
Theorem 4.2, the concept C is unsatisfiable.

"<=" Suppose C is unsatisfiable. Then every complete constraint system
derived from {x: C} contains a clash. Hence {{x: C}} is covering by defini­
tion. Since every s-rule derivation terminates, Lemma 4.4 guarantees that
we can derive from { {x: C}} a set 7 of traces that is covering and to which
no s-rule applies.

Let T be a trace in such a T and S be a complete constraint system
derived from {x: C}, with T ~ S. Since no s-rule is applicable to 7 there
exists in T a variable y that has no other successor in 5 than itself. For
the same reason, every constraint of the form y: D contained in S is also
contained in T. Since y leads to a clash in 5, the system 5 contains the
constraint y: -1 or constraints of the form y: A, y: -,A. These constraints are
also contained in T. Since T was an arbitrary element of T, every element
of 7 contains a clash. 0

The above theorem directly suggests a nondeterministic method for de­
ciding the unsatisfiability of an ACe-concept C. The method generates a
number of traces that is-in the general case- exponential in the size of C.
This is not surprising, since unsatisfiability in ACe is PSPACE-complete.

When checking subsumption between ACE-concepts D and C, though, a
better result can be achieved: in particular, we now show that the number
of traces generated by the application of s-rules is bounded by the size of D.
Since traces are of polynomial size, the s-rules provide a nondeterministic
polynomial time method for checking subsumption in ACE.

The proof heavily relies on the structure of traces that arise when checking
subsumption. A constraint in a trace T is closed if it is of the form

16

• x: C n D, and both x : C and x: D are in T;

• x: V R.C, and for all y such that xRy is in T, y: C is in T;

• x: 3R.C, and there exist y, R' such that xR'y is in T;

• x: CUD, and either x: C or x: D is in T.

Intuitively, a constraint is closed if no trace rule applies to it. A constraint
in T is open if it is not closed.

We say that a concept C contains intersections or unions if the symbols
"n" or "U", respectively, occur in the string C. Note that if D is an ACE­
concept, then by rewriting -.D into a simple concept we obtain a concept D'
that contains no intersection. Moreover, {x: C n D'} is un satisfiable if and
only if {x: C, x: D'} is unsat isfiable.

Lemma 4.6 Let C, D be ACE -concepts and let D' be obtained by rewriting
-.D to a simple ACe-concept. Let T be a trace derived from {x: C, x: D'}.
Then there is at most one open constraint y: E in T such that E contains
unions. If there is such a constraint then E contains no intersections.

Proof. By induction on the lenght of the derivation. The base case is
obvious, since C contains no unions and D' contains no intersections. Let
T be a trace satisfying the inductive hypothesis. We show that every trace
T' obtained from T by applying a trace rule to some constraint y: E satisfies
the inductive hypothesis, too.

Suppose the --+n-rule is applied to y: EnE'. Then neither E nor E'
contains unions, since EnE' contains an intersection. Hence neither of the
new constraints y: E, y: E' contains unions.

Suppose the --+T3-rule is appl ied to y: 3R.E, introducing yRz and z: E.
If E contains no unions then we are done. Otherwise, y: 3R.E is the only
open constraint in T that contains unions. Moreover, 3R.E contains no
intersections. In T' the constraint y: 3R.E is closed and z: E is the only open
constraint that contains unions. Moreover, E contains no intersections.

Suppose the --+v-rule is applied to y: V R.E and yRz, introducing z: E.
Then y: V R.E is open in T. If y: V R.E contains unions, then there is no
other open constraint containing unions. Since T is a trace, z is the only
variable such that yRz is in T. Hence, y:VR.E is closed in T' and z:E is
the only open constraint in T' containing unions. Moreover, E contains no
intersections, since V R.E contains no intersections.

Suppose the --+u-rule is applied to y: E U E'. Then y: E U E' is the only
open constraint in T containing unions. Hence, in the resulting system there
is at most one open constraint containing unions. Since E U E' contains no
intersections, neither E nor E' contains intersections. 0

17

From the preceding results we can conclude that checking subsumption
of ACE-concepts is ,NP-easy.

Theorem 4.7 Subsumption in ACE can be decided in nondeterministic poly­
nomial time.

Proof. Let C, D be ACE-concepts and let D' be obtained by rewriting
-,D to a simple ACe-concept. By Theorem 4.5, C is subsumed by D if and
only if { {x: C, x: D'} } can be transformed with the s-rules into a set of traces
each of which contains a clash. Since traces are of polynomial size, it suffices
to show that any s-rule derivation starting with {{ x: C, x: D'}} leads to a set
of traces T whose cardinality is bounded by the size of D'.

In fact, the only s-rule increasing the number of traces is the --t~-rule.
This rule can only be applied to an open constraint containing unions . By
Lemma 4.6, its application decreases the number of times that the union
symbol occurs in open constraints at least by one. Therefore in any deriva­
tion, the --t~-rule can be applied at most as many times as the union symbol
occurs in D'. D

Corollary 4.8 Subsumption in ACE and in F CE- is NP-complete.

5 Conclusion

In this paper we have considered the subsumption and the unsatisfiabil­
ity problem for two concept languages that extend the basic language F C­
[BL84].

We have proved that subsumption is NP-complete for the language F CE­
that extends F C- with unrestricted existential quantification. Since exis­
tential quantification can be realised through role restriction, Brachman and
Levesque's language FC contains FCE- as a sublanguage. We thus have
complemented their result that subsumption in FC is co-NP-hard [BL84] by
showing that it is also NP-hard.

In addition, we have shown that both unsatisfiability and subsumption
are NP-complete for the language ACE that is obtained from FCE- by
adding negation of primitive concepts. The question of the hardness of un­
satisfiability in ACE was raised by Schmidt-SchauB and Smolka [SS88], and
its answer provides a missing link among various complexity results for con­
cept languages. Former work identified disjunctive constructs that together
with concept conjunction give rise to intractability [BL84, Neb88, SS91],
whereas we have shown that the interplay of universal and existential quan­
tifiers is a cause of complexity, too. Therefore we conclude that in concept

18

languages there are two sources of complexity whose different nature is il­
lustrated by the fact that the first makes subsumption co-NP-hard and the
latter makes it NP-hard. The combination of them in the language A£C
introduced in [SS91] intuitively explains the PSPACE-corripleteness of sub­
sumption in A£C. Based on these results it has been possible to classify from
the point of view of the computational complexity of deduction a large set
of concept languages obtained by combining the most well-known constructs
[DLNN91].

Originally, complexity analysis of terminological reasoning was set up
with the goal to identify languages for which subsumption can be decided in
polynomial time [BL84]. Now it has turned out that practically all interesting
constructs in concept languages lead to intractability, and even the most
modest languages are affected by this problem when the use of terminologies
is allowed- which is often the case in implemented systems.

One might conclude from these results that terminological reasoning in
all its variants is infeasible. Such a conclusion would implicitly assume that
the complexity analysis of subsumption is intended to restrict the practical
use of concept languages to those where subsumption can be computed in
polynomial time. However, it is our opinion that the study of the complexity
of concept languages goes far beyond a mere classification of tractable and
intractable languages.

First of all, the results developed so far refer to the computational com­
plexity in the worst case, which represents only one aspect to be taken into
account when considering the practical use of concept languages. Notice that,
as pointed out in [Neb90], another aspect that deserves further investigation
is the characterization of the average cases occurring in practice. Second,
the techniques used for the complexity analysis have provided the formal
basis for the design of effective algorithms for computing subsumption and
unsatisfiability in a large class of concept languages [HNS90]. Finally, in the

. design of deduction procedures for knowledge representation systems based
on concept languages, one can take advantage of the knowledge about the
complexity of subsumption, by isolating difficult cases and using specialized
efficient algorithms whenever possible.

For all the above reasons, we believe that the research on the computa­
tional complexity of concept languages is a valuable support for the design
of knowledge-based systems embedding forms of terminological reasoning.

19

Acknowledgements

This work was partly funde,d by the ESPRIT Basic Research Action 3012
(Cornpulog), ESPRIT Basic Research Action 3075 (Alcorn), the Italian CNR
under Progetto Finalizzato Sisterni Inforrnatici e Calcolo Parallelo, and the
German Bundesrninisteriurn fur Forschung und Technologie under grant ITW
8903 0,

20

References

[BL84] R. J. Brachman, H. J. Levesque. "The tractability of subsump­
tion in frame based descript ion languages." Proceedings of the
4th National Conference of the AAAI, pp. 34- 37, Austin, Tex.,
1984.

[BS85] R. J. Brachman, J. Schmolze, "An overview of the KL-ONE
knowledge representation system." Cognitive Science, 9 (2), pp.
171-216, 1985.

[DLNN91] F.M. Donini, M. Lenzerini, D. Nardi, W. Nutt. "The complexity
of concept languages." To appear in the Proceedings of the 2nd
International Conference on Principles of Knowledge Represen­
tation and Reasoning, Boston, 1991.

[GJ79] M. R. Garey, D. S. Johnson. Computers and intra.ctability­
A guide to the theory of NP-completeness. Freeman, San Fran­
cisco, CaL, 1979.

[HNS90] B. Hollunder, W. Nutt, M. Schmidt-SchauB. "Subsumption al­
gorithms for concept description languages." Proceedings of the
9th ECAI, Pitman, London, 1990.

[LB87] H. J. Levesque, R. J. Brachman. "Expressiveness and tractabil­
ity in knowledge representation and reasoning." Computational
Intelligence, 3:78- 93 , 1987.

[Neb88] B. Nebel. "Computational complexity of terminological reasoning
in BACK." Artificial Intelligence, 34(3):371-383, 1988.

[Neb90] B. Nebel. Reasoning and revision in hybrid representation sys­
tems, Lecture Notes in Artificial Intelligence 422, Springer Ver­
lag, 1990.

[Neb90] B. Nebel. "Terminological reasoning is inherently intractable."
Artificial Intelligence, 43:235- 249, 1990.

[NS90] B. Nebel, G. Smolka. "Representation and reasoning with at­
tributive descriptions." In K.H. Blasius, U.Hedtstiick, C.-R.
Rollinger (editors), Sorts and types in artificial intelligence, Lec­
ture Notes in Artificial Intelligence 418, Springer Verlag, 1990.

21

[SS88]

[SS91]

[Smu68]

M. Schmidt-SchauB, G. Smolka. "Attributive concept descrip­
tions with complements." SEKI Report SR-88-21, FB Infor­
matik, Universitat Kaiserslautern, D-6750 Kaiserslautern, Ger­
many, 1988.

M. Schmidt-SchauB, G. Smolka. "Attributive concept descrip­
tions with complements." To appear in Artificial Intelligence, 47,
1991.

R. M. Smullyan. First-order logic. Springer Verlag, Berlin 1968.

22

Deutsches
Forschungszentrum
fOr KOnstliche
Intelllgenz GmbH

DFKI Publikationen

Die folgenden DFKI Veroffentlichungen
oder die aktuelle Liste von erhaltlichen
Publikationen konnen bezogen werden v~m
der oben angegebenen Adresse.

DFKI Research Reports

RR-90-01
Franz Bander
Terminological Cycles in KL-ONE-based
Knowledge Representation Languages
33 pages

RR-90-02
lIans-Jiirgen Biirckert
A Resolution Principle for Clauses with
Constraints
25 pages

RR-90-03
Andreas Dengel & Nelson M. Mattos
Integration of Document Representation,
Processing and Management
18 pages

RR-90-04
Bernhard Hal/under & Werner Null
Subsumption Algorithms for Concept Languages
34 pages

RR-90-05
Franz Baader
A Formal Definition for the Expressive Power of
Knowledge Representation Languages
22 pages

RR-90-06
Bernhard Hal/under
Hybrid Inferences in KL-ONE-based Knowledge
Representation Systems

. 21 pages

RR-90-07
Elisabeth Andre. Thomas Rist
Wissensbasierte Informationsprasentation:
Zwei BeiWge zurn Fachgesprach Graphik und KI:

DFKI
-Bibliothek­
Stuhlsatzenhausweg 3
6600 Saarbrlicken 11
FRG

DFKI Publications

The following DFKI publications or the list
of currently available publications can be
ordered from the above address.

1. Ein planbasierter Ansatz zur Synthese
illustrierter Dokumente

2. Wissensbasierte Perspektivenwahl fUr die
automatische Erzeugung von 3D­
ObjektdarsteUungen

24 pages

RR-90-08
Andreas Dengel
A Step Towards Understanding Paper Documents
25 pages

RR-90-09
Susanne Biundo
Plan Generation Using a Method of Deductive
Program Synthesis
17 pages

RR.-90-10
Franz Baader. Hans-Jiirgen Biirckert. Bernhard
Hal/under. Werner NUll. Jorg H. Siekmann
Concept Logics
26 pages

RR-90-11
Elisabeth Andre. Thomas Rist
Towards a Plan-Based Synthesis of Illustrated
Documents
14 pages

RR-90-12
Harold Boley
Declarative Operations on Nets
43 pages

RR-90-13
Franz Baader
Augmenting Concept Languages by Transitive
Closure of Roles: An Alternative to Terminological
Cycles
40 pages

RR-90-14
Franz Schmalhofer, Otto Kuhn, Gabriele Schmidt
Integrated Knowledge Acquisition from Text,
Previously Solved Cases, and Expert Memories
20 pages .

RR-90-1S
Harald Trost
The Application of Two-level Morphology to Non­
concatenative Gennan Morphology
13 pages

RR-90-16
Franz Baader, Werner NUll
Adding Homomorphisms to
Commutative/Monoidal Theories, or:
How Algebra Can Help in Equational Unification
25 pages

RR-91-01
Franz Baader, Hans-Jiirgen Burckert, Bernhard
Nebel, Werner NUll, and
Gert Smolka
On the Expressivity of Feature Logics with
Negation, Functional Uncertainty, and Sort
Equations
20 pages

RR-91-02
Francesco Donini, Bernhard Hol/under, Maurizio
Lenzerini, Alberto Marchetti Spaccamela, Daniele
Nardi, Werner NUll
The Complexity of Existential Quantification in
Concept Languages
22 pages

RR-91-03
BHollunder, Franz Baader
Qualifying Number Restrictions in Concept
Languages
20 pages

DFKI Technical Memos

TM-89-01
Susan Holbach-Weber
Connectionist Models and Figurative Speech
27 pages

TM-90-01
Som Bandyopadhyay
Towards an Understanding of Coherence in
Multimodal Discourse
18 pages

TM-90-02
Jay C. Weber
The Myth of Domain-Independent Persistence
18 pages

TM-90-03
Franz Baader, Bernhard Hollunder
KRIS: Knowledge Representation and Inference
System
-System Description-
15 pages

TM-90-04
Franz Baader, Hans-Jiirgen Burckert, Jochen
Heinsohn, Bernhard Hollunder, Jurgen Mul/er ,
Bernhard Nebel, Werner Nutt. Hans-Jiirgen
Profitlich
Tenninological Knowledge Representation: ' A
Proposal for a Tenninological Logic
7 pages

DFKI Documents

D-89-01
Michael H. Malburg & Rainer B/eisinger
HYPERBlS: ein betriebliches Hypennedia­
Infonnationssystem
43 Seiten

D-90-01
DFKI Wissenschaftlich-Technischer lahresbericht
1989
45 pages

D-90-02
Georg Seul
Logisches Programmieren mit Feature -Typen
107 Seiten

D-90-03
Ansgar Bernardi. Christoph Klauck. Ralf Legleitner
AbschluBbericht des Arbeitspaketes PROD
36 Seiten

D-90-04
Ansgar Bernardi. Christoph Klauck, Ralf Legleitner
STEP: Uberblick tiber eine zuktinftige Schnittstelle
zum Produktdatenaustausch
69 Seiten

D-90-05
Ansgar Bernardi, Christoph Klauck, Ralf Legleitner
Fonnalismus zur Reprasentation von Geo-metrie­
und Technologieinfonnationen als Teil eines
Wissensbasierten Produktmodells
66 Seiten

D-90-06
Andreas Becker
The Window Tool Kit
66 Seiten

I ne Complexity OTl:XlstenUal QUantTflcatlOn In Concept Languages

Francesco Donlnl, Bernhard Hollunder, Maurlzlo Lenzerlnl,
Albeno Marchetti Spaccamela, Daniele Nardi, Werner Nutt

R"R-:9"1-:-0 2
Research Report

