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Abstract 

Much of the research on concept languages, also called terminologi­
cal languages, has focused on t he computational complexity of sub­
sumption. The intractability results can be divided into two groups. 
First, it has been shown that extending the basic language F £- with 
constructs containing some form of logical disjunction leads to co-NP­
hard subsumption problems. Second, adding negation to F £- makes 
subsumption PSPACE-complete. 

The main result of this paper is that extending F £- with unre­
stricted existential quantification makes subsumption NP-complete. 
This is the first proof of intractability for a concept language contain­
ing no construct expressing disjunction- whether explicitly or implic­
itly. Unrestricted existential quantification is therefore, alongside dis­
junction, a source of computational complexity in concept languages. 
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1 Introduction 

The interest in concept languages, also called terminological languages, origi­
nated from the study of knowledge representation languages, such as KL-ONE 

[BS85]. In contrast to earlier formalisms like frames and semantic networks, 
concept languages (see [BL84, Neb90, NS90]) have the advantage of a Tarski 
style declarative semantics that allows them to be conceived as sublanguages 
of predicate logic. In these languages, a concept is built up of two kinds 
of symbols, primitive concepts and roles, which can be combined by various 
language constructs yielding complex concepts. Given a domain, concepts 
are interpreted as subsets of this domain, and roles are interpreted as bi­
nary relations. Different languages are distinguished by the constructs they 
provide. 

Reasoning about concepts is based on subsumption: a concept C is sub­
sumed by a concept D if in every interpretation C denotes a subset of the set 
denoted by D. The subsumption relation implicitly defines a taxonomy of 
concepts, which is used in designing and running knowledge-based systems. 
Moreover, subsumption plays a key role in terminological reasoning in that 
other deductive tasks can be reduced to it. For instance, a subsumption 
checker can detect unsatisfiable concepts (also called incoherent concepts), 
i.e. concepts which denote the empty set in every interpretation, since a con­
cept is unsatisfiable if and only if it is subsumed by the empty concept ~. 
Analogously, equivalence and disjointness of two concepts can be reduced to 
subsumption. 

The central role of subsumption in terminological reasoning has motivated 
the study of its computatioria.J complexity in several concept languages. The 
goal was to identify languages for which the subsumption problem can be 
computed efficiently while retaining a great expressive power. 

Complexity analysis of subsumption originated with the seminal paper by 
Brachman and Levesque [BL84]. They gave a polynomial algorithm for the 
small language F£-, which includes concept conjunction, universal quan­
tification on roles, and a restricted form of existential quantification. They 
also showed that by adding role restrictions to F £-, yielding the language 
called F £, subsumption becomes co-NP-hard. Later, Nebel [Neb88] consid­
ered the extension of F £- with role conjunctions and number restrictions, 
which again gives rise to a co-NP-hard subsumption problem. 

In a recent paper Schmidt-SchauB and Smolka [SS91] investigate the lan­
guage A£C, that arises from FL- by adding negation of concepts . They pro­
vide a decision procedure for ALC that is based on a calculus of constraints. 
By exploiting the features of this calculus they proved that subsumptionand 
unsatisfiability in A£e are PSPACE-complete. 

In addition they showed that unsatisfiability is co-NP-complete for a lan-
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guage obtained from F £- by adding negation of primitive concepts and union 
of concepts. This result is based on the observation that unsatisfiability in a 
language with unions and negation of primitive concepts is at least as hard as 
unsatisfiability in propositional logic. As noticed in [SS91], role restrictions 
like in F £ contain an implicit form of disjunction. Finally, disjunction arises 
also from number restrictions [HNS90]. 

From these results it became clear that the presence of disjunctive con­
structs, such as union of concepts, role restriction, and number restriction, 
leads to co-NP-hardness. However, it was unknown whether other constructs 
would make reasoning intractable. In particular, it was an open problem 
whether subsumption and unsatisfiability were intractable for the language 
A£t', which extends F £- with unrestricted existential quantification on roles 
and negation of primitive concepts [SS88]. 

The key result presented in this paper is that subsumption and unsat­
isfiability in A£t' are NP-hard. In fact, subsumption is NP-hard for the 
simpler language F £t'-, which extends F £- with unrestricted existential 
quantification on roles. F £t'- is the first concept language not including 
disjunctive constructs to be proved intractable. Moreover, in contrast with 
the previous intractability results, subsumption in F £t'- is proved NP-hard 
rather than co-NP-hard. Therefore, unrestricted existential quantification 
must be considered, alongside disjunction, a source of computational com­
plexity in concept languag~s. Notice that since F £t'- is a sublanguage of 
F£, subsumption in F£ is not only co-NP-hard, but also NP-hard. 

A second result presented in this paper is that subsumption and unsatis­
fiability in A£t' have the same computational complexity, namely, they can 
be solved in nondeterministic polynomial time. The NP-easiness of unsatis­
fiability of A£t' was proved in [SS91]. However, the result on subsumption 
is somewhat unexpected for the following reason. Since C is subsumed by 
D if and only if C n -,D is unsatisfiable (where n denotes conjunction of 
concepts and -, denotes negation) subsumption can be rephrased in terms of 
unsatisfiability. If D contains conjunction, which is a basic construct in A£t', 
then disjunction is introduced into C n -,D via negation. Surprisingly, the 
disjunction present in unsatisfiability problems of this kind does not cause 
an increase in complexity. 

To prove our results we adopt a rule-based calculus for deciding the un­
satisfiability of concepts that is similar in spirit to the one used in [SS91] 
but employs a more concise notation, that points out its similarity to the 
tableaux calculus for first order predicate logic [Smu68]. In fact, if one trans­
lates concepts into logical formulae and applies to them the tableaux calculus 
with a suitable control strategy, one essentially obtains the calculus described 
here. 

The results reported in the present paper not only solve an open problem 
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but also provide an intuitive understanding of the computational complexity 
of concept languages. Informally, we now can identify disjunction and ex­
istential quantification as tw.o different sources of complexity. The presence 
of the former is reflected by co-NP-hardness results, whereas the presence 
of the latter is expressed in NP-hardness results. The PSPACE-hardness of 
subsumption in A£e can then be attributed to the interaction of both. 

The above considerations do not take into account another source of com­
plexity in terminological reasoning which already shows up with the most 
simple languages. Recently, Nebel has proved that subsumption in F£- be­
comes co-NP-hard if concepts are given by a so-called terminology, i.e. a set 
of definitions of concepts [Neb90]. In the present paper, we assume that con­
cepts are given as expressions, and therefore we do not deal with the problem 
of handling concept definitions. 

The rest of the paper is organized as follows: in the next section we 
formally define the syntax and the semantics of F £E- and A£E, and sketch 
a calculus for deciding unsatisfiability of A£E-concepts. In Section 3, we 
show that unsatisfiability in A£E is an NP-complete problem. In Section 4, 
we first prove that subsumption in F£E- is NP-hard, and then we present 
a nondeterministic polynomial-time algorithm for subsumption in A£E. 

2 Preliminaries 

In this section we provide the essential notions about the concept languages 
considered in this paper; for a general presentation see [NS90]. 

We start by considering the language F£- [BL84]' where concepts (de­
noted by the letters C and D) are built out of primitive concepts (denoted 
by the letter A) and roles (denoted by the letter R) according to the syntax 
rules 

C,D ---+ A I TIC n D I VR.C I :JR.T, 
where T denotes the universal concept. 

An interpretation I = (~I , .I) consists of a set ~I (the domain of I) and 
a function .I (the interpretation function of I) that maps every concept to a 
subset of ~I and every role to a subset of ~I x ~I such that the following 
equations are satisfied: 

TI 

(C n D)I 

(VR.C)I 

(:JR. T)I 

~I 

CInDI 

{a E ~I I Vb.(a,b) E RI -+ bE CI } 

{a E ~I I :Jb.(a,b) E RI}. 
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An interpretation T is a model for a concept C if C T is nonempty. A 
concept is satisfiable if it has a model and unsatisfiable otherwise. We say 
that C is subsumed by D if CT ~ DT for every interpretation T. We say that 
C is equivalent to D if CT = DT for every interpretation T. 

The first extension of F £- that we consider results from the addition 
of a suitable construct for expressing unrestricted existential quantification 
over roles. The resulting language is called F ££-. Its syntax is obtained by 
extending the rules for F £- with 

C, D ---+ ~R.C. 

The semantics of the new construct is defined by 

A further extension to F ££- is obtained by providing one symbol for a 
special primitive concept, namely the empty concept, and by allowing nega­
tion of primitive concepts. The resulting language is called A££. Its com­
plete syntax is as follows: 

C, D ---+ A I T I ..1 I -,A len D I V R.C I 3R.C, 

where the semantics of the additional constructs is defined by 

Notice that an A££-concept may be unsatisfiable (for example, An -,A 
is clearly unsatisfiable). On ·the contrary, every F ££--concept is satisfiable, 
since no negative information can be expressed in this language [SS91]. 

In A££ only a restricted form of negation is available. If a language allows 
for complements of arbitrary concepts, unsatisfiability and subsumption can 
be reduced to each other. We denote the complement of an arbitrary concept 
C as -,C, and we interpret -,C as ~T \ CT. Now, C is unsatisfiable if and 
only if C is subsumed by ..1, and C is subsumed by D if and only if C n -,D 
is unsatisfiable. Notice that, in general, even if C and Dare F ££- -concepts 
(respectively, A££-concepts), C n -,D is not an F££--concept (resp. A££­
concept). 

We now turn to our rule-based calculus for deciding the satisfiability of 
A££-concepts. The calculus operates on constraints consisting of variables, 
concepts, and roles. We assume that there exists an alphabet of variable 
symbols, which will be denoted by the letters x, y, and z. A constraint is a 
syntactic object of one of the forms 

x: C, xRy, 
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where C is a concept and R is a role. 
Let I be an interpretation. An I -assignment a is a function that maps 

every variable to an element of tJ.I. We say that a satisfies x: C if a(x) E CI, 
and a satisfies xRy if (a( x), a(y)) E RI. A constraint G is satisfiable if 
there is an interpretation I and an I-assignment a such that a satisfies 
c. A constraint system S is a finite, nonempty set of constraints. An I­
assignment a satisfies a constraint system S if a satisfies every constraint in 
S. A constraint system S is satisfiable if there is an interpretation I and an 
I-assignment a such that a satisfies S. 

The following proposition as well as the other propositions in this section 
can easily be derived from the results reported in [SS91 J. 

Proposition 2.1 A concept C is satisfiable if and only if the constraint sys­
tem {x: C} is satisfiable. 

Our calculus starts with a constraint system S = {x: C}, and, in sub­
sequent steps, constraints are added to S according to a set of propagation 
rules, until either a contradiction is generated or a model of C can be obtained 
from the resulting system. The propagation rules are: 

1. S -tn {x: C1 , x: C2 } uS 

if x: C 1 n C2 is in S, and either x: C 1 or x: C2 is not in S 

2. S -t3 {xRy, y: C} u S 

if x: 3R.C is in S, there is no z such that both xRz and z : C 
are in S, and y is a new variable 

3. S -tv {y: C} U S 

if x: V R.C is in S, xRy is in S, and y: C is not in S . 

. Proposition 2.2 Let S be a constraint system. If S' is obtained from S by 
the application of a propagation rule, then S is satisfiable if and only if S' is 
satisfiable. 

A constraint system is said to be complete if no propagation rule applies 
to it. Note that, up to variable renaming, only one complete constraint 
system can be derived from {x: C}. A clash is a constraint system having 
either the form {x: l..} or the form {x: A, x: -,A}. 

Proposition 2.3 If C is an A£E -concept, then after finitely many appli­
cations of the propagation rules one obtains a complete · constraint system S 
from {x: C}. Moreover, S is satisfiable if and only if it contains no clash. 
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By virtue of the above properties, the calculus can be easily turned into a 
decision procedure that checks an AC£-concept C for unsatisfiability by ver­
ifying whether the complete constraint system derived from {x: C} contains 
a clash. 

Notice that, due to the form of the -t3-rule, the number of variables 
generated by the procedure may be exponential in the size of C. For example, 
it is easy to see that the complete system derived from {x: C}, where C is of 
the form 

contains at least 2n + 1 variables. 

3 U nsatisfiability in ALE 

In this section we prove that unsatisfiability in AC£ is an NP-complete prob­
lem. In order to show this, we need to refine the notion of constraint system 
by identifying particular subsets of a constraint system called traces. Traces 
are built using trace rules, which are defined as follows. 

The trace rules consist of the -tn-rule and the -tv-rule given in the pre­
vious section, together with the rule 

S -tT3 {xRz, y: C} U S 

if x: 3R.C is in S, there is no constraint of the form xRz in S, 
and y is a new variable. 

The difference between the -t3-rule and the -tT3-rule is that the latter is 
applied only once for a variable x. We are thus compelled to make a nonde­
terministic choice amongst the constraints of the form x: 3R.C. 

Let C be an AC£-concept. A constraint system T is a trace of {x: C} if 
T is obtained from {x: C} by the application of the trace rules. It follows 
from the results in [SS91] that C is unsatisfiable if and only if there exists a 
trace of {x: C} that contains a clash. Therefore, to prove that a concept is 
unsatisfiable, it is sufficient to guess one trace containing a clash out of the set 
of all possible traces of {x: C}. Since the size of a trace of {x: C} is bounded 
polynomially by the size of C, it follows that there exists a nondeterministic 
polynomial-time algorithm for checking the unsatisfiability of AC£-concepts. 

To prove that deciding the unsatisfiability of AC£-concepts is an NP-hard 
problem we introduce the following set traversal problem. A positive clause 
is a finite set of positive integers. If M = {MI , ... , Mm} is a finite set of 
positive clauses, then a traversal of M is a finite set of positive integers N 
such that N n M/ is a singleton for 1 E l..m. The set traversal problem is 
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defined as follows: given a fin ite set M of positive clauses, decide whether 
M has a traversal or not. 

Theorem 3.1 The set traversal problem is NP-complete. 

Proof. It is easy to see that the problem is a reformulation of ONE-IN-

THREE 3SAT (see [GJ79], p. 259). 0 

We now show that the set traversal problem is reducible to unsatisfiability 
of A££-concepts in polynomial time. T he reduction consists in associating 
to every set of positive clauses M an A££-concept CM such that M has 
a traversal if and only if C M is unsatisfiable. The key idea is to relate the 
traversals of M to those traces of {x: C M} that contain a clash. 

In the following we assume R to be a fixed role. Let M = {M1 , ..• , M m} 
be a set of positive clauses, and let n be the maximum of the numbers 
occurring in the clauses of M. We translate M into the concept 

The c1's are inductively defined through the equations 

C j _ { :JR.Ct+l 
1 - ) 

YR.C1+1 

ifj E M/ 
if j f/:. MI 

and C j _ { :JR.C~+/+l . if j E MI 
+1 - ) 

m Y R.Cm +I+1 if j f/:. M, 

for I E l..m and by the equation C~m+l = T. The concept Dl is defined by 
the equations 

and 

for I E l..m and by the equation D 2m+1 = .i. 
Observe that for every number j occurring in M there is a corresponding 

concept Cf, and for every clause M/ E M there are corresponding levels I 
and m + I in the Cf's. The number j is present in the Ith clause if and only 
if there is an existential quantifier in the concept Cf at level I and at level 
m + 1. As we shall see later the two layered construction of C M is crucial for 
the correctness of the reduction. The concept Dl is designed in such a way 
that a clash for {x: CM} can only occur in a trace at level 2m + 1. 

As an example, consider the following instance of the set traversal prob­
lem: 

M = {{1 ,3,5}, {2,4},{4,5}}. 

The corresponding A££-concept CM is given by the conjunction of 

ct = :JR.VR.VR.:JR.VR.VR.T 
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cf VR.3R.VR.VR.3R.VR.T 

Ci 3R.VR.VR.3R.VR.VR.T 

ct v R.3R.3R.V R.3R.3R. T 

Ct 3R.VR.3R.3R.VR.3R.T 

Dl VR.VR.VR.VR.VR.VR.1... 

Notice that the conjunction of the above concepts is unsatisfiable if and 
only if the interplay of the various existential and universal quantifiers, rep­
resented by a trace, forces one object to belong to the extension of 1... As we 
said before, the idea of the reduction is to create a correspondence between 
such a trace and a traversal of M. 

In order to formally characterize such a correspondence, we need to define 
the notion of activeness of a concept in a trace. Let T be a trace and C be 
a concept. We say that C is active in T if C is of the form 3R.D and there 
are variables y, z such that T contains the constraints y: C, Y Rz, and z : D. 
Therefore, an existentially quantified concept 3R.D is active in T if the ---+3-
rule has been applied to some constraint y: 3R.D in T. Intuitively, if ct is 
active in a trace of {x: C M} containing a clash, then j belongs to a traversal 
of M. 

Lemma 3.2 Let T be a trace of {x:CM }. 

1. Suppose ct is active in T. Then for all I E 1 .. k the concept C/ is active 
in T if it is of the form 3R.C/+1 • 

2. If T contains a clash, then for every I E 1..2m there exists exactly one 
j such that C/ is active in T. 

Proof. 1. It suffices to show the following for every k E 1.. (2m + 1): if T 
contains the constraint Yk: Ck for some variable Yk then T contains constraints 
YI: ct and YIRYI+l for alII E 1..(k - 1). 

We proceed by induction on k. For k = 1 the claim trivially holds. 
Suppose the claim holds for a given k. Assume that Yk+l: Ck+! is in T. We 
distinguish two cases. 

If ct = 3R.Ct+l' then the constraint Yk+l: Ct+l has been introduced 
by the ---+T3-fule. From the conditions of application of this rule, it follows 
that the constraint Yk: Ck is in T for some variable Yk. From the inductive 
hypothesis we conclude that there are constraints YI: C/ and YIRYI+! in T 
for all I E 1..( k - 1). In addition, the application of the ---+T3-rule has also 
introduced the constraint YkRYk+l. 

If ct = V R.Ct+l' then the constraint Yk+l: ct+! has been introduced by 
the ---+v-rule. From the conditions of application of this rule, it follows that 
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the constraints Yk: ek and YkRYk+1 are in T for some variable Yk. Together 
with the inductive hypothesis this yields the claim for k + l. 

2. From the definition of traces it is easy to see that there is at most 
one j such that et is active in T. It remains to show that there is at least 
one such j. Assume on the contrary that for some I E 1..2m there is no j 
such that et is active in T. Then for every k E (l + 1) .. (2m + 1) there is 
no constraint in T of the form y: et or y: D k • Hence T does not contain the 
only possible clash y: D 2m+l • 0 

U sing the above properties, we are able to prove the correctness of our 
reduction. 

Theorem 3.3 A set M of positive clauses has a traversal if and only if eM 
is unsatisfiable. 

Proof. Suppose M = {MI , ... , Mm} is a set of positive clauses and 
eM = eI n ... n er n DI is its translat ion. 

":::}" Let N be a traversal of M . To prove that eM is unsatisfiable, 
we show that there exists a trace T of {Xl : eM} that contains a clash. To 
obtain T we inductively define a sequence of traces TI of {Xl : eM}, where 
IE 1..(2m + 1), such that TI ~ T1+I and T2m+1 = T. Let 

TI = {Xl: et I j E N} U {Xl: Dd 

and 

Ti+l = TI U {xIRXl+d U {XI+ l : et+l I j E N} U {XI+l: DI+d. 

Obviously, T = T2m+1 contains a clash, because D2m+1 = ~. 
To show that T is a trace we prove that TI+l can be obtained from TI 

by application of the trace rules. Since N is a traversa.l, there is exa.ctly one 
kEN such that et = ~R.el~l' Hence, 

TI -+T3 T( = TI U {xIRxI+I' XI+I: el~l} 

by application of the -+T3-rule. Since we have et = V R.e/+1 for j E N \ {k} 
and DI = V R.D1+1 , it is easy to see that T1+1 can be obtained from T/ by 
application of the -+y-rule. 

"~" If eM is unsatisfiable, then there exists a trace T of {x: eM} such 
that T contains a clash and for every I E 1..2m there exists exactly one j 
such that et is active in T . 

Let 
N = {j I e~+1 is active in T for some 1 E l .. m}. 

We show that N is a traversal. Let MI be a clause in M. 
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For every I E l..m, there exists a j such that C~+I is active in T. Hence 
we have j E N. Furthermore, C~+I = 3R.C~+1+1 by the definition of active 
concepts. By construction of CM, we have that j E MI. Thus j E N n MI. 

Suppose there are i, j such that i, j E N n MI. Now we exploit the two­
layered construction of eM' Since i, j E N, by definition of N there are h, k 
such that C:"+h and C~+k are active in T. Since i, j E MI, by construction 

of CM we have Cf = -:JR.Cf+1 and Cf = -:JR.Cf+1' By 3~2.1, we know that Cf 
and cf are active in T. Hence i = j by 3.2.2. 0 

We can now state the main theorem of this section. 

Theorem 3.4 Unsatisfiability in ACE is NP-complete. 

Proof. The claim follows from the existence of a nondeterministic polyno­
mial algorithm for the problem (see [SS91]), and from the observation that , 
for every set of positive clauses M, the concept CM is in ACE. 0 

4 Subsumption in :F £E- and A£E 

In this section we show that subsumption is NP-complete both in ACE and 
:F CE-. Let us first consider NP-hardness. 

Theorem 4.1 Subsumption is NP-hard both in ACE and :F CE- . 

Proof. The claim holds with regard to ACE, since ACE contains the 
empty concept J.. and therefore unsatisfiability is a special case of subsump­
tion. 

For :F CE- , observe that G M = Cf n ... n Cf n D1 is unsatisfiable if and 
only if Cfn ... nCf is subsumed by ,D1 . The claim holds, since Gfn .. . nGf is 
in :F CE- and ,D1 can be rewritten to the equivalent concept E1 , inductively 
defined by 

and 

for I E l..m and E2m+1 = T. Obviously, E1 is in :F CE-. o 
Let us now turn to the NP-easiness of subsumption in ACE and :F CE- . 

Since :F CE- is a sublanguage of ACE, it is sufficient to consider subsump­
tion in ACE. In order to prove that subsumption in ACE can be solved in 
nondeterministic polynomial time, we reduce subsumption between D and 
C to unsatisfiability of C n ,D. 

In general, the concept C n ,D is not in ACE, since ACE does . not 
allow for negation of arbitrary concepts. To cope with arbitrary negations 
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we consider the language ACe [SS91], which is an extension of ACE with 
complements and unions: 

C,D -t -,C I CuD. 

As already mentioned, the interpretation of complements is given by (-,C)I = 

~ I \ cI . Unions are interpreted such that (C u D)I = CI U DI. 
As in [SS91] we single out a special class of concepts as normal forms: a 

concept C is called simple if negation inside C occurs only in front of primitive 
concepts, i.e. negations have the form -,A. An arbitrary ACe-concept can 
be transformed in linear time into an equivalent simple concept by means of 
the following rewriting rules: 

-,T -t .1 

-,.1 -t T 

-,-,C -t C 

-,(C n D) -t -,C u-,D 

-,(C U D) -t -,C n-,D 

-,(VR.C) -t ~R.-,C 

-,(~R.C) -t VR.-,C. 

To check satisfiability of simple ACe-concepts a new rule dealing with 
union must be added to the propagation rules 1- 3. 

4. S --+u {x:D}US 

if x: C U C' is in S, neither x: C nor x: C' is in S, and D = C 
or D = C'. 

In contrast to the rules 1- 3, the --+u-rule is nondeterministic. Therefore 
several complete constraint systems can be derived from {x: C} if C is a 
'simple ACe-concept that contains unions. To decide the satisfiability of C 
all complete constraint systems that can be derived from {x: C} must be 
inspected, which are- up to variable renaming- finitely many. From now 
on we implicitly refer to the set of rules 1- 4 as propagation rules. The next 
proposition follows immediately from results in [SS91]. 

Proposition 4.2 Let C be a simple ACe-concept. Then C is satisfiable if 
and only if there is a complete clash free constraint system that can be derived 
from S with the propagation rules. 

Based on the above theorem, in [SS91] a PSPACE-algorithm is presented 
for the satisfiability problem in ACe. The basic idea underlying the al­
gorithm is to generate traces, which require polynomial space, rather than 
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complete constraint systems, that may have exponential size. The A.Ce-trace 
rules consist of the trace rules defined in the previous section together with 
the -+u-rule. From now on we implicitly refer to ACe-trace rules as trace 
rules and to constraint systems generated by means of these rules as traces. 

As shown in [SS91], satisfiability in ACe is PSPACE-complete and hence 
we do not expect it to be solvable in nondeterministic polynomial time. In­
tuitively, PSPACE-hardness can be explained by the presence of two sources 
of complexity: unrestricted existential quantification, that may lead to com­
plete constraint systems of exponential size, and union, that may require the 
generation of an exponential number of complete constraint systems. 

In the sequel we show that, when G and D are ACE-concepts, due to 
the special form of the ACe-concept G n -'D, union does not act as an 
additional source of complexity. For this purpose we set up the s-rule calculus 
that operates on sets of traces and behaves nondeterministically only for 
existential quantification. It is interesting to observe that the s-rules provide 
an alternative method for deciding the satisfiability of ACC-concepts. 

The s-rules are (7 denotes a set of traces): 

1. {T} U 7 -+~ {T'} U 7 

if T ~ 7 and T -+. T' where * E {n, T:3, V} 

2. {T} U 7 -+~ {T', Til} U 7 

if T ~ 7, x: G U C' is in T, neither x: G nor x: G' is in T and 
T' = {x: G} U T, Til = {x : G'} U T. 

The s-rules eliminate the nondeterminism introduced by unions, since the two 
traces that can be obtained by an application of the -+u-rule are put both into 
the new set of traces. The nondeterminism in choosing a constraint to which 
the -+T3-rule applies persists . The following lemma states two properties of 
the s-rule calculus that will be used in the sequel. 

Lemma 4.3 Let G be a simple ACe-concept. 

1. Every s-rule derivation starting with {{x: G}} terminates. 

2. Suppose that 7 has been derived from { {x: G}} with the s-rules. Th en 
for every complete constraint system S derived from {x: G} with the 
propagation rules there is some T E 7 such that - up to variable renam­
ing- T is a subset of S. 

Proof. 1. Follows from the termination of the propagation calculus. 
2. Follows by induction on the length of the derivation. 0 

Next we prove correctness and completeness of the s-calculus, i.e. we 
show that a simple ACC-concept G is unsatisfiable if and only if {{x: G} } 
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can be transformed by the s-rules into a set 7 such that each trace in 7 
contains a clash. The critical steps in an s-rule derivation are those using 
the --+h-rule, since they introduce nondeterminism. The idea behind the 
completeness proof is to use the clashes in complete constraint systems to 
guide the application of the s-rules. 

Let S be a constraint system and x be a variable occurring in S. A vari­
able y is a successor of x in S if S contains constraints of the form xR1Yl, 
y1R 2Y2, . .. , Yn-lRnY, where n ~ O. Note that every variable in S is a succes­
sor of itself. We say that x leads to a clash in S if x has a successor Y in S 
such that S contains either the constraint y: ..L or the constraints y: A, y: -,A. 

Let C be a simple unsatisfiable ACC-concept and let S be the set of all 
complete constraint systems obtainable from {x: C} with the propagation 
rules. Since C is unsatisfiable, every S E S contains a clash. Suppose 7 is 
a set of traces that are derived from {{x: C} }. We say that 7 is covering if 
for every T E 7 and S E S with T ~ S every variable occurring in T leads 
to a clash in S. 

Lemma 4.4 Let C be a simple unsatisfiable ACC -concept. Suppose that 7 
has been obtained from {{x: C}} by means of the s-rules. If 7 is covering 
and some s-rule is applicable to 7, then there is some 7' such that 7 --+s 7' 
and 7' is covering. 

Proof. Suppose 7 is covering and 7' is derived from 7 by application of 
the --+~-, --+~-, or --+~-rule. Then 7' is covering, since neither of these rules 
introduces new variables. . . 

Suppose the --+h-rule is applicable to 7, and the --+~-, --+}, and --+~-
rules are not applicable. Then there is aTE 7 such that y: 3R.D is in T 
and no constraint yRz is in T . 

Let S be a complete constraint system such that T ~ S. The --+n-, --+",-, 
and --+u-rules are not applicable to T. Therefore every constraint of the form 
y: E contained in S is also contained in T. 

Let y: 3R1.D}, . .. ,y: 3Rn.Dn be all constraints of the form y: 3R.D oc­
curring in T. For i E l..n let Ti = T U {yRizi' Zi: Dd, where Zl, .. . , Zn 
are distinct new variables. We claim that there is a Ti such that for every 
complete constraint system S with Ti ~ S the variable Zi leads to a clash 
in S. 

Assume that this is not the case. Then there exist complete constraint 
systems S}, . .. , Sn with Ti ~ Si such that Zi does not lead to a clash in Si. For 
i E l..n let S: ~ Si be the constraint system that consists of all constraints 
in Si in which a successor of Zi occurs. Obviously, S: is complete and clash 
free. Next, consider an arbitrary complete constraint system S with T ~ S. 
Let S' be obtained from S by removing all constraints in which a successor 
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of y occurs that is different from y. Define 5" = 5' u 5~ u ... u 5~. The 
system 5" is complete and contains T. By construction, y is a variable in 
T that does not lead to a clash in 5". We thus have a contradiction to our 
assumption, since 7 is not covering. 

Hence there is some Ti with the desired property. Let 7' be obtained 
from 7 by replacing T with Ti . Then 7' is covering and 7 -+h 7'. 0 

Using the above lemma we can now prove correctness and completeness 
of the s-rules. 

Theorem 4.5 Let C be a simple ACe-concept. Then C is unsatisfiable if 
and only if { {x: C}} can be transformed by the s-rules into a set T such that 
each trace in T contains a clash. 

Proof. "=>" Suppose 7 has been derived from {{x: C}} by means of 
the s-rules. If every element of 7 contains a clash, then by Lemma 4.3 
every complete constraint system derived from {x: C} contains a clash. By 
Theorem 4.2, the concept C is unsatisfiable. 

"<=" Suppose C is unsatisfiable. Then every complete constraint system 
derived from {x: C} contains a clash. Hence {{x: C}} is covering by defini­
tion. Since every s-rule derivation terminates, Lemma 4.4 guarantees that 
we can derive from { {x: C}} a set 7 of traces that is covering and to which 
no s-rule applies. 

Let T be a trace in such a T and S be a complete constraint system 
derived from {x: C}, with T ~ S. Since no s-rule is applicable to 7 there 
exists in T a variable y that has no other successor in 5 than itself. For 
the same reason, every constraint of the form y: D contained in S is also 
contained in T. Since y leads to a clash in 5, the system 5 contains the 
constraint y: -1 or constraints of the form y: A, y: -,A. These constraints are 
also contained in T. Since T was an arbitrary element of T, every element 
of 7 contains a clash. 0 

The above theorem directly suggests a nondeterministic method for de­
ciding the unsatisfiability of an ACe-concept C. The method generates a 
number of traces that is-in the general case- exponential in the size of C. 
This is not surprising, since unsatisfiability in ACe is PSPACE-complete. 

When checking subsumption between ACE-concepts D and C, though, a 
better result can be achieved: in particular, we now show that the number 
of traces generated by the application of s-rules is bounded by the size of D. 
Since traces are of polynomial size, the s-rules provide a nondeterministic 
polynomial time method for checking subsumption in ACE. 

The proof heavily relies on the structure of traces that arise when checking 
subsumption. A constraint in a trace T is closed if it is of the form 

16 



• x: C n D, and both x : C and x: D are in T; 

• x: V R.C, and for all y such that xRy is in T, y: C is in T; 

• x: 3R.C, and there exist y, R' such that xR'y is in T; 

• x: CUD, and either x: C or x: D is in T. 

Intuitively, a constraint is closed if no trace rule applies to it. A constraint 
in T is open if it is not closed. 

We say that a concept C contains intersections or unions if the symbols 
"n" or "U", respectively, occur in the string C. Note that if D is an ACE­
concept, then by rewriting -.D into a simple concept we obtain a concept D' 
that contains no intersection. Moreover, {x: C n D'} is un satisfiable if and 
only if {x: C, x: D'} is unsat isfiable. 

Lemma 4.6 Let C, D be ACE -concepts and let D' be obtained by rewriting 
-.D to a simple ACe-concept. Let T be a trace derived from {x: C, x: D'}. 
Then there is at most one open constraint y: E in T such that E contains 
unions. If there is such a constraint then E contains no intersections. 

Proof. By induction on the lenght of the derivation. The base case is 
obvious, since C contains no unions and D' contains no intersections. Let 
T be a trace satisfying the inductive hypothesis. We show that every trace 
T' obtained from T by applying a trace rule to some constraint y: E satisfies 
the inductive hypothesis, too. 

Suppose the --+n-rule is applied to y: EnE'. Then neither E nor E' 
contains unions, since EnE' contains an intersection. Hence neither of the 
new constraints y: E, y: E' contains unions. 

Suppose the --+T3-rule is appl ied to y: 3R.E, introducing yRz and z: E. 
If E contains no unions then we are done. Otherwise, y: 3R.E is the only 
open constraint in T that contains unions. Moreover, 3R.E contains no 
intersections. In T' the constraint y: 3R.E is closed and z: E is the only open 
constraint that contains unions. Moreover, E contains no intersections. 

Suppose the --+v-rule is applied to y: V R.E and yRz, introducing z: E. 
Then y: V R.E is open in T. If y: V R.E contains unions, then there is no 
other open constraint containing unions. Since T is a trace, z is the only 
variable such that yRz is in T. Hence, y:VR.E is closed in T' and z:E is 
the only open constraint in T' containing unions. Moreover, E contains no 
intersections, since V R.E contains no intersections. 

Suppose the --+u-rule is applied to y: E U E'. Then y: E U E' is the only 
open constraint in T containing unions. Hence, in the resulting system there 
is at most one open constraint containing unions. Since E U E' contains no 
intersections, neither E nor E' contains intersections. 0 
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From the preceding results we can conclude that checking subsumption 
of ACE-concepts is ,NP-easy. 

Theorem 4.7 Subsumption in ACE can be decided in nondeterministic poly­
nomial time. 

Proof. Let C, D be ACE-concepts and let D' be obtained by rewriting 
-,D to a simple ACe-concept. By Theorem 4.5, C is subsumed by D if and 
only if { {x: C, x: D'} } can be transformed with the s-rules into a set of traces 
each of which contains a clash. Since traces are of polynomial size, it suffices 
to show that any s-rule derivation starting with {{ x: C, x: D'}} leads to a set 
of traces T whose cardinality is bounded by the size of D'. 

In fact, the only s-rule increasing the number of traces is the --t~-rule. 
This rule can only be applied to an open constraint containing unions . By 
Lemma 4.6, its application decreases the number of times that the union 
symbol occurs in open constraints at least by one. Therefore in any deriva­
tion, the --t~-rule can be applied at most as many times as the union symbol 
occurs in D'. D 

Corollary 4.8 Subsumption in ACE and in F CE- is NP-complete. 

5 Conclusion 

In this paper we have considered the subsumption and the unsatisfiabil­
ity problem for two concept languages that extend the basic language F C­
[BL84]. 

We have proved that subsumption is NP-complete for the language F CE­
that extends F C- with unrestricted existential quantification. Since exis­
tential quantification can be realised through role restriction, Brachman and 
Levesque's language FC contains FCE- as a sublanguage. We thus have 
complemented their result that subsumption in FC is co-NP-hard [BL84] by 
showing that it is also NP-hard. 

In addition, we have shown that both unsatisfiability and subsumption 
are NP-complete for the language ACE that is obtained from FCE- by 
adding negation of primitive concepts. The question of the hardness of un­
satisfiability in ACE was raised by Schmidt-SchauB and Smolka [SS88], and 
its answer provides a missing link among various complexity results for con­
cept languages. Former work identified disjunctive constructs that together 
with concept conjunction give rise to intractability [BL84, Neb88, SS91], 
whereas we have shown that the interplay of universal and existential quan­
tifiers is a cause of complexity, too. Therefore we conclude that in concept 
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languages there are two sources of complexity whose different nature is il­
lustrated by the fact that the first makes subsumption co-NP-hard and the 
latter makes it NP-hard. The combination of them in the language A£C 
introduced in [SS91] intuitively explains the PSPACE-corripleteness of sub­
sumption in A£C. Based on these results it has been possible to classify from 
the point of view of the computational complexity of deduction a large set 
of concept languages obtained by combining the most well-known constructs 
[DLNN91]. 

Originally, complexity analysis of terminological reasoning was set up 
with the goal to identify languages for which subsumption can be decided in 
polynomial time [BL84]. Now it has turned out that practically all interesting 
constructs in concept languages lead to intractability, and even the most 
modest languages are affected by this problem when the use of terminologies 
is allowed- which is often the case in implemented systems. 

One might conclude from these results that terminological reasoning in 
all its variants is infeasible. Such a conclusion would implicitly assume that 
the complexity analysis of subsumption is intended to restrict the practical 
use of concept languages to those where subsumption can be computed in 
polynomial time. However, it is our opinion that the study of the complexity 
of concept languages goes far beyond a mere classification of tractable and 
intractable languages. 

First of all, the results developed so far refer to the computational com­
plexity in the worst case, which represents only one aspect to be taken into 
account when considering the practical use of concept languages. Notice that, 
as pointed out in [Neb90], another aspect that deserves further investigation 
is the characterization of the average cases occurring in practice. Second, 
the techniques used for the complexity analysis have provided the formal 
basis for the design of effective algorithms for computing subsumption and 
unsatisfiability in a large class of concept languages [HNS90]. Finally, in the 

. design of deduction procedures for knowledge representation systems based 
on concept languages, one can take advantage of the knowledge about the 
complexity of subsumption, by isolating difficult cases and using specialized 
efficient algorithms whenever possible. 

For all the above reasons, we believe that the research on the computa­
tional complexity of concept languages is a valuable support for the design 
of knowledge-based systems embedding forms of terminological reasoning. 
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