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Abstract

One reason why Distributed Al (DAI) technology has been deployed in relatively few real-size
applications is that it lacks a clear and implementable model of cooperative problem solving
which specifies how agents should operate and interact in complex, dynamic and unpredictable
environments. As a consequence of the experience gained whilst building a number of DAI systems
for industrial applications, a new principled model of cooperation has been developed. This model,
called Joint Responsibility, has the notion of joint intentions at its core. It specifies pre-conditions
which must be attained before collaboration can commence and prescribes how individuals should
behave both when joint activity is progressing satisfactorily and also when it runs into difficulty.
The theoretical model has been used to guide the implementation of a general-purpose cooperation
framework and the qualitative and quantitative benefits of this implementation have been assessed
through a series of comparative experiments in the real-world domain of electricity transportation
management. Finally, the success of the approach of building a system with an explicit and
grounded representation of cooperative problem solving is used to outline a proposal for the next
generation of multi-agent systems.

1. Introduction

Until comparatively recently, computer systems were only used in simple aspects of
industrial applications—typically being kept out of critical control loops and replacing
exactly the functionality of previous mechanical or analogue devices. However with
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the gradual acceptance of artificial intelligence (Al) techniques, organisations are now
attempting to build more sophisticated systems; software is being used to supervise
and control manufacturing processes, power networks, chemical plants and so on. As
these automated applications become ever more sophisticated, so the knowledge which
must be brought to bear increases—this in turn causes a concomitant growth in the size
and complexity of the computer system. At this time, software solutions to leading-
edge industrial applications are nearing the boundaries of present system engineering
methodologies and seemingly insurmountable limitations to current-generation intelligent
systems are being observed [48,59,70].

These limitations have caused a fundamental rethink of the paradigms used to tackle
large applications [22,72]. Some researchers have advocated the building of systems
which embody vast amounts of common sense knowledge [31]; others propose that
developing sharable and reusable libraries of problem solving components is the way
forward [5,57]; a third group suggest that developing systems which tackle whole
classes of problems is the way to progress [14,55,71]; while a final school of thought
argues that smaller, more manageable components which can communicate and cooperate
should be used [6,29,34]. The work described here concentrates on the cooperating
systems paradigm, recounting the insights gained from building a number of real-world
industrial applications and offering a novel approach to the construction of multiple
agent systems.

In Distributed Al (DAI) systems, problem solving agents cooperate to achieve their
local goals and the goals of the community as a whole. Each individual is capable
of performing a range of useful activities, has its own aims and objectives, and can
communicate with other agents. The recognisable problem solving ability associated
with each agent distinguishes components of DAI systems from those of connectionist or
neural systems in which individual nodes have very simple states and no real expertise.
Within a given DAI community, the agents usually have expertise which is related,
but distinct, and which has to be combined to solve problems. Such joint work is
needed because of the dependencies between agents’ actions, the necessity of meeting
global constraints, and because no one individual has sufficient competence, resources
or information to solve the entire problem alone [39].

Interdependence occurs when activities undertaken by individual agents are related—
either because local decisions made by one agent have an impact on the decisions
of other community members (e.g. when building a house, decisions about the size
and location of rooms impacts upon the wiring and plumbing), or because of the
possibility of harmful interactions amongst agents (e.g. two mobile robots may collide
when attempting to pass through a narrow exit).

Global constraints exist when the solution being developed by a group of agents must
satisfy certain conditions if it is to be deemed successful. For instance, a house building
team may have a budget of £250,000, a distributed monitoring system may have to react
to critical events within 30 seconds, and a distributed air traffic control system may have
to control the planes with a fixed communication bandwidth. If individual agents acted
in isolation and merely tried to optimise their local performance then such overarching
constraints are unlikely to be satisfied. Only through coordinated action will acceptable
solutions be developed.
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Finally, many problems cannot be solved by individuals working in isolation because
they do not possess the necessary expertise, resources or information. Relevant examples
include the tasks of lifting a heavy object, driving in a convoy and playing a symphony.
It may be impractical or undesirable to permanently synthesize the necessary compo-
nents into a single entity because of historical, political, physical or social constraints,
therefore temporary alliances through cooperative problem solving may be the only way
to proceed. Differing expertise may need to be combined to produce a result outside of
the scope of any of the individual constituents (e.g. in medical diagnosis, knowledge
about heart disease, blood disorders and respiratory problems may need to be combined
to diagnose a patient’s illness). Different agents may have different resources (e.g. pro-
cessing power, memory and communications) which all need to be harnessed to solve
a complex problem. Different agents may have different information or viewpoints on
a problem which need to be combined to give the complete picture (e.g. in concurrent
engineering systems, the same product may be viewed from a design, manufacturing
and marketing perspective).

In this work, a DAI approach was adopted as the means of coping with the complexity
of industrial applications for several reasons. Firstly, divide and conquer has long been
championed as a means of constructing large systems because it limits the scope of each
processor. The reduced size of the input domain means the complexity of the computation
is lower, thus enabling the components to be simpler and more reliable. Secondly,
a distributed approach often provides a more natural fit to the problem (e.g. sensor
networks [50], air traffic control [12] and telecommunications network management
[76]1). Indeed, some researchers even go so far as to state that all real systems are
distributed {33]. Finally, many organisations have substantial amounts of pre-existing
(or legacy [10]) software which could profitably be integrated [42,44].

This paper discusses the insights gained whilst building a number of industrial multi-
agent systems under the auspices of the ARCHON project [77]. These insights are
predominantly based on the experiences from the real-world applications of electric-
ity transportation management [43] and controlling a high-energy, particle accelerator
[44] which were built using an ARCHON prototype system called GRATE (Generic
Rules and Agent model Testbed Environment). GRATE is a general-purpose integrative
system which contains a corpus of inbuilt generic knowledge about cooperation and
situation assessment in DAI systems [37,43]. These experiences have been augmented
and reinforced by subsequent work using the full ARCHON system in the domains of
electricity distribution management [75] and cement factory control [69].

One of the most time-consuming and difficult activities when building the afore-
mentioned multi-agent systems was ensuring that the community acted in a coherent
manner even when unplanned events occurred. Examples of such events and the types
of problems they cause include: new information becoming available (agents continue to
pursue an activity even though one community member knows their processing is obso-
lete); unexpected requests being received (agents abandon requests, without informing
the original agent, if a more important query is received); inter-agent synchronisation
points being violated (agents needlessly wait for the results of an activity which has
been abandoned or significantly delayed). The comparative ease with which such inco-
herency occurred was attributed to the fact that the participating agents did not embody
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sufficient knowledge of the cooperative problem solving process to operate in dynamic,
uncertain and complex domains (Section 2). To rectify this problem, it was decided that
agents should have a well-grounded and explicit model of cooperative problem solving
on which their behaviour could be based. This model should not only prescribe how to
behave when everything is progressing as planned, but it should also deal with cases in
which something goes wrong (as is often the case in industrial applications!). Previ-
ous theoretical work had not satisfactorily addressed this issue, therefore a new model,
called Joint Responsibility, was developed which had the notion of joint intentions at its
core (Section 3). The Responsibility Model was then used to guide the implementation
of an extended version of GRATE called GRATE* (Section 4). A series of empirical
experiments were performed to assess the level of coherence attained by GRATE* in
environments of varying hostility (Section 5). These experiments also offered a means
of comparison with the original GRATE system so that the qualitative and quantitative
benefits of the new approach could be assessed. Finally, as a consequence of the insights
gained in this work, a proposal for the next generation of multi-agent systems is made
(Section 6).

2. Initial experiences with industrial multi-agent systems

If all agents had infinite processing power and complete knowledge of the beliefs,
goals, actions and interactions of their fellow community members, it would be possible
to know exactly what each individual was doing at each instant in time and also what
it is intending to do in the future. In such circumstances, systems could be perfectly
coordinated and the cost of achieving this state would not be prohibitively expensive
[54]. However for the majority of industrial applications such reasoning capabilities
and awareness of events are infeasible because:

(i) bandwidth limitations make it impossible for agents to be constantly informed

of all developments in the system;

(ii) agents cannot continuously reason about all the ongoing activities within a com-

munity and yet still carry out their necessary local processing [67].

An approach which has recently become popular in industrial applications is to pro-
vide one agent with a complete picture and have a number of functionally distributed
subcomponents. Such systems are usually ordered in a hierarchical fashion and have
clear, predefined communication links. Although this approach increases maintainability,
it requires the overall control and the inter-component coordination to be centralised.
However as the subcomponents become more complex, so the concomitant control bot-
tleneck increases. For example, in applications which consist of a number of distinct
supervision and control subcomponents, the activation of tasks and the decision of what
data to exchange between them depends on the state of the entire process. Therefore
to perform the necessary assessment the controller must take into account the views of
all the relevant subcomponents. A further disadvantage of this approach is that if the
overall controller fails then the entire system is rendered useless.

To alleviate the control bottleneck, increase the flexibility of coordination amongst
the subcomponents, and produce a system whose performance degrades gracefully, it
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was decided to utilise an approach in which the control, as well as the data, was
decentralised. This regime provides the agents with a degree of autonomy to generate
new activities and to decide which tasks to do next, but makes it correspondingly more
difficult to attain coherent global behaviour (because each individual operates on the
basis of local and incomplete information). This difficulty is exacerbated in cases where
perceptions and actions are fallible and when the environment evolves dynamically (i.e.
typical industrial applications!).

To provide a concrete basis for the subsequent discussion, consider the following sce-
nario which is taken from an electricity transportation management application. Trans-
portation is one of a series of steps which needs to be completed to make electricity
available at consumers’ sites—it is preceded by the generation phase and followed by the
local customer distribution phase. Managing the transportation network involves a num-
ber of separate but inter-related activities, such as: distinguishing between disturbances
and pre-planned maintenance operations; identifying the type (transient or permanent),
origin and extent of faults when they occur; and determining how best to restore the
network after a fault so that the time that customers are without electricity is minimised.
A detailed specification of all the agents involved in this application is given in [20]
and a description of their many and varied interactions is given in [1]; however for
illustrative purposes this work concentrates on three agents and the problem of detecting
and diagnosing faults. Two of the agents—the Alarm Analysis Agent (AAA) and the
Blackout Area Identifier (BAI)-—actually perform the diagnosis (to differing levels of
precision and based on different information), while a third agent—the Control Sys-
tem Interface (CSI)—detects the disturbance initially and then monitors the network’s
evolving state. This particular scenario was chosen because it is typical of a class of
behaviour, called functionally accurate cooperative (in which the cooperating agents do
not possess the necessary information to solve all their subproblems completely and
accurately [491), which consistently appeared in the industrial applications which were
studied.

In their original stand-alone state, both the AAA and the BAI had their own very
rudimentary CSI which could collate alarm messages but not detect disturbances. This
meant the two diagnosis systems were continually invoked unnecessarily by the receipt
of routine maintenance operations and also that they could not exchange predictive
information about fault hypotheses. Using a multi-agent approach, it became feasible to
develop a common and more sophisticated CSI agent (this also improved consistency)
and to allow the diagnosis agents to cooperate with one another {43]. This coupling
improved the performance of the overall system in the majority of cases, but when
anything unexpected happened incoherent behaviour often ensued. For example, if the
CSI discovered, as a result of receiving further information, that the fault it had detected
was in fact transient then the AAA and the BAI continued trying to locate a non-existent
disturbance. Other events which caused problems included: the AAA realising that it
was not being supplied with sufficient data to make a diagnosis (desired result could
not be attained, but the BAI and the CSI carried on regardlessly); substantial changes
occurring in the network topology which invalidated crucial assumptions made during
diagnosis (CSI detected such changes but did not inform the AAA or the BAI so that
the results they produce were worthless); and distractions from unforeseen events or
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agents in the community (synchronisation of activities between the AAA and the BAI
were affected, causing one agent to needlessly wait for information from the other)
[41]. After careful analysis, these problems were attributed to two main factors:
(i) many of the cooperative actions were not explicitly represented (Section 2.1);
(ii) even when explicit social interactions were set up, the underlying model of coop-
eration was obscured by a myriad of crucial but unstated assumptions (Section
2.2).

2.1. Non-explicit joint actions

The exchange of domain level information (e.g. disturbance detected, fault loca-
tion hypotheses, etc.) which formed the cornerstone of most instances of cooperative
behaviour in this application was controlled by the representations which agents main-
tained about one other. These agent models contain knowledge about the capabilities,
recipes, ! goals and interests of other community members and are instantiated by the
designer when the multi-agent system is constructed. In the fault diagnosis scenario, for
instance, the CSI represents the fact that the AAA and the BAI are interested in the
information that a disturbance has occurred and the AAA’s representation of the BAI
indicates that it is capable of identifying the approximate location of the fault (the black
out area).

When the CSI detects an unplanned disturbance, it informs the AAA and the BAI
(based on the information contained in the interest slots of its agent models) and then
enters network monitoring mode. In volunteering such information the CSI does not
reason about its impact on the other community members—it merely believes they
are interested in knowing that a disturbance has been detected. Upon receipt of this
notification, the AAA and the BAI start diagnosing the fault. The AAA uses the recipe
depicted in Fig. 1; performing a fast approximate phase which generates a large number
of potential solutions (hypothesis-generation) and then a detailed and time-consuming
validation. If information about the black out area arrives from the BAI in a timely
fashion, it is used to prune the number of hypotheses considered in the AAA’s validation
phase—since the suspect element must be in the black out area, any initial hypotheses
which are not in this list can be removed (hypothesis-refinement).

The AAA, BAI and CSI are clearly engaged in a cooperative action—their related
activities combine to attain the overall goal of locating the fault. However examination of
the agents’ internal structures reveals they are working on local activities for local means.
For example, the component-of slot of the PRODUCE-DIAGNOSIS recipe shows that
the AAA is executing its diagnosis because the system designer indicated that it should
perform this activity whenever it receives an indication of a disturbance in the network.
There is no representation of the fact that this task is part of a larger cooperative activity
which involves the CSI monitoring the network and the BAI providing the black out
area. Thus, for example, if the AAA decides to abandon its diagnosis (for whatever
reason) it does not know that the BAI and the CSI need to be informed, so that they

I Recipes are a sequence of steps known by an agent for attaining a particular objective [60]. A social
recipe is a series of steps undertaken by two or more agents as part of an explicit cooperative action.
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Recipe Name: (PRODUCE-DIAGNOSIS)
Trigger: (INFO-AVAILABLE DISTURBANCE-DETECTION-MESSAGE)
Actions: ( (PAR (START (HYPOTHESIS-GENERATION
?BLOCK-ALARMS 7FAULT-HYP))
(GET-INFO BLACK-OUT-AREA))
(WHILE (AND (INFO-UNAVAILABLE BLACK-OUT-AREA)
(INFO-UNAVAILABLE VALIDATED-HYP)) DO
(START (HYPOTHESIS-VALIDATION
?FAULT-HYP ?VALIDATED-HYP)))
(START-IF (INFO-UNAVAILABLE VALIDATED-HYP)
(SUSPEND (HYPOTHESIS-VALIDATION))
(START (HYPOTHESIS-REFINEMENT
?FAULT-HYP ?BLACK-QUT-AREA
7REFINE-HYP))
(REACTIVATE (HYPOTHESIS-VALIDATION
?REFINE-HYP ?VALIDATED-HYP))))
Time to Execute: 64
Priority: 10
Outcome: (VALIDATED-HYP)
Component of: (SATISFY-LOCAL-GOAL (PRODUCE-DIAGNOSIS))
Current Action: (START (HYPOTHESIS-GENERATION
?BLOCK-ALARMS ?FAULT-HYP))
Local Bindings:
((FAULT-HYP ?7) (BLOCK-ALARMS ("IG SANTURCE OSCL" "IG ALON~
SOTE OSCL" "IG HERNANI OSCL" "BR HERNANI 7 (CO) LOCAL"
"BR HERNANI 8 (CO) LOCAL" "PROT HERNANI 7 INST" "PROT
HERNANI 8 INST" "IG ALI OSCL" "IG BASAURI OSCL" "BR
ORMAIZTE 3 (CO) LOCAL" "BR ORMAIZTE 4 (C0) LOCAL" "PROT
ORMAIZTE 3 BACK-UP" "PROT ORMAIZTE 4 BACK-UP" "IG
SANGUESA 0OSCL" "IG LOGRONO OSCL" "IG CORDOVIL OSCL" "IG
ASUA OSCL" "IG ORMAIZTE 0OSCL" "IG VITORIA OSCL" "IG HER-
RERA OSCL" "IG GATICA 0OSCL" "BR S.SEBAST 1 (CO) LOCAL"
"BR S.SEBAST 2 (CO) LOCAL" "PROT S.SEBAST 1 BACK-UP"
"PROT S.SEBAST 2 BACK-UP" "BR ELGOIBAR 1 (CO) LOCAL" "BR
ELGOIBAR 2 (CO) LOCAL™)))

Fig. 1. AAA’s PRODUCE-DIAGNOSIS recipe.

can halt their associated activities, because there is no representation of the fact that
they are carrying out any related activities.

This implicit representation of cooperative problem solving is sufficient when every-
thing is progressing according to plan and nothing unexpected happens. However, as
the GRATE experience showed, when something goes awry teamwork quickly becomes
disorganised. To try and circumvent the lack of an explicit joint action representation
more information could be placed in the interest slots of the agent models—for exam-
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ple, the AAA’s representation of the BAI and the CSI could be extended to state that
they are interested in being informed whenever the AAA gives up on the PRODUCE-
DIAGNOSIS recipe. Similarly, the incoherent behaviour which ensues when the CSI
mistakenly indicates that a transient fault is permanent could be avoided if its models
of the AAA and the BAI are changed to state that they are interested in knowing about
transient faults when they have previously been informed that the same fault is perma-
nent. The disadvantage of this approach, however, is that the system designer has to
identify all the events which may cause the cooperative activity to falter. This must be
carried out for all possible permutations of agent interactions and all perceived threats to
cooperation. Furthermore, the system builder does not have a guiding framework which
identifies broad classes of problems—knowledge elicitation is completely unstructured.
The twin difficulties of complexity and lack of structure mean that the ensuing system
will be far from complete in terms of the types of problem which it can successfully
deal with.

2.2. Obscured model of cooperation

As well as the cooperation which occurs through the volunteering of relevant informa-
tion, GRATE also provides facilities for establishing explicit social actions. For example
the GET-INFO component of the PRODUCE-DIAGNOSIS recipe specifies that the AAA
should obtain information about the black out area. After examining its agent models,
the AAA will realise that this can only be achieved by sending an explicit request to
the BAI—the AAA and the other agents in the community do not have a recipe whose
outcome is the black out area. Assuming the BAI accepts the request, an explicit social
action comes into existence: the component-of slot of the recipe used by the BAI will
contain the following statement (SATISFY~INFO~-REQUEST AAA BLACK-OUT-AREA).

Even with these explicit social actions, the GRATE agents used an implicit model of
cooperation to guide their actions and interactions. Consider the following rules which
were part of GRATE’s situation assessment functionality:

Ri: if successfully finish recipe R and
R was performed because of a request by agent A
then inform A that R has finished and supply it
with the results which were produced

R2: if recipe R has an agreed deadline D and
R will not be completed by D and
R was performed because of a request by agent A
then inform A that R will not be completed by D

The principle underlying R1 is that when an explicit cooperation request has been
completed, the agent which has undertaken the processing should inform the originator
that the request has finished. This rule encodes a fundamental concept of cooperative
interaction, namely that requests are usually made to provide information and services for
the originator. Therefore when the desired service has been completed, the originating
agent wishes to know at the earliest possible opportunity so that it can exploit this
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fact. R2 represents the principle that when a request for service is given a deadline it
usually means that it must be synchronised with some of the originator’s other activities.
Any delay in service completion may adversely affect the originator and so the agent
supplying the service should inform it at the earliest possible opportunity. Undertaking
a similar analysis of the incoherency problems highlighted in the previous subsection
reveals:

(i) the BAI and the CSI need to be informed that the AAA has abandoned its
PRODUCE-DIAGNOSIS recipe because their activities are only meaningful in
the context of the joint action and this will never succeed if the AAA’s recipe is
not completed;

(i1) the CSI needs to inform the AAA and the BAI of its mistaken identification of
a transient fault because the motivation for the joint action is no longer present
and so all the team members should cease their associated processing.

R1, R2, and the interest descriptors of the agent models exhibit the characteristics of
first-generation expert system rules—they embody associational surface knowledge [23]
which is sufficient to have the effect of the required inference, but which represents
nothing of the underlying domain. In this case the underlying domain is the process
of cooperative problem solving, rather than more traditional domains such as fault
diagnosis or network restoration. In GRATE there is no explicit model of how to
cooperatively solve a problem, rather the rules represent a straight association between
an agent’s problem solving state and its actions. Drawing upon the experiences of
second-generation expert systems, a better solution would be to provide agents with an
explicit representation of the model of cooperation which is being employed. Such a
model should specify:

e how individual agents should behave when carrying out their local activities related

to the joint action,

e how the joint action may come unstuck,

e how problems with the joint action can be repaired,

¢ how individuals should act towards their fellow team members when problems

arise,

o how agents should re-organise their local activity in response to problems with the

joint action.

This method of approach is also consistent with organisational science doctrines
which state that the best way to tackle problems in the face of task and environmental
uncertainty is to introduce explicit rules and procedures. If everybody adopts the ap-
propriate behaviour the resultant aggregate’s response is a coherent pattern of activity
[27]. GRATE agents did not possess the necessary procedures to enable them to oper-
ate in uncertain environments and so their level of performance in such situations was
significantly degraded.

3. Explicit models of cooperative problem solving

To fulfill the desiderata for a comprehensive model of cooperation two types of
construct are needed: those which are associated with defining individual behaviour in
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a social context and those which are associated with cooperative behaviour per se.

With respect to defining individual behaviour in a social context, a growing band of re-
searchers believe that the central controlling concept is that of intentions [8,17,24,64]1—
i.e. a commitment to act whilst in a certain mental state. Bratman highlights three
important facets of individual behaviour which are governed by an agent’s intentions
{7]. Firstly, when an agent decides to pursue a goal it commits itself to bring about a
particular state of affairs. Secondly, intentions are used to organise future actions; once
an agent commits itself to a particular goal it must make subsequent decisions within
the context that it will perform the necessary actions at the specified times. Finally,
intentions pose problems for means—end analysis—this occurs because agents frequently
commit themselves to a goal before they have worked out all the low-level details about
how it can be realised.

To adequately fulfill these three roles, intentions must possess the following properties.
Firstly, an agent’s intentions should be both internally consistent and consistent with
its beliefs. The former means that an agent’s intentions should not conflict with one
another; the latter that if an agent’s intended actions are executed in a world in which
its beliefs are true, the desired state of affairs should ensue [17]. The second important
property is that intentions should have a degree of stability, but, on the other hand,
they should not be completely inflexible. If intentions were constantly reconsidered
and abandoned, the agent would spend all its time deliberating about actions rather
than actually performing them. However an agent’s intentions should not be irrevocable
because circumstances may change and it is not always possible to correctly predict
the future (as the experiences with GRATE showed). Achieving the balance between
stability and flexibility means that agents need general policies (conventions [39])
which specify under what circumstances intentions should be re-examined. An associated
property is that agent’s need to monitor the execution of their intentions so that they
can detect when the conditions specified in the convention pertain.

Given this description of intentions, it is clear that they meet some of the specified
criteria of the explicit model of cooperation. In particular they define an individual’s
local behaviour when everything is progressing satisfactorily (i.e. honour commitments)
and, through the definition of conventions, offer some insight into the types of difficulties
which may arise during problem solving. As an example, Cohen and Levesque’s model
of intentions identifies the following situations under which an agent should reconsider
its commitments to a particular goal G:

(1) G is already satisfied;

(ii) G will never be satisfied; and

(iii) the motivation for G is no longer present [17].

Given the success and elegance of modelling individual behaviour using intentions,
joint intentions were considered the natural means of describing inherently cooperative
phenomena. As a first approximation, joint intentions can be defined as a joint com-
mitment to perform a collective action while in a certain shared mental state [18]. A
number of formal models of joint intentions were available in the literature, although no
one model was sufficient to be used directly in this work. Jennings presents a detailed
review and comparison of the prominent models [39] and notes that the following points
were made about cooperative problem solving:
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agents must have a joint goal [18,51,52,61,65,74],
agents must agree they wish to cooperate to achieve their joint goal {18,51,65,74],
agents must agree a common recipe for attaining their joint goal {52],
actions performed by different agents, in the context of the joint action, are inter-
dependent [52,61],
e agents must have conventions for monitoring the viability of their commitments
[51].

Almost all of the formulations encode the fact that joint action requires a common
goal which the group wishes to attain and the fact that they must all want to achieve this
goal in a cooperative manner. The purpose of the common goal is to provide the glue
to bind individuals’ actions into a cohesive whole. The stipulation that the participants
must want to achieve their goal in a cooperative manner distinguishes between a group
of agents which independently have a goal which just happens to be the same and a
group of agents which truly share a common aim. This distinction is important because
the two relationships imply different consequences in social interaction: the former give
rise to competition if resources are scarce, whereas the latter result in cooperation and
coordination [19]. Once both the common goal and the desire to cooperate have been
ascertained, the group becomes jointly committed to achieving its joint goal.

Many of the accounts fail to recognise that existence of a joint goal is not sufficient
to guarantee that cooperative problem solving will ensue. Consider, for example, a
country in which both the government and its independent national bank have the goal
of lowering inflation, that they wish to achieve this by working together and that they
are both mutually aware of this fact (i.e. they have a joint goal). Unless both parties are
also capable of agreeing upon a common recipe for achieving their objective, there will
never be cooperative action despite the fact that there is a joint goal. The common recipe
provides a context for the performance of actions in much the same way as the joint
goal guides the objectives of the individuals. Explicitly including the common recipe
requirement in the definition places an additional functional role on joint intentions:
namely that they will drive the participants’ towards agreement of a common course of
action.

Thus for a joint intention to be active, there must be a commonly agreed recipe which
the agents are working under.? This does not imply that the recipe must be developed
before joint action can commence nor does it mean that the recipe cannot evolve over
time. Rather it reflects the fact that team members must believe that eventually they will
be able to agree upon, and work under, a common recipe with respect to their joint goal.
At any instant in time the recipe is likely to be partial—either temporally partial in that
the exact ordering between some elements may not be specified or structurally partial
in that not all of the actions have been fully elaborated [60]. Developing or refining the
recipe is a complex activity because of the inter-dependencies which exist between the
agents’ actions. Because of this complexity a number of different planning paradigms,
each with their own benefits and drawbacks, have been devised [12,21,25,30]—for

2 As shown later, if an agent drops its commitment to the common recipe then this may no longer be the
case, however this situation will be ignored for the present.
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example, the recipe may be generated before any action has started or it may be
interleaved with one agent or by a group of agents, and so on.

An important facet of the desired cooperation model is that it specifies criteria against
which joint intentions can be monitored and also that it prescribes how to behave
when things go wrong. However this aspect has been neglected by almost all of the
formulations (the exception is Cohen and Levesque’s model of joint intentions [51]
which is described further in the next subsection). As a typical example of an extant
model, Tuomela and Miller state that when things go wrong with one agent’s activities,
the other group members will help exert pressure and do whatever they think is necessary
for the collective to succeed in achieving its objective [74]. This is particularly weak,
it does not specify what it means for something to go wrong nor how to behave in such
circumstances.

As none of the extant formulations fully met the list of requirements laid down for
our cooperation model, a new model of joint intentions was needed. Rather than starting
afresh it was decided that the new model would be based on Cohen and Levesque’s
work on joint intentions [51] (because it provided many of the desirable features). On
the theoretical side, their model needed to be refined in order to more fully meet the
requirements associated with the common recipe (see Section 3.1.2 for more details);
but the major effort was in defining the path from the formal model to an implementation
level system. In previous work on formal models of cooperation this pathway is rarely
explained, let alone actually traversed!

3.1. Joint Responsibility

Joint Responsibility is specified formally using modal, temporal logics [35,36]. Like
several of the extant formal models, Responsibility can be viewed as having two distinct
levels. There is a low-level language which defines notions such as goals, recipes,
actions, inter-dependencies and so on. This language is then used to build up higher-
level concepts such as joint commitment to a joint goal and joint commitment to a
common recipe. Here a discursive account of Responsibility is deemed sufficient because
the main emphasis of this paper is in showing how the intuitions of the formal model
can be used to guide the process of building robust cooperating communities, not in
showing precisely how these concepts are formalised. Section 3.1.1 deals with joint
goals; it specifies: what it means for a team of agents to be jointly committed to a joint
goal, what types of incoherency can occur when executing a joint goal, and how agents
should act towards their fellow team members when such problems occur. Section 3.1.2
specifies the same details for the common recipe. Finally, Section 3.1.3 draws these two
strands of work together and presents the definition of Joint Responsibility.

3.1.1. Joint goals

Joint Responsibility uses a portion of Cohen and Levesque’s model of joint intentions
to represent joint commitment to a joint goal [18,51]. Commitment is based on the
notion of joint persistent goals which, in turn, are based upon the concept of achievement
goals. Achievement goals define the mental state of individuals participating in a team
which is working towards a joint goal with a specified motivation. Agent & has a weak
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achievement goal, relative to its motivation g, to bring about p if either of the following
are true:
(i) a does not yet believe that p is true (achieved) and has p being eventuaily true
as a goal (i.e. o has a normal achievement goal to bring about p);
(ii) « believes that p is true, will never be true, or is irrelevant (g is false), but has
a goal of making the status of p mutually believed® by all team members.
Thus a weak achievement goal has four separate cases:
(1) a has p as a normal achievement goal;
(i1) « thinks that p is true and wants to make this fact known to all;

(iii) a believes that p will never be true and wants to make this fact mutually

believed;

(iv) a believes that the motivation for p is no longer valid and wants to make all

agents aware of this fact.
A team of agents has a joint persistent goal, relative to g, to achieve p if and only if:
they all mutually believe that p is currently false; they all mutually believe that they all
want p to be eventually true, and until they all come to mutually believe either that p is
true, that p will never be true, or that g is false, they will continue to mutually believe
that they each have p as a weak achievement goal relative to g.

If a team is jointly committed to achieving p, they mutually believe that they each
have p as a normal achievement goal initially. However as time passes team members
cannot rely on the fact that they all still have p as a normal achievement goal, they
can only assume that they have it as a weak achievement goal. The reason for this
weaker statement is that one team member may have discovered that the goal is finished
(impossible or irrelevant) and be in the process of making this fact known to its
associates. If at some point it is no longer mutually believed that everybody still has the
normal achievement goal then there is no longer a joint persistent goal (as not all the
agents wish p to be true) and so the team is no longer jointly committed to p. However
a weak achievement goal persists and ensures that all team members are informed of the
lack of commitment by the doubting individual. This means agents can rely upon the
commitment of others: firstly, to the overall objective (normal achievement goal) and
then, if necessary, to the mutual belief of the status of the objective (weak achievement
goal). Individuals can therefore undertake activities in the knowledge that others are
working towards the same overall objective and that if something goes awry then they
will be informed. This guarantee is important because in many cases when a problem
surfaces it can only be detected by a subset of the team, but the existence of a weak
achievement goal means that the agents which can detect the problem must endeavour
to inform those which cannot.

In terms of the desiderata of our cooperation model, joint persistent goals: specify
that agents should, in general, honour their commitments with respect to the joint goal;
detail the convention by which agents should monitor their commitment to the joint
goal; and, finally, describe how agents should behave both locally and towards others
when commitments are reneged upon.

3 Mutual belief is the infinite conjunction of beliefs about other agents’ beliefs about other agents’ beliefs
and so on to any depth about some proposition [32].
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3.1.2. The common recipe

Joint commitment to the commonly agreed recipe is specified through the notion of
joint recipe commitment which, in turn, is based upon the concept of individual recipe
commitment. Individual recipe commitment specifies that each team member should
remain committed and actually perform the actions it has agreed to undertake, within
the context of the common recipe, unless any of the following circumstances arise:

o The desired outcome of a recipe step is already available (COMPONENT-OUT-
COME-EXISTS), e.g. the outcome may have been produced by a different sequence
of actions or it may have been supplied by another agent.

o Following the agreed recipe does not achieve the desired result (RECIPE-INVA-
LID), e.g. there may be a substantial change in the external environment which
means that completing the current sequence of actions is pointless because the
model upon which they are based is no longer valid.

e One of the specified actions cannot be performed (RECIPE-UNTENABLE), e.g.
a sensor which provides a key source of information to an important task may
malfunction meaning that the desired activity cannot be performed.

o One of the agreed actions has not been performed properly (RECIPE-VIOLATED),
e.g. an agent which agreed to perform an action at a specified time may delay its
execution because it has been distracted by an unanticipated and high priority event
which requires its immediate attention.

The above conditions define situations in which an agent is able to detect for itself
when problems related to the common recipe have occurred. Such awareness will typi-
cally be attained either because the agent is involved in the faulty action (e.g. it failed
to execute a specified action at the appropriate time) or because it was able to directly
observe the behaviour of a fellow community member and from this infer that some-
thing was amiss. A second way in which an agent may realise that there are problems
with the common recipe is through being informed by a fellow community member.
For example, an acquaintance may indicate that it was unable to perform one of its
specified actions or that it believes that the recipe is no longer appropriate. Such indirect
sensing is important because of the very nature of cooperative problem solving, if one
participant stops contributing then the whole activity may be jeopardised. Therefore if
an agent comes to believe that a fellow team member is no longer committed to the
recipe then it also needs to reassess its position. Thus an agent can drop its commitment
to the common recipe if it detects a problem for itself or if it is informed of a problem
by a fellow team member.

Individual recipe commitment defines how each agent should behave with respect
to its problem solving actions within the context of the joint action. It also defines
the convention with which agents should monitor their commitments to the common
recipe. However when an agent discovers that one of the conditions specified in this
convention holds, it cannot simply abandon the recipe because its accomplices may not
have been able to detect the problem for themselves. Therefore joint recipe commitment
specifies that when an agent drops its commitment to the common recipe it must
endeavour to inform all the other team members. This enables the whole team to
reassess the recipe and means that if it needs to be abandoned or refined the amount of
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wasted resource is minimised because futile activities are stopped at the earliest possible
opportunity.*

3.1.3. Defining Joint Responsibility

Joint Responsibility provides an explicit model of cooperation which meets all the
desiderata set out in the previous section. It requires that all the team members a/, ..., a,
have a joint persistent goal to attain their joint goal o, that they all execute the common
recipe 3 according to the principles of joint recipe commitment, and moreover, that all
the agents mutually know what they are doing whilst they are doing it (Fig. 2). Two
distinct types of joint commitment are needed because they necessitate different courses
of action when they are dropped. When commitment to the joint goal is dropped the
joint action is over—if the goal is achieved, the group has satisfactorily completed its
objective; if the motivation is no longer present or the goal will never be attained, there
is no point in continuing. However, if the group becomes uncommitted to the common
recipe there may still be useful processing to be carried out. For instance, if the recipe
1s deemed invalid, the agents may try a different sequence of actions which produce the
same result. Similarly, if a recipe action is not performed correctly, the agents would
typically reschedule their activities and carry on with the same course of action. Thus
dropping commitment to the common recipe plays a different functional role to that of
dropping a goal.

4. Implementing jointly responsible agents

The Responsibility Model suggests a high-level architecture for cooperating agents
in which joint intentions play a central role in coordinating future actions and in con-
trolling the execution of current activities [38]. Adoption of the Responsibility Model
therefore places certain constraints on the agent architecture, it is not neutral in terms

4 Cohen and Levesque’s model deals with actions through their definition of joint intention (a joint persistent

goal to perform an action while in a certain shared mental state [51]). Using their formalism it is possible
to define the behaviour associated with joint recipe commitment; the joint intention to the common recipe 3,
as a way of attaining the joint goal G, is simply made relative to the joint commitment to G. Because joint
intention is based upon joint persistent goals, the agent’s behaviour when ¥ is discovered to be achieved,
impossible or irrelevant (note this means that 2 does not result in G, not necessarily that it is impossible,
etc.) is analogous to the behaviour which results if similar discoveries are made about G itself. However
because the joint commitment to X' is a joint subgoal to G, even if the former joint commitment is abandoned
the joint commitment to G may remain. In such cases, the agents will try and find an alternative common
recipe to which they can jointly commit themselves.
Despite providing the necessary re-planning functionality, it was decided to use the notion of joint recipe
commitment because it enumerates the specific conditions under which 3 may become inappropriate. Although
component outcome exists, recipe invalid, recipe untenable, and recipe violation are all consequences of Cohen
and Levesque’s formulation they are not identified as separate categories (rather they are all bundled together
under the banner of 2 no longer resulting in the attainment of G). Using joint recipe commitment means that
the component which tracks the joint action in the implementation architecture is better defined with respect
to the common recipe. It also means that the application designer’s work of devising the necessary monitoring
rules is better structured as the causes of recipe failure are explicitly provided by the cooperation model (more
details of both of these processes are given in Section 4).
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JOINT-RESPONSIBILITY ({ay,...,a,},0,3) =
FORALL a; € {ay,...,a,}
WHILE Normal-Achievement-Goal («;, o)
AND Individual-Recipe-Commitment(a;, o, 3) DO
PARALLEL
Honour commitments to joint goal and common recipe
Monitor rationality of commitment to o
Monitor rationality of commitment to 3
END-PARALLEL
Suspend processing of local activities related to ¥
CASE Reason for non-commitment OF
NOT Normal-Achievement-Goal(«;, )
Abandon commitments to o and subsequent actions in ¥
NOT Individual-Recipe-Commitment(«;, o, 3):
IF remedial action available
THEN select possible remedies
ELSE seek assistance to devise new common recipe
END-CASE
Inform other team members of lack of commitment,
reason for commitment failure and remedial action if it exist

Fig. 2. Joint Responsibility Model of cooperative problem solving.

of implementation. However the descriptions it provides are at a suitably high level to
ensure there is still significant leeway in how the concepts will actually be realised. For
example, the model does not specify how intentions are represented, how commitment
is described, what mechanisms are used to obtain agreements, nor how to develop the
common recipe. Therefore the GRATE* implementation which will be described in the
remainder of this section is but one computational interpretation of the model.

In this context, Responsibility had to be implementable in a computer system which
could be used to control real-size industrial applications; therefore it was decided to
adopt a rule-based approach rather than, for instance, a modal theorem prover. Such an
interpretation consumes less computational resource and leaves the domain level system
with more time to operate effectively. Thus GRATE*’s rules provide the operational
semantics for Joint Responsibility; the rules are divided into two groups, those which
assess the situation of the cooperating group and those which perform cooperative
functions per se. According to the Responsibility Model definition, and the properties of
intentions in general, situation assessment rules are needed to: decide when cooperation
on a joint goal is appropriate, develop and obtain agreement on a common recipe,
ensure that existing commitments are honoured, ensure that any new commitments are
consistent with existing ones, monitor the problem solving state with respect to the
convention for dropping commitment, and decide what actions should be taken if a
joint commitment is dropped. The rules which control cooperative interactions must
ensure that all team members are informed if the local agent reneges upon its joint
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commitment—in such circumstances they should also be made aware of the reason for
this change and the proposed remedial action if one exists. As well as identifying the
functionality which must be present, the formal model prescribes the key data structures,
these include: goals, recipes, intentions and joint intentions.

Several simplifying assumptions are required to provide a reasonable approximation
to the formal description and to make a reasonable implementation feasible. Firstly, it is
assumed that communication is fool proof and that the message delay time is known to
all agents. Secondly, although mutual belief has many appealing theoretical properties it
is not a concept which can easily be attained in practical systems, thus a computational
approximation is required—in GRATE* this led to beliefs with one level of nesting (i.e.
everybody knows that everybody knows). Thirdly, in order to carry out coordination
activities agents share a global clock reference. Finally, agents are able to predict, with
a reasonable degree of accuracy, the time taken to execute each of their domain level
activities.

4.1. GRATE* agent architecture

GRATE* agents have two clearly identifiable components: a cooperation and control
layer and a domain level system (Fig. 3). The latter solves problems for the organisation,
be it in the domain of particle accelerator control, electricity transportation management
or cement factory control. Problems are expressed as tasks—atomic units of processing
when viewed from the cooperation layer. For example, a domain system which diagnoses
faults may be composed of two tasks: a heuristic one which produces a quick but
approximate solution and a model-based one which uses this information to guide its
accurate but lengthy verification. The cooperation layer is a meta-level controller which
operates on the domain level system. Its objective is to ensure that the agent’s domain
level activities are coordinated with those of others within the community. It decides
which tasks should be performed locally, determines when social activity is appropriate,
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receives requests for cooperation from other community members, and so on.

The cooperation layer has three main problem solving modules. Each module is im-
plemented as a separate forward-chaining production system with its own inference
engine and local working memory. Communication between the modules is via message
passing. The rules contained in each module are generic, they are applicable for control-
ling cooperative activities in a broad range of industrial applications [37]. The control
module is the interface to the domain level system and is responsible for managing all
interactions with it. The situation assessment module makes decisions which affect both
of the other two modules. It decides which activities should be performed locally and
which should be delegated, which requests for cooperation should be honoured, how
requests should be realised, what actions should be taken as a result of freshly arriving
information, and so on. It issues instructions to, and receives feedback from, the other
modules. Typical requests to the cooperation module include “get information X” and
“get task Y executed by an acquaintance”. Requests to the control module are of the
form “suspend task T1” and “start task T2”. The cooperation module is responsible for
managing the agent’s social activities, the need being detected by the situation assess-
ment module. Three primary objectives related to the agent’s social role are supported.
Firstly, new social interactions have to be established (e.g. find an agent capable of
supplying a desired piece of information). Secondly, ongoing cooperative activity must
be tracked (using the Responsibility convention). Finally, cooperative initiations from
other agents must be responded to.

The remaining components provide support functions. The information store is a
repository for all the data which the underlying domain level system has generated
or which has been received as a result of interaction with others. As described in
Section 2, acquaintance and self-models are representations of other agents and of the
local domain level system respectively. The communication manager sends and receives
messages to/from other agents in the community.

4.2. Paving the way for cooperation

Before cooperation can proceed a joint action between a group of willing acquain-
tances must be established. The need for, or desirability of, all new activities is detected
by the agent’s situation assessment module. After the agent has selected the appropriate
recipe to achieve the desired goal, it has to determine whether the activity should be
completed locally or whether assistance should be sought from other community mem-
bers. This decision is based upon the number of recipe components which the agent
wants its acquaintances to undertake. There are three potential outcomes of this analy-
sis: joint action is definitely needed, the action can be solved entirely locally, or some
assistance is required but not sufficient to warrant a full-scale joint action.

If a full joint action is warranted, the agent which detects the need becomes the
organiser. The role of the organiser is to: identify other community members who will
be willing to participate, get the team members to acknowledge that a common recipe
is required and to agree to use the Responsibility cooperation model, and, finally, to
actually devise the common recipe. Rather than having a protracted protocol in which
each of these pre-requisites is agreed upon separately, a more concise version in which
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PHASE 1

Organiser detects need for joint action to achieve goal G
and determines that recipe R is the best means of attaining it.

Organiser contacts all acquaintances capable of contributing to R to determine if
they will participate in the joint action using the Responsibility cooperation
model.

Let: 2 =set of willing acqaintances.

PHASE 2
FORALL actions in R
select agent A € (2 to carry out action # € R
(criteria: minimize number group members)
calculate time (#y) for 6 to be performed based on temporal orderings of R
and the anticipated communication delay
send (4, ty) proposal to A
A evaluates proposal against existing commitments (C’s):
IF no-conflict(8, ty) THEN create commitment Cy for A to (8, tg)
IF conflicts((8,t9),C) A priority(#) > priority(C)
THEN create commitment Cy for A to (6,1g) and re-schedule C
IF conflicts((8,t4),C) A priority(8) < priority(C)
THEN find free time (#y 4+ Aty), note commitment Cy and
return updated time to leader
Return acceptance or modified time to team organiser
IF time proposal modified THEN update remaining actions times by Aty
END-FORALL

Fig. 4. GRATE* distributed planning protocol.

several conditions are settled in a single message interchange is more appropriate for
industrial applications. GRATE* uses a two-phase protocol (Fig. 4). The first phase
establishes the agents which will participate and the ground rules which they must
adhere to—this phase is similar to the task announcement phase of the contract-net
protocol [68] in which focused addressing is used to limit the extent of the broadcast to
a subset of the entire community. The second phase of the GRATE* protocol specifies
who will perform each action and at what time. Two phases are needed because of the
complexities of the application and the agents involved. As the organiser does not have
a complete picture of all activities within the community, it is not aware of the existing
commitments and desires of all its potential team members. Hence exact timings must
be reached through mutual agreement, rather than being dictated by the organiser.
Again the general concepts will be illustrated through the now familiar electricity
transportation scenario. After establishing the desirability of the joint action, the or-
ganiser (the AAA) instantiates a representation of the joint intention in its self-model
(Fig. 5). The motivation slot indicates that the reason for carrying out the joint ac-
tion is that a disturbance has been detected. The recipe is a series of actions which
need to be performed, together with some temporal partial ordering constraints, which
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Name: (DIAGNOSE-FAULT)
Motivation: (INFO-AVAILABLE DISTURBANCE-DETECTION~MESSAGE)
Recipe:
( (PAR (START-OFF (IDENTIFY-BOA ?BLACK-OUT-AREA))
(START-0FF (HYPOTHESIS-GENERATION
?BLOCK-ALARMS 7?INITIAL-HYPOTHESES))
(START-OFF (MONITOR~DISTURBANCE)))
(START-WHEN (INFO-AVAILABLE INITIAL-HYPOTHESES)
(DETAILED-DIAGNOSIS ?INITIAL-HYPOTHESES
?BLACK-QUT-AREA ?VALIDATED-FAULT-HYPOTHESES)))
Start Time: -
Maximum End Time: -
Duration: -
Priority: 20
Status: ESTABLISHING-GROUP
OQutcome: (VALIDATED-FAULT-HYPOTHESES)
Participants: ( (SELF ORGANISER AGREED-OBJECTIVE)
(CSI TEAM-MEMBER AGREEING-OBJECTIVE)
(BAI TEAM-MEMBER AGREEING-OBJECTIVE))
Bindings: NIL
Proposed Contribution:
( (SELF ((HYPOTHESIS-GENERATION YES) (DETAILED-DIAGNOSIS YES)))
(BAI (IDENTIFY-INITIAL-BOA 7))
(CSI (MONITOR-DISTURBANCE 7)))

Fig. 5. Representation of AAA’s DIAGNOSE-FAULT joint intention.

will produce the desired outcome. This recipe uses the same basic constructs as the
PRODUCE-DIAGNOSIS recipe of Fig. 1, but in accordance with the philosophy of
explicitly representing joint actions it also encodes the related actions and how they
combine to achieve the overall goal (i.c. the three main activities of identifying the
black out area, of performing hypothesis generation and of monitoring the disturbance
are all kicked off in parallel, then the detailed diagnosis® starts once the initial list of
hypotheses has been produced). The recipe indicates what is to be done, not who is to
do it or the time at which it should be done. The detailed timings are dealt with in the
second phase of the protocol.

The priority slot indicates the importance of the intention and is used as the
basis for computing its desirability—the higher the value the more desirable the action.
Priorities are a combination of two components: an intrinsic (static) value associated
with each recipe and a dynamic component which provides the necessary flexibility by
reflecting the current problem solving context (e.g. whether the recipe is part of a local
action, a joint action, or a social request). The intrinsic priority of the DIAGNOSE-

5 Detailed diagnosis covers both hypothesis validation and hypothesis refinement.
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FAULT recipe is 10 (see Fig. 1) and because the intention is invoked as a joint action
it’s context figure is 10, giving an overall priority of 20.

The status slot refers to the current phase of the planning protocol and has the
value establishing-group, developing-solution or executing-joint-action.
The outcome slot enumerates the expected results of performing the intention. The
participants slot indicates the organisational structure of the group and the current
stage of each agent’s involvement. The diagnose fault action has one team organiser
(the AAA) and two other potential team members (the BAI and the CSI). The AAA
has agreed to participate in the cooperative act, since it is the originator, and it is in the
process of establishing whether the other two wish to join. The bindings slot is used
exclusively in the protocol’s second phase.

Proposed contributionrecords those agents which are adjudged, by the organiser,
to be capable of contributing to the joint act and it also specifies whether they have
agreed to make that contribution. It can be seen that the AAA has consented to contribute
by performing HYPOTHESIS-GENERATION and DETAILED-DIAGNOSIS. The BAI
and the CSI have not yet agreed to contribute anything, though the organiser has already
defined privately what roles it wishes them to play.

Having identified the need for joint action, the process of establishing a cooperating
group can commence. The first phase of the protocol ascertains which acquaintances
are willing to participate. As an initial step the organiser’s situation assessment module
informs its cooperation module that a social act is required (action 1, Fig. 6). The
cooperation module identifies all those acquaintances who it believes can contribute to
the recipe subcomponents, based on the knowledge of capabilities maintained in its
acquaintance models. This approach works well in industrial applications because the
community is fairly static and hence such capability knowledge can be assumed to be
reasonably accurate and comprehensive. However in more open environments, in which
agents enter and leave the community frequently, a more dynamic approach may be
appropriate. At this stage the objective of the protocol is to identify the maximum
number of agents which are capable of participating so that the organiser has a degree
of flexibility in the second phase. After the potential contributors have been identified,
they are each sent a message requesting their participation in the joint action (2).
This message indicates that the sender wishes to establish a joint action involving the
recipient, states the reason why this joint action is needed, the other agents which are
being asked to participate, the team organiser’s priority for the activity, and the activity’s
expected outcome.

Each potential participant receives the proposal in its cooperation module and checks
that it understands the request. If the request is rejected, a negative response is prepared
(3") and passed back to the organiser. Assuming the request is accepted at the coop-
eration module level, it is then passed to the situation assessment module (3) to see
whether the agent has sufficient resources to tackle the problem. This involves analysing
existing commitments to ensure that the proposal is consistent and that it can be accom-
modated successfully. The result of this evaluation, either yes or no, is passed back to
the cooperation module (4) which returns the answer to the organiser (5). If the agent
wishes to participate, it sets up a joint intention description in its self-model using the
information it has been supplied with.
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Fig. 6. Establishing a joint action.

By answering affirmative to the group initiation response, the BAI and the CSI
acknowledge that: they are interested in participating in the cooperative fault diagnosis,
that a common recipe is needed to solve the problem, and that they will use the
Responsibility cooperation model for the duration of their collaboration. These criteria
are not communicated explicitly because all community members share a common
understanding of the semantics of performing a joint action.

Once all the community members who were identified as potential participants have
replied, the second phase of the planning protocol begins and the team specifies the
exact details of the common recipe. The organiser updates the joint action’s status
slot to developing-solution and modifies the participants slot to reflect the fact
that the team is now in the solution planning phase. From the list of willing agents,
the organiser selects those it wishes to be in the team and the contributions it would
like them to make. The criterion upon which selection is based, in this instance, is to
minimise the number of group members. This strategy was chosen because the fewer
agents there are in the team, the lower the likelihood of one of them defaulting (since its
individual loss would be greater). This strategy also reduces the coordination overhead
because messages need to be sent to fewer agents. In other instances, however, it may
be desirable to have the maximum number of agents in the team to balance the load
throughout the community or to select the most competent agent to perform each task.
The team leader updates its proposed contribution slot to indicate those agents
which were selected and those which were not:

Proposed Contribution:
( (SELF ((HYPOTHESIS-GENERATION SELECTED)
(DETAILED~DIAGNOSIS SELECTED)))
(BAI (IDENTIFY-BOA SELECTED))
(CSI (MONITOR-DISTURBANCE SELECTED)))

The team leader then makes an initial proposal for the timings of the individual
actions, expressed in the bindings slot, and fills in the joint action’s duration, and
its start and end times. These timings take into account the fact that some time is
required to obtain agreement on the common recipe—for each action which needs to be
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Name: (ACHIEVE (IDENTIFY-BOA))
Motivation: (SATISFY-JOINT-ACTION (DIAGNOSE-FAULT)))
Recipe: (IDENTIFY-BOA)

Start Time: 19 Maximum End Time: 34
Duration: 15 Priority: &
Status: PENDING Outcome: (BLACK-~QUT-AREA)

Fig. 7. BAD’s individual intention for producing the black out area.

performed by an acquaintance at least two messages must be sent to establish its start
time and agents also take time to process a message.

Bindings:
((BAI IDENTIFY-BOA 19)
(SELF HYPOTHESIS-GENERATION 19)
(CSI MONITOR-DISTURBANCE 19)
(SELF DETAILED-DIAGNOSIS 36))

The organiser then takes each recipe action in a temporally sequential order and
agrees with the agent concerned the time at which it should be performed. The pro-
posal sent to each contributor indicate the action to be performed, the time at which
it should be started, and the team leader’s current proposal for its context. Upon re-
ceipt of the proposal, the team member evaluates it to see whether it is acceptable.
If there is no conflict, the agent adopts the intention and sets up an individual in-
tention description in its self-model (see Fig. 7 for an example).® The agent then
returns a message indicating its acceptance to the team organiser. If the suggested
time is unacceptable the prospective team member proposes a time at which the ac-
tion can be fitted in with its existing commitments, makes a tentative commitment for
this time, and returns the suggestion to the organiser. If the modified time is accept-
able to the organiser it will make appropriate adjustments to the solution bindings and
proceed with the next action. If the modified time proposal is unacceptable then the
organiser will look in its list of proposed contributors for a new actor to perform the
action.

The process of agreeing a time for each action continues until all of them have been
successfully dealt with. At this point, the common recipe is agreed upon and the organiser
informs all team members of the final solution. The joint action is now operational. The
organiser changes the status of the social action to executing-joint-action and
the participants slot is updated to indicate that all team members are now in the
process of performing the joint action.

¢ There are two slight differences between this representation and that of joint intentions. Firstly, the recipe
slot contains the name of a local recipe rather than a list of actions and their relationships. Secondly, the status
is simply executing or pending since there is no distributed planning phase.
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Fig. 8. Responsibility schemata for executing joint actions.

4.3. Using the Responsibility Model to derive generic cooperation rules

Once a joint action has been established, the agent must monitor its execution. It
is during this phase that the tracking aspect of the Responsibility Model comes to the
fore—specifying the conditions under which the agent should reconsider its commitments
and describing how the agent should behave both locally and with respect to its fellow
team members if any such problems arise. In terms of the GRATE* implementation,
the Responsibility Model provides a specification of how the aforementioned aspects of
the situation assessment module should function. The existence of such a specification
meant the developer of GRATE* had a structure and organisational framework from
which the necessary generic rules could be developed.

Responsibility provides a convention which clearly distinguishes between the situa-
tions in which commitment to the joint action needs to be re-examined and the actions
which should be taken in such circumstances (Fig. 8). An agent’s situation assessment
module is continuously monitoring events which occur within the system—these events
may originate from the domain level system (e.g. goal finished, information needed) or
they may come from other agents within the community (e.g. request for information,
return of requested information). In the majority of cases these events will have no effect
on the joint action, however in some instances they will impinge upon it and cause the
agent to reconsider its commitments. The difficulty in the original GRATE system was in
knowing exactly which of the many events were relevant and which were not. However
by using Joint Responsibility the relevant events are clearly specified—they are precisely
those conditions in which an agent can drop its commitment to the joint goal (i.e. goal
has been attained, goal will never be attained and goal motivation no longer present)
and those conditions in which the agent can drop its commitment to the common recipe
(i.e. component outcome available, recipe invalid, recipe untenable and recipe violated).
All of these conditions are represented in the “reasons for re-assessment” component.

It is the task of the “match” process to identify when one of the situations in the
reasons for reassessment store becomes true. Thus, for example, all those events which
have the potential to cause the recipe to become invalid must be recognised, as must
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all those events which undermine the motivation for the joint goal, and so on, for all of
the other conditions in the Responsibility convention. The formalisation of these events
is beyond the scope of the Responsibility Model; therefore the developer of a GRATE*
application has to analyse the domain to determine exactly what these events are likely
to be. A portion of this analysis for the electricity transportation scenario is shown in
Fig. 9. In this application the common recipe remains valid if its initial assumptions are
correct, if each task provides the expected results and if all the action inter-relationships
are attainable. Similarly, the motivation for the joint goal remains in tact if the beliefs
for wanting the goal remain true and if the goal does not conflict with another more
highly rated one.

Having assimilated all those events which cause the Responsibility problem situa-
tions to happen, the application developer must encoded them into GRATE*’s situation
assessment module. The events themselves will form the rule antecedents, whilst the
rules’ conclusions will be that one of the Responsibility conditions for joint action re-
assessment has occurred. Examples of four such rules, which respectively encode the
fact that the joint goal has been satisfied, that the motivation for the joint goal is no
longer present, that the common recipe has been violated, and that the common recipe
is invalid are given below:

Rlpaten:
if task t has finished executing and

t has produced the desired outcome of the joint action
then the joint goal is satisfied

R-Qmatch:
if receive information i and
i is related to the triggering conditions for joint goal G
and i invalidates beliefs for wanting G
then the motivation for G is no longer present

R3patch :
if delay task t1 and
tl is a component of the common recipe R for a joint action
and tl must be synchronised with task t2 in R
then R is violated

Répaten
if finished executing common recipe R and
expected results of R not produced and
alternative recipe exists
then R is invalid

If any of the above match rules are fired, they identify an intention which has run
into difficulty in its present form and which has jeopardised the entire joint action—R1
and R2 mean that the agent no longer has a normal achievement goal to attain the
joint action, whilst R3 and R4 mean that the agent’s individual recipe commitment has
been compromised. According to the schemata of Fig. 8, the next step is to determine
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which remedial actions, if any, should be taken—this operation is also carried out in an
agent’s situation assessment module. Available options are represented in the “associated
repair action” component and vary from simply rescheduling the existing tasks, through
entering a replanning phase, to abandoning the joint action completely. The “select”
process takes the intention which is in difficulty, the problem identified by the match
process, the list of available repair actions, and determines what the agent should do
next. For example, when an agent becomes uncommitted to the common recipe it should
suspend processing its associated local actions and enter a replanning phase, whereas if
the agent believes the motivation for the joint goal is no longer present then it should
abandon all of its associated local actions. Examples of some of the rules which encode
the select process for the types of problem used by the exemplar match rules are as
follows:

Rlselect !
if joint goal is satisfied
then abandon all associated local activities
inform cooperation module that the joint action
has successfully finished

R2se1ect :
if motivation for joint goal is no longer present
then abandon all associated local activities
inform cooperation module that the motivation for the
joint action is no longer present

R3select :
if common recipe R is violated and
R can be successfully rescheduled
then suspend local activities associated with R
reset the descriptions and timings of R
inform cooperation module that R has been violated
and propose new timings

Réselect
if common recipe R1 is invalid and
alternative recipe R2 exists
then abandon local activities associated with R1
inform cooperation module that R1 is invalid
and propose R2 as an alternative course of action

As well as taking actions locally (such as abandoning, suspending or rescheduling
tasks) the Responsibility Model stipulates that the other team members must be informed
when an individual’s commitment is compromised. This aspect of the model is realised
by GRATE*’s cooperation module, based on the information provided by the situation
assessment module. In the above cases, the assessment module indicates that the joint
action has been satisfied, that the motivation for the joint action is no longer present,
that the common recipe has been violated, and that the common recipe is invalid. It is
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then up to the cooperation module to ensure that the other team members are informed.

Rlinforn:
if joint action has successfully finished
then inform all team members of successful completion
see if results should be disseminated outside the team

R2inform:
if motivation for joint goal G is no longer present
then inform other members of the team that G needs to be
abandoned

R3inform:
if common recipe has been violated
and new timings proposal exists
then inform other team members of violation and also
propose nevw timings as a means of fixing the problem

R4intorn
if common recipe R1 is invalid
and alternative proposal R2 exists
then inform other team members that R1 is invalid
and offer R2 as an alternative

The vast majority of extant DAI systems do not have such an explicit representation
of cooperation—their monitoring is ad hoc with each and every case having to be dis-
covered and enumerated separately, without the benefits of a clear organising framework.
Analysis of the surface level rules depicted in Section 2 reveals that they have a direct
link between the matching of environmental conditions (e.g. recipe successfully finished
and recipe deadline not met) and associated actions (respectively, inform acquaintance
that recipe has finished and inform acquaintance that recipe will not meet deadline).
By adopting the Responsibility approach, the many tacit assumptions about the process
of cooperative problem solving which underpin these surface level rules were explicitly
available to the GRATE* agents. This meant that the agents could base their reasoning
on a principled model of cooperation and could therefore respond more flexibly and
robustly to the vagaries of complex applications.

5. Experimental results

To assess the utility of the Responsibility Model a series of controlled experiments
were undertaken. The objective of these tests was twofold: (i) to verify the predictions
made by the formal model; and (ii) to ascertain the computational benefits and draw-
backs of Joint Responsibility (particularly with respect to its use in industrial domains).
The key performance metrics can be stated by the following set of testable hypotheses:

(1) The Responsibility Model facilitates coherent cooperation between groups of

willing agents in complex and dynamic environments.
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(2) The Responsibility Model’s utility is correspondingly greater in domains in which

there is significant scope for foul-ups and inconsistencies during cooperation.

(3) The Responsibility Model can be implemented without compromising the agent’s

ability to operate in environments where the resources available for coordination
are limited.

To provide comparative, as well as quantitative results, three distinct types of coop-
erating community were constructed: (i) a Responsibility community; (ii) an implicit
community; and (iil) a selfish community. The exemplar application was the familiar
fault detection and diagnosis in electricity transportation management.

The Responsibility community was represented by the GRATE* implementation which
was described in detail in the previous section.

In the implicit community, agents exchange relevant domain level information and
cooperation is seen as emerging through their interactions. The agents do not maintain
explicit representations of their joint actions, they do not participate in a team planning
phase to decide who will do what, nor do they have a principled model of cooperation
on which to base their behaviour. This organisation corresponds to a typical GRATE
community, it is also similar to several agent architectures based solely on individual
intentions [9,11] and to the seminal Distributed Vehicle Monitoring Testbed in which
the organisational knowledge guiding the cooperating knowledge sources is specified as
a set of “interest areas” [50]. In our implicit community, the agents form individual
intentions (related to their own actions) and plan which local tasks to carry out at what
times—thus recipes are triggered solely on the basis of events the agent observes or local
planning it undertakes. The exchange of relevant information is based upon knowledge
contained in acquaintance models, in particular on representations of the domain level
data which others are interested in receiving. The acquaintance models used in these
experiments were those of the original GRATE multi-agent system—their contents were
specified after a lengthy analysis of the application, but before the Responsibility Model
existed, and were thought, at the time, to encapsulate the entire information sharing
needs of this application.

The final community is composed of selfish problem solvers—these are similar to
the Responsibility agents in many respects: forming joint goals, tracking their intentions
using the Responsibility convention, and agreeing common recipes using the GRATE*
distributed planning protocol. Differences only emerge when the joint action runs into
difficulty or when it is successfully completed. As before, the agent(s) which detects
the problem stops its associated local processing immediately and drops commitment
to any subsequent activities related to the joint action; however this agent does not
inform its fellow team members of its lack of commitment. This behaviour is selfish
because the agent which notices the problem and realises that the joint action is doomed
to failure does not wish to expend further resources informing others, since doing so
brings it no direct benefit with respect to that social action. This community has been
included because a number of authors have suggested that self-interest is the basis
of robust cooperation [4,26]—our selfish problem solvers represent agents which are
purely driven by self-interest, they have no consideration for their fellow team members.

A number of different types of experiment were carried out. Firstly, the behaviour of
the three different communities was analysed to identify the main phenomena exhibited
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during joint action unsustainability and also to analyse the levels of coherence attained in
correspondingly more complex and dynamic environments (Section 5.1). Secondly, an
assessment was made of the effects of varying the time taken for inter-agent communica-
tion on the community’s behaviour (in both successful and unsuccessful collaboration)
(Section 5.2). Finally, the effect of limiting an agent’s reasoning about coordination
was examined in order to gain an insight into the resource overheads required to sustain
each community (Section 5.3).

In all of these experiments, each agent was given an equal priority (time slice)
and could carry out identical amounts of reasoning about the process of coordination.
Coherence is defined quantitatively in terms of the cooperating community’s wasted
effort—the sum, over all team members, of the number of processing cycles from when
the event causing the problem occurs to the time when an agent stops performing
its associated domain level actions. The higher this sum the more incoherently the
community is behaving. So, for example, if the CSI detects a problem at time 10,
stops its associated processing at time 12, and then informs the AAA and the BAI who
respectively stop their associated processing at times 13 and 14 then the community’s
wasted effort is 9 (2 + 3 + 4). The figure does not include the effort spent before
the joint action ran into difficulty, up to this point it was perfectly rational to carry
out the activity and hence the community was performing coherently. Unless stated to
the contrary, agents had infinite processing power to carry out their reasoning about
coordination and the delay in inter-agent communication was one processing cycle.

5.1. Coherence in complex dynamic environments

5.1.1. Coherent and incoherent responses to problems

In this set of experiments, two predominant patterns of behaviour occurred:

(i) the implicit community behaved as coherently as the Responsibility one because
the agents exchanged the necessary information which allowed some, or all, of
the team members to deduce that the joint action should be abandoned;

(ii) the implicit community behaved as incoherently as the selfish one because the
agents did not exchange sufficient information for the team members to deduce
that the joint action was in difficulty.

In all cases the Responsibility community behaved more coherently than the selfish one.

An illustration of the former case occurs when the CSI realises that the network fault
which the group is working on is only transient or never existed at all. As Fig. 10
shows, both the Responsibility and the implicit groups wasted very little effort (always
less than 20 units), whereas the selfish community wasted up to 85 units if the problem
occurs near the beginning of the joint action (elapsed time 0).

In the Responsibility community it is the CSI’s domain level system which actually
detects the fault’s non-permanence. This information is passed up to the situation assess-
ment module (via the control module) whereupon R2pmach (Section 4.3) is fired and the
motivation for the joint goal is noted as invalid. An invalid motivation means the CSI
no longer has a normal achievement goal to complete the diagnosis and hence the joint
action should be terminated. The existence of a weak achievement goal related to the
diagnosis activity ensures that the CSI informs the other two agents that it is no longer
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Fig. 10. Goal motivation lacking.

committed and the reason for this change of state. The resulting level of coherence
exhibits a periodic pattern because the CSI can only detect that the fault is transient at
the end of its network monitoring task—an activity taking 7 units of time and which
is repeated continuously until the list of faulty elements is available. Whenever this
unexpected event occurs, the AAA wastes more effort than the CSI because it cannot
identify the problem for itself—it relies on being informed (indirect sensing). Therefore
this difference is directly proportional to the time taken for the message indicating that
the fault was non-permanent to be sent from the CSI to the AAA. The BAD’s role in
the joint action is comparatively small as it is only active for the first 15 time units. If
a problem occurs in this time, the BAI also relies on being informed by the CSI. This
means the community’s level of incoherence is greatest if the problem occurs near the
beginning of the joint action—once the BAI is not actively involved the wasted effort
levels off.

The implicit community behaves identically to the Responsibility one, from an external
perspective, because the CSI represents the fact that the other agents are interested in
knowing about a change in the electricity network’s state. This interest in state change
was included in the CSI’s models for two reasons. Firstly, because it is what triggers
the diagnosis activities of the AAA and the BAI in the first place. Secondly, because
previous experience had highlighted that the CSI’s disturbance detection action was prone
to inaccuracies. Therefore if the CSI comes to believe that there is not a permanent fault
after all, network state change from faulty to normal, this fact is sent to the AAA and the
BAI as unrequested information. Within their local individual intention representations,
the AAA and the BAI store the reason why they are carrying out their diagnosis
activities (i.e. because there is a fault) and so receipt of the CSI’s message undermines
this motivation. As the AAA and the BAI are rational agents they stop performing their
related diagnosis activities.

The selfish community behaves differently from the other two. When the CSI realises
the fault is transient it abandons its associated local processing, as before, since it is no
longer committed to the joint goal. However as the CSI is selfish, it will not expend
additional resources on the joint activity and so it deliberately avoids informing the
others that there is a problem. As a consequence, the pattern of coherence is markedly
different; the effort wasted by the AAA and the BAI is linear, rather than periodic,
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because they never realise the fault was transient. Both agents just continue with their
diagnosis activities until they finish. Therefore problems with the joint action which
occur near the beginning have a significantly greater impact on the community’s level
of coherence than those which occur near the end (the small peaks in the line are due
to the periodic nature of the CSI’s wasted effort).

An illustration of a case in which the implicit community behaves as incoherently
as the selfish one occurs when the joint goal becomes unattainable (Fig. 11). This
situation arises if the AAA realises that too much of the data which it needs to perform its
diagnosis is missing. As the AAA is the only community member capable of pinpointing
the element at fault the joint goal cannot be attained. This realisation may occur either
at the end of the AAA’s preliminary or detailed diagnosis phase.

In the Responsibility community, the AAA’s domain level system indicates that the
goal of diagnosing the network fault cannot be met. This information is passed, via
the agent’s control module, to its situation assessment module where it results in the
deduction that the joint goal is unattainable—R4 ., (Section 4.3) is not fired since
there are no alternative recipes available. As the AAA believes that the joint goal is
unattainable, it no longer has a normal achievement goal to diagnose faults; however a
weak achievement goal persists and so the AAA informs the other two of its change
of state. Even with the Responsibility convention in operation, there can still be a
substantial amount of wasted effort (100 units in the worst case) due to the time lag
in detecting that there is a problem. This phenomena is exacerbated if the realisation
occurs in the AAA’s very long detailed diagnosis phase. The amount of effort wasted
by the CSI is greater than that of the AAA because it relies on being informed of the
problem.

In the implicit community, the external behaviour of the AAA is the same as with
the Responsibility community, it detects that there is a problem and stops its associated
processing. However the AAA does not inform the other two agents which continue
with their activities until they terminate, oblivious to the fact that they are pointless. The
information that the BAI and the CSI are interested in knowing if the AAA abandons
its diagnosis is not contained in the AAA’s acquaintance models because the need for
this interaction was not uncovered by the initial analysis of the application; also because
there is no representation of the joint action the AAA is unaware that its activities are
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related to those of the BAI and the CSI. The behaviour of the selfish problem solvers is
identical to that of the implicit group—in neither case is information exchanged related
to the joint goal’s unattainability.

All the other types of problem specified by the Responsibility convention result in
basically the same two kinds of behaviour—with the implicit community either mirroring
the coherence of the Responsibility community (if the relevant information is contained
in the acquaintance models and the receiving agents can make the appropriate local
deductions), or the coherence of the selfish community (if the necessary information is
not contained in the acquaintance models). In some cases there was a middle ground in
which the implicit community performed less well than the Responsibility one but better
than the selfish one. This happened, for instance, when the common recipe became
invalid—if a critical or substantial change occurred in the network, while the AAA
and the BAI were performing their diagnosis, the common recipe did not produce the
desired (correct) outcome because the answers were based on invalid assumptions. In
the Responsibility community, the CSI detects that a substantial change has occurred
which means the initial assumptions of the AAA and the BAI are no longer valid.
Invalid initial assumptions mean that the common recipe may no longer produce the
desired result (Fig. 9) and so the CSI no longer has individual recipe commitment
to the agreed course of action. Although its commitment to the common recipe has
been dropped, the CSI still has joint recipe commitment which ensures that it informs
the other two that it is no longer committed to the recipe. The implicit community
behaves worse than the Responsibility one, even though the information that the network
topology has substantially changed is sent to both the AAA and the BAI as unrequested
information. The CSI’s acquaintance model represents the fact that the other two agents
are interested in this information because it is a trigger for updating their network
model. In the AAA, this recipe has the highest priority and so it displaces the diagnosis
activity—its first act is to kill all tasks which are making use of the outdated network
model, meaning the AAA’s diagnosis activity is abandoned. However in the BAI, the
diagnosis continues because the update recipe has a lower priority than producing the
black out area. Thus the AAA and the CSI behave the same in this community as they
do in the Responsibility one (for different reasons though), but the BAI performs less
coherently.

The purpose of this group of experiments is to identify the types of interactions
which can happen in the three different types of community—the results that the joint
goal becoming unattainable causes greater incoherence than when the goal motivation
is lacking is not generalisable, nor is the information that the implicit group performs
coherently in the former case but less well in the latter. What these results do show is
that neither the implicit nor the selfish organisations can produce behaviour which is
more coherent than that obtained in the Responsibility community; however in certain
cases the implicit community is able to match the performance of the Responsibility
one. The experiments also show that, in the majority of cases, when problems occur
with the joint action they can only be detected by a subset of the group—the others rely
on being informed.
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5.1.2. Overall trends

Having examined the performance of the three communities in terms of the individual
types of problem which can cause the joint action to falter, the next step is to assess
the typical benefits of the Responsibility Model over a broad range of circumstances.
To achieve the necessary diversity a number of environments were tested—ranging
from those in which it is guaranteed that the joint action will not falter (0% chance
of problem), to those in which a problem is assured (100% chance of problem). An
increased chance of unsustainability corresponds to a more dynamic environment or
one in which decisions are based on less stable data. In all cases, the cause of the
problem is uniformly distributed over the conditions identified by the Responsibility
Model, the time at which the problem occurs is uniformly spread over the joint action’s
duration, and the community’s average wasted effort is obtained by repeating the runs
100 times.

Fig. 12 shows that the average wasted effort for the Responsibility community is
significantly less than the other two confirming the prediction that the Responsibility
Model facilitates robust cooperative behaviour even in the harshest environments. The
implicit community performs better than the selfish one because agents exchange infor-
mation which can lead to the recipient realising that some of its intended actions should
be abandoned. Thus an agent which cannot detect a problem with the joint action for
itself may inadvertently be supplied with sufficient information to enable it to drop its
commitments by an agent which can. In the selfish group, such communication was
deliberately eschewed since calculating agents interested in a piece of information re-
quires resources—in this community agents which were unable to detect problems for
themselves were simply left to needlessly complete their actions. To show the statistical
significance of these results, linear regression lines were computed for each of the three
cases—this analysis showed that the slopes are significantly different (probability of
such a difference occurring by chance alone is less than 0.005).

These results also show that pure self-interest is not a good basis for cooperation;
it may be appropriate for deciding whether to participate in a particular activity, but
it should not be used to define agent behaviour once the social action has started.
Participation in cooperative problem solving requires some element of compromise—
self-interest needs to be tempered with consideration for the group as a whole.
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5.1.3. Repairing problems with joint actions

Up to now, the experiments have concentrated on detecting problems with the joint
action and informing other team members so that the community responds in a coherent
manner to unexpected events. However when problems occur with the common recipe,
the Responsibility Model stipulates that a new course of action should be devised. This
functionality, and its effect on the coherence of the cooperating group, is examined by
this set of experiments. The particular problem which is explored is that of common
recipe violation. One of the most frequent causes of recipe violation is that unexpected
events occur during the course of the joint action which distract the agent from its
intended commitments. These distractions may mean that the specified relationships are
not upheld, which in turn means that the agent no longer has the necessary individual
recipe commitment (see Fig. 9).

In order to simulate recipe violation, varying numbers of unexpected new tasks were
assigned to the agent community during the lifetime of the joint action. These additional
tasks could all be solved by an individual agent working in isolation and were ail of a
relatively short duration. Tasks arrived and were spread over the community’s members
according to a uniform distribution. Task priority was randomised, using the value of
the joint action components as a mean, and the results were averaged over 100 test runs.
If a domain level task was running when the coordination mechanism decided that it
should be rescheduled, it had to be suspended before any new activity could start. When
such tasks were restarted, they carried on from the point at which they left off.

In the Responsibility community, if an agent delays an action which is being performed
in the context of a joint goal then R3,,n (Section 4.3) is fired and the agent no
longer has the necessary individual recipe commitment. However because of its joint
recipe commitment, the agent in question informs its fellow team members of its non-
commitment and of the revised deadline (R4iform—Section 4.3). When such a message
arrives, the recipient evaluates whether the change will affect its processing. If the delay
is relevant, the agent reschedules its local activities ensuring that all other action inter-
relationships are upheld. The agent then evaluates whether any actions can be moved
into the vacuum which has been created so that it does not lie idle during this period. It
attempts to bring as many tasks forward as possible—they are selected in priority order
until no more tasks will fit into the remaining time. To minimise the number of action
inter-relationships which are broken it is predominantly local tasks which are moved. If
such rescheduling is impossible, the agent remains idle until its next intention becomes
active.

In the implicit organisation, when agents delay activities they do not inform other
community members, since it only reflects an internal state change which it is assumed
that acquaintances are not interested in. The agent where the delay occurs, undertakes
the type of rescheduling described above, but its acquaintances are unable to do so
because they are unaware of the changes. This meant that agents were sometimes
completely unproductive for substantial lengths of time because they were waiting for
synchronisation events to occur, unaware that the relevant task had been put back.

Fig. 13 highlights the superior performance of the Responsibility Model along two
important directions. Firstly, the average effort expended on the joint action rises more
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steeply for the implicit community. As the effort to actually achieve the diagnosis is
identical in both communities any disparity is solely a function of the amount of time
agents needlessly waste waiting for delayed synchronisation events to occur. As the
graph shows, the Responsibility community remains virtually impervious to delays and
rescheduling activities—this is because the agents send the necessary information to the
appropriate agents in a timely manner. As the number of disruptions become larger,
the community does expend slightly more effort—this increase in wastage occurs as
a consequence of the delay in inter-agent communication and the time the recipients
take to respond to the warning messages. In the implicit community, on the other hand,
the joint action is more costly because team members are spending significant amounts
of time in an unprofitable manner. This time increases linearly as the probability and
number of disruptions becomes larger.

The second measure is that of delay in completion time—calculated from the time at
which the joint action would have finished if there were no interruptions (time spent
executing additional tasks is subtracted from this figure so that the comparisons remain
valid). It can be seen that the delay in finishing the joint action rises less steeply and to
a lower value for the Responsibility organisation. Therefore by indicating when delays
have (or will) occur, team members are able to make better use of their resources.
Rather than simply idling until synchronisation events occur, Responsibility agents are
able to intertwine other activities into spare moments when they know acquaintances
have delayed actions. Again agents in the implicit community are unaware of such
delays and so suffer prolonged periods of inactivity.

5.2. Effect of increasing communication delay

This set of experiments evaluate the impact on the cooperating community of varying
the communication delay for inter-agent message passing. Both successful and unsuc-
cessful joint actions are considered. In the former case, two organisational forms are
compared: the Responsibility community and the implicit community.” In the latter

7 The selfish community was not considered because it is identical to the Responsibility one for successful
joint problem solving.
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Fig. 14. Effect of communication delay on successful joint actions.

case, only the Responsibility community is considered and the representative problem
is that of goal motivation lacking.

In the Responsibility community the start time is agreed by all the participants, hence
it is the same for each team member (Fig. 14). As such agreements are deliberately
avoided by the implicit community, individuals start activities which are part of the
joint action at different times—the time shown in this case is for the first agent to start
processing. It can be seen that the Responsibility community always takes longer to
start its activities, despite the fact that the events which initiate the diagnosis process
occur at precisely the same time in both cases. The reason for this disparity is that
the Responsibility community has to construct the cooperating group and the common
recipe at run time. This process needs communication and is, therefore, more adversely
affected by increased communication delays (indicated by the sharply increasing start
time). In the implicit community, on the other hand, much of the coordination is carried
out by the application builder at design time—thus the runtime communication overhead
is reduced.

The Responsibility Model also requires that there be an explicit wrapping up phase
when all team members acknowledge that the joint action has terminated—this needs
message interchange and so is affected by the communication delay. In contrast, the
implicit community is adjudged to have finished when all agents have stopped their
associated processing—no explicit finalisation is needed.

Fig. 15 shows the effect on coherence of varying communication delays in the Re-
sponsibility community when something goes awry with the joint action. The exemplar
problem is that of goal motivation lacking (GML) which was discussed more thoroughly
in Section 5.1.1. The figures in the legend indicate the number of processing cycles for
message interchange to occur. This graph shows that as the communication time in-
creases, so the amount of wasted effort becomes larger. This occurs because agents take
longer to be informed about problems detected by their fellow team members. This
phenomena is especially noticeable near the beginning of the joint action when all three
agents are active; as the activity progresses so the number of active agents diminishes
and hence the effect of the delays are reduced.
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Fig. 16. Effect of limited processing power on level of coherence.
5.3. Effect of varying processing power available for coordination

The final set of experiments examine the effects on Responsibility and implicit agents
of having to achieve coordinated activity with varying amounts of computational resource
at their disposal. This metric is important because in realistic scenarios the resources
required by the coordination mechanism should be significantly less than those needed
by the domain level system. Resource boundedness was simulated by setting a limit on
the number of rules which could be fired by the agent’s coordination mechanism on
each processing cycle—it was varied from one rule per agent per cycle to an infinite
number (which in this experiment turned out to be 15). When an agent’s limit was
reached, no more rules were fired.

As Fig. 16 shows, only when the processing power is reduced to 8 rules per cycle
does it cause the joint action to be delayed for either organisational form. Between 5 and
8 rules per cycle the delay is approximately the same for both communities. However
in severely resource bounded situations (less than 5 rules per cycle) the Responsibility
community is delayed by up to 23% more than the implicit one—indicating that the
former requires more processing resource to sustain it than the latter. The graph also
shows that the differences in starting times for the two communities remains virtually
constant except for very resource-limited situations, again less than 5 rules per cycle,
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where it increases by 33% for the Responsibility organisation. These two pieces of
information indicate, somewhat surprisingly, that the Responsibility Model does not
require substantially more processing power—either to monitor joint action once it has
started or to initiate it—than in the first place.

5.4. Discussion of results

The aim of this empirical evaluation was twofold: to provide an insight into the
computational behaviour of a community of cooperating agents which use the model
of Joint Responsibility to guide their actions and to provide a means of verifying the
predictions made by the formal model in a realistic scenario. The precise values which
appear in the graphs are less important than the relative trends that they indicate. Thus,
for example, it cannot be concluded that dropping commitment because the joint goal
is no longer attainable will lead to greater incoherence than if the reason for dropping
commitment is that the motivation for the joint goal is no longer present. In some
cases this will undoubtedly be true, however in another application the situation may
be reversed, whilst in a third application there may be no major difference between the
two.

The results which are generalisable to other applications and to larger or smaller
cooperating groups can be summarised as follows. Firstly, the Responsibility community
maintains coherent cooperation even in the most hostile environments. In particular cases,
other organisational forms can attain similar levels of coherence, but, on average, they
will perform less well than the Responsibility community. Secondly, as well as detecting
irreparable problems at an early stage, the Responsibility Model ensures that problems
with joint actions can be overcome. It also ensures that during this repair process, all
team members are kept informed of the situation so that they can continue to carry out
profitable problem solving on other activities. Thirdly, except in situations in which the
amount of processing available for the coordination mechanism is severely limited, the
implementation of the Responsibility Model requires no more computational resources
than other typical organisational structures.

As well as highlighting the benefits of the Responsibility Model, these experiments
also indicate a potential drawback. The GRATE* distributed planning protocol is heavy
on communication and it takes a significant amount of time to establish a joint action
(especially as message communication time increases). Therefore it could be argued
that the model is inappropriate for cases in which agents are situated in time-critical
environments such as industrial applications. However, this characteristic is not an in-
herent property of the Responsibility formulation, rather it is indicative of the planning
protocol used to implement the model. The GRATE* protocol built up all joint actions
from scratch, making no use of knowledge about previous events or interactions—the
group, the actions to be performed, the agent which will perform them, and their tim-
ings, all had to be agreed upon at run time. However as construction of the implicit
community indicated, it is possible for the designer to make use of prior knowledge
about the agents and their interactions to considerably shorten this process. Utilising such
knowledge would bring about significant reductions in the communication overheads and
the time needed to establish joint actions. Although there is scope for enhancements,
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the level of communication could never realistically be reduced to that of the implicit
group.

When deciding whether to employ the Responsibility Model to control cooperative
problem solving the system designer is faced with a tradeoff between the ability to ensure
robust behaviour even in the most hostile environments and the overhead associated with
constructing the group and agreeing a common recipe. As there is no universally best
choice, this decision is ultimately dependent on the problem being tackled; if joint
actions rarely run into difficulties then the overheads associated with the Responsibility
Model may prove prohibitive. However if the application involves dynamic change,
unpredictable events, and decision making based on incomplete information, then the
model of Joint Responsibility is a good choice.

6. Conclusions

There were two key constraints on this research which distinguished it from previous
formal work on cooperative problem solving. Firstly, as it was borne out of the need
to solve practical problems the model of Joint Responsibility had to have a clear path
to implementation level systems. The importance of this link has been highlighted by
several researchers, some even going so far as to state that Al will not advance as a
science until the gap between those who construct models and those who build systems is
closed [16]. The formal model of Responsibility aids the application (system) designer
by: offering a structured framework for knowledge elicitation, providing a domain-
independent characterisation of the types of events which can cause problems during
cooperative problem solving, specifying the key mental states of the collaborating agents,
and defining how agents should behave in nominal and exceptional circumstances both
with respect to their local activities and with respect to their fellow team members. By
basing the implemented system on a firm footing it was easier to: predict the range
of agent responses, verify that the agent had been implemented correctly, and provide
a clear boundary on the types of situation in which the agent could be expected to
successfully operate.

The second distinguishing characteristic was that this work was targeted specifically
at the problem of ensuring robust, coherent behaviour in dynamic and unpredictable
environments. The electricity transportation scenario used throughout this work provides
a typical example of such an environment: there is a relatively high loading of tasks for
each agent, new activities emerge at unpredictable times, interactions are prolonged, and
decisions are based on uncertain and incomplete information. Addressing domains with
these characteristics is especially important for DAI as they are typical of the situations
in which conventional technologies have difficulties—they therefore represent a niche
in which DAI could gain a foothold [40]. From a more theoretical perspective, the
importance of tackling this type of problem was highlighted by Gasser—he observed
that a theory of DAI ought to account for how aggregates of agents can achieve joint
actions that are robust and continuable despite intermediate foul-ups and inconsisten-
cies [28]. As the empirical evaluations of Section 5 highlighted, Joint Responsibility
offers a step towards this objective—providing procedures for controlling activities in



N.R. Jennings/Artificial Intelligence 75 (1995) 195-240 235

dynamic and unpredictable environments, whilst retaining a degree of generality and
predictability.

The philosophy of providing more explicit representations of social phenomena, which
was so evident in the Responsibility Model, also surfaces in other recent DAI work. The
most prevalent illustration is with respect to communication—speech act theory [2,63],
in which the effect of utterances are explicitly represented and can be reasoned about
by the sender in order to try and induce specific mental states in the receiver, has been
used as the basis of a number of multi-agent systems [53,66]. Other illustrations occur
in conflict resolution [46,47] in which resolution strategies are categorised and selected
according to the desired objective and the prevailing circumstances; in persuasion and
negotiation {13,73] in which agents reason about how to induce greater cooperativeness
in other community members; in the definition of hedonic states, likes, goals and values
based on physical dynamics [45]; and in game-theoretic approaches to the selection of
individual actions based on notions of utility function evaluation [78].

Being explicit about the knowledge which is brought to bear during problem solving
and clearly distinguishing it from representational issues is hardly a new idea. Second-
generation expert systems, for example, have explicit models of their inference structure
[15], their problem solving method [56], and the generic task they are tackling [14].
This analogy is particularly pertinent because, at the time of writing, DAI systems are
suffering from many of the problems which beset first-generation expert systems, in-
cluding: difficulties operating in dynamic environments, weak explanation of (social)
problem solving activity, poor software reusability, and lack of a structured framework
within which development can proceed. These failings appear to be symptomatic of a
more fundamental problem-—namely, the dearth of high-level principles about cooper-
ative problem solving as a process. Therefore just as recognition of the existence of a
knowledge level [58] allowed high-level principles of the individual problem solving
process to be identified, it is believed that a similar set of principles exist, and should
be exploited, for multi-agent problem solving. This development process will be en-
hanced by separating out issues of cooperation from those of individual problem solving
and representing them in a distinct computer level. This cooperation knowledge level
[36] will concentrate on developing principles and explicit models of various social
phenomena (such as cooperation, coordination, hostility, competition and conflicts) as
well as the reasoning processes which control them. In Newell’s taxonomy of computer
system levels, the cooperation level will be directly above the knowledge level. Like
the others, the cooperation knowledge level can be reduced to the level directly below
it—ultimately being expressed in terms of single agents and individual goals, actions,
and knowledge states.

The benefits of cooperation knowledge level systems are envisaged to be similar to
those experienced when transferring from first to second-generation expert systems. They
include:

(i) better explanations of the objectives and means of social interactions;
(ii) greater system generality and flexibility in terms of the mechanisms and knowl-
edge brought to bear during joint problem solving; and

(iii) a more structured knowledge acquisition process.

Explanation will be enhanced because the group’s activities can be described at a
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high level of abstraction. For instance, it will be possible to provide a more meaningful
characterisation of a protracted series of message exchanges if there is an explicit
representation of the social activity being undertaken. So with cooperation knowledge
level systems it would be possible to state that agent A; is trying to persuade A; to
do X, or that A; and A, are engaged in a conflict about ¥ which they are trying to
resolve by Z (rather than merely indicating that message M has been sent from A to
A2, A has responded with M, and so on). These advances are especially important in
situations in which the user plays an active problem solving role [3,53].

System generality will be improved by clearly distinguishing between the domain-
independent principles on which behaviour is based (e.g. the reasons for re-assessment
and the associated repair action components of Fig. 8) and the domain-dependent knowl-
edge which is used as data during the reasoning process (e.g. the match and select pro-
cesses of Fig. 8). The generic component, which represents the cooperation knowledge
level description, can be isolated and coded as an off the shelf software system. It can
be applied to many different problems merely by substituting in the appropriate domain
knowledge. The feasibility of this approach has been demonstrated by the development
of GRATE and GRATE* which embody the high-level domain-independent principles
in their generic rules and provide appropriate facilities for incorporating domain specific
knowledge where it is needed.

Finally, the multi-agent system developer will be aided by having a focused set of
questions, strategies, and options with which to confront the organisation who commis-
sioned the system. This framework allows development to proceed more rapidly because
its inherent structure means much of the groundwork has already been carried out. It
also helps avoid omissions by providing a comprehensive view of the problem being
tackled. Refer to the discussion in Section 4.3 for a specific illustration of this idea with
respect to the Responsibility Model.

The cooperation knowledge level differs from the individual knowledge level in at
least two important ways: in terms of the system and the laws which govern component
behaviour. Firstly, the cooperation level has societies as the system, whereas the single
agent knowledge level has individuals. Thus formalisms are needed to describe the
actions of collectives, as well those of the individuals—Joint Responsibility allows
collectives to be represented by means of social actions and GRATE* translates this into
joint intention representations. Since it is individuals who ultimately have the ability
to act, work must be done on the means of mapping descriptions of collective actions
into those of the individuals and of combining related individual acts into a single
supra-activity.

The second major difference between the individual and cooperation knowledge lev-
els is in the laws which determine how system behaviour depends upon component
behaviour and the structure of the system. Within the knowledge level, the behavioural
law is that of rationality: if an agent knows an action will lead to the satisfaction of
one of its goals, it will select that action [58]. However Joint Responsibility stipu-
lates that even after an agent has discovered that there will be no personal benefit in
pursuing the social activity, it must endeavour to inform the other team members of
this fact. As this activity requires computational resource, which the agent could be
spending on potentially beneficial activities, it is an irrational act when viewed from
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the position of the individual agent. Therefore notions such as individual rationality or
self-interest, even when tempered with notions such as “shadow of the future” [4], are
insufficient for defining the behaviour of participants engaged in cooperative problem
solving. What is required is team rationality, an embodiment of intuitive notions such
as “cooperativeness”, “team spirit” and “being a good team member.”

In addition to extending this preliminary work on the cooperation knowledge level,
there are two other avenues in which further research is still needed. Firstly, although
Joint Responsibility has a wider scope than the majority of the extant formal cooperation
models, it concentrates predominantly on the execution phase of cooperative problem
solving. Thus there is a need to formalise the remaining aspects of the cooperation
process, issues which still need to be addressed include:

(i) the process by which the need (desirability) for cooperative problem solving is
ascertained;

(ii) the process by which a team of cooperating agents is assembled—including
deciding what organisational form the team will take (will there be a single
controller, a controlling committee or will all members be equal? and will
decisions require unanimous or majority support?), determining who should be
in the team (is it best to have small teams with each member doing significant
amounts of processing or larger teams with less active members?) and deciding
how to recruit community members to the team (will individuals join out of
benevolence or will they need convincing?, if so how?); and

(ii1) the process by which the common recipe is developed.

The second avenue of further investigation is to narrow the gap between formal and
computational models of cooperative behaviour. In mapping from Joint Responsibil-
ity to GRATE*, the key behavioural definitions had to be taken from a modal logic
and manually turned into production rules. This transformation should be made more
straightforward and should ideally be automatic. Two good illustrations of how this
objective can be achieved are Shoham’s agent-oriented programming paradigm [66]
and Rosenschein and Kaebling’s work on analysing the knowledge states of situated
automata [62]. The former has an “agentification” process which takes high-level pro-
gramming language primitives and converts them into low-level executable objects. The
latter uses epistemic temporal logic to specify what a designer would have a machine
“know”. This intentional description is then compiled down into a gate level descrip-
tion of a digital machine which satisfies the properties expressed in the intentional
description.
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