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A b s t r a c t  

We introduce a new approach to dealing with the well-known logical omniscience problem in 
epistemic logic. Instead of taking possible worlds where each world is a model of classical 
propositional logic, we take possible worlds which are models of a nonstandard propositional 
logic we call NPL, which is somewhat related to relevance logic. This approach gives new 
insights into the logic of implicit and explicit'belief considered by Levesque and Lakemeyer. In 
particular, we show that in a precise sense agents in the structures considered by Levesque and 
Lakemeyer are perfect reasoners in NPL. 

1 I n t r o d u c t i o n  

The standard approach to modelling knowledge, which goes back to Hintikka [Hin62], is in 
terms of possible worlds. In this approach, an agent is said to know a fact ~ if ~o is true in 
all the worlds he considers possible. As has been frequently pointed out, this approach suffers 
from what Hintikka termed the logical omniscience problem [HinT5]: agents are so intelligent 
that they know all valid formulas (including all tautologies of standard propositional logic) and 
they know all the logical consequences of their knowledge, so that if an agent knows p and if p 
logically implies q, then the agent also knows q. 

While logical omniscience is not a problem under some conditions (this is true in particular 
for interpretations of knowledge that are often appropriate for analyzing distributed systems 
[Hal87] and certain AI systems [RK86]), it is certainly not appropriate to the extent that we 
want to model resource-bounded agents. A number of different semantics for knowledge have 
been proposed to get around this problem. The one most relevant to our discussion here is 
what has been called the impossible worlds approach. In this approach, the standard possible 
worlds are augmented by "impossible worlds" (or, perhaps better, nonstandard worlds), where 
the customary rules of logic do not hold [Cre72, Cre73, Lev84, Ran82, Wan89]. It is still the 
case that an agent knows a fact ~0 if ~ is true in all the worlds the agent considers possible, but 
since the agent may in fact consider some nonstandard worlds possible, this will affect what he 
knOWS. 
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What about logical omniscience? Notice that  notions like "validity" and "logical conse- 
quence" (which played a prominent part  in our informal description of logical omniscience) are 
not absolute notions; their formal definitions depend on how t ru th  is defined and on the class 
of worlds being considered. Although there are nonstandard worlds in the impossible worlds 
approach, validity and logical consequence are taken with respect to only the standard worlds, 
where all the rules of standard logic hold. For example, a formula is valid exactly if it is true in 
all the standard worlds in every structure. The intuition here is that  the nonstandard worlds 
serve only as epistemic alternatives; although an agent may be muddled and may consider a 
nonstandard world possible, we (the logicians who get to examine the situation from the  out- 
side) know that the "real world" must obey the laws of standard logic. If we consider validity 
and logical implication with respect to standard worlds, then it is easy to show that  logical 
omniscience fails in "impossible worlds" structures: an agent does not know all valid formulas, 
nor does he know all the logical consequences here (since, in computing his knowledge, we must 
take the nonstandard worlds into account). 

In this paper we consider an approach which, while somewhat related to the impossible 
worlds approach, stems from a different philosophy. We consider the implications of basing 
a logic of knowledge on a nonstandard logic rather than standard propositional logic. The 
basic motivation is the observation, implicit in [Lev84] and commented on in [FH88, Var86], 
that  if we weaken the "logical" in "logical omniscience", then perhaps we can diminish the 
acuteness of the logical omniscience problem. Thus, instead of distinguishing between standard 
and nonstandard worlds, we take all our worlds to be models of a nonstandard logic. Some 
worlds in a structure may indeed be models of s tandard logic, but  they do not have any special 
status for us. We consider all worlds when defining validity and logical consequence; we accept 
the commitment  to nonstandard logic. Knowledge is still defined to be t ru th  in all possible 
worlds. It thus turns out that  we still have the logical omniscience problem, but  this time 
with respect to nonstandard logic. The hope is that  the logical omniscience problem can be 
alleviated by appropriately choosing the nonstandard logic. 

Similarly to relevance logic [AB75], our starting point in choosing a nonstandard logic is the 
observation that  there are a number of properties of implication in standard logic that  seem 
inappropriate in certain contexts. In particular, consider a formula such as (p A ~p) ~ q. In 
standard logic this is valid; that  is, from a contradiction one can deduce anything. However, 
consider a knowledge base into which users enter data  from time to time. As Belnap points 
out [Be177], it is almost certainly the case that  in a large knowledge base, there will be some 
inconsistencies. One can imagine that  at some point a user entered the fact that  Bob's salary 
is $50,000, while at another point, perhaps a different user entered the fact that  Bob's salary is 
$60,000. Thus, in standard logic anything can be inferred from this contradiction. One solution 
to this problem is to replace standard worlds by worlds (called situations in [Lev84, Lak87], 
and set-ups in [Rtt72, Be177]) in which it is possible that  a primitive proposition p is true, false, 
both  true and false, or neither true and false. We achieve the same effect here by keeping our 
worlds seemingly standard and by using a device introduced in [1~R72, RRM73] to decouple the 
semantics of a formula and its negation: for every world s there is a related world s*. A formula 
- ~  is true in 8 i f f~  is not true in s*. It is thus possible for both ~ and -~o to be true at s, and 
for neither to be true. Intuitively, s provides the support for positive formulas and s* provides 
the support for negative formulas. (The standard worlds are now the ones where s = s*; all 
the laws of standard propositional logic do indeed hold in such worlds.) 
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We call the propositional logic that  results f rom the above semantics nonstandard propo- 
sitional logic (NPL). Unlike s tandard logic, for which ¢ is a logical consequence of ~o exactly 
when ~o ~ ¢ is valid, where ~o ~ ¢ is defined as ~ o  V ¢,  this is not the case in NPL. This leads 
us to include a connective ~ in NPL so that ,  among other things, we have that  ¢ is a logical 
consequence of ~o itf ~o ,---, ¢ is valid. Of course, ~ agrees with @ on the s tandard worlds, but  
in general it is different. Given our nonstandard  semantics, ~o ~ ¢ comes closer than  ~o ~ ¢ to 
capturing the idea that  "if ~o is true,  then ¢ is true." Just  as in relevance logic, formulas such 
as (p A ~p) ~ q are not valid, so that  from a contradiction, one cannot conclude everything. 
In fact, we can show that  if ~o and ¢ are standard propositional formulas (those formed from 

and A, containing no occurrences of ,---~), then  then ~o ~ ¢ is valid exactly ff ~o entails ¢ 
in relevance logic. However, in formulas with nested occurrences of ,--,, the semantics of ~ is 
quite different from the relevance logic notion of entailment.  

When our nonstandard  semantics is applied to knowledge, it turns out tha t  although agents 
in our logic are not perfect reasoners as far as s tandard logic goes, they are perfect reasoners 
in nonstandard logic. In particular, as we show, the complete axiomatization for the s tandard 
possible worlds interpretat ion of knowledge can be converted to a complete axiomatization for 
the nonstandard possible world interpretat ion of knowledge essentially by replacing the inference 
rules for s tandard propositional logic by inference rules for NPL. We need, however, to use 
rather  :¢, in formulating the axioms of knowledge. For example, the distribution axiom, valid 
in the s tandard possible worlds interpretation,  says (Kilo ^ Ki(~o ~ ¢))  ~ Ki¢.  This says 
that  an agent's knowledge is closed under logical consequence: if the agent knows ~o and knows 
that  ~o implies ¢,  then he also knows ¢.  The analogue for this axiom holds in our nons tandard  
interpretation, once we replace ~ by '--~. This is appropriate since it is ~ tha t  captures the 
intuitive notion of implication in our framework. 

It is instructive to compare our approach with that  of Levesque and Lakemeyer [Lev84, 
Lak87]. Our semantics is essentially equivalent to theirs. But while they avoid logical om- 
niscience by giving nonstandard worlds a secondary status and defining validity only with 
respect to s tandard worlds, we accept logical omniscience, albeit with respect to nons tandard  
logic. Thus, our results justify and elaborate a remark made in [FH88, Var86] that  agents in 
Levesque's model  are perfect reasoners in relevance logic. 

The rest of this paper  is organized as follows. In the next section, we review the s tandard 
possible-worlds approach. In Section 3, we describe our nonstandard  approach to possible worlds 
and investigate some of its properties. In Section 4, we consider the logic NPL, which results 
from adding ~ to the syntax, and give the complete axiomatization for the logic of knowledge 
using NPL as a basis ra ther  than  propositional logic. We describe a concrete application of our 
approach in Section 5, and relate our results to those of Levesque and Lakemeyer in Section 6. 

2 S t a n d a r d  P o s s i b l e  W o r l d s  

We review in this section the s tandard possible worlds approach to knowledge. The intuitive 
idea behind the possible worlds model  is that  besides the true state of affairs, there are a number  
of other possible states of affairs or "worlds". Given his current information, an agent may not 
be able to tell which of a number  of possible worlds describes the actual state of affairs. An 
agent is then said to know a fact ~o if ~o is true at all the worlds he considers possible (given his 
current information). 
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The notion of possible worlds is formalized by means of Kripke structures. Suppose that  
w e  h a v e  n agents, named 1 , . . . , n ,  and a set ~ of primitive propositions tha t  describe basic 
facts about the domain of discourse. A standard Kripke structure M for n agents over • is a 
tuple (S, lr, K:i , . . .  ,En) ,  where S is a set of worlds, ~" associates with each world in S a t ru th  
assignment to the primitive propositions of ~ (i.e., ~r(s) : ~ ~ { t r u e ,  false} for each world 
s E S), and Ei  is a binary relation on S. We refer to s tandard Kripke structures as standard 
structures or simply as structures. 

Intuitively, the t ru th  assignment ~'(s) tells us whether  p is t rue or false in a world w. The 
binary relation K:i is intended to capture the possibility relation according to agent i: (s, t) E Ei 
if  agent i considers world t possible, given his information in world s. The class of all structures 
for n agents over ~ is denoted by .h4~. Usually, nei ther  n nor • are relevant to our discusion, 
so we typically write .hA instead of A4,~. 

We define the formulas of the logic by start ing with the primitive propositions in ~,  and 
form more complicated formulas by closing off under  Boolean connectives -1 and A and the 
modalities K 1 , . . . ,  Kn. Thus, if ~ and ¢ are formulas, then so are - ~ ,  ~ A ¢,  and Kip, for 
i = 1 , . . .  ,n.  We also use the connectives V and o .  They  are defined as abbreviations: ~ y ¢ 
for -~(-~A -~¢) and ~ ~ ¢ for - ~ V  ¢. The class ofaU formulas for n agents over ~ is denoted 
by £~ .  Again, when n and & are not relevant to our discussion, we wri te/~ instead of £~ .  We 
refer to £-formulas as standard formulas. 

We are now ready to assign t ru th  values to formulas. A formula will be t rue or false at 
a world in a structure.  We define the notion (M, s) ~ ~, which can be read as "~ is true at 
(M, s)" or "~ holds at (M, s)" or "(M, s) satisfies ~",  by induction on the s t ructure  of ~. 

(M,s) ~ p (for a primitive proposition p e ~)  iff v(s)(p) = t r u e  

(M,s) (M,s) V= 
(M,s )  ~ ~ A  ¢ i f f ( M , s )  ~ ~ and (M, s )  ~ ¢ 

(M, s) ~ Kip iff (M, t) ~ ~ for all t such tha t  (s, t) • ~i .  

The first three clauses in this definition correspond to the s tandard clauses in the definition of 
t ru th  for propositional logic. The last clause captures the intuition that  agent i knows ~ in 
world s of s tructure M exactly if ~ is true at all worlds that  i considers possible in s. 

Given a structure M = (S,~' ,K:a,. . .  ,E~) ,  we say that  ~ is valid in M, and write M ~ ~, 
if (M, s) ~ ~ for every world s in S, and say that  7~ is satisfiable in M if (M, s) ~ ~ for some 
world s in S. We say that  ~ is valid in .hi, and write A4 ~ ~, if  it is valid in all s tructures of 
.M, and it is satisfiable in At  if it is satisfiable in some structure in Atht. It is easy to check that  
a formula ~ is valid in M (resp., valid in At )  if  and only if - ~  is not  satisfiable in M (resp., 
not satisfiable in At) .  

To get a sound and complete axiomatization for validity in At ,  one starts with propositional 
reasoning and add to it axioms and inference rules for knowledge. By propositional reasoning 
we mean all sound propositional inference rules of propositional logic. An inference rule for a 
logic L is a s ta tement  of the form "from ~ infer a" ,  where ~ U {er} is a set of  L-formulas. Such 
an inference rule is sound if for every substi tution r of  L-formulas ~ 1 , . . . ,  ~k for the primitive 
propositions p~ , . . .  ,Pk in ~ and a,  if all the formulas in r[~] are valid in L, then  r[a] is also 
valid in L. Modus ponens ("from 7~ and ~ ~ ¢ infer ¢ " )  is an example of a sound propositional 
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inference rule. Of course, if o" is a valid propositional formula, then "from 0 infer a" is a sound 
propositional inference rule. It is easy to show that "from ~ infer ~r" is a sound propositional 
inference rule i.ff ~r is a propositional consequence of ~ [FHV89], which explains why the notion 
of inference is often confused with the notion of consequence. As we shall see later, the two 
notions do not coincide in our nonstandard propositional logic. 

Consider the following axiom system K, which in addition to propositional reasoning consists 

of one axiom and one rule of inference given below: 

A1. (Kip A K/(~ ~ ¢)) ~ K/¢ (Distribution Axiom) 

Pit. All sound inference rules of propositional logic 

i t l .  From ~ infer K/~ (Knowledge Generalization) 

One should view the axioms and inference rules above as schemes, i.e., K actually consists of 
all £-instances of the above axioms and inference rules. 

T h e o r e m  2.1: [Che80] K is a sound and complete axiomatization .for validity in .M. 

We note that Pi t  can be replaced by any complete axiomatization of standard propositional 
logic that includes modus ponens as an inference rule, which is the usual way that K is presented 
(el. [Che80]). We chose to present K in this unusual way in anticipation of our treatment of 
nonstandard logic in Section 4. 

Finally, instead of trying to prove validity, one may wish to check validity algorithmically. 

T h e o r e m  2.2: [Lad77] The problem of determining validity in .A4 is PSPA CE-complete. 

3 N o n s t a n d a r d  P o s s i b l e  W o r l d s  

Although by now it is fairly well entrenched, standard propositional logic has several undesirable 
and counterintuitive properties. One problem is that material implication, where "~ ~ ¢" is 
taken to be simply an abbreviation for - ~  V ¢, does not quite capture our intuition about what 
implication is. For example, the fact that (p ~ q) V (q ~ p) is valid is quite counterintuitive, as 
p and q may be completely unrelated facts. Another problem with standard propositional logic 
is that it is fragile: a false statement implies everything. For example, the formula (p^ -~p) ~ q 
is valid, even if p and q are unrelated. As we observed in the introduction, one situation where 
this could be a serious problem occurs when we have a large knowledge base of many facts, 
obtained from multiple sources, and where a theorem prover is used to derive various conclusions 
from this knowledge base. 

To deal with these problems, many alternatives to standard propositional logic have been 
proposed. We focus on one particular alternative here, and consider its consequences. 

The idea is to allow formulas ~ and - ~  to have "independent" truth values. Thus, rather 
than requiring that - ~  be true iff ~ is not true, we wish instead to allow the possibility that 
- ~  can be either true or false, regardless of whether ~ is true or false. In the case we just 
discussed of a knowledge base, ~ being true would mean that the fact ~ has been put into the 
knowledge base. Since it is possible for both 7~ and -~7~ to have been put in the knowledge base, 
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it is possible for both  ~o and - ~  to be true. Similarly, if  neither ~o nor -~o has been put  into the 
knowledge base, then this would correspond to nei ther  ~o nor - ~  being true. 

There are several ways to capture this intuition formally (see [Dun77]). We now discuss one 
approach, due to [RR72, RM73]. For each world s, there is an associated world s*, which will 
be used for giving semantics to negated formulas. Instead of defining - ~  to hold at s iff ~o does 
not  hold at s, we instead define - ~  to hold at s iff ~ does not  hold at s*. Note tha t  if s = s*, 
then this gives our usual notion of negation. We are interested in the case where -~-~ has the 
same t ru th  value as of ~o. To do this, we require that  s** = s (where s** = (s*)*), for each 
world s. 

A nonstandard gripke structure is a tuple (S,~r,/C1,...,K:n,*), where (S,a',K:i,.. . ,K:n) is a 
(Kripke) structure,  and where * is a unary  function with domain and range the set S of worlds 
(where we write s* for the result of  applying the function * to the world s) such tha t  s** = s 
for each s E S. We refer to nonstandard  Kripke structures as nonstandard structures. We call 
them nonstandard,  since we think of a world where ~ and -~7~ are both  t rue or both  false as 
nonstandard.  We denote the class of nonstandard  structures for n agents over ff by Af.h4~ (or 
by .hf.M when ~ and n are clear from the context).  

The definition of ~ for the language Z: for nons tandard  structures is the same as for s tandard 
structures,  except for the clause for negation: 

(M,s) ~ - ~  iff (M,s*) ~: ~. 

In particular, the clause for Ki does not change at all: 

(M,s) ~ Kilo iff (M,t) ~ ~o for all t such that  (s,t) e ICi. 

Recall that  ~ V ¢  stands for - ~ ( - ~ A ~ ¢ ) .  It can be shown that  V still behaves as disjunction, 
i.e., (M, s) ~ ~ V ¢ iff (M, s) ~ ~ or (M, s) ~ ¢.  We still take ~ ~ ¢ to be an abbreviation 
for - ~  V ¢,  but  now ~ does not behave like material  implication, due to the nons tandard  
semantics we have given negation. 

Our semantics is closely related to that  of Levesque [Lev84] and Lakemeyer [Lak87]. In 
their semantics, they have situations ra ther  than  worlds. In  a given situation, a primitive 
proposition can be either true, false, both,  or neither.  This gives them a way to decouple the 
semantics of p and -~p for a primitive proposition p. In order to decouple the semantics of 
Ki~, and "~Ki~, Lakemeyer introduces two possibility relations, /C/+ and/C~-. There are also 
two versions of ~ ,  denoted ~ r  and ~ F ,  where ~ r  means "supports the t ru th  of" and ~ F  
means "supports the falsity of".1 We call the structures int roduced by Levesque and Lakemeyer 
LL structures. Although, superficially, our semantics seems quite different from the Levesque- 
Lakemeyer semantics, in fact the two approaches are equivalent in the following sense. For 
each nonstandard structure M and world s in M,  we can find an LL structure M I and world 
s' in M '  such that  for each L:-formula ~o, we have tha t  (M,s) ~ ~o iff (M',s ')  ~T ~o and 

1We also remark tha t  Levesque and Lakemeyer have two different flavors of knowledge in their papers:  explicit 
knowledge and implicit knowledge. (Actually, they talk about  belief rather than knowledge, but  the distinction 
is irrelevant to our discussion here.) We focus here on explicit knowledge, since this is the type that  avoids logical 
omniscience. The reader who is familiar with Levesque and Lakemeyer's work should read all our references to 
knowledge as "explicit knowledge". 
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(M, s) ~ -~0 iff (M' ,  8') ~ F  ~o. Conversely, for each LL structure M and world s in M, we can 
find a nonstandard  structure M '  and world 8' in M '  such that  for each 12-formula T, we have 
(M, a) ~ r  ~o iff (M', a') ~ ~, and (M, s) ~F  ~o iff (M' ,  s') ~ -%0. Details will be given in the 
fttU paper. 

We re turn now to examine in detail our nons tandard  semantics. Note that  it is possible for 
neither ~o nor -~T to be true at world 8 (if (M, 8) ~: ~o and (M, 8") ~ T) and for both  ~ and -%o 
to be true at world 8 (if (M,s)  ~ ~o and (M,s*) ~ ~o). Let us refer to a world where neither ~o 
nor -%o is true as incomplete (with respect to ~o); otherwise, s is complete. The intuition behind 
an incomplete world is that  there is not enough in.formation to determine whether  ~o is true or 
whether  -~o is true. What  about a world where both  T and ~ o  are true? We call such a world 
incoherent (with respect to ~); otherwise, 8 is coherent. The intuition behind an incoherent 
world is that  it is overdetermined: it might correspond to a situation where several people 
have provided mutual ly  inconsistent information. A world 8 is standard if s = s*. Note that  
for a s tandard world, the definition of the semantics of negation is equivalent to the s tandard 
definition. A s tandard world s is both  complete and coherent: for each formula ~o exactly one 
of ~o or -1T is t rue at s. 

Validity and logical implication for .hf.M are defined in the usual way: ~o is valid in Af.M if it 
holds in every world of every structure o f . h /M,  and ~o logically implies ¢ in .hfA4 if (M, s) ~ ~o 
implies (M, 8) ~ ¢ for all nons tandard  structures M and worlds s in M. There are many  
nontrivial logical implications in .N'M; for example, -~-%o logically implies ~o and ~o A ¢ logically 
implies ~o. What  are the valid formulas in Af.M? It is easy to verify that  certain tautologies 
of s tandard propositional logic are not valid. For example, the formula (p ~ q) V (q ~ p), 
whose validity in s tandard propositional logic disturbed us, is not valid anymore. The formula 
(pA ~p) ~ q, which wreaked havoc in deriving consequences from a knowledge base, is not valid 
either. What  about even simpler tautologies of s tandard propositional logic, such as p V ~p? 
This formula, too, is not  valid. How about p ~ p? It  is not valid either, since p ~ p is 
just an abbreviation for -~p V p, which, as we just said, is not valid. In fact, no formula is 
valid with respect to nonstandard  structures! Even more, there is a single counterexample that  
simultaneously shows that  no formula is valid! 

T h e o r e m  3.1: There is no formula oft:  that is valid in nonstandard structures. In fact, there 
is a nonstandard structure M and a world 8 of M such that every formula of 12 is false at 8, 
and a world t of M such that every formula of £ is true at t. 

Proof:  Let M = (S, ~',/~1, ..., K:n,* ) be a special nons tandard  structure,  defined as follows. Let 
S contain only two worlds 8 and t, where t = 8" (and so 8 = t*). Define ~" by letting ~r(8) be 
the t ru th  assignment where ~-(8)(p) = fa lse  for every primitive proposition p, and letting 7r(t) 
be the t ru th  assignment where v(t)(p) = t r u e  for every primitive proposition p. Define each 
~ i  to be {(8,8),(t , t)}.  By a straightforward induction on formulas, it follows that  for every 
formula ~o of £ ,  we have (M, 8) p ~0 and (M, t) ~ ~o. In particular,  every formula of £ is false 
at 8, and every formula of £ is true at t. Since every formula of £ is false at 8, no formula of 
£ is valid with respect to nonstandard structures.  | 

It follows from Theorem 3.1 that  the validity problem with respect to nons tandard  structures 
is very easy: the answer is always "No, the formula is not valid!" The reader may  be puzzled 
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why there are no valid formulas. For example, ~ - ~  logically implies ~, as noted earlier. Doesn' t  
this mean  that  -~-~ ~ ~ is valid? This does not  follow. With  standard structures,  9 logically 
implies ¢ i.if'the formula ~ =.~ ¢ is valid. This is not the case for nonstandard structures.  For 
example, ~ logically implies ~, yet ~ ~ ~ is not  valid with respect to nons tandard  structures. 
In the next section, we define a new connective that  allows us to express logical implication in 
the language, just as ~ does for s tandard structures.  

What  about logical omniscience? It did not  go away! I.fan agent knows all of the formulas in 
a set ~,  and ff Z logically implies the formula ~, then the agent also knows ~. Because, however, 
we have weakened the notion of logical implication, the problem of logical omniscience is not  as 
acute as it was in the s tandard approach. For example, knowledge of valid formulas, which is 
one form of omniscience, is completely innocuous here, since there are no valid formulas. Also, 
an agent's knowledge need not be closed under  mater ial  implication; an agent may  know ~ and 

~ ¢ without knowing ¢ ,  since 9 and to ~ ¢ do not logically imply ¢ in Af.h4. 

We saw that  the problem of determining validity is easy (since the answer is always "No"). 
Validity is a special case of logical implication: a formula is valid iff it is a logical consequence 
of the empty  set. Unfortunately,  logical implication is not  that  easy to determine.  

T h e o r e m  3.2: The logical implication .for propositional L:-formulas in nonstandard structures 
is co-NP-complete, and the logical implication .for £-formulas in nonstandard structures is 
PSPA CE-complete. 

Theorem 3.2 asserts that  nons tandard  logical implication is as hard  as s tandard validity; 
that  is, it is co-NP-complete for propositional formulas and PSPACE-complete for knowledge 
formulas (i .e. , / :-formulas).  

4 S t r o n g  I m p l i c a t i o n  

Certain classic tautologies, such as (p ~ q) V (q ~ p) made  us uncomfortable.  In the previous 
section, we introduced nonstandard  structures and- - lo  and behold! - -under  this approach, these 
formulas are no longer valid. However, the bad news is that  other  formulas, such as 9 ~ ~, 
that  blatantly seem as f f t hey  should be valid, are not  valid either (in fact, no formula is valid). 
It seems that  we have thrown out the baby with the ba th  water. 

Let us look more closely at why the formula 9 ~ ~ is not valid. Our intuition about  
implication tells us tha t  to1 ~ ~2 should say "ff ~1 is true, then ~2 is true".  However, ~1 ~ ~2 is 
defined to be -~1  V~2, which says that  ff -~1  is false, then 92 is true. In s tandard  propositional 
logic, these are the same, since -~1  is false in s tandard logic iff 91 is true. However, in 
nonstandard  structures,  these are not  equivalent. So let us define a new propositional connective 
,--~, which we call strong implication, where ~1 ~ 92 is defined to be true ff whenever ~1 is 
true, then ~2 is true. Formally, 

(M,s )  ~ ~1 ~ !o2 iff (ff (M,s) ~ 91, then (M,s) ~ ~2). 

That  is, (M,s) ~ 7~1 ~ ~2 iff either (M,s) ~ 91 or (M,s) ~ 92. 
We denote by f ~ , ~  £ ~  - n  , or for short, the set of formulas obtained by replacing ~ by ~ in 

formulas o f £ ~ .  We call the propositional fragment o f / :  ~ and its interpretat ion by nons tandard  
structures nonstandard propositional logic (NPL). 
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Strong implication is indeed a new connective, that  is, it cannot be defined using -~ and A. 
For, there are no valid formulas using only -1 and A, whereas by using ~---~, there are validities: 

~ ~ is an example, as is 7~1 ~ (~x Y ~2). 

Strong implication is indeed stronger than implication, in the sense tha t  if ~1 and 7~2 are 
s tandard formulas, and if 7~1 ~ 7~2 is valid with respect to nons tandard  Kripke structures,  then 
7~1 ~ ~2 is valid with respect to s tandard Kripke structures. However, the converse is false, 
since the formula (p ^ -~p) ~ q is valid in s tandard propositional logic, whereas the formula 
(p A ~p) ~ q is not  valid in nonstandard  propositional logic. (We note also that  the analogue 
to the distressing propositional tautology (p ~ q) V (q ~ p), namely (p ~-~ q) V (q '---, p), is not 
valid in nonstandard propositional logic.) 

As we promised in the previous section, we can now express logical implication in £ ~ ,  using 
L_~, just as we can express logical implication in s tandard structures,  using ~ .  

P r o p o s i t i o n  4.1: Let ~01 and ~2 be formulas in £'--'. Then ~1 logically implies ~2 in nonstan- 
dard structures i f f  ~1 ~ ~2 is valid in nonstandard structures. 

The connective ~ i s  somewhat related to the connective ~ of relevance logic, which is 
meant  to capture the notion of relevant entailment. In particular,  it is not  hard  to show that  if 
~1 and 7~2 are s tandard propositional formulas (and so have no occurrence of ~--~), then ~1 ~ ~ 
is a theorem of the relevance logic t t  [1~tt72, lEVI73] 2 exactly if ~1 '-~ ~2 is valid in .hf.M (or 
equivalently, ~1 logically implies ~2 in .MAd). However, in formulas with nested occurrences of 
,--~,, the semantics of ~ is quite different from that  of relevant entailment. In particular,  while 
p ~ (q ~ p) is valid in JkfAd, the analogous formula p ---~ (q --~ p) is not  a theorem of relevance 
logic. 

In £ ,  we cannot say that  a formula 7~ is false. That  is, there is no formula ¢ such that  
(M, s) ~ ¢ iff (M, s) ~= ~. This is because no formula is true at the world t of Theorem 3.1, 
and so no ¢ E £ can do the job, for any formula 7~ E E. What  about the formula - ~ ?  This 
formula says that  - ~  is true, but  does not say that  ~ is false. However, once we move to £ ~ ,  
it is possible to say that  a formula is false, as we shall see in the next proposition. In what 
follows, we add to £ and £'--' the abbreviations true and false .  In £ ,  we take true to be an 
abbreviation for some fixed s tandard tautology such as p ~ p, while in E ~ ,  we take true to 
be an abbreviation for some fixed nonstandard  tautology such as p ~ p, In both  cases, we 
abbreviate -~true by false. In fact, it will be convenient to think of true and fa lse  as constants 
in the language (rather than as abbreviations) with the obvious semantics. 

P r o p o s i t i o n  4.2: Let M be a nonstandard structure, and let s be a world of  M .  Then (M, s )  
i f f  (M, s) ~ ~ ~ false .  

A close examination of all the constructs in our logic shows tha t  in fact the only nonstandard  
connective is -~; all other connectives "behave" standardly. We now formalize this observation 
by considering certain transformations on formulas and structures. 

Let M be a nonstandard  structure. We define M at, the standardization of M, to be the 
structure obtained by replacing the • of M by the the identity function. Note that  if M is 

2A formula of the form ~x ~ ~2, where ~1 and ~2 are s tandard  proposi t ional  formulas,  is called a ~rst-degree 
entailment. See [Dun77] for an axiomat iza t ion  of  first-degree entai lments .  
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standard then M "t = M .  Let 9 be a standard formula. We define a nonstandard formula 9 nst 
by recursively replacing in 9 all subformulas of the form 9 ¢  by ¢ ,-~ f a l s e  and all occurences 
of ~ by ~--~. Note that  9 '~'t is negation free. We also define what is essentially the inverse 
transformation on negation-free nonstandard formulas. Let 9 be a nonstandard negation-free 
formula. We define a standard formula 9 "t by replacing in 9 all occurences of ~ by o .  Notice 
that  the transformations n,t and "t are inverses when restricted to negation-free formulas. 

P r o p o s i t i o n  4.3:  Let M be a nonstandard structure, let s be a world of  M ,  and let 9 be a 
standard formula. Then (M, s) ~ 9 n ' '  i f f  ( M " ,  s) ~ 9. 

C o r o l l a r y  4.4: Let 9 be a standard formula. Then 9 is valid in standard structures i f f  9 r~'t is 
valid in nonstandard structures. 

Another connection between standard propositional logic and NPL is due to the fact that  
negated propositions in NPL behave in some sense as "independent" propositions. We say 
that  a formula 9 is pseudo-positive i f  --1 occurs in 9 only immediately in front of a primitive 
proposition. For example, the formula p A -~p is pseudo-positive, while -~(p Y -~p) is not. If 9 is 
a pseudo-positive formula, then 9 + is obtained from 9 by replacing every occurrence ~p of a 
negated proposition by a new proposition i0. Note that  9 + is a negation-free formula. 

P r o p o s i t i o n  4.5: Let 9 be a pseudo-positive formula. Then 9 is valid in nonstandard struc- 
tures i f f  9 + is valid in nonstandard structures. 

C o r o l l a r y  4.6: Let 9 be a pseudo-positive formula.  Then 9 is valid in nonstandard structures 
i f f  (9+ ) a is valid in standard structures. 

We can use the above facts to obtain an axiomatization of NPL. To prove that  a propositional 
formula ¢1 in / ~  is valid, we first drive negations down until they apply only to primitive 
propositions, by applying the following equivalences: (a) ~ ~ 9  is equivalent to 9, (b) ~(9  ~ ¢)  
is equivalent to ((-~¢ ~ -~9) ~ fa l se ) ,  and (c) -~(9 A ¢)  is equivalent to (-~9 ~ f a l s e )  ~ -~¢. 
This gives us a pseudo-positive formula ¢2 equivalent to ¢1. By Corollary 4.6, it then suffices 
to prove that  (¢~-)a is valid in standard structures. 

Consider the following axiom system N, where ¢1 ~ ¢2 is an abbreviation of (¢1 
¢2) A (¢2 ~ ¢1): 

PL. All formulas 9 n't, where 9 is a valid formula of standard propositional logic 

NPL1. ~'~9 ~ 9 

NPL2. -~(9 ~ ¢)  ~ ((-1¢ ~ ~9) ~ f a l se )  

NPL3. "-~(9 A ¢)  ~- [(-~9 ~ f a l s e )  ~ 9¢] 

R0. From 9 and 9 ~ ¢ infer ¢ (modus ponens) 

Again, one should view the axioms and inference rules above as schemes, i.e., N actually consists 
of all propositional £~- ins tances  of the above axioms and inference rules. 
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T h e o r e m  4.7: N is a sound and complete aziomatization for NPL. 

We note that  PL can be replaced by the nonstandard version of any complete axiomatization 
of standard propositional logic (i.e, by applying the nat operator to a complete axiomatization 
of standard propositional logic). 

What is a sound and complete axiomatization for the full nonstandard logic? Interestingly, 
it is obtained by modifying the axiom system K by (a) replacing propositional reasoning by 
nonstandard propositional reasoning, and (b) replacing standard implication ( 0 )  in the other 
axioms and rules by strong implication (,--~). Thus, we obtain the axiom system, which we 
denote by K 4 ,  which consists of all instances (for the language £ 4 )  of the axiom scheme and 
rules of inference given below: 

A 1 4 .  (Kip A Ki(~ ~ ¢))  ~ Ki¢ (Distribution Axiom) 

NPR. All sound inference rules of NPL 

t t l .  From ~ infer Ki~, (Knowledge Generalization) 

For both standard propositional logic and NPL, if ~ logically implies ~r, then "from ~3 infer 
a" is a sound inference rule. As we noted earlier, the converse is true for s tandard propositional 
logic, but  not for NPL in general. For example, consider the rule "from - ~  infer ~ ~ false", 
which we call negation replacement. It  is not hard to verify that  for any nonstandard formula ~, 
if - ~  is valid in nonstandard structures, then ~ ~ false is also valid in nonstandard structures. 
Thus, negation replacement is a sound NPL inference rule. On the other hand, ~a ~ false is 
clearly not a logical consequence of - ~  in nonstandard structures. Nevertheless, it can shown 
that  testing soundness of nonstandard inference rules has the same computational complexity 
as testing logical implication in NPL; they are both  co-NP-complete [FHV89]. 

T h e o r e m  4.8: K 4 is a sound and complete aziornatization with respect to Af./t4 for formulas 
in the language £ 4 .  

When we presented the axiom system K we remarked that  P i t  can be replaced by any 
complete axiomatization of standard propositional logic that  includes modus ponens as an 
inference rule. Surprisingly, this is not the case here; if we replace NPK by aU valid formulas 
of NPL with modus ponens as the sole propositional inference rule, then the resulting system 
would not be complete. It  can shown, however, that  NPi~ can be replaced by any complete 
axiomatization of NPL that  includes modus ponens and negation replacement as inference rules. 
We discuss the details in the full paper. 

The reader should note the similarity between the axiom system K for knowledge in standard 
Kripke structures and the nonstandard system K 4 .  The latter is obtained from the former by 
replacing the inference rules for standard propositional logic by inference rules for nonstandard 
propositional logic and by replacing ~ by ~ in the distribution axiom. Thus, one can say that  
in our approach agents are "nonstandardly" logically omniscient. 

Since ~ can capture logical implication it is easy to see that  our lower bound results for 
logical implication in the language £ from Section 3 translate immediately to results on validity 
for the language £ 4 .  We can show that  these bounds are tight. 

T h e o r e m  4.9: The validity problem for propositional l:4-formulas in .hf.h4 is co-NP-complete 
and the validity problem for £4-formulas in .hf.h4 is PSPA CE-complete. 
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5 A C o n c r e t e  E x a m p l e  

An interesting application of our approach is in the situation alluded to earlier, where there 
is a (finite) knowledge base of facts. Thus, the knowledge base can be viewed as a formula s. 
A query to the knowledge base is another formula ~o. There are two ways to interpret such 
a query. First, we can ask whether ~ is a consequence of s.  Secondly, we can ask whether 
knowledge of ~o follows from knowledge of s.  Fortunately, these are equivalent questions, as we 
now see. 

P r o p o s i t i o n  5.1: Let ~1 and ~o2 be £-formulas. Then ~01 logically implies ~oz in .IV'.A4 iff Ki~ol 
logically implies Kip2 in .hf.A4. 

The problem of determining the consequences of a knowledge base  (whether ~ logically 
implies ~o, or equivalently, by Proposition 5.1, whether Ki~ logically implies Kilo) is co-NP- 
complete, by Theorem 3.2, even when the database is propositional. However, there is an 
interesting special case where the problem is not hard. 

Define a clause to be a disjunction of literals. For example, a typical clause is p Y -~q V 
r. Suppose that  the knowledge base consists of a finite collection of clauses. Thus, ~ is a 
conjunction of clauses. A formula (such as ~) that  is a conjunction of clauses is said to be in 
conjunctive normal form (or CNF). Every standard propositional formula is equivalent to a 
formula in CNF (this is true even in our nonstandard semantics). 

We now consider the question of whether ~ logically implies another clause ~o. In standard 
propositional logic, this problem is no easier than  the general problem of logical implication in 
propositional logic, that  is, co-NP-complete. By contrast, there is a polynomial-time decision 
procedure for deciding whether ~ logically implies ~o in nonstandard propositional logic. In fact, 
even when ~o is a CNF formula (rather than just a clause), there is a polynomial-time decision 
procedure for deciding whether ~ logically implies ~o in nonstandard propositional logic. In 
particular, the task of computing whether a set of clauses logically implies another clause (and 
whether an agent's knowledge of a set of clauses logically implies his knowledge of another 
clause) is feasible. 

T h e o r e m  5.2: There is a polynomial-time decision procedure for deciding whether ~ logically 
implies ~o in nonstandard propositional logic (or Ki~ logically implies Kilo with respect to non- 
standard structures), for CNF formulas t¢ and ~o. 

Theorem 5.2 follows from results in [Lev84]. The precise relationship to Levesque's results will 
be clarified in the next section. 

6 S t a n d a r d - W o r l d  V a l i d i t y  

Recall that  a world s of a nonstandard structure M = (S, lr,/C1, ...,/Cn,* )is standard if s = s*. In 
a standard world, negation behaves classically, because at a standard world s, we have (M, s) 
-%a iff (M, s) ~: ~o. As mentioned in the introduction, in the impossible worlds approach 
there is a distinction between standard and nonstandard worlds [Cre72, Cre73, Lev84, Ran82]. 
According to this approach, although an agent might consider a nonstandard world possible, 
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the real world must be standard. Consequently, validity and logical implication are defined with 
respect to standard worlds. Formally, define a formula of £ to be standard-world valid if it is 
true at every standard world of every nonstandard structure. The definition for standard-world 
logical implication is analogous. 

At standard worlds, implication ( 0 )  behaves as it does in standard Kripke structures: that 
is, ~1 ~ 7~2 holds at a standard world precisely if it is the case that if ~1 holds, then ~2 holds. 
We now have the following analogue to Proposition 4.1. 

P r o p o s i t i o n  6.1: Let ~1 and ~2 be .formulas in £. Then ~l standard-world logically implies 
~2 iff ~1 ~ ~2 is standard-world valid. 

What about logical omniscience? Although the classical tautology ~ V ~ is standard- 
world valid, an agent may not know this formula at a standard world s, since the agent might 
consider an incomplete world possible. So agents do not necessarily know all standard-world 
valid formulas. The reason for this lack of knowledge is the inability of the agent to distinguish 
between complete and incomplete worlds. 

Let ~ be a propositional formula that contains precisely the primitive propositions pl , . . . ,  Pk. 
Define Complete(w) to be the formula 

(p~ v - ~ )  A . . .  A (pk V -~Pk). 

Thus, Complete(w) is true at a world s precisely if s is complete, at least as far as the primitive 
propositions in 7~ are concerned. If ~ is a standard propositional tautology, then knowledge of 
Complete(w) implies knowledge of ~. The next theorem follows from the results in [FH8S]. 

T h e o r e m  6.2: Let ~ be a tautology of standard propositional logic. Then Ki( CompIete(~)) 
logically implies Kip in nonstandard structures. 

A similar phenomenon occurs with regard to closure of knowledge under material implica- 
tion. The formula Kip A Ki(~ ~ ¢) ~ Ki¢ is not standard-world valid. This lack of closure 
results from the inability to distinguish between coherent and incoherent worlds; indeed, it is 
shown in [FH88] that Kip A Ki(~ ~ ¢) ~ Ki(¢ V (~ A ~ ) )  is standard-world valid. That is, 
if an agent knows that ~ holds and also knows that ~ ~ ¢ holds, then he or she knows that 
either ¢ holds or the world is incoherent. 

Let ~ be a propositional formula that contains precisely the primitive propositions Pl , . . . ,  Pk. 
Define Coherent(w) to be the formula 

((p~ ^ -~p~) ~ false) A . . .  A ((Pk A -~Pk) ~ fat ,  e). 

Thus, Coherent(w) is true at a world s precisely if s is coherent, at least as far as the primitive 
propositions in 7~ are concerned. (Note that Coherent(w) is not definable in £ but only in £ ~ . )  
Knowledge of coherence implies closure of knowledge under implication. 

T h e o r e m  6 .3 :  Let ~ and ¢ be standard propositional formulas. Then (Ki(Coherent(~)) A 
g i ~  A g i ( ~  ~ ~b)) ~ gi~b is standard-world valid. 
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Propositions 6.2 and and 6.3 explain why the agents in Levesque's model [Lev84] are not logi- 
cally omniscient: "logically" is defined there with respect to standard worlds, but the agents can- 
not distinguish standard from nonstandard worlds. If an agent's knowledge includes the distinc- 
tion between standard and nonstandard worlds, i.e., we have the antecedents Ki(Cornplete(~)) 
and Ki(Coherent(~)) of Theorems 6.2 and 6.3, then this agent is logically omniscient. 

Let us reconsider the knowledge base situation discussed earlier, where the knowledge base is 
described by a formula t¢ and the query is described by a formula tP- We saw earlier (Proposition 
5.1) that in the nonstandard approach ta is a consequence of t~ precisely when knowledge of 
fP is a consequence of knowledge of ~. Furthermore, implication of knowledge coincides in the 
standard and nonstandard approaches. 

P r o p o s i t i o n  6.4: Let ~Ol and ~o~ be £-fformulas. Then Kilo1 standard-world logically implies 
Kito2 iff Kitol logically implies Kilo2 in nonstandard structures. 

On the other hand, the two interpretations of query evaluation differ in the standard ap- 
proach. In contrast to Proposition 5.1, it is possible to find ~1 and So2 in /~ such that ~1 
standard-world logically implies ta2, but Kip1 does not standard-world logically imply Kip2. 
The reason for this failure is that 91 standard-world logically implying ta2 deals with logical 
implication in standard worlds, whereas Kip1 standard-world logically implying Kita2 deals 
with logical implication in worlds agents consider possible, which includes nonstandard worlds. 

The difference between the two interpretations of query evaluation in the standard approach 
can have a significant computational impact. Consider the situation where both ~ and ~ are 
CNF propositional formulas. In this case, testing whether ~ standard-world logically implies 

is co-NP-complete, while testing whether Ki~ standard-world logically implies Ki~a can be 
done in polynomial time by Theorem 5.2 and Proposition 6.4. (In fact, Levesque proved the 
latter result in [Lev84], from which we obtained Theorem 5.2 using Proposition 6.4.) 
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