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Abstract

There is no need to show the importance of arc-consistency in Constraint
Networks. Mohr and Henderson [9] have proposed AC-4, an algorithm
with optimal worst-case time complexity. But it has two drawbacks: its
space complexity and average time complexity. In problems with many
solutions, where constraints are large, these drawbacks become so
important that users often replace AC-4 by AC-3 [8], a non-optimal
algorithm. In this paper, we propose a new algorithm, AC-6, which keeps
the optimal worst-case time complexity of AC-4 while working out the
drawback of space complexity. Moreover, the average time complexity of
AC-6 is optimal for constraint networks where nothing is known about
the constraint semantics.

1. Introduction

Constraint networks provide a useful way to formulate problems such as
design, scene labeling, temporal reasoning, and more recently natural
language parsing. The problem of the existence of solutions in a constraint
network is NP-complete. Hence, consistency techniques have been widely
studied to simplify constraint networks before or during the search for
solutions. They can improve the efficiency of search procedures, but they
are also useful in stand-alone implementations because they can yield
solution sets or highly reduced problems [15]. Arc-consistency is the most
commonly used consistency technique. Waltz [19] developed arc-
consistency for vision problems, it was subsequently studied by
Mackworth and Freuder [7] and [8], by Mohr and Henderson [9] who
proposed an algorithm with optimal worst-case time complexity: O(ed?),
where e is the number of constraints (or relations) and d the size of the
largest domain. In [1] its use was extended to dynamic constraint
networks. Recently, Van Hentenryck, Deville and Teng [4] and [15],
proposed a generic algorithm which can be implemented with all known
techniques, and have extracted classes of networks in which there are
algorithms that run arc-consistency in O(ed). In 1992, Perlin [13] gave
properties of arc-consistency for factorable relations.

Everyone now looks for arc-consistency complexity in particular
classes of constraint networks since AC-4 [9] has optimal worst-case
complexity and it is assumed that we cannot do better.



AC-4 drawbacks are its average time complexity, which is too near
the worst-case time complexity, and even moreso, its space complexity
which is O(ed?). In problems with many solutions, where arc-consistency
removes few values, the AC-4 initialization step is long because whole
relations must be considered to construct its data structure. In these cases,
AC-3 [8] runs faster than AC-4 despite its non-optimal time
complexity [17]. Moreover, in problems with a large number of values in
variable domains and with weak constraints, AC-3 is often used instead of
ACH4 because of its space complexity.

In this paper we propose a new algorithm, AC-6, which while
keeping the O(ed?) optimal worst-case time complexity of AC-4, discards
the problem of space complexity (AC-6 space complexity is O(ed)) and
checks just enough data in the constraints to compute the arc-consistent
domain. AC-4 looks for all the reasons for a value to be in the arc-
consistent domain: for each value, it checks all values compatible with it
(called its supports) to prove this value is viable. AC-6 only looks for one
reason per constraint to prove that a value is viable: for each value, it
checks one support per constraint and looks for another one only when
the current support is removed from the domain.

The rest of the paper is organized as follows. Section 2 gives some
preliminary definitions on constraint networks and arc-consistency.
Section 3 presents the algorithm AC-6. In section 4, experimental results
show how much AC-6 outperforms algorithms AC-3 and AC-4!. Section 5
discusses the drawbacks of this new algorithm. A conclusion is given in
Section 6.

2. Background

A network of binary constraints (CN) is defined as a set of n variables {, j,...},
a domain D={D;, D;,...} where D; is the finite set of possible values for
variable i, and a set of binary constraints between variables. A binary
constraint (or relation) Rjj between variables i and j is a subset of the
Cartesian product D; xD; that specifies the allowed pairs of values for i
and j. Beginning with Montanari [11], a binary relation R;; between
variables i and j is usually represented as a (0,1)-matrix (or a matrix of
Booleans) with |D;| rows and |Dj| columns by imposing an order on the

1AC-5 ([4], [15]) is not discussed in this section since it is not an improvement for
arbitrary constraints. It is a generic framework in which all previous algorithms can be
written and with which we can produce good algorithms for particular constraint classes.



variable domains. Value true at row 4, column b, denoted Rij(a, b), means
that the pair consisting of the ath element of D; and the bth element of Dj is
permitted; value false means the pair is not permitted. In all networks of
interest here Rij(a, b)zRﬁ(b, a). In some applications (constraint logic
programming, temporal reasoning,...), Rjj is defined as an arithmetic
relation (=, #, <, >,...) without giving the matrix of allowed and not
allowed pairs of values. When the constraint is very weak, Rjj can be
defined by the set of forbidden combinations of values for i and j (called
the negative form). In fact, R;; can be represented as any function such that
Rjj(a, b) returns true iff the pair (g, b) is allowed.

A graph G can be associated to a constraint network, where nodes
correspond to variables in the CN and an edge links nodes i and j every
time there is a relation R;j on variables i and j in the CN. For the purpose
of this paper, we consider G as a symmetric directed graph with arcs (i, j)
and (j, i) instead of the edge {i, j}.

A solution of a constraint network is an instanciation of the variables
such that all constraints are satisfied.

Having the constraint R;;, value b in D; is called a support for value a
in D if the pair (4, b) is allowed by R;j. A value a for a variable i is viable if
for every variable j such that R;; exists, a has a support in D;. The domain
D of a CN is arc-consistent for this CN if for every variable i in the CN, all
values in D; are viable. When a CN has a domain D, we call maximal arc-
consistent domain of this CN domain D’, defined as the union of all
domains included in D and arc-consistent for this CN. D’ is also arc-
consistent and is the domain expected to be computed by an arc-
consistency algorithm.

3. Arc-consistency with unique support

3.1. Preamble

As Mohr and Henderson underlined in [9], arc-consistency is based on the
notion of support. As long as a value a for a variable i (denoted (i, a)) has
supporting values on each of the other variables j linked to i in the
constraint graph, a is considered a viable value for i. But once there is a
variable on which no remaining value satisfies the relation with (i, ), then
a must be eliminated from D;.

The algorithm proposed in [9] makes this support evident by
assigning a counter|[(i, j), a] to each arc-value pair involving the arc (i, j)
and the value a on the variable i. This counter records the number of
supports of (i, a) in D;. For each value (j, b), a set Sjp is constructed, where



S]'bz{(i, a)/(j, b) supports (i, a)}. Then, if (j, b) is eliminated from D;,
counter[(i, j), a] must be decremented for each (i, a) in Sib-

This data structure is the origin of the AC-4 optimal worst-case time
complexity. But computing the number of supports for each value (i, a) on
each constraint Rij and recording all the values (i, a) supported by each
value (j, b) implies an average time complexity and a space complexity
both increasing with the number of allowed pairs in the relations since the
number of supports is proportional to the number of allowed pairs in the
relations. If the constraints are given in extension (e.g. matrices of
Booleans), this space complexity (bounded by O(ed?) with the size of the
supports sets Sjp) is "only" proportional to the size of the problem. But in
cases where constraints are defined by arithmetic relations, or given in
negative form, the size of the AC4 data structure may be dramatically
larger than the size of the problem.

The purpose of AC-6 is then to avoid expensive checking and
storage of all supports for all values. AC-6 keeps the same principle as
AC-4, but instead of checking all supports for a value, it only checks one
support (the first one) for each value (i, 2) on each constraint Rjj to prove
that (i, a) is currently viable. When (j, b) is found as the smallest support of
(i, @) on Rjj, (i, a) is added to Sjp, the list of values currently having (j, b) as
smallest support. If (j, b) is removed from D; then AC-6 looks for the next
support in D; for each value (i, a) in Sj. Using AC-6 only requires total
ordering in all domains D;. But this is not a restriction since in any
implementation total ordering is imposed on the domains. This ordering
is independent of any ordering computed in a rearrangement strategy for
searching solutions.

3.2. The algorithm

The algorithm proposed here works with the following data structure:

* A table M of Booleans keeps track of which values of the initial
domain are in the current domain or not (M(i, a)=true < a€D;). In this
table, each initial D; is considered as the integer range 1..|D;|. But it can be
a set of values of any type with total ordering on these values. We use the
following constant time functions and procedures to handle D; sets, which
are considered as lists:

- last(D;) returns the greatest value in D; if D; = &, else returns 0.

- if a€D; \last(D;), next(a, D;) returns the smallest value in D; greater
than a.

- remove(a, D;) removes the value a from D;.



* Si7={(i, @)/ (j, b) is the smallest value in Dj supporting (i, a) on Rij}
while in AC-4 it contains all values supported by (j, b).

e Counters for each arc-value pair in AC-4 are not used in AC-6.

e A Waiting-List contains values deleted from the domain but for
which the propagation of the deletion has not yet been processed.

In AC-4, when a value (j, b) is deleted, it is added to the Waiting-List
to await propagation of the consequences of its deletion. These
consequences were to decrement counter[(i, j), a] for every (i, a) in Sip and
to delete (i, a) when counter[(i, j), a] becomes zero. In AC-6, use of the
Waiting-List is not changed but the consequence of (j, b) deletion is now to
find another support for every (i, a) in Sjp. With ordering on D, after b (the
old support) we look for another value c in Dj supporting (i, a) on Rjj (we
know there is no such value before b). When such a value c is found, (i, a)
is added to Sj; since (j, ¢) is the new smallest support for (i, a) in Dj. If no
such value exists, (i, a) is deleted.

AC-6 uses the following procedure to find the smallest value in D;
not smaller than b and supporting (i, a) on R;j:

procedure nextsupport(in j, j, a : integer; in out b : integer; out emptysupport : boolean);
begin
if b <last(Dj) then
begin
emptysupport < false ;
{search of the smallest value greater (or equal) than b that belongs to Dj}
while not M(j, b)dob < b+1;2
{search of the smallest support for (i, a) in Dj}
while not Rijj(a, b) and not emptysupport do
if b <last(Dj) then b < next(b, Dj)
else emptysupport < true
end
else emptysupport < true
end;

The algorithm AC-6 has the same framework as AC-4. In the
initialization step, we look for a support for every value (i, a) on each

2To improve slightly AC-6, we can replace "b < b + 1" by "b < latest-next(j, b)" where
latest-next(j, b) is the value b’ that was equal to next(b, D]') when b was removed from D]‘

(if b was not last(Dj)). This improvement is significant only with large domains.



constraint Rjj to prove that (i, a) is viable. If there is a constraint R;j on
which (i, a) has no support, it is removed from D; and put in the Waiting-
List.

In the propagation step, values (j, b) are taken from the Waiting-List
to propagate the consequences of their deletion: finding another support
(j, ) for values (i, a) they were supporting (values (i, a) in S]'b). When such
a value c in Dj is not found, (i, a) is removed from D; and put in the
Waiting-List at its turn.

{initialization}

Waiting-List <= Empty-List ;

for (i a) e Ddo Sjg < T ; M(i, a) < true ;

for (i, j) € arcs(G) do

for ac Djdo

begin
b < 1 ; nextsupport(i, j, a, b, emptysupport ) ;
if emptysupport
then remove(a, D)) ; M(i, a) < false ; Add-to(Waiting-List, (i, a))
else Add-to(Sjp, (i, a))
end

{propagation}
while Waiting-List # & do
begin
pick (j, b) from Waiting-List ;
for (j a) € Sjp do {before its deletion (j b) was the smallest
begin support in Djfor (i, a) on Rjj}
delete (i a) from Sjp ;
if M(i, a) then
begin
¢ < b ; nextsupport(i, j, a, ¢, emptysupport) ;
if emptysupport
then remove(a, D)) ; M(i, a) < false ; Add-to(Waiting-List, (i, a))
else Add-to(Sjc, (i, a))
end
end
end



3.3. Correctness of AC-6

Here are the key steps for complete proof of the correctness of AC-6. In
this section we denote DmaxAC the maximal arc-consistent domain which
is expected to be computed by an arc-consistency algorithm.

e In AC-6, value (i, a) is removed from D; only when it has no
support in D; on a constraint R;;. If all previously removed values are out
of DmaxAC, then (i, a) is out of DmaxAC. DmaxAC is trivially included in
D when AC-6 is started. Then, by induction, (i, a) is out of DmaxAC. Thus,
DmaxAC/D is an invariable property of AC-6.

* Every time a value (j, b) is removed, it is put in the Waiting-List
until the values it was supporting are checked for new supports. Every
time a value (i, ) is found without support on a constraint, it is removed
from D. Thus, every value (i, a) in D has at least one support in
DUWaiting-List on each constraint Rjj. AC-6 terminates with an empty
Waiting-List. Hence, after AC-6, every value in D has a support in D on
each constraint. Thus, D is arc-consistent.

® DmaxAC/D and D arc-consistent at the end of AC-6 implies that
D is the maximal arc-consistent domain at the end of AC-6. M|

3.4. Space and time complexity

The matrix M has a size proportional to the number of values in D, O(nd).
Arc-value pairs [(;, j), a] have at most one support (j, b) with @, a)
belonging to Sjp; hence the total size of the Sj, sets is at most equal to the
number of arc-value pairs: O(ed). Therefore, the worst-case space
complexity of AC-6 is O(ed) (instead of O(ed?) for AC-4). Moreover, the
counters of AC-4 are not used. In spite of their O(ed) space complexity,
they are an expensive part of the AC-4 data structure. Needing a direct
access, an implementation with arrays is necessary, taking space for 2ed
counters, even if some of them will never be used.

In both the initialization step and the propagation step, the inner
loop is a call to the procedure nextsupport which computes a support for a
value on a constraint, starting at the current value. Hence, for each arc-
value pair [(i, j), a], each value in D; will be checked at most once. There
are ed arc-value pairs, thus O(ed?) is the worst-case time complexity for
AC-6, as for AC-4. Furthermore, with no information on the constraint
semantics, this algorithm is the best we can expect in time. It stops



processing of a value just when it has proof that it is viable (i.e. the first
support)3.

4. Experimental results

After producing an algorithm with just enough processing to ensure that
each value is viable, we expect that it will outperform AC-3 and AC-4 on
all problems.

We tested the performances of the three algorithms on a large
spectrum of problems. For each problem, we counted the number of
atomic operations and tests done by each algorithm (we counted one for
each O(1) set of instructions). This measure is more precise than counting
the number of constraint checks since it is directly proportional to
running-time (while being independent of the implementation of the
structures).

The first comparison was done on the zebra problem ([3] or [14])
which has similarities with some real-life problems. With the
representation of this problem given in [3], we obtain the following
results:

AC-3: 3692
AC-4: 3802
AC-6: 1995

In Fig. 1, we then compared the three algorithms on a problem
often used for algorithm comparisons: the n-queens (i.e. a nxn chessboard
on which we want to put n queens, none of them attacked by any other).
We can encode it in a CN by representing each column by a variable
whose values are the rows. The graph associated to the CN is complete,
each pair {i, j} of variables being linked by a constraint that specifies the

3The only possible improvements are variable ordering heuristics [18].
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Figure 1. Comparison of AC-3, AC-4 and AC-6 on the n-queens problem

allowed positions for the two queens in columns i and j. This CN is very
particular since it is extremely symmetrical and all the constraints are
weak (note that arc-consistency does not discard any value in this CN).
Results obtained here cannot be generalized for other kinds of CNs.
However, this CN is interesting to illustrate the behavior of algorithms in
particular cases which can locally arise in a part of a CN. In these cases,
AC-4 has a bad behavior while AC-3 and AC-6 have an O(ed) average time
complexity.

Finally, we defined classes of randomly generated constraint
networks and showed in Fig. 2, 3 and 4 the behavior of the three
algorithms on these different types of constraint networks. Four
parameters were taken into account: n the number of variables, d the
number of values per variable, pc the probability that a constraint Rjj
between two variables exists, and pu the probability in existing relations
Rjj that a pair of values Rjj(a, b) is allowed. The result given for each class
is the average of ten instances of problems in the class so as to be more
representative of the class.
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Figure 3. AC-3, AC-4 and AC-6 on randomly generated CNs with 12
variables having 16 possible values, where the probability pc to have a
constraint between two variables is 50 %
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Let's roughly summarize these results:

e AC-4 performances decrease when d or pu grow. The larger the
domains and the weaker the constraints, the worse AC-4. When we take a
look at these figures, AC-4 does not seem interesting. However, being
good when arc-consistency discards many values, randomly generated
CNs are not favourable to it. In practical cases, constraints are less
homogeneous than in randomly generated CNs and AC-4 is better. Many
applications, like SYNTHIA [5] to design peptide synthesis plans, prefer
AC-4to AC-3.

* AC-3 is never very bad but it can check several times a pair of
values because of its non-optimal time complexity. When propagation of
deletions is long, in "middle" CNs (i.e. not too much constrained and not
under-constrained), AC-3 becomes less efficient. However, CNs treated in
practice are often "middle" CNs since under-constrained CNs and too-
constrained CNs are easy to solve, with solutions or contradictions found
quickly.

e AC-6 has kept the optimal worst-case time complexity of AC-4
while working out the problem of considering whole relations . Hence, it
is very good on CNs with weak constraints, as opposed to AC-4, and
remains efficient on CNs where the constraints are tight or on "middle"
CNs, as opposed to AC-3.

12



5. Discussion on the limitations of AC-6

In the above sections, we only considered constraint networks with
arbitrary constraints. We said that AC-6 is optimal in time on these
constraint networks. All experimental results presented in Section 4 use
basic versions of the three algorithms AC-3, AC-4, and AC-6. But there are
improved versions of AC-4 [10] dealing with arithmetic relations (<, >, =,
=, ...) in O(ed). The generic algorithm AC-5 can be instanciated to produce
efficient algorithms for a number of important classes of constraints:
functional, anti-functional, monotonic...[15]. For all of these classes of
constraints, the basic version of AC-6 is not optimal in time since the
improved versions of AC-4 or AC-5 have a worst-case time complexity of
O(ed). However, in many applications, functional constraints, arithmetic
relations and other particular constraints are mixed with arbitrary
constraints in the constraint network. In these cases, AC-6 provides a
simple, general, and efficient algorithm, which deals well with every kind
of constraint, avoiding ad hoc implementations or heavy data structures.

However, the main limitation of AC-6 is its theorical complexity
when used in a backtracking search procedure. The really full look-ahead
search procedure [12] is a search procedure which computes arc-
consistency at each step of the tree search (i.e. every time a value is chosen
for a variable). Any arc-consistency algorithm can be taken to implement
this procedure. When AC-4 is used, a heavy initialization phase is made at
the root of the search tree, computing all sets of supports and counters for
every value. But once this data structure is constructed, we can avoid a
new expensive initialization phase at each step of the search, duplicating
the data structure of the step before. We can still process in O(1) the direct
consequence of the deletion of a support for a value (i.e. decrementing a
counter). Using AC-6, the direct consequence of the deletion of a support
for a value (i.e. checking the constraint to find the next support) will be
processed in O(d). Hence, we think that we can find examples of
constraint networks where a really full look-ahead procedure written with
AC-6 has a worse behavior than one written with AC-4. In practice, on the
RESYN application [16] where AC-4 has been replaced by AC-6 in the
search procedure, the results are quite favourable to AC-6. But complete
experimentation must be done on a large spectrum of problems. It should
involve really full look-ahead implemented with AC-4 and AC-6, and other
look-ahead search procedures like forward-checking [6], which is often
considered in the literature as being the best search procedure for
constraint networks.

13



6. Conclusion

We have provided an algorithm, AC-6, to achieve arc-consistency in
binary constraint networks. It keeps the O(ed?) optimal worst-case time
complexity of AC-4 while working out the two drawbacks of this
algorithm: its space complexity (O(ed2)), and its average time complexity
on constraint networks with weak constraints. AC-6 has an O(ed) space
complexity and its running-time decreases as the weakness of the
constraints grows. Experimental results are given, showing that AC-6
outperforms AC-3 and AC-4 (the two other best algorithms to achieve arc-
consistency) on all the problems tested. However, its superiority on AC-4
when used in a search procedure requires further experimental proof.
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