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ABSTRACT

Kalman filtering technique is applied to the problem of multivariable,
nonlinear, steady state system identification, and to the problem of real-time adaptive

confrol of linear, stochastic, dynamic systems with random parameters.

The steady state system outputs are modelled as polynomials of the
inputs and a Kalman filter is used to estimate the polynomials parameters from the

system noisy measurements. The optimal input issynthesized to minimize the estimation

error covariance.

A technique for dual adaptive control of dynamic, stochastic
systems is developed. For real-time control the system parameters are filtered from
noisy measurements. The dual control policy supervises the model identification in

addition to system regulation.

The dual controller is evaluated by system simulations and its

performance is compared with a non-dual control policy.

In an environment with incomplete knowledge of noise statistics,
the dual control law is implemented with an adaptive filtering technique that is

estimating sequentially the noise covariance.
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CHAPTER 1

INTRODUCTION

1.1 The General Problems and Background

This thesis is basically concerned with the problem of input signal
design for identification and control of certain classes of discrete stochastic control
systems. The underlying idea is the application of Kalman filtering theory and the

optimization of the identification and control processes.

There is a plethora of publications on the art and theory of filtering
Kalman's paper [11 ] and Kailath's paper [ 10 ] give a foundation of the theory
for linear discrete systems. References, [1, 2], {131, [35 ], [43 ] give a

reasonably complete survey of various methods and application in the filtering art.

)] The first class of systems to be dealt with are multivariable non-

linear systems in steady state. Here we are concarned with modelling and identification
of the model parameters. The identification is done by estimating the parameters which
are modelled as state variables in a dynamic system. The estimator is a Kalman filter
and the filter variance depends on the input signal. Thus, the input is optimized to

yield minimum variance of the estimation erro.

The problem of designing input input signals which are optimal from
the identification point of view has been discussed, using different approaches in

references [ 35,36 ] and [45-47 ] .



The optimal input determination uses an optimal control problem
formulation which uses the Kalman covariance matrix equation as the dynamic equality
constraint. This approach has been used by Athans and Schweppe [ 24 ] in the design

of radar waveform, and by Vander Stoep [ 48 Jand Murphy [49 ] .

An exhaustive survey of system identification and process-parameter

estimation can be found in the recent survey paper of Astrom and Eykhoff [ 50 J.

2. The second class of systems of interest are lineqr discrete stochastic
dynamic systems with random parameters. We use the input-output difference equation
description of such systems as our model. The problem now is the construction of an
optimal adaptive control law for the regulation poblem. The solution involves
problems of identification and control and their interaction. A good treatment of this

subject appears in Astrom and Wittenmark [31].

To obtain real-time control the present system parc;mefers estimates are
sequentially produced by a Kalman filter, and on their basis the control strategy is chosen.
This policy, however, separates the control and identification disregarding the intrinsic
- mutual dependence of estimation and control. The resulting control law is not dual
(Feldbaum [16]) and is shown by Wittenmark and Wieslander [ 4, 5- ] and here, to be

unsatisfactory.

To overcome this difficulty a new problem formulation is used which
constrains the estimator error covariance to remain within certain bounds. The solution

is a control law of dual nature with superior performance.



Another approach to achieve duality is the perturbation technique
used in [4, 5 ]. The problems of identification and conirol of siochastic systems
modeled by input-output difference equations are treated also in Rstiom et al.

[1, 4, 50 ]. Other references on the relationships between the problems of
identification and control are [ 49, 51, 52 ]. Numerous references on many aspects

of optimal stochastic control can be found in Wonham [57 ].

3. The problem of adaptive coritrol of stochastic systems is tied with

the problem of adaptive filtering, when the controller operates in an environment without
complete noise statistics. The dual control law is implemented with an adaptive filter,
based on a noise covariance estimator due to Bélanger [9 ]. Problems of adaptive

filtering and other forms of adaptive filters are found in [ 53-56] .

1.2 Thesis Contribu’ions and Organization

In the followin sections we give a description of the main topics and

results in the order of their appearance in the thesis.

1.2.1 Identification of Steady-State Systems

Chapter 2 develops a method for the determination of optimal inputs
for the purpose of identification of multivariable non-linear systems in steady-state.
A model is assumed in which the observed output is a polynomial of the inputs and is
corrupted by additive discrete white noise. As an example consider the two-inputs

one-output model



y (k) = x; (K)o (k) +x, ()l (1) Faeg (K)uy (k)4 (k) 0y (k) Fxg (KD +v (R) (1.

where v (k)~N [ 0,R (k) ] and the X (k) are the unknown parameters to be

identified, and are assumed to be stochastic Wiener processes
x (k¥1)=x(k)+w (k) (

where x(k)=[x] (k) ...x5(k),]1;und w(k)-‘j[w] (k)...ms(k)T is a
white noise random vector sequence w(k)~NT[0, Q(k)]. Bydefining the

observation matrix
2 2
C(k)"[U](k)Uz(k)U](k)Uz(k) 1] (

the model (1.1) is written as

y (k)=C(k)x(k)+v(k) (.

The parameters vector x (k) is now identified by applying the Kalman filter
technique fo the dynamic system (1.2), (1.4).x (k) is estimated as % (n+1) using

N observations [y (1),..., y (N)} .

The system model and the Kalman filter used for estimation are

described in Sections 2.2 and 2.3. The filter consists of the equations

R (kt1)=%(k)+K(k)[y(k)-C(k)& (k)] (1

K (k) =X (k)T (k) [C()X (k)T (k) +R (k) 17! .

X(k+1)=X(k)-X(k)CT(k)[C(k)X(k)CT(k)+R(k)]—]
C (k)X (k)+Q (k) (1

.2)

.3)

.5)

7)



The optimal input determination is done in Section 2.4. First it
is noticed that the error covariance matrix X ( k) is a function of the input vector

u(k)= [u] (k) Uy (k) ]T as can be seen from Equations (1.7) and (1.3). Thus

an optimal control problem is formulated, the solution of which is the optimal input

sequence for best identification:

Minimize tr X (N+1)

wl)le a , (1.8)

subject to the equality constraint (1.7), with X (1) given; k=1,..., N.
The admissible control set o is defined by the saturation constraints |ui (k)] = P; s

k=1,..., N.

It is shown that this optimal control problem cannot be solved by the
matrix minimum principle (Athans [ 23 ]) since the required convextiy assumption
(Halkin [ 18 ]) does not hold. Thus, a matrix conjugate gradient algorithm is
developed by which the solution is achieved. The solution essentially consists of
solving a Two-Point-Boundary-Value-Problem in the space of N-matrix sequences,

and is extremely time consuming.
A simplification is suggested by a procedure of N sequential function

minimizations:

Minimize tr X (k+1) given X (k)
u (k)

(1.9)

where |ui(k) | = p; for k=1,..., N.



It is proved that this sequential minimization is optimal, and solves

the N-stage optimization problem of (1.8).

Section 2.5 brings forth some properties of the model under the
estimation policy, and of the estimation error covariance matrix. In particular the
problem of observability and the problem of the bound on the error covariance are

discussed.

<

Section 2.6 deals with the identification problem from the statistical
parameter estimation point of view. The covariance matrix of the estimation error of
any unbiased estimate of a constant parameter vector is known to be bounded from below
by the Cramer-Rao lower bound (CRLB) [35-40 J. It is shown that the optimal input
determined by (1.8) or (1.9) minimizes the fracle function of the CRLB. This is

equivalent to maximizing the information about the system parameters.

Section 2.7 presents an example of the identification of a two-input

two-output system with 8 parameters using the calculated optimal input sequence.

1.2.2 Dual Adaptive Control

Chapter 3 develops a technique for dual adaptive control of stochastic
dynamic systems, modeled by input-output difference equations with scalar input and
output. The output is observed with additive white noise sequence. As an example

consider the first order model

y(k)=a(k)y (k-1)+b(k)u (k-1)+v (k) (1.10)



where x (k)= [a (k) b (k) ]T is assumed a Wiener process
x(kt1)=x(k)+w (k) : (1.11)

and m(k)=[ma(k) ub(k)]~N[0,Q]; v(k)~NT[O,R].

The control problem consists of the output regulation, where the
controller is designed to keep the output as close to zero as possible. A natural

choice of cost function is .

T

N

Vg “EL Y yE(k)1 (1.12)

k=1

The minimization of VN yields an optimal control which is also of dual nature
(Feldbaum [ 16 ]). It serves optimally the purpose of control and identification.
Unfortunately the minimization of (1.12) necessitates the solution of a dynamic pro-
graming functional equation which cannot be done in real-time, and thus the criterion

(1.12) is not of much practical value for real-time control.

In section 3.3 we derive the non-dual adaptive control law [ 4 ],

by minimizing the single  stage cost function:

Minimize V= E[y2 (k+) ] (1.13)
v (k) :

subject to equations (1.10), (1.11) and where the admissible control is a function of

the collection

Y, =y (k) Y (k=-T)enpu (k=1), u (k-2),...}



By using a fundamental Lemma it is shown that (1.13) is equivalent to

Minimize E [y2 ( k+ )lyk ] (1.14)
u(k)

the solution of which defines a control law. For the system (1.10) this control law is

b (kH k) +P (k1 [k)
B (kLK) +P (ki [k)

u® (k)

(k) (1.15)
where

% (k#|k) = [a(kdl|k) b (kt k)]

Pog (KHTIK) P (et k)
P(kt1|K) =
Py (kH1[K) P (k+1]k)

are the Kalman estimate and error covariance matrix, generated by the filter

%(kH k) =% (k|k-1)+K (k) [y (k) -o (k-1) % (k|k-1)] (1.16)

K(k)=P (k[k=1) o (k=1) T (k=-1)P (k[k-T) @ | (k-1)+R1™"  (1.17)

P(k+1 k) =P (k|k-1)-K(k)e(k-1) P (k|k-1) (1.18)
where @ (k-1)=[y(k-1) wu(k-1)]

The control law is not dual and fails to be satisfactory if the estimation
is bad. It is not capable of improving the identification, and thus is adversely affected

by two kinds of phenomena: the turn-off phenomenon and the burst phenomenon. The



turn-off phenomenon produces almost zero control signals and leaves the system with
virtually no control for long periods of time. The burst phenomenon erroneously

{
oroduces very large control signals, which result in large oscillating output values.

In section 3.4 we develop a dual control policy. Motivated by the
idea that the controller should supervise the estimator, as well as the system control,
we design a controller that observes a measure of the estimation error variance, and

controls its magnitude. The following relation is shown to exist

Pkt ket ) = P71 (kT k) +0 T (k)R @ (K) (1.19)
which for (1.10) becomes after taking the trace function

P! (k1 [kt ) =107 (el [k) + % [y2 (k) +u? (k) ]

a quadratic function of the control u (k). This simple dependence of the measure

of information on u ( k) is exploited in the dual control problem formulation:

Minimize E [)'2 ( k+1 )lyk ] (1.20)
u(k)

subject to the information constraint
p (k1) =tP ! (k1 |kH1) 2 B (k+) (1.21)

where p (k+1) is a predetermined function.,

The solution for system (1.10) is the dual control u* ( k) policy,



10

§
v (k)sgnu® (k) if o (k)ls T (k)

v* (k) = < . (1.22)
u® (k) otherwise
Tplk) if p(k)>o0

T(k)= | (1.23)

0 otherwise

p(k)=RIp (k)= tP (k1 ]k) 1-y2 (k) (1.24)

and uo(k) is given by (1.15).

Under the application of the dual control law the estimation of the

system parameters is shown fo be invariant under the system (observation) noise intensity.

1.2.3  Control System Simulation

Chapter 4 contains several examples of system simulation. The dual
controller is compared with the non-dual one,and with the perturbation controller
(Wieslander and Wittenmark [4, 5 1) which is obtained by adding a small perturbation

square wave signal to the non-dual controller for the purpose of improving the identification
P k)= (k) +(-1)%. 5 (1.25)

where & is the square-wave amplitude.

In Section 4.2 the controllers are compared for a first order system with

two parameters as given by (1.10). The comparison is done under different noise conditions



11

and different random parameter processes, where the average as well as simple runs

performances are compared. The implementations of the dual controller is discussed
3

and a simple case where the information measure B (k+1 ) is taken to be constant

is compared with an improved version where p ( k+l) is time varying.

It is found that the dual and perturbation controllers are superior to
the non-dual control policy, and are generally equal when the parameters noise
statistics are exactly known. In the case of incomplete information about Q, numerical
experiments show a certain advantage of the dual controller over the perturbation

control policy.

Section 4.3 contains two examples of a second order system with

three random parameters
y (k)=a] (k)y (k-1 )+a2(k)y(k-—2) +b (k)u(k-1)v (k) (1.26)

The three controllers performance is again compared.

1.2.4 Adaptive Control With Adaptive Filtering

The adaptive dual control law (1.22) - (1.24) uses the Kalman filter
estimates and error covariance matrix. For optimal generation of these variables the
noise covariances Q and R are needed. In the absence of their kr;owledge there
exist methods of estimating them. One method is that of Belanger [9 ], which uses
a least squares filter for sequential estimation of Q and R based on the system

observation. Chapter 5 uses this estimator to construct an adaptive filter, using the



12

filtered values for G and R sequentially in a Kalman filter which estimates the

system random parameters.
1

The covariances Q and R are represented in the form of a linear

* combination

N

=V
i=1
:

Q= @ Q (1.28)
i=1
where Ri and Q. are known. The problem is to best estimate a = [a]az. . .GN]T.

The adaptive filter is constructed as

% (k1 [k)=% (k[k=1)+K (k) [y (k)-¢ (k-1)%(k|k-1)] (1.29)

K (k) =P (k|k-1) ' (k-1) [ (k-1)p (k|k-1)p" (k-1)

FR(k) ] (1.30)

P(kH1|k) =P (k|k-1) - K (k) o (k-1) p(k |k-1) + Q (k) (1.31)

where R(k) and Q (k) are the estimatesof R and Q at stage k, and are

obtained by using the estimated vector a (k) in (1.27) and (1.28),

N . N
R(k)=) (k)R 5  Q(k)=) & (k) Q
i=1 =l
The estimates & ( k) are obtained by using Bélanger's algorithm

which is founded on the idea that the innovations sequence
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v (k) =y (k)-0 (k1) X (k{k-1) (1.32)

should be made white. The algorithm is given in Section 5.2

Section 5.3 describes the controller which combines the dual

control law and the adaptive filter.

In section 5.4 a first order system with two random parameter is
simulated. The noise covariance matrices Q and R are assumed unknown and the

v

average performance of four control policies is compared:

(1) non-dual control with non-adaptive filtering.
(2) dual control with non-adaptive filtering.
(3) non-dual control with adaptive filtering.

(4) dual control with adaptive filtering.

The superiority of the fourth case of dual control with adaptive

filtering is clearly demonstrated.

The four control policies are also compared for a single run, and
results of the covariances estimation are shown for the dual controller with adaptive

filter strategy.
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CHAPTER 1l

OPTIMAL INPUT FOR IDENTIFICATION OF

NON-LINEAR SYSTEMS IN STEADY-STATE

2.1 Introduction

In this chapter we aim at developing a method for optimal input design.
The purpose of this input signal is to facilitate optimal identification of multivariable,

non-linear models of systems in steady-state.

The system outputs are modeled as polynomials of the inputs, and with

this structure, the polynomial coefficients are to be identified.

The unknown parameters are assumed constant, or slowly time varying,
and their identification is to be achieved by an estimate, based on N measurements
of the system output vector. The identification strongly depends on the input vector

sequence of length N, as the measurement is a function of the inputs.

At each stage a certain input vector is applied, and a measurement of
the system output vector is taken, after the steady-state is reached. Hence, this is
a discrete process. The output measurement is assumed to include an additive white

noise vector.

The unknown parameters are assumed to be states in a discrete
dynamical linear system driven by white noise. This state vector is to be identified.

This representation, together with the observation equation, is amenable to the
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application of Kalman filtering theory.

The parameters vector is estimated by a Kalman filter, and the

dependence of the estimation error covariance matrix on the input is shown.

The identification problem is formulated as an optimal control
problem, involving matrix equations, and a solution is derived using the conjugate

gradient method in a dynamic, N-stage, trajectory optimization.

The resulting Two-Point-Boundary-Value-Problem solution is then
simplified by a single-stage function optimization procedure. The two solutions

are shown to be identical.

Some properties of the estimator are investigated and the optimal
input is shown to minimize the Cramer-Rao lower bound on the error covariance matrix,

thus demonstrating the optimality of the identification policy.

2.2 Problem Fo}mula’rion

We are given a discrete measurement model in the form of input-output

relgtion

s .
y (k)=a, % L ORI 2.1

where

Y; (k) is the i-th ouput at stage k

u? (k) isthe I-th input (control af stage k, raised to power B



16

v, (k) is white, gaussian, independent random sequence, with

zero mean and covariance

cov[vi(k);vi(a)]=rii(k)Uo(k-q) (2.2)
1 k=q
U_ (k-q) = (2.3)

0 k#q
and it represents the measurement noise.
% ( k )is an unknown system parameter
m,s,p are given integers representing the number of outputs,

inputs and highest power of the input respectively.

An example of such a system is one with two outputs (measurements)

and two inputs (controls) which are represented as second order polynomials

yp(k)=ay g,olk)+ay g y(k)ugCkitay o olk)uy (k) +ay 5 (k) i ()
+a],2'2(k)u§(k)+v] (k)

- 2
rg(k)= ay g o(k)+ay | 1 (Duy (k) ay | o (k)uy(k)+ay 5 (kY uy (k)

' 4

+ay 5 (k) ug (k) +v, (k)

The m (ptl ) s model parameters are unknown. They are assumed
either constants or time varying, and it is required to identify them at stage N+1,

The identification is to be done by estimating their values at stage N+1, based on
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the noisy measurements Y (k), i=1,...,m ; k=1,2,...,N. Note
that each measurement here consists of m simultaneous observations at the m

outputs.

The measurement at stage k is controlled by the s input signals
u| (k) 1=1, ... ,s, through the algebraic input-output relation cf Equation
(2.1) . Hence by selecting different control policies we get different measurement

sequences, and this leads to the following problem:

Choose the optimal input sequence from an admissible
set, that results in the best identification of the model

parameters.

This general problem will be made precise below, after discussing

the method used for identification.

2.3  Method of Identification

The system parameters are identified, using Kalman's filtering
technique [11 1. They are represented as states in a dynamical system, and are

estimated using a discrete Kalman filter.
For this purpose we arrange the parameters in vector form

T]T

m

(2.4)

X = [aT aT a
] G e

where a, is a vector of the form
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iP] ; i=1,..., m (2.5)
and aii is again a vector

a.. = [a,

'l i,0,0 Gi'i,] ﬂilil2 e ailiIS] r 1= ... r P (2'50)

Thus the parameters are arranged now in a certain order, and we may
use either one of two assumptions. In the first instance we assume the parameters

vector to be a constant, aﬁd thus we write
x (k1) = x (k) - (2.6)

or alternatively assume x (k) to be a random vector generated by the Wiener

stochastic process

x(k+]{)=x(k)+w(k) (2.7)
where

o (k) ~N [0, Q(K)] 2.9)

is a sequence of normal, independent random vectors, with zero mean and covariance

matrix Q (k). x (k) and w (k) are of dimension n, and n=m{p+l )s.

The observation Equations (2.1) can be written in vector form as

y (k)=C(k)x (k)+v (k) (2.9)
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where y (k) and v (k) are m dimensional vectors

y (k) = Dy (k) yp (k) ooy (k)3T (2.10)
v(k)=[v](k)vz(k)...vn(k)]T 2.11)
v (k) ~ N0, R (k)] (2.12)

where R (k) is the covariance matrix of the white, gaussian, vector sequence
v ( k), with elements Tii (k) asin Equation (2.2) .

C (k) = C(u(k)) isan mx n matrix function of the input vector u ( k), where
p(k)=[u](k) u2(k)...us(k)] . (2.13)

and is of the form

ER: 0

0d . .0
c=1. . . . . (2.14)

d 0

0 0 d

B <

where d dnd 0 are row vectors of dimension s ( p+l ), 0 has zero entries and

= 2 2 2 p P P
d []u] u2...uslu] Up «ee U ....1u] Ug ~e U ] (2.15)

The Equations (2.7), (2.9) represent a discrete linear dynamic system driven by
white noise, and with noisy observations, fo which the Kalman filter theory can be

applied [1 1], [2].
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Define the observations sequence
Yy (1) v (2) sy (K) ) (2.1¢)
The state estimate is the conditional mean
% (k[i)=E{x(k)|Y,] (2.17)

The estimation error is

¥

;(kli).=x(k)->‘<(l'<|‘i) (2.18)

and the error covariance matrix is defined as
P(kli)=cov[§(k|i),§(k|i)]. (2.19)
The filter consists of the following equations. Between observations

% (k1 |k) =% (k|k) (2.20)

P(ktl|k)=P(klk)+Q (k) (2.21)
At observations

% (klk)=%(k|k-1)+K (k) [y(k)-c (k) % (k]|k-1) 1] (2.22)

P(klk)=P(k|k,—1)-K(k)C(k)P(klk-])' (2.23)
with the gain K (k) given by

K (k) =P (k|k-1) C (k) [C (k)P (k|k-1) CT (k) +R(K)T™" (2.24)
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For simplification, we define

% (k)=%(k|k-1) , (2. 25)
P (k)=P(k|k) ‘ (2.26)
X (k)=P(kl|k-1) (2.27)

and using these variables the filter equations become

i(k+l)=x(|<)+K(k)ty(k)-C(k)i(k)] (2.28)

X (k1) =X (k) =X (k) CT (k) [C (k)X (k)€ (k)+R (k)T

-C(k)X(k)+Q (k) (2.29)

The last equation describes the sequential update of the error covariance

matrix of the estimate at stage k, based on observations up to stage k-1.

The filter consisting of Equations (2.28), (2.29) with the gain
K (k) =X (k)CT (k) [C (k)X (k) CT(k) +R (k) 1™ (2.30)

and the initial estimate and error covariance matrix X (1) and X (1), represent

the identification method.

2.4 Optimal Input Determination

The estimation error variance time-evolution is described by Equation
(2.29). 1t is seen that it depends on the input vector u (k) , since C (k) =C (u(k))

is a function of the input signal. Thus it is clear that the choice of the input sequence
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{u (k) 1} directly influences the identification. To achieve the best identification

using the abovementioned filter, we shall look for an input sequence that will
minimize the estimation error. For this purpose we define a cost function and
minimize it over all admissible control sequences. A suitable cost function is one
which is a non-negative Funct‘ionul of the estimation error. A natural choice is the
trace of the error covariance matrix tr X ( k) , which is non-negative for initial

error covariance matrix, which is positive semi-definite.
¥

2.4.1 Dynamic N-Stage Optimization

The discussion above leads naturally to the optimal control problem

formulation:
Minimize J(u) =tr X (N+1) (2.31)
over all admissible control sequences {u (k) } ¢ a ,where

a=fu(1),u(2),...,u(N)}: |u(k)|sp) (2.32)

subject to the equality constraint (2.29) with given initial condition X (1) .

p is the vector of control magnitude constraints

T

and the control vector absolute value is in the sense of its components

o (k) 1=C o (0] Juy()]een fu_ (k) |17 (2.34)
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This optimal control problem seems amenable to g solution by the
matrix minimum principle as formylated by Athans [23 ]. This however is not the
case, as the needed assumptions of convexity (Halkin [18 ], or directiongl convexity

(Holtzman [19 ) do not hold. This is shown in Appendix A.

The dynamic N-stage optimization problem is thus solved using

@ programming approach, employing the conjugate gradients method.,

<
T

2.4.2  Conjugate Gradients Method of N-Stage Minimization

We use now concepts of \)ariqfional theory to derive the conjugate
gradient matrix functional form. Rewrite the dynamic equality constraint (2.25) in

the form.

X(k+l)=F(X(k),u(k)) (2. 35)

and adjoin it to the cost function (2.31) [23 ], [24 ]

N
Jo) =X (N#1) + CF (X (k) u (k) =X (k)T MT (ks ) (2.36)
k=1

where M (k) is the costate matrix. Next cefine the Hamiltonian .funcinn
H(k)=H[X (k), M (k+1), v (k) J=tF(x(k), u(k))MT(k+]) (2.37)

substitute this in (2.36)

N
JCu)=X(NH)+ 5 H(K) = 1 X (k1) MT (K4 ) (2.38)

k=1
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The first variation in J (u) under control and state pertubation

is

_ dH (k) T dH (k) T
SJ(U) fl‘SX(N'H)'*‘fI‘? €>—<(—k)SX (k)'*‘-m Su (k)
k=1
~ M (k+1 )8 XT (kt1) | (2.39)
The concept of gradient matrix of the form ifa(x—x)- where f (X))
is a scalar function of the matrix X, and the inner product <X, Y> =tr [X Y T ]
is found in Athens [23 ], and an extensive treatment appears in [ 32 ]. Now,
N N-+1
- ) M(k1)EX (k)= = ) M(k)EXT (k) +M(1)6X (1)
k=1 k=1
N T T
== ) M(k)8X" (k)= M(N+)6XT (N+)
k=1

+M(1)8XT (1)

Substitute this expression, with & XT (1)=0, back into (2.39)

N
_ | 3H (k) T
8J(u)=tr[1-M(N+H ) 18X (N+ ) +tr z (Sxrey ~M(K)IBX (k)
k=1
+_mgfj(k>su7(k)} : (2.40)

To minimize the first variation in J (u ) set

M(k)=%t—)r s k=1,..., N (2.41)
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with boundary (terminal) condition

M(N+H) =1 | (2.42)

The first variation in the cost function becomes

5J (u)=§ L
k=1

%%H%;suﬁk) (2.43)

13

3H (k)

where So(k) is the gradient of J (u) with respect to u ( k), while Equatiors

(2. 35) and (2.41) are satisfied.

8§ J(u) isnow minimized by choosing (the gradient method)

8u(H=—e%%%% (2.44)

where € is a positive number. The conjugate gradients method is more efficient and
has better convergence properties [25 ]- [ 23 ]. The algorithm used is based on the
one described by Lasdon et al. [25 ], with modifications to allow for bounded controls,

as suggested by Pagurek and Woodside [ 27 ],

Define:

u, =“{Ui (1)seees U; (N) } - the control sequence at the ith iteration

J( u, ) = cost function value corresponding to u,

aH(l)‘ 3H. (N)
gi={gi(])l ,Q(N)}_{ (])l ,aU (N)} -fhegradienf

trajectory (sequence) corresponding to U,



26

s, - the ith search direction

a,ai,Bi-scalors

The Conjugate Gradients Algorithm

Chosen initially are u, and ‘

g (v, ) -

then iteratively

a, =ato minimize J ( ui'*'ctsi )

5., u, ta, s,
i+l i P

9H1=9(%ﬂ)

8= dimlr %in ”
i <gil gi >

541 T G4 TS

where <g.s g, > is the inner product, defined by

N
_ T
k=1
At each iteration a one-dimensional search for a, must be

carried out. This requires repeated evaluations of the cost function and thus is very

(2.45)

(2.46)

(2.47)
(2.48)

(2.49)

(2.50)

(2.51)

(2.52)
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time consuming. An efficient method for this linear search, is one which requires
a minimum number of cost function evaluations, with good convergence rate. A

quadratic interpolation technique was found to yield satisfactory results.

At each iteration the elements of the new control vector are
fruncated at lower and upper bounds , using the method of Pagurek and Woodside [27 ],
The elements of g; are considered to be zero when the corresponding control elements
saturate, and are used as sich while pérfom_ping the inner product summation. That is,

over the interval in which the j-th element of u. saturates, the j~th element of

g, is taken to be zero.

At each iteration the evaluation of g; requires the evaluation of
H( u, ), which is done by forward "integration" of the state equation (2. 35), up to
stage N+1 , with initial condition X (1), and then "integrating" backwards
equation (2.41) with the initial condition (2.42). The evaluation of the gradient vector

8H (u,)
follows, % = 5 '
i

2.4.3 One-Stage Minimization

The N-stage dynamic optimization method, describ;ad above solves
a Two-Point-Boundary-Value-Problem (TPBVP) in order to minimize the trace of the
Kalman filter error variance, at stage N+1 . The solution of this TPBVP requires
the trajectories computation of matrix equations and is computationally very

cumbersome, as well as extensively time consuming.

A much simpler approach is the minimization of the error variance
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at stage N+1 by sequentially minimizing it at each stage. The optimal stage
input is obtained, that minimizes the error variance trace function. The
problem is thus reduced to a procedure of repeated function minimizations in the
R® space, as compared to the dynamic minimization in the space S°(N) - of

s dimensional vector sequences of length N.

The one-stage optimization procedure seems as a suboptimal

P
¥

solution to the problem of

min tr X (N+1)

| u(l),...,u(N)

but as we shall prove later, it is identical to the N-stage dynamic optimization.

One-Stage Optimization Procedure:

Minimize J](u(k))=er(k+1) ; k=1,2,...,N (2.53)

over all admissible control vectors u (ik) € n
ﬁ.]={u(k):|ui(k)|5pi y 1i=1,2,...,51} (2.54)
where

3y (u (k) = X (k) =t {X (k) CT (u (k) LC(u (k) X (k) €T (u (k)

1

+R(k) 1 C(u (kDX (k)} (2.55)

with given initial X (1) .

This is a sequence of identical function minimizations over a closed
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bounded set in the real Euclidean space R .

An efficient numerical method of minimization is again the conjugate

gradients procedure which is summarized below for function minimization [24 ], [30 ].
Define:

v, the minimizing arguement at the i-th iteration,

J](ui) the function value corresponding to Us

BJ] (u)

T Teu i ingto v, .
9; 3 U U=u the gradient vector corresponding to u,

Choose initially v, and evaluate 9,

Repeat at each iteration

ai=ato minimize J (ui +usi)

=u,ta, s

U . T A, o,
[ I A |

i+l

gi+'| = g (Ui+‘l )

g..1 9.
i+l ¥ i+
B, =
9% 9
10T %a RS

The elements of the minimizing argument u, are truncated at their

saturation levels, and the corresponding elements of g, are set fo zero in the
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computation of Bi ¢ as mentioned in Section 2.4, 2.
in the sequel we make use of an important matrix identity.

Lemma 2.1

Let X, R and C be nxn, mxm and mxn matrices, respectively.

Suppose that X is positive definite and R positive definite. Then

T T

X7 +cTRT e 1! = xoxcT rexcT+r 7! cx (2.56)

Proof:

See e.g. [2 ], appendix 7B.

We are now prepared to prove that the sequential one-stage optimization solution

is optimal.
Theorem 2.1

For the model (2.6), (2.9)

x (k1 )=x (k) (2.57)

y (k)=C(u(k) x(k)+v (k) (2.58)

and the N-stage optimization problem (2.31) - (2.34), the one-stage optimization

procedure (2.53) - (2.55), is optimal.

Proof:

Using lemma 2.1, the state equation (2.29) can be written as
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X ) =X T (w k) R7Y (k) € (o (k) (2.59)

since Q(k) = 0, and from the Kalman filtering theory it follows that X (k)
is positive definite if R (k) and X (]) are positive definite. Thus we can

write

XNt =X )+ T (o (N RTT (N € (0 ()

=X (N-1)+CT (u(N-1) R (N=1) € (6 (N-1)

+C (wNDRT () C (v (N))

— N T 1

=X (1)+) C(u (iR () C(u (D) (2.60)

i=1 :

Hence the cost function (2.31) can be written as

: N
J(u) = trX (N#1) = 10 [XV (1) + Y R (e 1! (2.61)

i=1
The N-stage minimization calls for the minimization of J (u(1),
v(2), ... ,u(N)) with respect to itsarguments u (1), i=1,..., N.
From (2.61) this function is seen to be symmetric at all the variable vectors. We
denote by u* (i) the minimizing vector u (i) such that the minimum is attained

as

J(u)=J(u*(1),...,u* (N))

One way to minimize the cost function J (u) is by first determining

u* (1), then u*(2)etc., upto u* (N). Suppose that u* (1) was determined
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then

31 6) = min J(v)
u(l)

e 0T ()T (o () KT (1) C(ur (1) +§ TGN R (e u(inT
- i=2

o1 %’ T, ,.\wel,. —
e [X* 7 (2)+ ) C (u(i))R (i) C(u(i)) ]
i=2 )

Now
J](U)SJ(U) v uv(i),i=2,..., N

and in particularset v (i)=0,i=2, ..., N. Then

3N u) = min X (2), given X (1) (2.62)
u(1)

Next determine u* (2). Then

J2(u) = min J] (v)
u(2)

=t 0 X* (2)+CT (v (2) R (2) C (u* (2))

z

+Y <R (e (o)
3

L

-1 N T -1 -1
= tr [X* (3)+ZC(U(1))R (i)C(U(i))]
i=3
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2wy s (u)ysJ(u) Vu(i), i=3,...,N

and set in particular u (i) 0, i=3, ..., N. Then

J2(u) = min'fr'X(3), " given X* (2) (2.63)
u(2)

and carrying this procedure to the end, we arrive at

MN(o)y=s*(u)= min . J(u(1),...,u(N)) (2.64)
| u(1),...,u(N)

the required optimum, which is achieved by the sequential one-stage minimization:

min tr X (k+1 ),given X (k) , k=1,2, ..., N.
u{k)
Q.E.D.

In addition fo the computational simplicity of the single-stage
optimization method, it has énofher significant advantage. While the dynamic
procedure solves for an input sequence of length N, where N is a fixed integer,
the stage optimization method con be applied on-line, and can be terminated when
the error covariance trace function decreases under a certain limit. For the case

where Q = 0, see Appendix B.

2.5 Properties of the Estimator

Some properties of the identified model and filter, under the optimal

input policy are of interest. For easy reference we rewrite the model (2.7), (2.9)
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x (k1) = x(k)+w (k) ; w(k)~N [0, Q (k)] (2.65)
y (k) =C(u(k))x(k)+v(k);v(k)~NTLO, R(k)] (2.66)

For the case where we assume w (k) =0 , which is a practical
assumption, especially in the cases where the system is constant, or near constant
and the observation sequence is short, we use identity (2. 56) repeatedly, as was done

in the proof of Theorem 2.1 , to obtain

k
X (1) =0 (1) ) R (e (2.67)

i=1

Definition 2.1 [2 ]

The information matrix of the system (2.65), (2.66) is
k

$(k1)=Y cT(u (R (1) C(u (i)

i=1

Using the information matrix Equation (2.67) is rewritten
-1 =1
X (kt1)=IX"(1)+&(k1)] (2.68)

In order to be able to estimate all the state variables, the system
has to be observable. We give now two definitions of observability which are due
to Kalman [ 33 ], [34 ]. For detailed discussion of the problem of observability

of discrete linear systems, and the filtering problem, the reader is referred to [ 2 J,[131].
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Definition 2.2

The system (2.65) , (2.66) is said to be k-completely observable

if, and only if,
£(k,1)>0 forsome k = 1. (2.69)

It is S-uniformly completely observable if there exists a positive interger S «and

k4

positive constants  a, B such that
0<alIs&(kk-S)=sBI (2.70)

forall k >S.

If A and B are matrices then the relation A>B or A-B >0,

means that A - B is positive definite. We introduce now some notafions.

Let Jk be an indexing set

B= 002 k] (2.71)

and let M, be the composite matrix

"\

C(i])

i : ; i], i2,..., i>\e Jk (2.72)
C (i)\)

where C (i) = C(u(i)).

In order to be able to estimate all the system parameters we must
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establish the observability property of the system (2.65), (2.66) , which is done in
the following theorem. It is assumed that the dimension of the observation vector y

is smaller than that of the state vector x

Theorem 2.2

The system (2.65), (2.66) is k-completely observable, if and

only if, the input sequence {u (1) ;..., u (k) } contains vectors u (i.I ), u'(i2),

<

T { i)\) such that M ; is of maximum rank, n - the demension of x.

A

Proof:

By definition 2,2 fll:e system is k-comple-ely observable if,

£(k1)>0, where £(k,1)=) €' (i)R (i)C(i). Bydefinition,
i=1
£ (k,1) is positive definite if

k
n=2 1) ()R ()C(i)T 2505 vz#o0 2.73)

i=1

where z is a vector of appropriate dimension n. Define the vectors

e(i) =C(i)z ; i=1,..., k (2.74)

and the scalar p in (2.73) can be written as
K T 1
p= ) e (i) R (i)e(i) (2.75)
i=1

By assumption R (i) >0 thus from (2.75), u =0,



To prove sufficiency assume that there exists Mi of maximum
A
rank. Then

C'(i]) e.(i])
Mi z= ‘ z=| . #+0; Vz#0 (2.76)
A iy e (i)

Hence for every non-zero vector z there exist a non-zero vector e (i), and

p > 0. Consequently £ (k,1) >0 and the system is k-completely observable.

To prove necessity, assume that the system is k-completely observable.
Then by Equation (2.73) p>0 ¥ z # 0, and by Equcﬁon (2.75) there must exist

at feastone e (i) #0, ie J , forevery z #0. Use Equation (2.74) to obtain the

kl

composite equation

e(ip)] | c(iy)
= z=Miz9e 0 ; Vz#0 (2.77)

which means that there exists an Mi of full rank.

A
Q.E.D.

Corollary 2.1

The system (2.65), (2.66) is S-uniformly completely observable
if and only if, for each subsequence of length S of the input sequence, the
necessary and sufficient condition of the Theorem 2.2 is satisfied, and the control

vector is bounded
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Proof:

If the necessary and sufficient condition of the theorem is satisfied

for each control subsequence of length S, then
£(i,i-S)>0; Vi>35; ieJk

and taking k to be finite, there exists a and B such that (since v (|) is

<

bounded ¥ j) ¢

£(i,i-S)-al=20 and BI-£(i,i-S) =0

forevery i >S5, ie Jk . Thus (2.70) is satisfied.

Corollary 2.2

For the system (2.65), (2.66) to be k-completely observable, it

is necessary and sufficient that the input sequence of length k, has at leost n/m

unequal vectors.

Proof:

Since the rows of the observation matrix C (i) = C(u(i))are
Polynomials of the elements of the input vector u (i), then therows of C (u (i))

will be linearly independent of the rows of C (u (j))whenever v (i)=u(j).

Thus M, s of full rank and by Theorem 2.2 the system is k-completely observable.
n/m -
The following theorem establishes a property of the functional used

in the input optimization problem.
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The error functional that was used in the input optimization problem

is the trace function of the error covariance matrix, that is

J(u)=tr X (kt1)

Obviously it contains the sum of the individual error variances of all the parameters

estimates. We can show that for the noise free parameters model it is a non-increasing

R

function of time. ’
Theorem 2.3

 For the constant parameter model

x(k+l1)=x (k)

y(k)=C(k)x(k)+v (k)
the functional r X (k) is a monotone non-increasing function of the stage k

Proof:

For the given system assuming X (1) >0, the error covariance

matrix is given by (2.67) and there readily follows that
X(k)>0 , ¥k.

Thus also

C(k)X (k) Cl (k)= 0. (2.78)
Q.E.D.
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and assuming R (k) > 0 also
C(k)X (k)CT (k) +R(k)> 0 (2.79)
Using now Equation {2.29) for the covariance matrix we have

X (kt1)= X (k)Cl (k) [C (k)X (k)CT (k)

FR(K) T C (k)X (k) (2.80)

Denoing
Y (k)=X (k)c (k)
B(k)=C (k)X (k)C' (k)+R (k)
Equation (2.73) becomes
X(k+l)=X(k)—'Y(k)B(k)YT(k) (2.81)
where Y(k)B'(k).YT(k)zo since B (k) > 0. Thus from (2.81) it follows
X (kH ) =teX (k)= trY (k)B(k)Y' (k) (2.82)

and

tr X (k1) <tr X (k) (2.83)
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since Y (k)B (k)Y (k) = O.

Q.E.D.

By the last theorem, the zarror variance at any stage is not greater than
the one in the previous stage, for any input used. The input optimization achieves

the fastest decrease of the error covariance.

The next theorem establishes a bound on the error covariance matrix.

T

Theorem 2.4

If the system (2.69), (2.70) is S-uniformly completely observable,
and X (1) is positive definite, then X (k) is uniformly bounded from above by

£-] (k,1) forall k> S and X (k) vanishes as}mpfoﬁca”y,x (k) -»0as k»oo.

Proof:

By Equation (2.68) we have

XV (k) =xT (k) 8 (k1) T (2.84)
and thus

X! (k¥t1) =~ £ (k1) ° | (2.85)

Since by assumption the system is S-uniformly completely observable,

then for k>S5S, £(k,1) >0 and
X (k1)< £ (K1) . (2.86)

In addition, for large k
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E(k,1)=8(SH,1)+£(25+2, S+2)+... (2.87)
a sum of positive definite matrices. Thus

X (k1) <& (k1)-0 as k » o .
Q.E.D.
Corollary 2.3

Under the conditions of theorem 2.4, X ( k) does not depend on

the initial condition of the covariance matrix X (1), for k sufficientiy large.

Proof:

From Equations (2.84) and (2.87) it follows that
X (k) = £ (K1)

for sufficiently large k, since & (k,1) is a growing sequence of positive definite

matrices, and X (1) is constant.

2.6 The Cramér-Rao Lower Bound

The Cramér-Rao Lower Bound (CRLB) plays an important role in the
area of statistical parameter estimation. We present now a short discussion on its
connection with our identification problem. References [35 ] and [38 ]- [40 ]

are some among many which derive and discuss the ideas and results that we use.

Consider the following problem. We are given the observation
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equation
y(k)=g(k, £)+v(k) ; k=1,2,..., N (2.88)

where y (k) is the observation m-vector, g (k, £) is an m-vector function of
the parameter n-vector & . & is a fixed but unknown vector. v (k) is a zero mean

stationary, white Gaussian random vector sequence, with the covariance matrix

R = diag [r ] | (2.89)

1o o
Let

FQy (1), y(2)eery(N), £)=F(y, &) (2.90)

be the cumulative distribution function of the observations. Let Eh be any unbiased
estimate of £, made fromy (k), k=1, ..., N. Let T'(N) be the covariance

matrix of the estimation error, i.e.,

T(N)=EL(E-¢) (-9 1. | (2.91)

Define

B = J‘[ |09F(Y:€) ][alog Fg(YIE)] dF(y,E,‘.) (2.92)

Then the Cramér-Rao or information inequality states, [35 ]J- [40 ],

r(N)>p" (2.93)

. . . . . "] . ’,
B is the Fisher information matrix, and B = is the Cramer-Rao lower bound on the




error covariance matrix. In (2.93), the equality holds for efficient estimators. It
can be shown that maximum likelihood estimators are asymptotically efficient,
and when the observation is linear in the unknown parameter the estimator (which is

the Kalman filter in our case) is efficient so that (N )= B-] .

Equation (2. 93) holds for any v (k) which is some discrete
stochastic process, but B is extremely hard to evaluate, since F (y, &) is

generally not known. But for v (k) which'is zero mean, stationary, white discrete

Gaussian process with covariance R as in (2.89) B becomes

N 3g (k, &) 1 - 3g(k, &) T
B=) [9—65'—53 LI (2.94)
k=1 ;
where we note that Q_QB_(EM isan (nxm) matrix with columns
Bgi (kl E) .
_—a—f—_'l - ], 2,...,'m. (2.95)

Using our observation model (2.9) we have
g(k, g£)=C(k)¢
where £ =x(k), k=1, ..,, N and §= x (N+1). Hence
dg (k, )= T
5 C (k) (2.96)

so that Equations (2.94) and (2.93) become

N
B=ZCT(k)R-]C(k) (2.97)
k=1
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| N ] ]
T(N)=[ ) k)R c(k)1” (2.98)
k=1

Nahi and Wallis [ 36 ] determine optimal input for identification
of dynamic systems by minimizing a functional of the CRLB. In our case, this would

mean for the trace function:

N :
min  t [ ) CT(u(k))R-]C(uf(k))J—] y k=1, ..., N (2.99)
u(k)en k=l

In section 2.4.1 we formulated the optimal input problem as

min X (N+H1) ; k=1,..., N (2.100)
u(k)en

which for the noise free parameter mode!l
x (k1 )=x (k)

can be written by using (2.67) as

N
min X7 (1)) ok DR C(u (kDI k=1, ..., N (2100
o(k)en k=1

and since X-] (1) is constant the optimal input sequence that satisfies (2.99), also

satisfied (2.101) and thus minimizes the trace of the CRLB. This is the best aﬁy input

sequence can do, under the trace functional, irrespective of the filter that is used

to estimate the parameters.



46

2.7 System Simulation

Several systems were simulated, and the optimal input sequence ob-
tained by straightforward application of the stage minimization method. The following

is one example.

2.7.1 Example

The optimal input sequence is calculated in this example for a

N

system with two inputs and two outputs. The inputs-output relation is a second order

polynomial

2 2
yz(k) = a3y Y3 (k)+c]2u2(k)+a]3U] (k)+a]4u2(k)+v] (k)

' 2 2
y2(k) 51 Y3 (k)+022u2(k)+c|23u] (k)+024u2(|<)+v2(k)

where the parameters qii are unknown constants. The measurement vector y (k)

is generated by this system with
= T
v(k)=[vi (k) wv,(k)]
] 2
v(k)~NT[O0,R] ; R=diag [2.0 1,0]
The parameters are modeled as
x (k+1) = x (k)

where

x(k)=Tayq (k) oovag, (K)ag (k) ... ap, (K) 7'
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and the observation equation is

y(k)=C(k)x (k)+v (k)

where
_ T _ T
y(k)—[y] (k) Yo (k)1 ; U(k)‘[U](k) u2(k)]
2 2 - | |
[u] (k) U2(k) u](k) U2(k') 0 0 0 0
C(k) =
[ 0 0 0 0 wi(k) u2(k) o7 (K) vy (k)

The initial covariance matrix is taken to be large,

(100 20 ... 20

| 20 100 ... 20
X(1)= | : :

20 20 ... 16oJ
and the control has the saturation constraint
|ui(k) | = SAT i=1,2 , k=1,2, ...

The optimal input sequence of length 8, {u (1 Jeeeesu(8)3,

is computed by the stage minimization method, for two control saturation constraints

]
ot
.

(1) SAT

(2) SAT

Il
(8]
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The solution does not depend on the actual system observations, but
only on the assumed model and noise statistics. It is not unique,v as can be expected
from the local convergence properties of all gradient numerical techniques. Starting
at each stage-minimization wifh an initial guess of 0.5 for the two control components,
we arrive at the solution shown in Figure 2.1 for SAT =1, and Figure 2.2 for SAT =
5. The initial value of the cost function is tr X (1) =800, and it is reduced to 4.559

A}

in the first case and to 0.0815 in the second case.

The two optimal input sequences are applied to two systems having
two different sets of parameters, and the estimates as well as the absolute percentage
errors are averaged over 50 runs with randomly selected noise samples. These averages
are compared for the cases of SAT =1, and SAT =5 in Table 2.1. As can be expected
the control wifh"fhe larger saturation constraint yields smaller identification errors, and
better average estimates. Thé estimates are those obtained by filtering eight system
observations, {y (1),...,y(8)1}, and thus are the elements of the vector

%(9|8). The initial estimates are taken as

%(1)=1[4.0....4.0 7

and the error in the parameter estimates is calculated as

The conjugate gradients method stops the search iterations whenever

the improvement in the cost at two consecutive iterations is smaller than a certain
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stage k

OPTIMAL INPUT FOR CONTROL-BOUND SAT =1.

FIGURE 2.1
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stage k

e ety — — — — —— — —

FIGURE 2.2 OPTIMAL INPUT FOR CONTROL-BOUND SAT=5.
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input SAT = 5. input SAT = 1,
actual average average average average
parameters estimates errors estimates errors
a;; = 3.0 3.01 1.02 2.85 24.81
aj, = -4.0 -4.00 0.77 -3.73 28.12
a3 = 6.0 6.02 2.46 6.28 12.11
a, = 1.5 -1.47 5.46 -1.75 54.26
ay = -0.5 -0.49 4,45 -0.61 107.8¢
apy = 1.5 1.49 .66 1.64 45.80
ay3 = 0.8 0.82 13.22 0.94 55.39
a,, = 2.5 2.52 3.39 2.33 24.58
System |
aj; = 0.3 0.31 10.25 0.20 248.13
a, = -1.5 -1.50 2.06 -1.30 75.25
a3 = 3.0 3.02 . 4,92 3.26 24.09
aj, = -4.0 -3.97 2.04 -4,20 19.97
ay = 12.0 12.01° 0.19 11.84 4.59
a0y, = 4.0 3.99 0.62 418 17.23
dpg = =0.5 -0.48 21.16 -0.34 90.37
agy = 1.5 1.52 5.65 1.31 41.18
System 2
TABLE 2.1 PARAMETER ESTIMATES AND ERRORS.
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value, where the last search is in the direction of steepest descent.

After several conjugate gradient steps the solution algorithm
switches to ordinary gradient search for one or more iterations before continuing
with conjugate gradients. This action is found to improve the rate of convergence

toward the final solution.

The simulation was done using the IBM 360/75. The execution

<
A

time was 11.29 seconds for this example.
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CHAPTER 111

DUAL CONTROL OF DYNAMIC

LINEAR STOCHASTIC SYSTEMS

3.1 Introduction

Using the approach of Xstrb'm, Wittenmark and Wieslander [ 3, 5 1,
an adaptive control law is derived for the regulation problem of a linear stochastic
system. The system is modeled by a dynamic discrete input-output relation with one

input and oneoutput, with parameters which are assumed to be stochastic processes.

For systems with known parameters the output regulator consists of
the minimum-variance policy [1 1. A natural extension to the case of unknown
parameters is still the minimum-variance policy, with the estimates substituted for
the unknown parameters. This policy however, completely separates the identification
and control, and the control is computed with complete disregard to the identification

error variance.

The adaptive regulator policy takes into consideration the error
variance of the parameter estimates and adapt itself, in producing the control signals,
to the uncertainty of the estimation. It is compared by Wittenmark [ 5 1, with the
extended minimum variance regulator that uses the parameter estimates only, and is

found superior.

The adaptive control policy is derived by minimizing the expected

value of the squared output at each stage. The result is a feedback law, which depends
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on the system parameter estimates and their error variance. But the estimation and
control are separated and the controller does not act in any way to improve the
identification. Thus it is not dual [ 16, 17 ], and allows two kinds of
phenomena to occur, which result in low performance. These are burst and turn-
off phenomena. Wittenmark and Wieslander [ 4, 5 ] use the adaptive control

with additive perturbation signal to improve the parameter estimation and hence

L4

improve the controller performance.

Our motivation is to design the control signal by considering

directly the estimation error covariance, as well as the expected squared output.
We use a measure of this error covariance to constrain the control signal in such

a way that it acts to keep good estimation together with good control.

Since our controller, and the one used by Wittenmark and

Wieslander, are concerned with both identification and control they are of

dual nature (Feldbaum [ 16]). But the perturbation added to the adaptive

control signal contributes to improving the identification in a passive way,
while our controller seeks and plays an active role in supervising the identification
process.

We start by developing the adaptive non-dual control law,

and consequently, formulate and design the adaptive dual control policy.
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3.2 Formulation of the Problem

A discrete iinear model is considered with scalar input and scalar

output. . The model describes the input-output relation in the plant

y(k)=a](k)y(k-])+a2(k)y(k—2)+. ..+cn(k)y(|<-n)

+b] (k)u(k—l)-'Fb2(l<)u(k~2.)+....bn(k)u(k-n)

<

+v(k) ' 3.1)

where

k=1, 2,... discrete time or stage index

y (k) = output

u (k) - input (control)

a, (k), bi (k),i=1,..., ntime varying unknown parameters

v(k), k=1,2,...a sequence of equally distributed, independent,
normal random variables, with zero mean and variance R,

v(k) ~N(O,R), k=1, 2,...

cov Lvi (i), v(i)I=RU (i), i, i =1,2,...

where U, (i=j ) is the discrete impulse function

1 P=i
U (i-j) =
o {o P#]

We define as admissible, any control law, such that the control signal

at stage k is a function of the observed outputs o stage k, and past control signals
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to time k-1, i.e., u (k) is a functionof y (k), y (k=1),..., u(k-1),

v(k-2),...

We wish to design an optimal controller, that will keep the output
of the system as near zero as possible. This is the regulator problem. A suitable

performance index to be minimized is
l' o '
=Ee[) Y ] 3.2)
k=1

The minimizatién of this loss function yields an N-stage control
policy which is of dual nature [16 ], [ 17 ]. It not only computes the best
control, based on past and present observations, but also acts to improve the system

identification and increase the information about the system.

This problem, however, leads to a dynamic programming solution
which does not possess an analytic form, and which can not be obtained in real

time even for a first order system, [ 3 ], [5 ].

To arrive at an on-line solution we choose the single-stage

performance index

= E[y2(k) ] 3.3)

It turns out that the solution using this loss function separates the
system indentification and control parts. The control law will make the predicted

value of y (t) equal to zero, but will not make any attempt to improve the
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parameter estimates. Thus it is not a dual control. The result of this may be, as
will be later demonstrated, an unsatisfactory controller. By adding a certain
requirement involving the identification quality, we later develop a technique for

a dual control strategy.

The control law that minimizes the loss function (3. 3) is called

optimal non dual control.

3.3  The Optimal Non-Dual Control Law

- Defining the vector

x(k)=[a](k)...an(k)'b] (k)...bn(k)] (3.4)
We rewrite the modei equation (3. 1) |

y (k)= (k-1)x (k) +v (k) (3.5)

where,
o (k=1)=[y(k-1)...y(ksn)u(k-1)... 0 (k-n) ] (3.6)
The unknown parameters are assumed to be stochastic, Gauss-Markov
processes

x (k¥1)=x(k)+w (k) ' (3.7)

where w (k) is a sequence of independent,equally distributed,normal vector random

variables, with zero mean and covariance matrix Q,
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The adaptive control problem:

min E [y2 (k+1) ] (3.8)

u (k)

subject to equations (3.5) and (3.7).

To proceed we make use of a fundamental lemma of stochastic
control theory. Following Qstiom [1 Jlet xeX and yeY be a vector and a
scalar random variables respectively, defined on a pr;)babilify space, and let the
control variable be ueU. Let the loss function g be a function which maps
XxYxU into the real numbers. The expected loss is E [ g (x,y,u) ] where
E is the mathematical expectation with respect to x and y. We are interested in
the minimization of the expected loss E [ g (x,y,u) ], with respect to the control
variable weU, which is resfricfed to all functions that map Y into U. Let
min E [ g (x,y,u )] denote the minimumof E [ g (x,y,u) ] with respect to

u(y)

all admissakle control strategies.

Lemma 3.1 (Xstr'o'm)

Let E[- | y ] denote the conditional mean given y. Assume that
the function f (y,u) = E[g(x,y,u) |y ] has a unique minimum with respect
to ueU forall yeY. Let v® ( y ) denote the value of u for which the minimum

is achieved. Then

min ELg(x,y,u)1=ELg(xy,0°(y)]

v (y)

Ey {minELg(x,yu) |y ]}

where Ey denote the mean value with respect to the distribution of y.



59

Since E [ |y ] isa function of y, and the operation
min f ( x,u ) defines a function x » U, we note that the operation min E [ - |y ]

u u
thus defines a function Y > U . -

Using lemma 3.1, expression (3.8) is equivalent to

min E[y2(k+l)|yk] (3.9)
u (k) ‘ :

v

subject to equations (3.5) and (3.7), where

yk={y(k)y(k-l)...u(k-l)u(k-2)...} (3.10)

is the collection of past measurements and control values.

The expected loss of (3.8) is a function of the collection Y @s
well as the systems parameters. We know only Yi and thus use the fundamental
lemma 3.1 to obtain the admissible minimizing control v (k) = u (y (k )y (k=1),

coens (k=1)u (k=2),... ).

The solution of (3.9 proceeds as follows:

V° = min E[y2(k+1) [ykJ

u(k) |
em EL(ay (k1) y (k) *+ ... +a (k#1) y (kentl)

#by (k) u (k)+otb (k1) u (kent1) v (ki1)2]y, ]
= min E[b] (k1) o® (k) +2b (k#1)u (k) aT (o1 )

v (k)

Y (k) + 2 (K1) u (k) v (k1) |y, ]

*+ terms independent of u (k) (3.11)
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where we define the vectors
ac(k)=[a] (k)cz(k)... qn(k)Obz(k)bS(k)...bn(k) ]T (3.12)

Y (k)=Ty (k)y (k1) .oy (kn¥1)0u (k-Du (k=2) ... o (k-n+1) 1(3.13)

We define now

i(k\i)=E[x(k)\yi] | (3.14)
R (k|i) = x (k)=-x(k|i) (3.15)
P(klj) = cov [x (k]i), x(k|i)]

ECR(k]i) ®T(kli) ] (3.16)

which are recognized as the optimal Kalman Filter state estimate, error and error

covariance matrix, for the linear system of equations (3.7) and (3.5).
Using (3.15) equation (3.11) becomes

VO = mi(rl:) EL(E (ki |k)+6) (et [KNZ o2 (k) +2 (By (kT [k)
U

+b (k1 [k ) u (k) v (ki ) +2 (by (k¥ |k)
+b, (k+]\|<))u(k)(&1(k+]\k)+3'cT(k+]\k))
¥ (k) 1y, | @.17)

+ terms indepdent of u (k).

Using (3.14) and (3.16) and taking the conditional expectation

V= min [(B2 (kA1 |k)+P, (k# [k ) u? (k)
o (k) 191
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+2(b, (k+1|k)d‘:(k+1|k)+§:+] (k1 k)Y (k)u (k)] (3.18)

+ terms indepdent of u (k) .
where

c'?c(k+l|k)= [a](kﬂ k) ... é"_l (k+1 |k)0b2(k+1 k) ... bn (k+|l<)]T(3.19)

o v ~ 2
Pb]b] (kt1 k) =cov [by (kt1[k), by (k1 |k) I=E [b," (ki1 ]k)] (3.20)

Pb]b] (kt1]k) isthe (n+l)x ( A+l )felemenf of P (k+l]k), and Pn+] (k+1 |k)
is the n+1 column of the matrix P ( k+1 “; ). Note that the transition from (3.17)
to (3.18) used the orthogonal projection property of the optimal filter - the estimate

and error are orthogonal, i.e.,
Al ey ™ ey o
E[% (|||)x(l‘|)]—0 (3.21)

by the orthogonal projection lemma [6 ]. Equation (3.21) also holds component-

wise [2].

The minimizing u (k) is now found by differenf.iaﬁng the expression

to be minimized in (3.18) and equating the result to zero.

2(B2 (ke k) + P, (ki k) u (k) +2(By (ke [k) & (ke [k)

byb,

+ P (k) Y (k) = 0

yielding the optimal control o’ (k)

6 (ke [k ) a (et k) +P Lo (kT [K)

o (k)= - Y (k) (3.22)

a2
b] ( k+1 ‘k)+Pb]b]( k+11k)
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This is the optimal non dual control law. It is not acting to improve

the parameter estimation,

it is adaptive and depends not only on the predicted values of the
parameters, but also on the measure of uncertainty in their estimation - the error

variances of the parameters prediction.

The estimates and error variance are obtained using the Kalman filter

equations (e.g. [2 ]), with the system (3v:7) and observation (3.5).

R(kH k) = %(k|k) ; x(1]0)=% (3.23)
P(ktl|k) = P(klk)+Q ; P(1]0)=F (3.24)
R(k[k) = R (k1) ¥ K (K) [y (k)= (k1) 2 (k|k-D) T (3.25)
P(klk)= P(klk-l)-K(k)gp(k-l)P(klk-lz) (3.26)
K (k) = P(klk-Dp' (k1) [p(ke1) P (k|ke1) o (ke1)4R T 3,27

The foregoing is summarized in the following theorem.

Theorem 3.1

For the system given by equations (3.5) and (3.7), let the admissible
control u (k) be a function of past inputs and outputs, up to stage k. Then the
control law that minimizes the criterion (3.8) is given by (3.22) and the Kalman

filter equations (3.23) - (38.27) .

The choice of performance criterion (3. 3) separates the identification
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and control parts. The parameters are first predicted as & (k+1|k) and the control
is then computed using these predicted values, and their estimation error variances.

If however the identification is poor then the control will be computed in error and in
addition, nothing will be done by the controller to improve the identification. If the
estimation was perfect then the error variances are all equal to zero, and the controller
reduces to the minimum variance strategy [ 1 ], with the estimates substituted for

the true parameters. Here the error ;/ariances are added fo the estimates and thus

v

influence their relative weight in (3. 22), according to their accuracy.

A serious drawback in the use of this non dual adaptive control law
is the frequent occurence of the turn off and burst phenomena. These phemomena were

noticed and investigated by XSfr'o'm, Weislander and Wittenmark [3 ] - (5 1.

The burst phenomenon may occur after g period of good identification.
The estimates are then close to the plants parameters and the error variances are
small. If the plants parameters change in such a way, that the identifier is too slow
in catching up, large output values occur which result in large input signals as well.

This in turn improves the identification and reduces the output values.

The burst phenomenon is especially sensitive to the gain parameter
estimate. From the control law (3.22) it is seen that if the gain is identified as a
small number (this can easily happen even if b] is not very small) and if its estimate
error variance Pb b is at the same time small too, then the controller (3.22)

11
produces large values and the output oscillates with large signals.
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The turn-off phenomenon shuts off the controller, in the sense that
the control values are almost zero (in computer simulations these values were of the

order 10-4 - 10-8

) . The reason for the control turn-off can be explained as follows.
If after a period of good estimation the gain parameter b (k) , and then also its
estimate k:( k ), become small over a period of time, then the control e (k)

will be small too and consequently the filter gain Kb]( k ) will decrease, as there
is not much information about b]( k) in the observation equation. This in turn
may result in the next estimate being even smaller while the error variance

Pb]b]( k+1|k) will increase, and u (k+1) and K(k+1) decrease further.

The controller may remain in the turn-off mode, or as frequently occurs, switch
between the turn-off and turn-on modes. It was observed during systems simulations
that the turn-off occurs when the gain parameter becomes small or crosses zero
while switching signs. In these cases 5]( k ) quickly became very small, of the

order 10-5 -10_8

The turn-off occurred also in some cases when the gain b]( k)
was not small but was poorly identified as a small number. Thus the small I;]( k)
together with large Pb]b]( k+1 |k ) result in small control signal and small filter
gain which does not improve and leaves the bad estimate at its low value, while

the error variance increases.

The turn-off phenomenon will terminate if, as a result of virtually
no control, the output signal will increase to a large enough value such that the
control will increase, being a function of the output, and improve the gain

parameter identification.



Wittenmark and Wieslander [4 ] give an explanation to this
phenomenon by observing that the identifier, being a Kalman filter acis to

whiten the innovation process [10 ], Forasystem with two parameters a and b,
p(k) =y (k)= @(k-1)&(k|h-1)
=y (k) =y (k-1)& (k|k-1)-u (k-1)b (k|k-1)
=y (k1) [a(k) - &(k|k-1)1+u (k=1) [b (k)= B(k[k=1)J+v (k)

This can be done in two ways. Making fheresfimafes d(k|k-1) and l;( kjk-1)
as close to a (k) and b (k) as possible, or making b (k |k=1) and consequently

u (k=1) almost equal to zero, while y (k=1) is small. In either case
vik) v (k)
a white noise process.

A rigorous analysis of this phenomenon is extremely difficult, since
the system with the adaptive controller (3. 22), and the filter equations constitute a

complex nonlinear stochastic process.

In general we see that there is a conflict here between identification
and control. For good identification there is a need for large control signals (large
signal to noise ratio) while the minimum output variance strategy, requires small
control values. Wieslander and Wittenmark [ 4 1, [5 ], suggest a method to
overcome the above-mentioned drawbacks of the adaptive non dual controller. They
argue that since the controller is good if the identification part works well, « small
signal which is time varying may be added to the control, thus obtaining a suboptimal

dual adaptive controller,
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The additional small signal can be a square wave or a pseudo random
binary sequence. This perturbation while adding somewhat to the loss function keeps
the system stimulated and improves the identification. They investigate [4 ], [5 ]

the perturbation controller
WP (k) = LK) H(-1)¢ 8 (3.28)

where & is some constant arrived at through system simulation and experimentation.
This square wave perturbation controller is simulated and compared fo the non dual
controller. Their results show that the perturbation controller successfully prevents

the turn-off and burst phenomena in their examples.

In the next section we develop a new technique for a suboptimal

dual adaptive control.

3.4 A Technique for Dual Adaptive Control

As is demonstrated by Wittenmark and Wieslander [4, 5 ], the
perturbation controller improves the performance mainly by preventing the turn-
off phenomenon. The pertubation signal does not allow the control to be completely
turned off, and thus maintains continuous tracking of the gain parameter. 1t is not
however, concerned with improving in general the identification, and is not of

active dual nature in this sense
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We are thus motivated to seek a controller that will not only control

the system output, but one that will also observe the estimation error covariance and

will actively maintain it at a low level.

Substituting (3.27) in (3.26) , obtain

Pifl) =P (k[k=1) = P (klk-1)p (ke1) Tp(kel) P (K [kel ) (k) 4 R T

o(klk-1) (3.30)
and after applying lemma 2.1 this becorﬁéé (P(klk=1),R>0)
~1 =] T -1
P (klk)=P (klk=-1)+¢ (k-1)R o k-1) (3.31)

The error covariance matrix of the parameter estimate %( k+1 |k )
appearing in the control law (3.22) is P (k*1]k) and is given as a function of

P (k|k) by equation (3.24).

P(kt1|k)=P (k|k)+Q (3.32)

Our intention is fo modify the control law (3.22) in §rder to improve
the identification of the random system parameters, and thus to improve the overall
performance of the controller. To achieve that we wish to monitor some functional
of the identification error variance, which indicates the quality of the parameter
estimates. We then would like the control law to act in relation to the measure of
uncertainty, in such a way that the identification error remains small. This is to be
accomplished in real-time, and hence we require this error functional to be such q

function of the control signal that will permit us to compute u (k) analytically.
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The matrix P-‘I (k|k)in (3.31) is related to the information matrix
of definition 2.1 [ 2 ]. Itis actually identical to £ (k,1) of definition 2.1
for the case where the parameters are constants, Q = 0. P_] (k |k ) contains
a measure of the information available about the system parameters. It is also a
function of the control. It is in addition, the inverse of the error matrix, and hence

the following functional
p (k)= 1! (It [k ) (3.33)
satisfies all the requirements mentioned above as it is an estimation error functional,

and at the same time a quadratic function of the control as is seen by using

equation (3.31),

p (k) =10 P (et [kt ) =10 P (kT k) + 1 g (k)R (k) (3.34

using the identity
T_ T
trzz =z 2z
for any vector z , equation ( 3.34) becomes

Pkt )=t P (k1 [K)+R T (k) o (k) (3.35)

from equations (3.6) and (3.13) we have

p(k)p (k) =y2 (k) +.. +y2 (kentl )+ o2 (k) + 02 (ko)
+... tu (k-n+l \

=o2 (k) + YT (k)Y (K) (3.36)



69

thus (3. 35) becomes
p(k1 ) =t P (e [+ R o2 (k) + YT (k)Y (k) ] (3.37)

We are now ready to formulate the new adaptive control problem.

Dual Control problem formulation:

Choose the control u (k). to minimize the loss function

14

v = E[y2 (k)| ] (3.38)
subject to the constraint

p(kt )=t P! (k1 |kl ) 2 5 (kH) (3.39)
where p (k+1) is a predetermined function.

The constraint (3.39) comes to ensure that the amount of information

about the system parameters is keptabovea certain level.
Equation (3.37) yields for the constraint (3.39)

1

b fT ! (et )+ R YT (k)Y (k) + R Z(k)yzp (kH) (3.40)

clearly, from this inequality the control that satisfies the constraint is

lu(k)|=u (k) , (3.41)
where

T(k) = [[RB (k1) =RI P (k1 k)= YT (k) ¥ (k) 12 (3.42)
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assuming that the square root exists as a real number.

To determine the control law that minimizes the loss function (3.38),
and satisfied (3.41), we make use of the diagram in figure 3.1. We plot the part of
the loss function which is dependent on u (k). Since we use the same loss function
here as in the previous section where the non dual controller was developed, we can
use expression (3.18). The first term is quadratic in u (k) and the second is linear

inu (k). These are plotted in Figure 3.1.

FIGURE 3.1 LOSS FUNCTION PART, DEPENDING ON u (k)
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In Figure 3.1 ° (k) is the adaptive nondual optimal control found
earlier. It is seen that in order to keep the loss function V (u) as low as possible

while observing the constraint (3.41), we must choose the control

u* (k)=u (k) sgn Uo(k') if u(k) >}u°(k)| (3.43)
and
u* (k) = o® (k) if G(k)s |o° (k)| | (3.44)
where
lifec>0
sghc =
-1if ¢< 0

The trace constraint (3.39) implies by (3.41) and (3.42) a minimal
value for the control at each stage. Any control value larger than this minimum
value U (k), is better from the point of view of information. Thus if the minimizing
control, from the loss function point of view, is larger than the minimum v (k) we
just use it, since it will give us more information in any event, with the best control
at the same time, i.e., it will make #tr P-] (k+1|k+1) larger than p (k+1) and

will provide the best control simultaneously.

We assumed above that the square root in (3.42) is q real number.
If it is not so, it means that tr P-.I (k+1|k+1 ) is larger than D (kt+1), even with
no control at all. This simply means that the identification is good and the information

measure is large enough without the weight of u (k) in the observation y (k+1),
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Thus we take,

v(k) =0 if u(k) <O (3.45)

where
p(k)=RY['.ﬁ(|<+1 )-frP“] (k+1|k) 3- YT(k)Y(k) (3.46)

We may now summarize the foregoing in a theorem.
T

Theorem 3.2: Dual adaptive control law.

For the system given by equaffons (3.5) and (3.7), let the admissible
control u { k ) be a function of past inputs and outputs, up to stage k. Then the

control law that minimizes the cost function,

Vo= E [y2 (k) |y, ] (3.47)

subject to the constraint

P (KH |kt ) 2 B (kH ) (3.48)

with p (k+1) predetermined, is given by

v (k) sgn uo(k) if ‘uo(k) |<3 (k)
u*(k)={ (3.49)

(k) if [ (k)|= U (k)

where

- B, (k1 [k) &0 kH [k) +P o (ki1 [T Y (k)

7 (3.50)
[;] (k+ ‘k)+Pb]b| (k+1|k)
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is the non dual adaptive control law (3.22), and

012 i wky >0
u(k)= . (3.51)
0 if p(k)s 0

where

(k) =R [B(kH) =t P (Kt ) 3= YT (k) Y (K) (3.52)

From (3.49) we note that disregarding the trace constraint (i.e.,

u(k)=0), the dual controller becomes identical to the non dual one,

u* (k)=0u° (k).

As was said above the function P ( k+1 ) must be predetermined. This
can only be done through system simulation and experimentation. Practical
considerations of this aspect and applications are left for the next chapter. Of
major importance is also the kn[)wledge of the system and parameters noise statistics,
without which the filter is not estimating optimally. This aspect is dealt with later,
but here we bring forth an interesting property of the adaptive control laws (3.22)
and (3. 29), which is the controller invariancy under amplification of the system noise

samples. This will be made clear in the sequel.

Theorem 3. 3:

For the system given by (3.5) and (3.7) and the dual control law (3.49),

the parameter estimates and error covariance, are invariant under amplification of the

system noise sample paths. Moreover, if the noise is amplified by a factor ¢ then
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the resulting control and loss function are likewise amplified by ¢ and ¢

respectively.

Proof:

The proof follows b); induction. We assume that the theorem holds

for some stage i (e.g. i=1) , and show that it then holds for stage i+1 .

Combine equations (5.26) and (3.27)
PHIi1) =P (#1]i)-P (i#1]i) o' (1)

CLp(i)P (1)) ()+R 1T (P (1) (.59

and by (3.24) and (3.6)
P(i+1]i) = PGli) + Q (3.54)
o(i)= Iy (i)y (i=1) ...y (i-ntl Yu (i) u(i-1) ... u(i-n+1) ] (3.55)

We denote all variables correponding to the case where the noise sample is amplified
. . = aC /.
by factor ¢, with superscript ¢, e.g., U (k), X (i), efc.

Hence,
R = ¢ R (3.56)

By assumption and (3.54)

P (ili) = P(ili) , PC(im|i)=P(i]i) (3.57)
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e“ (i) = ca (i) (3.58)
equation (3.53) yields using (3.56) - (3.58)
PE (i1 |i41) = PS (341 ]i) - PS (i+1 i) %1 (i)

C L ()P (1) p 1) k517 T (PO (i1 1)

P(i+1|i)-‘P(i;H|i)c¢pT(i)
« [ee()P(it1]i)p

P+ ]i)-c2c 2P (i+l]i)em (i)

* L) P (#1]1) 9" (1) +RI™ @(i)P (i1 ]1)

P (i+l]i+1) (3.59)

By definition,

ve (iH1) = ev (i+1) . (3.60)
and by assumption and (3.23)
XC(ili) = &(ili) , &C (i) = &(it1 |i) (3.61)

From (3.5) and using (3.58) obtain

yo (it1) = % (i) xS (it ) +vE (iH)

= cep(i)x (itl)+cv (it+l)

cy (i+l)
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using the fact that x° (i+1) = x (i+1).

Rewrite equation (3.25) using (3.27), and the above results

RE (1 (41 ) = 85+ [1)+ RS (i1 (i) @7

(i)

%) P (i 1) ) +R T [y (11 )= (1) &€ (41 1) ]
=£(H]h)+b(ﬁtU)C¢T(i);2

(i) PG| 1) (D4R T G [y(i#1) = p (D) R (i#11i) ]

=% (i+1]i+1) (3.63)

(3.59) and (3.63) prove the first part of the theorem, and from (3.62) it is seen

immediately that

VE=E [yS (i+1)12=E [ey (i1) 12 = 2V (3.64)

It thus remains fo show that u°© (i+1 ) =cu (i+1 ). We first show this for the non
dual control. From (3.50)

2

v (it1) = - [§]UH|Q+P HHi)4

C

(
biby
CTBS (5111 88 (i [1) # P, (41 )1 37 ¥ (i)
= - [Bf(i+1|i)-+Pb]b](;+1|i) ]-1

C Thy (1) &S (1 | ) +P o (1] e Y (i41)

= ¢ o° (i+1) (3. 65)
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using (3.59), (3.62) , (3.63) and the definition of Y (i+1 ) as in (3.13).

Now from (3.52)

-1

W) = RS [pC(H2) - 1 PS (iH2]i+1) 1- YT

(1+1) Y© (i+1)

FIp(#2) - w7 (i42]i41) 1= 2 YT (i41) ¥ (i41)

Cu(ity (3.66)
and thus by (3.51)

c[p(i'*'])]]/z if cp(i+1)> 0
e (iv) =
0 otherwise

cu (itl) (3.67)

and using (3.65) and (3.67) in (3.49), we finally prove for the dual control law

c cu (it+l) if |cu°(i+15|<c3(i+])
u *(i+l) = o
cu (i+1) otherwise
=  cu*(i+l) ) (3.68)

We must now show that the theorem holds for i=1 . Assume the

initial conditions

y(k)=0, u(k)=0: k <0

>'E(O)=->—<°,P(0)=Po; x(0)=xo
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Now
y© (1) = p(0)x +v* (1) =cv (1)
=cy (1) (3.69)
since @ (0) = o(0) = 0.
By (3.24)
P(110) = P°(0jo)+Q =k + Q
=P(1]0) | (3.70)
and thus by (3.52)
c _ 2
p (1) =cp(l) 3.71)

since R® = %R and Y (1) = cy(1). Thisin tun pointsto (by (3.51))
vS(1) =¢cu(1) | (3.72)
and lastly in this line, by (3.49)
uC* (1) = cu* (1) (3.73)

It is now easily verified by using the above results, and the filter equations (3.23) -

(3.27) that

K111y = &(1[1) and PC(1[1) = P(1|1)



79

and this concludes the proof.

The implication of theorem 3.3 is the following. The system noise
which is the noise in the observation, is of little importance to the adaptive control
policy, assuming of course that this noise covariance R, is known. Whether this
noise infensity is very low or very high, does not matter to the systems identification
and control. This of course, is not the case with the parameter process noise
intensity which has a direct bearing on the -estimation error variances. In chapter
5 it is shown that the observation noise covariance R, is easiiy identified, using
an adaptive filter in a system simulation with incomplete knowledée of noise
c-ovariances. The control performance depends on good identiication which.is not
easy to accomplish with large noise covariance in the parameter process. But

this performance is invariant under small or large observation noise.



80

CHAPTER IV

ADAPTIVE CONTROL SYSTEM SIMULATION

4.1 Introduction

In this Chapter we investigate the performance of the dual adaptive
control policy, as applied to several stochastic systems. The systems parameters are
“stochastic processes, with different drivin‘gfnoise intensities, or deterministic unknown

time functions. The model parameters ar.e assumed to be random processes in every

case, as was assumed in Chapter 3. The noise covariance of the parameter process

is used in the control policy and must be known.

In some examples we assume exact knowledge of this covariance,

and in others the actual value is assumed different from the value used.

The dual controller is compared with the non-dual control law in all
the examples, and in some it is also compared with the perturbation control policy

[3 3- [5 1. For the purpose of comparison we use the accumulated loss function

k .
2 ,,
L(k) =) ¥ (i) @)
i=1
All the examples but two, deal with first order systems, i.e., systems
with first order dynamics, containing two unknown parameters, one of which is the

gain b.l . Two examples are concemed with a second order system, having three

random parameters. The simulation was done on an 1BM 360 model 75 computer.
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4.2  First-Order System Simulations

The systems simulated here are of first-order, and have two unknown

parameters. Thus the input-output representation of the model is
y (k) = a(k)y(k-1)+b(k)u(k-1)+v (k) (4.2)

or in the form of equations (3.5), (3.7)

[}
k4

y (k) = e(k-1)x(k)+v (k) (4.3)

x(ktl) = x(k)+w (k) (4.4)

where the state representation of the parameter process is of second order, and

@ (k=1)= [y (k=1) u (k-1) ] (4.5)
x (k)= La(k) b(k)]T (4.6)
o (k)= Lo (k) o (k)1 @.7)
and where
v(k)~NTIO, R] (4.8)
w(k) ~N [0, Q] (4.9)
Q = diag [qu qb] . (4.10)

For this model the non-dual adaptive control law, Equation (3.22), is

W (k)=- [g2(k+1 [k )+ P (ke |k)]" (b (k+i ‘k)a ( k+1 ik)+Pab(l<+l \lzj]ﬁ)(k)
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since here by (3.12), (3.13),
& (k#1|k) = [a(kH[k) 0 T (4.12)

Y(k) = [y(k)o I

and by definition

Pau Pab] . . T
‘o p = P . _Py =[P, P (4.14)

The perturbation controller, Equation (3.28) is
F (k) = L (k) (-1 5 (4.15)

and the dual control law is by (3.49) - (3.52)

' d

U(k) sgnu® (k) if |u® (k)| < (k)
u* (k) = (4.16)

Lu° (k) otherwise

/m(k) i w(k) >0
u(k) = 4.17)

0 otherwise
\

B (k)=R LB (k1) =1 (k1 [k) 1= y2 (k) 4.18)
The Filter equations are by (3.23) - (3.27)

%kt k) = &(kk=1)+K (k) [y (k) - (k-1) %((k|k-1) ] (4.19)



83

-1
K (k) = P(k[k=1)q" (k=1) [p (k-1) P(kk-1) pp' (k=1) +R ] (4.20)

P (k+ |k) = [I-K (k) p(k=1) TP (k|k=1) =K (k) p(k=1) 77

+K (k)P (k|kH)K (k) +Q (4.21)

Equation (4.21) is used for the error covariance matrix computation, because in this
form P is always updated as a positive definite matrix, even if the gain is computed

in error, due fo computer round off, " It is important for the filter stability that P is

v

positive definite [13 1].

It should be noted that the error covariance update as in (4.21), is
more time consuming than the conventional method of equation (3.26), but its

numerical precision is better [ 15 ].

The trace of the covariance matrix inverse, is needed for the dual
controller and is given in the present case very simply as

-1 _ trP

tr P = -a-e-i_'P (4. 22)
In its simplest form, the controller uses for B ( k+1 ) a constant
p(kt1) = p_ . (4.23)

this form requires the minimum amount of computation, and the implementation

is the simplest. There are however two shortcomings of this form. In the first instance
since at the beginning of control action we have very little information, we must
assume large initial error variances, which means that tr P-] is small, and thus the

controller produces large signals, whose function is to impreve quickly the parameter
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estimates. But the loss function at the same time increases sharply as the control
is bad. If however we argue that at steady state we don't care about the poor
initial control, then it is obvious that employing this kind of control, the transient
initial period of much uncertainty, becomes very short, and the filter "catches on"
fast. |t was found that if P is designed as in Figure 4.1 then it is-possible to
shorten the filter transient period, and to prevent very large control signals at the
same time. In the initial period up t;) f.l 3 P, is increased evenly, as more

information is

P (k)

o -

FIGURE 4.1 A DESIGN FOR THE TRACE CONSTRAINT

obtained by the filter. At the interval [ f] , t2 ] P is kept constant to ensure that
the information does not decrease. At stage t the filter is assumed to be already

in steady state and from then on more attention is given to the control part, assuming
that the filter is capable of tracking the parameters without much interference. Thus

P, is decreased and kept a constant, so that the controller will interfere with the
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filtering-part, only when the information measure decreases sharply.

The determination of o (k+1 ) as in Figure 4.1 still makes it a
constant (except for a short transient period), and the controller depends strongly
on the ftr P-] (k+1]k) function as is seen from Equation (4.18). This was
found unsatisfactory in some cases or at least, given to improvement. |t was observed
during system simulations fhlqt the controller using a constant 5 (k+1 ), was slow
in many cases, to detect the turn-off pher;dmenon, and take the necessary action to
end it. The reason is that because the tr P-] is a nonlinear function of the different
pararﬁefer error variances, it is possible that one of these variances will increase
appreciably, without decreasing the tr P-] function significantly.

From the re lation

1 PP Paat P
wpl = , = —sabb (4.24)
P P -p det P
aa bb "agb

it is seen that tr Pl s a function of the denominator difference which is the P
ﬁafrix determinant. The inverse trace mayremain quite large even when Pob
increases, because the determinant may remain small.

During the turn-off phenomenon the filter loses track of the gain
parameter b (k) , and the error variance Pbb thus increases. But the tr P-l
may not decrease, and may even increase for some length of time. The filter

. o . . -1
later adjusts P~ to the information loss, and tr P eventually decreases. |t

is also observed that during the tum-off state, only the parameter a (k) is being
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effectively identified since from the observation equation
y (k¥1)=a (ktl)y (k) +b (k1 )u (k) +e (k+1)

it is seen that without the u ( k) signal, the filter receives information only about

a (k+1 ) and thus it has more confi fence in its estimate. Under these conditions

we have
Py > P . (4.25)
and (4.24) is approximated as
4 e
trP 2 Paanb Paa (4.26)
assuming that
P P >>P2 | ' (4.27)
ua bb 7 ab .
We now argue that we would like to have approximately the situation, in which
Puo = Py (4.28)
then (4.24) becomes
2p
-1 2
L i (4. 29)
P aa
aa

Comparing (4.26) and (4.29), we modify the dual controller to improve
its ability fo detect the information loss about the gain b, by modifying p (k+1)

of Equation (4.23) to be
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, M
(p. it P (kH k)= P
_ a (4.30)
(k1) =< e M ’
P P if Py (K+11k) >P 7

~

where Pﬁg is a fixed vclué which is sort of upper bound for Pbb (k+1]k ), over
which o (k+l) departs from its constant value P+ and ayis fixed in the
range 1 < 9 < 2. Again, these two values must Be determined by experimentation
through simulation. The value of Pm) determines how closely Pbb (kt1|k) is

being tracked separately, in order to be kept below a certain level.

This intuitive technique is not quite possible for higher order systems,
but a simpler way is just fo leave § (kt1) as a constant, and change u(k) of

equation (4.17) as follows

(A p(k)> 0
T(k)=4 o if (k) S0 and P (kH|k)sPM  (4.3)
\u"" if u(k) <0 and P, (k1 |k) >PM

where uM is a constant. This technique simply forces a relatively large control signal
when the gain parameter estimation error reaches above a certain value, thus keeping

a good estimate of the gain parameter and preventing the turn-off phenomenon right

at its start,

These modifications of the dual controller are not necessary at all, if

we choose pc (the constant value of p (k1)) large enough. But then, together
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with very good estimation, there will be a certain degradation of the control, and a

resulting increase in the loss function.

We next derive the lowest possible average loss-function. For
this purpose we derive the expected loss for the minimum variance policy of a system
with known parameters. Thus the system is given by

y('k)=a] y (k-1)+a,y (k=2)+... +a y (kn)

Y

+.b] u(k—l )+b2u(k—2)+ +bnu(k-n)+v(k) (4.32)
The expected loss is

ELy2 (k+1) ]

E (e, y(k)t... +any(|<-n41)‘+b2u(k-1)

E LV (k1) ]

+... +bnu(k-n+1 )-ﬁb] u(k)
+v (ki1))2 ] 4.33)

differentiating (4.33) with respect to u (k ) and equating to zero

22 (k) +2b Loy y (k) +... +a y(ken#1) +byu (k1)

oot b u(kntl) ]=0 (4. 34)
yields the minimizing control

umin(k)=-%] Loy y (k) +...+a_y (kentl )

+b2u(k-1)+...+bnu(k-n+l) (4.35)
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To find the optimal loss, substitute (4.35) in (4.33)
ECV . (k) 1= E[vZ(kt1) 1= R 4.36)

and the optimal accumulated expected loss is

k
E(L . (k)= ) Elv . (k)= kR (4.37)
' i=

The average execution time for the dual controller system simulation

was about 4.7 msec. per stage, on the IBM 360 model 75 computer.

4.2.1. Example 1. Average Performance Comparison

In this example the non-dual, dual and perturbation controllers are
compared, by obtaining their respective average accumulated loss functions. This
is done by averaging the loss over fifty runs, using different randomly selected noise
samples. The initial state vector x (0) (parameters), is taken randomly from a

normal distribution,
N [‘yo , T ] where
Yo = [0.7 1.5 ]T
T, = diag [0.01 0.1 ]

The initial parameters vector estimate is

a(1)o) 0.1
%(110) = |.
b(1]0) - 0.1
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and the initial error covariance is taken as,
P(1]0) = diag [ 4.0 4.0
reflecting high uncertainty in X (110).
The noise data is, |
R = 0.04

Q = diag [ 9, 9 1 = diag [0.0002 0.02 ]

The dual controller used P (k+1)as in equation (4.30 ) with
the parameters,

p = 20. P = 2.
= 1,2

%

and the perturbation controller used a square wave with amplitude (Equation (4.15))

& = 0.02

These constants where found to yield best results by simulation.

The three control policies performances, are compared in Figure 4.2,

which shows the average accumulated loss curves of Equation (4.1).

Figure 4.3 shows the same curves as Figure 4.2 but with the loss of the
initial 50 stages eliminated  i.e., L( k)-L(50) where L (k) is the average

accumulated loss at stage k.
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Comparing the results described in Figures 4.2 and 4.3, we can
conclude that the dual and perturbation controlier are about equal and superior

to the non-dual control policy.

4.2.2 Example 2. Single Run Results.

In this example we investigate one run of the 50 runs batch, that
was used in Example 1. The simulation datd and parameters are the same as in

Example 1. We wish here to study in more detail the differences in the operation

of the dual and non-dual adaptive control laws.

Figure 4.4 compares the accumulated loss functions of the two
control policies. Since the performance depends directly on the quality of
identification,we show in Figure 4.6 the random gain parameter time evolution
b (k) , and its estimates B( k), using the two controllers. Figure 4.7 describes
the gain parameter error covariance Pbb (k) , and Figure 4.5 shows the parameter
a (k) sample path, as well as its estimates & (k) , under the two control

strategies.

From Figure 4.4 we observe that the two controllers are almost
identical in their performance, up to stage 180. Very different in the interval
180 to 350 approximately, and equal again from stage 350 onward, as the slopes
of the two loss functions are about the same. In the interval 180 to 350 we
see first, that the slope of the non-dual controller loss function is greater than

that of the dual one, and has a sharp jump in the interval 320 to 350.

—
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The reuson.for the deterioration in performcncé under the non-dual
policy is seen in Figure 4.6, where the turn-off phenomenon is observed. The gain
parameter b (k) i's identified as almost zero (the control signals are also almost
zero). The rapid increase in the loss function starts at about stage 200, as from then
on, the gain b (k) is quife. large and hence its estimation error is also large, and
at the same time the parameter a ( k) is growing at a fast rate as is seen in
Figure 4.5. Af"sfcge 320 q large iur;1p in the loss function is seen. The reason
for this is that the control signals being effectively zero and the fact that a (k)
is greater than one combine to make an unstable free system. Since there is no

control, the uncontrolled system is
y(k)=a(k)y(k-1)+ v(k); a(k)>1

an unstable system. This mode of control-turn-off, coupled with instability ends
when the large output values y (k) , force an increase in the control values as is
seen in Equation (4.11) ,-where y (k) becomes dominant. The increased control
signals that occur around stdge 340 improve drastically the estimate of b (k) ,
and Pbb (k) reduces very sharply as is seen in Figures 4.6 and 4.7. The

control turn-off thus ends and the system experiences good control.

The dual controller prevents the turn-off phenomenon by monitoring

a measure of the error covariance and acts to maintain good identification.

The importance of good identification of the gain parameter is clear,

as its absence leads to the turn-off of the controller. The dual controller in producing
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relatively large signals for information correction, brings about better identification
of b (k) , but somewhat inferior identification of a ( k), in comparison to the
non-dual controller action. The reason is very simply the fact that the gain parameter
is beiné weighted more importantly than a (k) in the observation y (k ) when
using the dual control policy. This can be observed in Figure l4.7. This fact

however has a negligible influence on the resulting control signals. It is important

to note that the relatively large control signals cré not produced constantly but only
when there is a reduction in the information available. Mostly the control signals

are those needed for good control, as are produced by the non-dual controller.

4.2.3 Example 3. Average Performance with Incomplete Knowledge of Noise

Covariance.

In this example we once more wish fo compare the non-dual, dual
and perturbation control policies,' by obtaining the average accumulated loss-
functions in .fhe three cases. Unlike Example 1 however, here we do not assume
exact knowledge of the random parameters noise statistics. The actual noise covariance
Q , is not known and an assumed value Qas is used iq the filter. Under this
condition the estimates are not optimal any more. It was shown in the literature
[273, [61-[81, that if the assumed noise covariance is larger than the actual
one, then the estimation error covariance, i; bounded by the error covariance
resulting from the assumed Qas . Note that Qas is greater than Q if Qas -Q

is positive definite. |t thus seems logical to choose the unknown noise covariance,
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as larger than the actual value.

As in Example 1 we simulate 50 runs of the system using random
noise samples, and random initial conditions of the parameters. We use the same
values as in Example 1 for x (0), X {1 [0) and p(1[0), as is given

below

x(0)~N [‘yo . 1"o J{
y = [0.7 1.5 u

T, = dig [0.01 0.1 ]

. ) . T T
£ (110) = [a(110) b(110) 1" = [0.1 0.1

P(1]0) = diag [4.0 4.0]

The noise parameters are

R = 0.04

Q

s diag !‘-'qa qb] =. diag [0.0002 0.02 ]

the assumed covariance of the parameter process which is used in the filter
equations.

The actual noise covariance is

Q = Q

1
36 as

and this value is used in the plant simulation.
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The accumulated loss functions are averaged over the 50 runs in
the thl:ee control cases, and are shown in Figure 4.8. The non-dual control loss
curve exhibits a large rise in the interval of stage 400 to stage 450 approximately.
This is the contribution of one particular run. Eliminating fhis run from the average

calculation yields the loss curves of Figure 4.9.

A comparison of the loss curves in Figures 4.8 and 4.9 clearly

indicates the superiority of the dual controller in this case where the noise

covariance is not known exactly.

Since the assumed noise covariance Qas is the same as in
Example 1, the dual and perturbation controllers used the same parameters that
were found to yields best results in the system of Example 1.

The dual controller parameters

p. = 20 M

c . Ppp = 2, o =1.2

The perturbation square wave amplitude

§ = 0.02

Under these conditions the dual controller performed better than the
perturbation controller. It should be noted however, that this conclusion is based
solely on simulation and numerical experimentation of limited nature, and as such

is not general.
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4.2.4. Example 4 Single Run Results With Incomplete Knowledge of Noise

Covariance.
oV g

As was done in Example 2, we investigate here one run of the fifty '

used in Example 3. The dual and non-dual control policies are compared, simulating
the system with the same noise samples and initial conditions. The simulation
parameters are those given in Example 3. Results are shown in Figures 4,10 - 4.13.
The accumulated loss éurvés are compclrecl!< in Figure 4.11. ngure 4,10 shows the

a (k) parameter smaple path and its estimates & (k) . The same information is
given in Figure 4.12 for the gain parameter b ( k) and its estimates b (k),

while Figure 4.13 describes the gain parameter error variances under the two

control regimes.

The weak performance of the non-dual control policy for this case,
where the parameters noise covariance is not exactly known, is clearly seen in
Figure 4.11, which demonstrates a sharp rise in the loss function, starting around
stage 100 and terminating around stage 160. The reason for this is clear from Figures
4,10, 4.12and 4,13 . The control is turned-off as is seen in Figure 4.12, where
b (k) is practically zero in the interval ke [20, 160 1. There follows a free

system of the form

y (k)=a(k)y (k-1)+v (k)

butas longas a (k) <1 the loss is not very large. At stage 120 and over, the

value of a (k) is closer to, and even greater than 1. The output values become
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large with a sharp increase in the loss-function as a result.

In Figures 4.12 and 4,13 we see that the error variance of the gain
estimate increases constantly while in the turn-off mode, and then decreases sharply
at around stage 160, when the turn-off phenomenon terminates, and the identifier

starts tracking the gain b ( k) once more.

In this example the identification of b (k) as well as of a (k)
is constantly poor using the non-dual controller, as compared to the dual controller.

This is quite expected since the information about the noise statistics is in error

and thus the identification part of the control policy becomes more important.

4.2.5 Example 5 Repeated Turn-of f Phenomena

O.bserving the results of Examples 2 and 4 , it may be suspected that
the turn-off phenomenon is confined to the initial transient period of the control
action. This seems to be the case, since Figures 4.6 and 4.12 indicate the early
occurrence of the turn-off (zero gain estimates). To refute this impression we
continue in the present example the run used in Example 2, up to the stage 2250.
Thus, the results of control simulations are identical to those of Example 2 up fo
stage 750, and the curves corresponding to stages 750 to 2250 are given here in
Figures 4.14 - 4,17. Figure 4.16 shows that using the non-dual control policy, the
turn-off phenomenon occurs at stage 1450 approximately, after a long period of
good identification. In the same figure we see also that the dual controller ends

the turn-off ofter some time, when the error variance increases fo a certain level,



104

! ' e a (k)

a (k) non-dual control

R 772V Y & (k) dual control
o . /s\
/4

~

54 | '

LI ¥ 1 1 i
750 950 1 ll50 l3l50 lSISO 17!50 1950 2150

FIGURE 4.14 THE o (k) PARAMETER AND ITS ESTIMATES, EXAMPLE 5.

L(k)-L(750)
300

non-dual control
200

dual control

-
—-— -
——

100

k

-

1 1 1 ] 1 1 T
750 950 1150 1350 1550 1750 1950 2150

FIGURE 4.15 ACCUMULATED LOSS FUNCTIONS, EXAMPLE 5.



1 105

750 950 1150 Y, k

T T AT N L 4

2150

b (k)

_______ b ( k) non~dual control

-2 ‘___//
| ———_— b (k) dual control
! <
_3.--—._!
FIGURE 4.16 THE GAIN b (k) AND ITS ESTIMATES, EXAMPLE 5.
20+
Pbb(k)
R4
154 ,
Kd
K4
R
7
7
104 | 3
K4
R
.7 \ non-dual control
Ve
5 e
7
/7
a A dual control
A 7V
——— ./ l )h\ / \//’_.—-‘
750 '~ 950 1150 1350 1550 1750 1950 = 2150

FIGURE 4.17 THE GAIN. b ( k) ERROR VARIANCE, EXAMPLE 5.



106

as can be seen in Figure 4.17. The estimate b (k+1 |k ) repeatedly becomes
almost zero, and the control turned-off. But the dual controller repeatedly
terminates this turn-off situations. The loss function is normalized to zero

at k = 750 in Figure 4.15. The steep rise in loss with non~dual control around
stage 2100, corresponds fo the combination of turn-off, ‘and parameter a (k)

approximately of value 1,

4.2,6. Example 6 Two Forms Of Dual Controller

We now wish to compare the psrformance of a simple dual controller

where the trace constraint is simplest as in (4.23)

F(k‘l‘]) = pc

where P, is just a constant and an improved dual controller where the trace

constraint is given by equation (4.30)

r .
p. if Pbb(k+l|k)sP££
p (k1) =< a,
P ( kFi ‘k ) otherwise
§ aa

and P, is of the form described in Figure 4.1.

The simulation parameters are

Q = diag [0.0002 0.025] ; R = 0.04



107

x(0)~NT[ %, T ]
_ T _
y, = [07 1.51 ; T = dieg [0.01 0.1]

£(110) = [0.1 0.1 37

P(1]0) = diag [0.05 4.0 ]

N
The accumulated loss L ( k )=Z "y2-( k') and the squared output signal y2 (k)
i=1 .

were averaged over 50 runs. Figure 4.18 shows the three average lass curves for
the non-dual, simple dual,  and improved dual control policies. The averaged

2 . :
squared output y~ (k) was averaged again over each 10 consecutive stages,

such that,

= 10i -5
Y 0=01) ¥y (k) i=1,2, ..., 40

10(i-1)+1
and plotted for the three control cases in Figure 4.19.

The conclusion of this example is clear. Using the simple trace
constraint, a constant, yields a large improvement in performance. The use of the
improved trace constraint, which monitors the gain parameter error variance Pbb (k),
results in additional gain in performaﬁce.

The dual controller uses the parameters
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4.2.7. Example 7 Steady State Results

We investiate now the adaptive control policies over a long period of

time. The plant parameters are simulated here as stationary processes

ay (k+1)

' 0.95 a, (k)+wa(l<)

by (k1) = 0.95b, (k) +a, (k)

with additive constant components

a(k) °o+°l(k.)

b(k)

bo + b] (k)
and have a relatively large driving noise intensity,
Q = diag [0.002 0.47 ; R = 0.04

The controller design however, uses the assumed wiener process given by equation

(4.4),

a (k+1) c(k)+u°(k)

b (k+1)

b(k)+wb(k)

The other parameters of this simulation are
a, (0)~NT0.3,0.17] ; b] (0)~N [1., 4. ]

a = 0.6 ; b =20
o o -
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§(1]0) = 0.1 b(1]0) = 0.1

~-e’

P(1]0) = diag [0.1 4 ]

The loss curves for the non-dual, dual and perturbation controllers

are shown in Figure 4.20, for a sum of 5000 stages.

The performances of the dual and perturbation controllers are
equally better than the non-dual controller-as is seen from the difference of the

curves slopes.

The parameters here are generated by a stationary process in order
to limit their variance at steady state, since the variance of the non-stationary

(random walk) model process, grows indefinitely with time.

4.2.8. Example 8 Steady State Without Exact Knowledge of Noise Covariance

In this example we compare the performance of the three controllers
for the same system as in Example 7, but with the following differences. Here the

assumed Qas is greater than the actual covariance matrix Q

Q. =?-Q

as
where

Q = diag [0.002 0.4 ]

as in the previous example. Also the assumed observation noise variance Rqs , s
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smaller than the actual one R

R =

1
s SR

where

R = 0.36

The assumed noise covariances are used in the control law, with
the results shown in Figure 4.21. The identification fails in tracking the parameters,
and the burst phenomenon occurs once and again, under the non-dual control law.

In order to draw the accumulated loss curve for the non-dual control, which

reached a value in the order of 102] , the accumulated loss L (k) = z y2 (k)

: i=1
is reset fo zero at the end of each burst. It is significant that the parameter a (k)

is strictly less than one and even
a(k) = 0.9, Vk

so that the systemisstable along the whole control period. Also the turn-off

phenomenon does not occur in this example.

Figure 4.21 demonstrates the great advantage of the dual control
law, which by improving the parameters identification, prevents the repeated

occurrence of the burst phenomena, thus maintaining satisfactory control.

4,2,9. Example 9 Deterministic Unknown Parameters

The present example was used by Wieslander and Wittenmark [4 ] .
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The parameter a (k) and b (k) are deterministic time functions, a (k) is
a constant and b (k) is as shown in Figure 4.22. The noise parameter used by

the filter are

-3

Q = diag [1677 21031 g = 0.09

and the in.ifial parameters guess is
x(1]0) = [0.1 0.1 7.

with inifial covariance matrix
P(1]0)=1[4.0 4.0 ]

Figure 4.22 shows that using the non-dual control law the turn-off
phenomenon occurs when the gain b (k) decreases from its constant value of 0.5
This turn-off situation remains in this example to the end of the simulation period,
with almost zero values for control and b (k). Using the dual control technique
results in good estimation of b ( k ) and better control. Figure 4.23 describes the
loss curves under non-dual, dual and perturbation control laws, and for no control
u(k) = 0. The turn-off in this case render the system with virtually no control.
The identification of the a (k ) constant parameter is good, using the dual or
non-dual control, and is not shown. The accumulated loss curves of the perturbation

and dual controller are virtually identical in this example.

The dual controller parameters are
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p = 50. , Py =41, M = 0.2 (Equation (4.31))

The perturbation controller uses a square wave with amplitude & = 0.15.

4,2.10 Example 10  Non-Gaussian Parameter Process, Average Performance

In this example (and in the next one), we depm'.iL from the Gaussian

process, which we use everywhere else in generating the system random parameters

in agreement with our model assumptions.

Consider the event process such that
Prob (event at stage k) = ¥
with the events being independent, i.e.,

Prob (event at k|event at j) =Prob (event at k), v i.

This is essentially o discrete Poisson process.

Assume the event to be a discrete impulse, the magnitude of which is
Gaussian distributed, with zero mean and variance ¢~ . The magnitudes of impulses

ot different times are independent. This process is white and has a variance of yo'.

Let w (k) be that process, and let

a (k1) a(k)+wa(k)

b (k1) = b (k) +u (k)
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where
o (k)= Lay (K)o (k)11
a b
cov [u(k); u(i) =diag [yo>  va> Ju_ (ki)
L a b o I
Since our controller depends only on second order statistics, the
Kalman filter that is used, is the optimal linear filter for this process.

The system to be controlled is simulated using the above process for
the parameters. Fifty runs are simulated, and the average accumulated loss functions
are computed and shown in Figure 4.24, for the dual, non-dual and perturbation

controllers.

The non-dual controller experiences many turn-offs, which are prevented

by the dual and perturbation controllers.

The parameters noise process is simulated with

o2=0.000 ; o2
a . b

= 0.1
and the event probability is

y = 0.05
The actual covariance of the process is thus

Q = diag [0.001 0.1 ]:0.05

but the filter uses the assumed covariance
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Q_ = diag [0.01 0.1]

The observation noise is v (k) ~ N[0, R ], = 0.04 .

4.2,11 Example 11 Non-Gaussian Parameter Process, Single Run Results

Here we give some results of one run of the 50, used in the previous
example. The dual and non-dual cc;nfrollcim are compared in Figure 4.25, which
describes their respective accumulated loss functions. Figures 4.26 and 4.27 show
the b (k) and o (k) ‘pcramerers respectively, as well as their respective

estimates under the two control laws.

Figure 4.26 shows the tum-off phenomenon occuring while using
the non-dual controller at stage 220, b (k) is virtually equal to zero. The

identification of the gain parameter is much better under the dual policy.

The identification of a (k) is good with both controllers, as is
seen in Figure 4.27. The noise intensity in the generation of a (k) was taken
relatively small, as otherwise the system becomes unstable with the non-dual

controller, because of the frequent turn-off phenomena.

4.3  Second Order System Simulation

In this section we apply the dual control policy to a system of
“ second order with three random parameters. The model representation in this

case is
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y (k)==0](k)Y(k'])+02(k)Y(k‘2)+b(k)U(k'1)+v'(k)
which can be written in the form of (3.5), (3.7)

y(k)=o (k-1)x (k)+v (k)

x(ktl)=x(k)+w (k)

where
o (k=1)= Ty (k=-1)y (k-2)u (k-1) ]
x (k)=la, (k) a,(k) b(k)1
o (k)=[u (Ko (k)a (k) 1T~ N[0, Q]
1 2
and

Q=diag [ q, q

1 9 %

v(k) ~ N[O,R]
The control Equation (3.22) is in the case

B (k1) &L (k41 k) +PJ (ke [k)

=3
b% (k1 [k) +P, (k+1[k)

o (k)= - Y (k)

where
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A
a

(k#l[k)=[& (k1 |k) &, (kH|k) ]

- 0 -

Py (K jk) = [Pq]b(kﬂ |k) qub(kﬂ k)]

Y (k)=[y (k) y(k-1)1T

The dual, non-dual and perturbation controllers are applied to this
second order system, and the respective performances are compared. The controllers ~

and filter used, are described in Section 4.2.

Next we give two examples. The first is concerned a comparison
of average performances of the different éontrollérs ; and the second one investigates

the identification and control results of a single run.

4.3.1. Example 1  Comparison of Average Performance

The average accumulated loss functions are computed in this example
using a 50 runs system simulation, with random noise samples, and random initial
conditions. Each run is simulated with the dual, non-dual and perturbation controllers,

and the resulting average loss curves are shown in Figure 4.28.

The simulation parameters are as follows:

5 -5 -3

Q = diag [2.10° 2.10 6.10 ° ]

R = 0.04

x(])"‘N ['yol PO:]

v, = [0.3 0.3 1. 17
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I"o = diag [0.1 0.1 4. ]
- _ T
%(1{0)=C0.1 0.1 0.1

P(1]|0)=1"(4. 4. 4.]

The dual controller uses, in this simulation, a trace constraint

of a simple form

p(k+]) = P

where P, is piecewise constant as follows:

pP. = 0. ’ k s 15

P, = 40. ’ 15 <k <100
P, =‘ 250. ' 100 <k <300
P, = 450. , 300 <k

The perturbation controller uses a square wave perturbation signal, of amplitude

& = 0.01.

Figure 4.28 demonstrates the advantage of the dual control policy over
the non-dual one. In this case the perturbation controller performance, is almost

equal and somewhat better than that of the dual one.

4.3.2 Example 2 Single Run Resulis

We shew in this example some of the identification results, of one of
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the fifty runs that were used in the previous example. In this run the dual and non-
dual controller perform equally well up to about stage 250, as can be seen from their
respective loss curves in Figure 4.29. This is true in spite of the fact that the
identification of the parameters a (k) and b (k), is quite poor under the non-
dual policy. However the non-dual controller is adaptive, in the sense that it depends
not only on the parameter estimates but also on the estimation error variance. This
dependence or the estimation error s;arves.wel_! up to stage 250, but is not capable in
preventing a deterioration in control, in the interval [250, 350 ], which is then
followed by a period of good control due fo better identification. Figures 4.30

and 4.31 describe the parameters a (k), b (k) and their estimates

6] (k) and b (k). The superiority of the dual controller is clearly demonstrated.
The estimate of the parameter a, (k) is not shown as its identification is good with

both controllers.
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CHAPTER V

ADAPTIVE CONTROL WITH ADAPTIVE FILTERING

5.1 Introduction

In a recent paper [9] P.R. Bélanger derives an algorithm for the
estimation of noise covariance matrices for linear,dis;:refe,ﬁme-varying stochastic
processes. We apply in this chapter his results to construct an adaptive filter. The
noise variances are unknown and must be estimated. By using Bélanger's algorithm
and treating the covariance matrices as time varying parameters we update them
through real-time identification and use the updates in the filter, thus obtaining
adaptive filtering. This adaptive F'iiter together with the dual adaptive control
policy yields an overall adaptive scheme for stochastic systems with uncertain

noise parameters.

5.2. Development Of The Adaptive Filter

We assume that the noise variances R and Q are not known. The
Kalman filter used by the adaptive control policy is thus not optimal. Applying

the method of Bélanger [ 9], we estimate on line, at each stage, the noise variances,
and use the updated values in the filter equations, thus obtaining an adaptive filter

that uses progressively better noise variances estimates.

To derive the adaptive filter we use notations similar to those used

by Bélanger. The system given in equations (3.5) and (3.7) is now written as,
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x (k) = A(k-1)x(k-1)+0w (k-1) (5.1)

1

y (k) = H(k)x(k)+v(k) : (5.2)

where the matrix A (k-1) is included for generality, and

>

H(k) £ o (k1)
x (k) and ¢ (k=1) areasin Equations:(3.4) and (3.6) respectively, and
w(k) ~NT[0,Q] . (5.3-a)

v(k) ~N[O,R] (5.3-b)

where R and Q are constant unknown scalar and matrix respectively.

Assume that R and Q can be represented in the form of a

linear combination,

N

R = Z ai Ri ‘ (5.4"0)
i=1

Q = f a Q (5.4-b)

i=1

where Ri and Qi are known. The problem is to find & - the best estimate

of the vector «

(5.5)
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Assume a filter of the form

i(k\k-l)=A(k-1)>‘<(k—1|k—2)+K(k~1)u(k-l) (5.6)

u(k)=y(_k)-H(k)5‘<(k\k-1) (5.7)

where ,, (k) is the innovation sequence [10 ], and where the gain sequence
K (k) is to be chosen such that, the filter is uniformly asymptotically stable.

L3

We choose the gain as
K (k) =A (k)P (k| k1) HT (k) [H ()P (k| k1) HT(K)*R ()17 (5.8)

where we use for the unknown covariance R, its estimate at stage k, such that

N

R(k) = ) & (k)R (5.9)
i=1

ai (k) being the estimate of a. at stage k. The covariance matrix sequence

satisfies
P (kk-1)= & (ke1) P (ke1]k-2) @ (k-1)+Q (k) +K (k) R(K) KT (k) 6.10)

where again

LY

Q (k) = ai (k)Qi (5.11)

‘AIZ

-
1
a—

is the estimate of Q at stage k, and
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®(k) = A(k)-K(k)H(k) (5.12)

If R and Q were known, the gain sequence K (k), using
these covariances, will be optimal and the innovation sequence v (k) will be
white. We use the Kalman éuin (5.8) with the estimates ﬁ( k) and CS (k).
Thus the gain is not optimal but the resulting filter is uniformly asymptotically

stable [2 ].

14

Under this stability condition, Bélanger derives the following

result for the lagged products [ 2 ]
N

ECu(k) v’ (k1)1=) £ (K1) o (5.13)
i=1
where the fi (k,!) are given recursively by

fi(k,0)=H(k)Mi(k,0) (5.14)

fi(k,l)=H(k)Mi(l<,l) ; 1>0 (5.15)

and the vectors Mi (k,1) by

M (k1) = @ (keT)M, (ko1  1=1) 5 1> 1 (5.16)
M. (k1) = & (k-1)M, (k-1,0)-K (k-1)R, (5.17)
M. (k,0) = 5. (k) HT (k) (5.18)
M (k1) =0 ; k < | (5.19)
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The Si (k) scalars satisfy

Si.(k+l)=d>(l<)Si(l<)@T(k)+K(k)RiKT(k)+Qi (5.20)

si(o) = d (5.21)

Next, it is desired to obtain the estimate & (k). We proceed

by defining the scalar

o (k) = v (k) v(k-lr) (5.22)
and the row vector

F(k ) = [ f (k1) fp(kd) T By (k)] (5.23)

Equation (5.13) may now be written as

'E[o(kél) 1= F(ki)a (5.24)
and by defining a noise variable 7 (k,I), we may write

.o(k,l)=F(k,l)a+n(k,l) (5.25)
where, clearly

Eln (klI)]=0 o (5.26)

We now agree to measure the lagged products o(k,l) in the order
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¢(1,0), o(1,1),...,0Q,L), 0(2,0),..;, a(2,L),...
and use an integer t to count these observations

f='(k—])<L+1)+l+l (5.27)
Equation (5.25) becomes

0(f)%F(f)c+n(f)v : (5.28)

To estimate a , the following optimization problem is posed:

Find the vector & (t) that minimizes

t
J(H) =) [o()=F(Dal  R(i) [o(i)-F(i)a]
i=1

+(ama )1 T ‘o‘ (o-a_) (5.29)

where R(j),i=1,2,...,tand I"o are positive definite matrices.

This optimization problem is amenable to the recursive solution

&(+)=a (1) + TCH)FT (1) (+) [o(t) = F(+)a (1) ] (5.30)

T(t)=T(t-1) = T(+=1)E' (+) [F(1) D(=1)ET (1) +a(t) T E(+) T(+-1)  (5.31)

with initial conditions
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If the following conditions hold

(1) Eflal= X
(2 Eloa )(aa ) 3= T,

(8) n (t) is white

@) R(t) =E[n(t)n(t)]

Then & (1) is the minimum-variance estimate of a, and T(t) is the error
covariance matrix. Under these conditions Equations (5.30) (5.31) &epresenf

the Kalman filter for the system

a(t) =a(t-1) (5.32)
o(t) = F(t)a(t)+n(t) (5.33)
Thus we use the filter (5.30) - (5.31) , with a as the best

prior estimate of a, and a guess of the initial r,- R (t) is generated

from the Equations (see [? ]) ,

w(k)w(k-1) ; 140
R(t) =

2w(k) wi{k) ; 1 =0 (5.33)

w(k) = F(kO0)a(k) (5.34)

5.3  Dual Control With Adaptive Filtering

In this section we apply the adaptive filter to the dual controller
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that was developed in Chapter 3. The system is given by Equations (3.5), (3.7)

x (kt1) = x (k) +w (k) ‘ (5.35)

y (k) =@ (k-1)x(k)+u(k) (5.36)

At Stage k

The dual controller is given by (3.49) - (3.52)

U (k) sgn o (k) if o (k)| <T (k)

v (k)= (5.37)
u° (k) otherwise

° _ ~ 2 -1 . A

v (k) = - [b] (k+1 k) ] [b] (k+l||<)ac(k+l|k)
#P (k)3T Y (k) (5.38)
/u (k) if u(k) > 0

(k) = (5.39)

0 otherwise

p(K)=RIp (k)= 1P (K [K)T-Y (k)Y (k)  (5.40)

a(k) and Y (k) are given by (3.12) and (3.13) respectively.

The estimate and error variances are given by the adaptive filter



% (kH1]k) = x (k|k=-1)+K (k) v (k)

v(k) = y(k)=a (k-1)% (klk-1)

K (k) =P (k|k-1) o(k-1) [o(k-1)P (k[k-1)g" (k=1)

FR(K) T

P (k1 [k) = & (k)P (K[k=1) &' (K)+ K (K)R(K) KT (K)+Q (k)

N

Q(k) =) & (k) qF
i=1
N

R(k) = ) & (k) Q
i=1

a(k) = (& (k)az(k)....aN(k)]T

&(k) =TI-K(k)e (k1)
with the re'luﬁon
t=(k-1)(LH1)+1+1 ; 1=0,1,2,...,L
in mind, & (k) is updated according to
(k) =&t =k (L+1)]

t s the value of t, where the & is updated,

h = (k=1) (L1 )+L+1 =k (L+1)
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(5.41)

(5.42)

(5.43)

(5.44)

(5.45)

(5.46)

(5.47)

(5.48)

(5.49)

(5.50)



135

& (t) is then estimated by the filter of (5.30) and (5.31).

Initially the filter is not updated and the lagged products are not
measured, in accordance with a requirement of B&langer's algorithm, by which,

the norm of the state transition matrix of the Kalman error, must be negligibly

small.

We start by fixing an initial period in which the parameters are
identified by using some fixed a_, and thus the resulting Q, and R . At the

end of this interval we start the adaptive filter by measuring L+l innovations
v(i)=y(i)- (F1)&(ili-1) 5 i=1,2,...,L4.

When i = L+1 we determine k=1, t=1 and start the dual-control-adaptive-

filtering policy. At each stage k the integer t varies by L+1 units.
atk: t=(k-1)(L¥1)+1,..., (k=1) (L#1 ) +L +1

The update &( k) is done at the upper value of t, fk = (k=1) (L+1)+L+1=k(L+1)

5.4  System Simulation

The system simulated is of first order with two random parameters as

described in Chapter 4, Section 4.2. The observation equation is,

-

y(k)=4p(k-l)x(k)+v(k) (5.51)

o (k-1)=[y (k1) u(k1)] (5.52)
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The parameters are the random walk processes,

x (k1) = x(k)+w (k) (5.53)
« (k) = La(k)b(k) T 5.5
o (k) = Loy (k) oy (k)17 (5.55)
6 (k) ~N [0,@] , v(k)~[OR] (5.56)

<

L4
The noise covariances Q and R are not known. Their actual values are

Q=diag [ q__q,, ]=diag [0.0002 0.02] (5.57)

R =0.04 (5.58)

The following matrices and scalars are assumed

Q, =diag [ 0.002 0] (5.59)
Q, =diag [0 0.08 ] (5.60)
Qz=diag [0 0] (5.61)
R, =0, R, =0, R, = 0.16 ' (5.62)

2 3

The filter uses the estimated covariances

3
Q(k) = ¥ & (k) Q (5.63)

—

R (k) &i(k) R, (5.64)

>
1]
W~
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5.4.1 Example 1 Comparison Of Average Performance

Four modes of control are simulated and compared as to the

performance of the control policies.

The first case is that of non-dual control as given by Equation (5.38),
and non-adaptive filtering. The second case consists of the dual control strategy
as given by Equations (5.37) - (5.40‘) » with non-adaptive filter. In the third
case we use the non-dual controller but with an adaptive filter, and finally the

fourth control case is that of dual control and adaptive filtering.

In the first and second cases, where a non-adaptive filter is used, it

is assumed for the vector a

a =[1L11.] (5.65)

a constant vector. Consequently the filter and controller use the assumed noise

covariances Q
as

Q_, = diag [ 0.002 0.08 ]

R = 0.16
as .

while the actual covariances are those given by (5.57) and (5.58).

The value of a in (5.65) is used as the initial guessof & (t) in
the adaptive filter, @ (0) = a_s and the noise covariances are tracked and updated

in the third and fourth control cases according to (5.63) and (5.64). The initial
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error covdriance matrix in the filter for a (t) is takenas T(0) =1, the

unit matrix.

The four performance curves are averaged over 45 runs, which are

simulated with randomly chosen noise samples.

The initial estimates of the system parameters are taken as

and the filter initial error covariance matrix is
P(1|0)=diag [ 4.0 4.0]

The actual initial values of the system parameters are taken

randomly from the distribution

a(1)~N[0.7, 0.01]
b(1)~N [1.5,0.17

The average accumulated loss functions

K
- 2,.
L(k) =) vy (i)
i=1
are given in Figure 5.1 . The performance of the non-dual controller with adaptive
filtering is approximately the same as that of the dual controller with non-adaptive

filtering. The superior identification of the first, is partly cancelled by the non-

duality of its control law, which leads to the occurence of turn-off and burst
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non-adaptive filter, non-dual control
_____ adaptive filter, non-dual control
——..— non-adaptive filter, dual control
—.—.— adaptive filter, dual control

— —— expected loss with known parameters
and noise covariances
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FIGURE 5.1 AVERAGE ACCUMULATED LOSS FUNCTIONS, EXAMPLE 1.
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phenomena. The advantage of the dual controller in the second case, is on the
other hand offset by the inferior indentification capability of the filter which is

using the wrong noise covariances.

The performance of the non-dual control with non-adaptive filter, is
seen to be quite poor, while the combined dual controller and adaptive filter gives

a very large and fundamental improvement,

. The dual controller uses the, trace constraint according to Equation

(4.30) in Section 4.2, with the parameters,

= . pM _ .
p= M. ; Pl =25

~e
Q
o~
n
-—
N

5.4.2 Example 2  Single Run Results

In this example we compare the performance of the four control
policies, for a single run, one of those used in the previous example. In the four

cases the same noise samples are used. The four control policies are:

(1) Non=dual control, non-adaptive filter.
(2) Dual control, non-adaptive filter.
(38) Non-dual control, adaptive filter.

(4) Dual control, adaptive filter.

The four accumulated loss curves are shown in Figure 5.2 . In three

of them there is a large jump of the loss function just after stage 900. The cause of

this jump is the burst phenomenon. The gain parameter b ( k ) becomes small above
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stage 900 and changes its sign a number of times. lts estimation under the first 3
control strategies mentioned above, is quife poor, but the estimates are small in any
case. The estimates E( k) just prior to stage 900, were quite good and the error
variance Pbb (k) was small. The result is that the controller (5.49) produces
erroneously large signals and the burst phenomenon is on. After a relatively short

period (50 - 150 stages in our case) the filters catch on and the burst ends.

In the two cases of dual confrol we obtain the best results, especially
in the fourth control policy, of dual control and adaptive filtering. The burst in
this case appears very mildly, and is ended shortly due to better tracking of the

parameters, resulting from the control duality coupled with the filter adaptivity.

We now proceed to observed the performance of the adaptive filter
in the case of dual control with adaptive filtering. Figure 5.4 shows the estimated
covariance function aaa (k) , and Figure 5.5 describes the other covariance

estimates be (k) and lli( k) , as well as their actual values.

It is seen that the observation noise covariance R is estimated very
efficiently, as R (k) converges very fast after about 400 stages - to its final
value. This final value is about 0.0355 as compared to the actual value of R - $.04.
As was pointed out in Chapter 3 the dual adaptive control policy, is invariant
under the observation noise intensity, as longas R is known. The adaptive filter thus

efficiently identifies this parameter.
The identification of the gain-parameter noise covariance U, (k),

isdone less efficiently, asitisseen in Figure 5.5. The convergence of abb (k)toits
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actual value is slower than that of R (k) . Butthe covariance filter produces a
very bad estimate of the a (k) parameter noise covariance. As is seen in Figure
5.5, albb (k), diverges from its true value. It must be noted however, that the
estimate & (k) plays the least important role in the adaptive controller, and [
also assumed to vary slowly in comparison to b (k) . Hence its identification is
quite good, despite the poor knowledge of Ya * Eyen if the error in estimation
a (k) is large, it affects only little the controller, since the control law is

independent of the error variance Paq (k) , as can be seen from *he control

Equation (4.11).

Bk |ic) & (kt1]k)+P_ (ktl|k)
u® (k) =- -

b” (Kt [k) +P (k1 [k)

In Figure‘5.3, one can see the error variances of the noise covariance
parameter estimates IT" (k) . It is seen that PR ( k) - the error variance of R (k)
decreases fast and stays very small reflecting the good ‘Ii( k) estimate. qub (k)
decreases also as the estimate abb (k) improves, and the variance T° (k)
decreases only very slowly reflecting a low confidence in qbb (k). H:;ever, the

fact that it decreases, points out that the estimate 'aaa (k) will probably improve

in the future or at least will not diverge further.
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CHAPTER VI

CONCLUSION

This thesis considers three main topics which are related to each
other: optimal input design for identification of multivariable, steady state nonlinear
systems; dual adaptive control of linear, stochastic, dynamic systems with random

parameters; implementation of dual adaptive controller with adaptive filtering.

In the following we present a list of the thesis main contributions
in an abbreviated form, which to the best of the author's knowledge are original.

Other material in the thesis body is considered as by-products of the main contributions.

6.1 Thesis Contributions

1. Optimal input synthesis for steady-state systems by formulation of

an optimal control problem in matrix form.

2, Development of conjugate gradients algorithm for the solution of the

Two-Point-Boundary-Value-Problem with matrix equations.

3. Alternate simplified solution to the dynamic minimization problem

by sequential function minimizations.

4. A technique for obtaining a dual adaptive control law, by using

a measure of the system information matrix.

5. A comparison by simulations of the dual, nondual and perturbation

controllers.
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6. Application of Bélanger's noise covariance estimator fo the

implementation of the dual adaptive control law with adaptive

filtering.
6.2 Suggestions for Further Research
1. A further theoretical and practical investigation of the dual

controller trace constraint p (k) will result in better
implementation of the dual contro! policy.

2.  The application of the theory to stochastic multivariable systems
is an open field for research in the problem of adaptive dual

real time controllers.

6.3 Final Observations

The optimal input which is designed in Chapter 2, allows best

“identification with relatively small number of system disturbances from its steady-state.

The dual adaptive controller is seen, by system simylations, to perform

about as well as the perturbation controller when the noise siatistics are known, but

seems to perform better when the noise statistics are not completely known.

With incomplete knowledge of the noise covariance matrices, the dual

adaptive controller in conjunction with adaptive filtering is seen fo perform efficiently.
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APPENDIX A

We show here that the convexity [18 ] or directional convexity [19 ]
assumptions, needed for the application of the discrete minimum principle, do not hold

for the discrete optimal control problem of (2.31) - (2.32).

Regarding the dynamic constraint Equation (2.29) which is rewritten as

X(k+l)-X(k)=‘Fk(X'(k), u(k)) (A.1)
with |

u(k)ea= {u(k): |u(k)|=<p}, (A.2)
the convexity properfy. states that the sefs

V(ku)={F (X(k), u(k):u(k)eal (A.3)
areconvexforcm); X (k) and k=1, ..., N.

We recall that the set V (k,u) is convex if every pair of

elements x, y € V (k, u) implies
ax+(l-a)yeV(k,u), 0 <a<l, (A.4)

The next example shows that the convexity assumption does not

hold in our case. Consider the measurement system

y (k)= u? (k) (k) +u (k) x, (K) +v (k) (A.5)



where y (k)
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and v (k) are scalars. Thus
y(k)=C(u(k))x(k)+v(k) (A.6)

C (0 (K))=[o2() u(k) 15 x(k) =[xy (K) xp(k) 1"

To evaluate Fk(X(k) ,u(k)) wetake X (k)=I, Q (k) =0, and obtain

from Equation (2.29)

where we use

the set

is not convex.

Nl —

Take o =

& 3
v u
1
F(u)=- 7 (A.7)
v TR 3 2
U v
v and R for u (k) and R(k), and k is fixed. We show that
V(u)={F(u): |u|=spl (A.8)
P U T, Uy T such that | n|s pand 7 # 0. Then
aF(u])+(1-a)F(u2) - )
4 3 4 3
n n n -n
_ 1 1
274 2 242
+n°+R 3 2 +n 4R 3 2
nn n n+n L"" 77_
4
1 n 0 |
=______—4 2 / V(U) (A'9)
n+n +R 2
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Since no u exists such that u2 =0 and u3 = 0. Theset V(u) is thus

not convex.
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APPENDIX B

Theorem 2.1 is extended here to the case where the parameters are

modeled by stochastic processes. The system model is

x (kt1)=x(k)+w (k) | (8.1)
y(k)=C(k)x(k)+v(k) ; C(k)=C(u(k)) (B.2)
w(k)~ N [0,Q(k)] . (8.3)
v(k)~NTL0,R (k)] | e

Theorem 2.1 applies to the parameter model (B. 1) as well. The
proof is exacﬂ‘y the same as that of Theorem 2.1, but the notation is more cumbersome

here. The covariance matrix Equation (2.29) is

X (kt1) =X (k) +X (k) €T (k) [C (k) X (k)CT (k) +R(k) I C (k)X (k) *+Q(K)
. (B.5)

which, after applying lemma 2.1 becomes
_ o] T -1 -1
X(kt1)=[X "(k)+C (k)R (k)C(k)] +Q(k) (B.6)

and recursively we may write (using R and Q for R(k) and Q (k), for

simplicity),

-1

X(N+1)=[[... [x“(1)+cT(1)RC(1)J']+Q] +CT(2)R']C(2)J']

L N N I T DL T

+Q J']+...+QJ
sl ()R ey 17 @ T Lt TR e T QT

(B.7)
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where C(i) = C(u(i)) , i=1,..., N.

The dynamic N-stage optimization problem is

min tr X (n+l) (B.8)
u(1),...,u(N)

where tr X (n+1) is again a symmetric function of all the stage vectors u (i) and
by the sume proof of theorem 2.1 it is seen that (B.8) can be done sequentially by

N single stage minimizations.



