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ABSTRACT 

Kalman filtering technique is applied to the problem of multivariable, 

non Iinear, steady state system identification, and to the problem of rea I-time adaptive 

control of linear, stochastic, dynamic systems with random parameters. 

The steady state system outputs are mode lied as polynomials of the 

inputs and a Kalman filter is used to estimate the polynomials parameters from the 
., 

system noisy measurements. The optimal input issynthesizedto minimize the estimation 

error covariance. 

A technique for dual adaptive control of dynamic, stochastic 

systems is developed. For real-time control the system parameters are filtered from 

noisy measurements. The dual control policy ~upervises the mode 1 identification in 

addition ta system regu lation. 

The dual controller is evaluated by system simulations and its 

performance is compared with a non-dual control policy. 

ln an environment with incomplete knowledge of noise statistics, 

the dual control law is implemented with an adaptive filtering technique that is 

estimating sequentially the noise covariance. 
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CHAPTER 1 

INTRODUCTION 

1.1 The General Problems and Background 

This thesis is basically concerned with the problem of input signal 

design for identification and control of certain classes of discrete stochastic control 

systems. The underlying idea is the application of Kalman filtering theory and the 

optimization of the identification and control processes. 

There is a plethora of publications on the art and theory of filtering 

Kalman's paper [11 ] and Kailath's paper [10 ] give a foundation of the theory 

for linear discrete systems. References, [l, 2 J, [13 J, [35 J, [43 ] give a 

reasonably complete survey of various methods and application in the fi Itering art. 

(1) The· first class of systems to be dealt with are multivariable non-

linear systems in steady state. Here we are concarned with modelling and identification 

of the model parameters. The identification is done by estimating the parameters which 

are modelled as state variables in a dynamic system. The estimator is a Kalman fi Iter 

and the filter variance depends on the input signal. Thus, the input is optimized to 

yield minimum variance of the estimation erro. 

The problem of designing input input signais which are optimal from 

the identification point of view has been discussed, using different approaches in 

references [35, 36 ] and [45 - 47 ] . 
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The optimal input determination uses an optimcli control problem 

formulation which uses the Kalman covariance matrix equation as the dynamic equality 

constraint. This approach has been used by Athans and Schweppe [ 24 J in the design 

of radar waveform, and by Vander Stoep [48 Jand Murphy [49 J . 

An exhaustive survey of system identification and process-parameter 

esti mation can be found in the recent survey paper of ~strëm and Eykhoff [50 J. 

2. The second c1ass of systems pf interest are Iinear discrete stochastic 

dynamic systems wifh random parameters. We use the input-output difference equation 

description of suç,h systems as our model. The problem now is the construction of an 

optimal adaptive control law for the regulation p"oblem. The solution involves 

problems of identification and control and their interaction. A good treatment of th is 

subject appears in ~strëm and Wittenmark [3 ] . 

To obtain real-time control the present system parameters estimates are 

sequentially produced by a Kalman filter, and on their basis the control strategy is chosen. 

This policy 1 however 1 separates the control and identification disregarding the intrinsic 

mutual dependence of estimation and control. The resulting control law is not dual 

(Feldbaum [16 J) and is shown by Wittenmark and Wieslander [4, 5 ] and here, to be 

unsatisfactory. 

To overcome this difficulty a new problem formulation is used which 

constrains the estimator error covariance to remain within certain bounds. The solution 

is a control law of dual nature with superior performance. 
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Another approach to ach ieve dua 1 ity is the pertu rbation techn ique 

used in [4, 5 J. The problems of identification and controi of stochastic systems 

modeled by input-output difference equations are treated also in ~strëm et al. 

[1, 4, 50 J. Other references on the relationships between the problems of 

identification and control are [49, 51, 52 J. Numerous references on many aspects 

of optimal stochastic control can be found in Wonham [57 J. 

3. The problem of adaptive control of stochastic systems is tied with 

the problem of adaptive fi Itering, when the controller operates in an environment without 

complete noise statistics. The dual control law is implemented with an adaptive filter, 

based on a noise covariance estimator due to Bélanger [9 J. Problems of adaptive 

fi Itering and other forms of adaptive fi Iters are found in [53-56] . 

1.2 Thesis Contribll'ions and Organization 

ln the followin sections we give a description of the main topics and 

results in the order of their appearance in the thesis. 

1.2. 1 Identification of Steady-State Systems 

Chapter 2 develops a method for the determination of optimal inputs 

for the purpose of identification of multivariable non-linearsystems in steady-state. 

A model is assumed in which the observed output is a polynomial of the inputs and is 

corrupted by additive discrete white noise. As an example consider the two-inputs 

one-output model 
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where v ( k ) '" N [0, R ( k) ] and the x. ( k) are the unknown parameters to be 
1 

identified, and are assumed to be stochastic Wiener processes 

x ( k+ 1 ) = x ( k ) + (,.) ( k ) 

where x ( k) = [xl ( k) .•. x
5 

( k ) .J ~ and (,.) ( k) = [(,.)1 (k) ... (,.)5 ( k) T is a 

white noise random vector sequence (,.) (k)'-<- N [0, Q (k) J. By defi'1ing the 

observation matrix 

2 2 
C (k) = [u

1 
(k) u

2 
(k) u

1 
(k) u

2 
(k) 1 ] 

the mode 1 (1. 1) is written as 

y{k)=C {k)x (k)+v (k) 

The parameters vector x ( k) is now identified by applying the Kalman filter 

technique to the dynamic system (1.2), (1.4).x (k) is estimated as x (n+1 ) using 

N observations [y ( 1 ), ... , y ( N ) } . 

The system model and the Kalman filter used for estimation are 

described in Sections 2.2 and 2.3. The filter consists of the equations 

(1 .2) 

(1.3) 

(1.4) 

x ( k+1 ) = x ( k ) + K ( k) [y ( k) - C ( k) x ( k ) ] (1.5) 

K ( k ) = X (k) CT (k) [C (k) X (k ) CT (k) + R ( k) r 1 (1. 6) 

X ( k+ 1 ) = X ( k) - X (k) CT (k) [C ( k ) X ( k ) CT (k) + R ( k) ] - 1 

'C ( k ) X ( k ) + Q ( k ) (1 .7) 
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The optimal input determination is done in Section 2.4. First it 

is noticed that the error covariance matrix X ( k ) is a function of the input vector 

u (k) = [u1 (k) u
2 

(k) ] T as can be seen from Equations (1.7) and (1.3). Thus 

an optimal control problem is formulated, the solution of which is the optimal input 

sequence for best identification: 

Minimize tr X ( N+1 ) 

[u(k)} e .Il. 
(1.8) 

subject to the equa lit Y constraint (1 .7), with X ( 1 ) given; k = l, ... , N. 

The admissible contro 1 set .Il. is defined by the saturation constraints lu. ( k) 1 s: p. , 
1 1 

k= l, ... , N. 

It is shown that this optimal control problem cannot be solved by the 

matrix minimum principle (Athans [23]) since the required convextiy assumption 

(Halkin [ 18 J) does not hold. Thus, a matrix conjugate gradient algorithm is 

developed by which the solution is achieved. The solution essentially consists of 

solving a Two-Point-Boundary-Value-Problem in the space of N-matrix sequences, 

and is extremely time consuming. 

A simplification is suggested bya procedure of N sequential function 

minimizations: 

Minimize tr X ( k+1) given X ( k ) 
(1 .9) 

u ( k ) 

where 1 u. ( k) 1 s: p., for k = 1, ..• , N. 
1 1 
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It is proved that this sequential minimization is optimal, and solves 

the N-stage optimization problem of (1.8). 

Section 2.5 brings forth some properties of the model under the 

estimation policy, and or the estimation error covariance matrix. In particular the 

problem of observability and the problem of the bound on the error covariance are 

discussed. 

Section 2.6 deals with the identification problem from the statistical 

parameter estimation point of view. The covariance matrix of the estimation error of 

any unbiased estimate of a constant parameter vector is known to be bounded From below 

by the Cramer-Rao lower bound (CRLB) [35-40 J. It is shown that the optimal input 

determined by (1.8) or (1.9) minimizes the trace function of the CRLB. This is 

equivalent to maximizing the information about the system parameters. 

Section 2.7 presents an example of the identification of a two-input 

two-output system with 8 parameters using the calculated optimal input sequence. 

1.2.2 Dual Adoptive Control 

Chapter 3 develops a technique for dual adoptive control of stochastie 

dynamic systems, modeled by input-output differenee equations with sealar input and 

output. The output is observed with additive white noise sequence. As an example 

consider the first order model 

y ( k ) = a ( k ) y ( k- 1 ) + b ( k ) u ( k- 1 ) + v ( k ) (1. 10) 
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where x ( k ) = [a ( k) b ( k ) ] T is assumed a Wiener process 

x ( k+ 1 ) = x ( k ) + !.) ( k ) 

and !.) ( k ) = [ !.) a ( k) !.)b ( k ) ] ,..., N [0, Q ]; v ( k ) '" N [0, R J. 

The control problem consists of the output regulation, where the 

co~troller is designed to keep the output as close to zero as possible. A natural 

choice of cost function is 

N 
V

N 
= E [ I y2 ( k ) ] 

k=l 

The minimization of V
N 

yields an optimal control which is also of dual nature 

(Feldbaum [ 16 J). It serves optimally the purpose of control and identification. 

Unfortunately the minimization of (1.12) necessitates the solution of a dynamic pro-

(1. 11) 

(1. 12) 

graming functional equation which cannot be done in real-time, and thus the criterion 

(1.12) is not of much practical value for real-time control. 

ln section 3.3 we derive the non-dual adaptive control law [4 ] , 

by minimizing the single stage cost function: 

Minimize V = E [ y2 ( k+l ) ] 

u ( k) 

subject to equations (1. 10), (1. 11) and where the admissible control is a function of 

the collection 

y k = [y ( k ), y ( k- 1 ), ... , u ( k- 1 ), u ( k- 2 ), . .. } 

(1. 13) 
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Br using a fundamental Lemma it is shown that (1.13) is equivalent to 

Minimize 
.... 

2 
E [y (k+l) 1 Yk ] (1 • 14) 

u ( k ) 

the solution of which defines é control law. For the system (1.10) this control law is 

,. 
o b (k+ 1 1 ~ ) + P bb ( k+ 1 1 k ) 

u (k) = -"2 Y ( k ) 
b (k+1 1 k) â~( k+tl k ) + P ab (k+1 1 k ) 

(1. 15) 

where 

.... 

x ( k+ 1 1 k) = [ â ( k+ 1 1 k) b ( k+ 1 1 k ) ] 

P oa ( k+ 1 1 k ) P~b ( k+ 1 1 k ) 

P (k+1 1 K) = 
P bb ( k+ 1 1 k ) P bb ( k+ 1 1 k ) 

are the Kalman estimate and error covariance matrix, generated by the filter 

x ( k+ 1 1 k) = x ( k 1 k- 1 ) + K ( k) [y ( k ) - cp ( k- 1 ) x (k 1 k-1 ) ] (1. 16) 

K (k) = P (k Ik-1 ) cpT (k-1 ) [ft) (k-l ) P (k 1 k-1 ) cp T (i:-1 ) + RJ -1 (1. 17) 

P ( k+ 1 1 k ) = P (k 1 k- 1 ) - K (k) rp( k- 1 ) P ( k 1 k- 1 ) (1. 18) 

where cp (k-1 ) = [y ( k-1) u ( k-l ) ] . 

The control law is not dual and fails to be satisfactory if the estimation 

is bad. /t is not capable of improving the identification, and thus is adversely offected 

by two kinds of phenomena: the turn-off phenomenon and the burst phenomenon. The 
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tu rn-off phenomenon produces almost zero control signaIs and leaves the system with 

virtually no control for long periods of time. The burst phenomenon erroneously 

produces very large control signaIs, which result in large oscillating output values. 

ln section 3.4 we develop a dual control policy. Motivated by the 

idea that the controller should supervise the estimator, as weil as the system control, 

we design a controller that observes a measure of the estimation error variance, and 

controls its magnitude. The following relati~n is shown to exist 

P -
1 

(k+ 1 1 k+ 1 ) = P -
1 

( k+ 1 1 k ) + cp T ( k ) R-
1 

cf) ( k ) (1. 19) 

which for (1. 10) becomes after taking the trace function 

trP -
1 

(k+ 1 1 k+ 1 ) = trP -1 ( k+ 1 1 k ) + ~ [y 
2 ( k ) + u 

2 ( k) ] 

a quadratic function of the control u ( k). This simple dependence of the measure 

of information on u ( k) is exploited in the dual control problem formulation: 

2 
Minimize E [y (k+1) 1 Yk ] (1.20) 

u ( k) 

subject to the information constraint 

p ( k+ 1 ) = trP -
1 

(k+ 1 1 k+ 1) ;;:: p (k+ 1 ) (1. 21) 

where p ( k+1 ) is a predetermined function., 

The solution for system (1.10) is the dual control u* (k) policy, 
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- 0 
u ( k ) sgn u (~) 

u* ( k) = (1 .22) 

otherwise 

/ ~ ( k ) if ~ ( k ) > 0 

ü (k) = (1 .23) 

o otherwise 

-' -1 2 
~ ( k ) = R [p (k+ l ) - trI" (k+ l 1 k) ] - y (k) (1. 24) 

o 
and u (k) is given by (1.15). 

Under the appl ication of the dual control law the estimation of the 

system parameters is shown to be invariant under the system (observation) noise intensity. 

1.2.3 Control System Simulation 

Chapter 4 contains several examples of system simulation. The dual 

controller is compared with the non-dual one/and with the perturbation controller 

(Wieslander and Wittenmark [4, 5 J) which is obtained by adding a small perturbation 

square wave signal to the non-dual controller for the purpose of improving the identification 

P 0 k 
u (k)=u (k)+(-l) • S (1.25) 

where S· is the square-wave amplitude. 

ln Section 4.2 the controllers are compared for a first order system with 

two parameters as given by (1. 10). The comparison is done under different noise conditions 
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and different random parameter processes, where the average as weil os simple runs 

performances are compared. The implementations of the dual controller is discussed 
~ 

and a simple case where the information measure p (k+1 ) is taken to be constan"t 

is compared with an improved version where p (k+l ) is time varying. 

It is found that the dual and perturbation controllers are superior to 

the non-dual control policy, and are.generally equal when the parameters noise 

statistics are exactly known. In the case 'of incomplete information about Q, numerical 

experiments show a certain advantage of the dual controller over the perturbation 

control policy. 

Section 4.3 contains two examples of a second order system with 

three random parameters 

y ( k ) = al (k) y ( k-1 ) + a
2 

( k) y ( k-2 ) + b ( k ) u (k-l)+v (k){1. 26) 

The three controllers performance is again compared. 

1.2.4 Adaptive Control With Adaptive Fi Itering 

The adaptive dual control law (1.22) - (1.24) uses the Kalman filter 

estimates and error covariance matrix. For optimal generation of these variables the 

noise covariances Q and Rare needed. In the absence of their knowledge there 

exist methods of estimating them. One method is that of Bélanger [9 J, which uses 

a least squares filter for sequential estimation of Q and R based on the system 

observation. Chapter 5 uses th is esti mator to construct an adaptive fi Iter 1 using the 
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filtered values for Q cmd R sequentially in a Kalman filter which estimates the 

system random parameters. 

The covariances Q and Rare represented in the form of a linear 

combination 

N 

R = \' a. R. L 1 1 

i=l 

N 
\" 

~ 

Q= L a. Q. .. 1 

1=1 

T 
where Ri and Qi are known. The problem is to best esti mate a = [al a2· .. oN J 

The adaptive filter is constructed as 

x ( k+ 1 1 k ) = x ( k 1 k-1 ) + K ( k) [ y ( k) - fi) (k-1) x ( k 1 k- 1 ) J 

K (k) = P (k 1 k- 1 ) fi) T ( k- 1 ) [~ (k- 1 ) P (k 1 k-l) ~ T (k- 1 ) 

+R(k) J-1 

... 
P ( k+ 1 1 k ) = P (k 1 k- 1 ) - K (k) f/J (k-1 ) P (k 1 k- 1 ) + Q ( k ) 

where R ( k) and Q ( k) are the estimates of Rand Q at stage k, and are 

obtained by using the estimated vector â ( k) in (1.27) and (1.28), 

N 

R ( k ) = \' â. ( k ) R. L 1 1 

i=l 

. , 
N 

Ô ( k ) = l â i ( k) Qi 

i=l 

The estimates â ( k) are obtained by using Bélanger's algorithm 

wh ich is founded on the idea that the innovations sequence 

(1.27) 

(1.28) 

(1.29) 

(1.30) 

(1. 31) 



lJ (k) = y ( k ) - ft' ( k-1) X ( k 1 k- 1 ) 

should be made white. The algorithm is given in Section 5.2 

Section 5.3 describes the controller which combines the dual 

control law and the adaptive filter. 
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(1 .32) 

ln section 5.4 a first order system with two random parameter is 

simulated. The noise covariance matrices ,Q and Rare assumed unknown and the 

average performance of four cOl')trol policies is compared: 

(1) non-dual control with non-adaptive filtering. 

(2) dual control with non-adoptive filtering. 

(3) non-dual controt'with adoptive filtering. 

(4) dual co~trol with adoptive filtering. 

The superiority of the fourth case of dual control with adoptive 

filtering is c1early demonstrated. 

The four control policies are also compared for c single run, and 

results of the covariances estimation are shown for the dual controller with adaptive 

fi Iter strategy. 



CHAPTER Il 

OPTIMAL INPUT FOR IDENTIFICATION OF 

NON-,UNEAR SYSTEMS IN STEADY-STATE 

2. l Introduction 

14 

ln this chapter we ai.m at developing a method for optimal input design. 

The purpose of this input signal is to facil'ïtate optimal identification of multivariable, 

non-linear models of systems in steady-state. 

The system outputs are modeled as polynomials of the inputs, and with 

this structure, the polynomial coefficients are to be identified. 

The unknown parameters are assumed constant, or slowly time varying, 

and their identification is to be achieved by an estimate, based on N measurements 

of the system output vector. The identification strongly depends on the input vector 

sequence of length N, as the measurement is a function of the inputs. 

At each stage a certain input vector is applied, and a measurement of 

the system output vector is taken, after the steady-state is reached. Hence, this is 

a discrete process. The output measurement is assumed to include an additive white 

noise vector. 

The unknown parameters are assumed to be states in a discrete 

dynamical linear system driven by white noise. This state vector is to be identified. 

This representation, together with the observation equation, is amenable to the 
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application of Kalman filtering theory. 

The parameters vector is estimated by a Kalman fi Iter, and the 

dependence of the estimation error covariance matrix on the input is shown. 

The identification problem is formulated as an optimal control 

problem, involving matrix equàtions, and a solution is derived using the conjugate 

gradient method in adynamie, N-stage, trajectory optimization. 

The resulting Two-Point-Boundary-Value-Problem solution is then 
< 

simplified by a single-stage function optimization procedure. The two solutions 

are shown ta be identical. 

Some properties of the estimator are investigated and the optimal 

input is shown to minimize the Cramer-Rao lower bound on the error covariance matrix, 

thus demonstrating the optimality of the identification policy. 

:2.2 Prob le m Formu lation 

We are given a discrete measurement model in the form of input-output 

relation 

where 

y~(k)=a. (k)+ ~ ~ a .. 1 (k) u'
l
l +v. (k) 

1 1,0,0 LJ L Id, 1 

j=l 1=1 

i = l, 2, ... , m ; k = l, 2, 

y. ( k) is the i-th ouput at stage k 
1 

u~ ( k) is the I-th input (control at stage k, raised to power ~ 

(2. 1) 
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v. ( k) is white, gaussian, independent random sequence, with 
1 

zero mean and covariance 

cov [v. ( k ) ; V. (a) ] = r.. ( k ) U (k-q) 
1 1. Il 0 

1 k=q 

U (k-q) = 
o 

o k~q 

and it represents the measurement noise. 

aiJ) ( k ) is an unknown system parameter 

m,s,p arE~ given integers representing the number of outputs, 

inputs and highest power of the input respectively. 

(2.2) 

(2.3) 

An example of such a system is one with two outputs (measurements) 

and two inputs (controls) which are represented as second order polynomials 

2 
Yl (k)=a l ,O,O(k)+a1, 1, l(k)u l (k)+a1, 1,2(k) u2 (k) +a1,2, l(k) u1 (k) 

2 
+a1,2,2(k)u

2
(k)+v1 (k) 

Y2(k)= a 2,O,O(k)+a2, 1, 1 (k)u l (k)+a2, 1,2(k)u2 (k)+a2,2, l(k) u~ (k) 

2 
+ a2 ,2,2(k)u2 (k)+v2 (k) 

The m ( p+1 ) s model parameters are unknown. They are assumed 

either constants or time varying, and it is required to identify them at stage N+l. 

The identification is to be done by estimating their values at stage N+1, based on 



the noisy measurements y. ( k ), i = 1, ... , m 
1 
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k = 1, 2, ... , N . Note 

that each measurement here consists of m simultaneous observations at the m 

outputs. 

The measurement at stage k is control/ed by the s input signais 

U
I 

( k) 1 = 1, ... , s, through the algebraic input-output relation cf Equation 

(2. 1). Hence by selecting different control policies we get different measurement 

sequences, and this leads to the following problem: 

Choose the~ptimal input sequence from an admissible 

set, that results in the best identification of the model 

parameters. 

This general problem will be made precise below, after discussing 

the method used for identification. 

2.3 Method of Identification 

The system parameters are identified, using Kalman '5 filtering 

technique [11 J. They are represented CiS states in a dynamical s~stem, and are 

estimated using a discrete Kalman filter. 

For this purpose we arrange the parameters in vector form 

where a. is a vector of the form 
1 

(2.4) 



and o.. is again a vector 
'1 

. , 
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i=l, ... ,m (2.5) 

o.. = [a. O. 0 a .. 1 a .. 2 ... a . ] ; i = l, ... ,p (2.5a) 
" '" ',1, ',1, i,l/s 

Thus the parameters are arranged now in a certain order, and we may 

use either one of two assumptions. In the Jirst instance we assume the parameters 

v!3ctor to be a constant, and thus we write 

x ( k+ 1 ) = x ( k ) (2.6) 

or alternatively assume x ( k) to be a random vector generated by the Wiener 

stochastic process 

x ( k+ 1 ) = x ( k ) + w ( k ) (2.7) 

where 

w(k) ",N [0, Q(k) ] (2.8) 

is a sequence of normal, independent random vectors, with zero mean and covariance 

matrix Q ( k). x ( k) and w ( k) are of dimo:1s1on n, and n = m (p+1 ) s. 

The observation Equations (2. 1) can be wri tten in vector form as 

y(k)=C (k)x (k)+v (k) (2.9) 



where y ( k) and v ( k) are m dimensional vectors 

y ( k ) 

v ( k ) 

T = [YI (k) Y2 ( k) ... Y m ( k) ] 

v(k) '" N [0, R(k) ] 
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where R ( k) is the covariance matÎ"ix of the white, gaussian, vector sequence 
., 

< 

v (k), with elements T .. (k) as in Equation (2.2) . 
Il 

(2. IO) 

(2. 11) 

(2. 12) 

C ( k) = C ( u ( k» is an m x n matrix function of the input vector u ( k ), where 

(2. 13) 

and is of the form 

d 0 0 -
0 d 0 

c= (2. 14) 

d 0 

0 0 0 d 

where d ànd 0 are row vectors of dimension s ( p+1 ), 0 has zero entries and 

(2. 15) 

The Equations (2.7), (2.9) represent a discrete linear dynamic system driven by 

white noise, and with noisy observations, to which the Kalman filter theory can be 

applied (1 J, [2 J. 
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Define the observations sequence 

\=( y ( 1 ), y ( 2) , ..• , y ( k ) } (2. 16) 

The state estimate is the conditiona 1 mean 

x ( k li ) = E t x ( k) 1 Y. } 
1 

(2. 17) 

The estimation error is 

;(kli) = x(k)-x(kli) (2. 18) 

and the error covariance matrix is defined as 

P ( k 1 i) = cov [; (k 1 i ) , ; ( k 1 i ) ] (2. 19) 

The filter consists of the following equations. Between observations 

x ( k+1 1 k ) = x ( k 1 k ) (2.20) 

P ( k+ 1 1 k ) = P ( k 1 k ) + Q ( k ) (2.21) 

At observations 

x ( k 1 k ) = x ( k 1 k- 1 ) + K ( k) [y ( k )-c (k) x (k 1 k- 1 ) ] (2. 22) 

P ( k 1 k ) = P ( k 1 k~ 1 ) - K ( k ) C ( k ) P ( k 1 k- 1 ). (2. 23) 

with the gain K (k) given by 

K ( k ) = P (k 1 k- l ) CT (k) [C ( k) P (k 1 k- 1 ) CT (k) + R ( k) ] -
1 

(2. 24) 



For simplification, we define 

x ( k ) = $( ( k 1 k- l ) 

P(k)=P(klk) 

X ( k ) = P ( k 1 k- 1 ) 

and using these variables the fi Iter eq~ations become 
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(2.25) 

(2.26) 

(2.27) 

x ( k+ 1 ) = x ( k ) + K ( k) [y ( k ) - C ( k ) x ( k) ] (2. 28) 

X (k+l ) = X ( k ) - X ( k ) CT (k) [C (k) X (k) CT (k) + R (k) ] -
1 

• C ( k ) X ( k ) + Q ( k ) (2.29) 

The last equation describes the sequential update of the error covariance 

matrix of the estimate at stage k, based on observations up to stage k-l. 

The filter consisting of Equations (2.28), (2. :29) with the gain 

K(k) =X(k)CT (k) [C(k)X(k) CT (k) + R (k) J-1 

and the initial estimate and error covariance matrix x ( l ) and X ( 1 ) , represent 

the identification method. 

2.4 Optimal Input Determination 

(2.30) 

The. estimation error variance time-evolution is described by Equation 

(2.29). It is seen that it depends on the input vector u (k) ,since C (k) = C (u (k» 

is a function of the input signal. Thus it is c1ear that the choice of the input sequence 



22 

[u ( k ) } directly influences the identification. To achieve the best identification 

using the abovementioned filter, we shall look for an input sequence that will 

min imize the estimation error. For th is purpose we define a cost function and 

, 
rninimize it over ail admissible control sequences. A suitable cost function is one 

which is a non-negative functional of the estimation error. A natural choice is the 

trace of the error covariance matrix tr X ( k) , which is non-negative for initial 

error covariance matrix, which is positive semi-definite. 
< 

2.4.1 Dynamic N-Stage Optimization 

The discussion above leads naturally to the optimal control problem 

formulation: 

Minimize J ( u) = tr X ( N+1 ) (2.31) 

over ail admissible control sequences [u ( k) } e .Il. ,where 

.Il. = [[ U ( 1 ), u (2), . . ., u ( N ) J lu(k)l~p} (2.32) 

subject to the equality constraint (2.29) with given initial condition X ( l ) . 

P is the vector of control magnitude constraints 

(2.33) 

and the control vector absolute value is in the sense of its components 

(2.34) 
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This optimal control problem seems amenable to a solution by the 

matrix minimum principle as formulated by Athans [23 J. This however is not the 

case, as the needed assumptions of convexity (Halkin [18 J, or directional convexity 

(Holtzman [19 J) do not hold. This is shown in Appendix A. 

The dynamic N-stage optimization problem is thus solved using 

a programming approach, employing the conjugate gradi,ents method. 

2.4.2 Conjugate Gradients Method of N-Stage Minimization 

We use now concepts of vari~tional theory to derive the conjugate 

gradient matrix functional form. Rewrite the dynamic equality constraint (2.25) in 

the form. 

x ( k+ 1 ) = F ( X ( k ), u ( k » (2.35) 

and adjoin it to the cost function (2.31) [23 ], [24 ] 

N 
J (u ) =' tr X ( N + l ) + l tr [F ( X ( k ), u ( k » -X ( k+ l ) ] MT (k+ 1 ) (2.36) 

k=l 

where M ( k) is the costate matrix. Next œfine the Hamiltonian function 

H ( k ) = H [X ( k ), M ( k+ l ), u ( k) ] = tr F ( x ( k ) , u ( k » M T ( k+ 1 ) (2.37) 

substitute this in (2.36) 

N 
J (u )=trX(N+l)+ l H(k) - trX(k+l) MT (k+l) (2.38) 

k=l 
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The first variation in J (u) under control,and state pertubation 

is 

S J (u) = tr S X (N + l ) + tr ~ 
k=i 

- M ( k+ l ) S X T ( k+ l ) 

oH(k) SXT(k)+ oH(k) SuT(k) 
oX(k) ou(k) 

(2.39) 

The concept of gradient mafrix of the form ofo~) where f ( X ) 

is a scalar function of the mafrix X, and the inner product < X, Y > = tr [X y T ] 

is found in Athens [23 J, and an extensive treatment appears in [32 J. Now, 

N N~ 

-l M ( k+l ) S X ( k+l ) = - l M ( k) S X T (k ) + M' ( l ) S X T ( l ) 

k=l k=l 

N 
= - l M ( k ) S X T ( k ) - M (N+l ) S X T (N+l ) 

k=l 

+M(l)SXT(l} 

T ' 
Substitute this expression, with S X (1) = 0, back into (2.39) 

N 
S J (u ) = tr [1 - M ( N+l ) JS X (N+l ) + tr \' { oH ( k ) - M ( k) JS X T ( k ) 

L oX ( k ) 

+ oH ( k) S UT (k) } 
ou ( k) 

To minimize the first variation in J ( u) set 

M(k)= oH(k) 
oX ( k) , 

k=l 

(2.40) 

k=l,,,.,N (2.41) 



with boundary (terminal) condition 

M ( N+1 ) = 1 

The first variation in the cost function becomes 

5J(U)=~ 
k=l 
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where ~ ~ ~ ~ ~ is the gradient of J (u ) with respect to u ( k ), white Equations 

(2.35) and (2.41) are satisfied. 

5 J ( u) is now minimized -by choosing (the gradient method) 

oH ( k) 
5 u ( k ) = -e 0 u ( k ) 

(2.42) 

(2.43) 

(2.44) 

where e is a positive number. The conjugate gradients method is more efficient and 

has better convergence properties [25 J- [23 J. The algorithm used is based on the 

one described by Lasdon et al. [25 J, with modifications to allow for bounded controls, 

as suggested by Pagurek and Woods ide [27 J, 

Define: 

u. =. [u. ( 1 ), .•• 1 U. (N) } - the control sequence at the ith iteration 
1 1 1 

J ( u. ) - cost function value corresponding to u. 
1 1 

g. = [g. ( l ) 1 •• 1 g. (N) } 
1 1 1 

oH. ( l ) oH. ( N ) 
1 1 

= [0 u. ( 1 )J l' •• 1 ou. (N) } - the gradient 
1 1 

trajectory (sequence) corresponding to u. 
1 



s. the ith search direction 
1 

0,0. ,~. -scalars 
1 1 

}he Conjugate Gradients Algorithm 

Chosen initially are u and 
o 

then iteratively 

= 9 (u ) 90 0 

s o 

.. , 

O. = 0 to minimize J ( u.+os. ) 
1 1 1 

s = + s .+1 u. o. . 
1 1 1 1 

~.= 
1 

<9i+1' 9i+1 > 

<9·, g. > 
1 1 

s =-g +RS 
i+1 i+1 l''i i 

where <g., 9. > is the inner product, defined by 
1 1 

N 

<9i, 9i > = L gJ (k) 9i ( k ) 

k=l 

At each iteration a one-dimensional search for o. must be 
1 
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(2.45) 

(2.46) 

(2.47) 

(2.48) 

(2.49) 

(2.50) 

(2.51) 

(2.52) 

carried out. Th is requires repeated evaluations of the cost function and thus is very 
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time consuming. An efficient method for this linear search, is one which requires 

a minimum number of cost function evaluations, with good convergence rate. A 

quadratic interpolation technique was found to yield satisfactory resJ.:lts. 

At each iteration the elements of the new control vector are 

truncated at lower and upper bounds, using the method of Pagurek and Woods ide [27 ] • 

The elements of g. are considered to be zero when the corresponding control elements 1 

saturate, and are used as sûch while perforf!1ing the inner product summation. Thot is, 

over the interval in which the j-th element of u. saturates, the j-th element of 1 

g. is taken to be zero. 
1 

At each iteration the evaluation of g. requires the evaluation of 
1 

H ( u. ), which is done by forward lIintegration 'l of the state equation (2.35), up to 1 

stage N+l , with initial condition X ( l ) , and then lIintegrating li backwards. 

equation (2.41) with the initial condition (2.42). The evaluation of the gradient vector 

follows, g. = 
1 

oH ( u. ) 
1 

ou. 
1 

2.4.3 One-Stage Minimization 

The N-stage dynamic optimization method, described above solves 

a Two-Point-Boundary-Value-Problem (TPBVP) in order to minimize the trace of the 

Kalman filter error variance, at stage N+1 . The solution of this TPBVP requires 

the trajectories computation of matrix equations and is computationally very 

cumbersome, as weil as extensively time consuming. 

A much simpler approach is the minimization of the error variance 
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at stage N+l by sequentially minimizing it at each stage. The optimal stage 

input is obtained, that minimizes the error variance trace function. The 

problem is thus reduced to a procedure of repeated function minimizations in the 

R
S 

space, as compared to the dynamic minimization in the space SS. ( N ) - of 

s dimensional vector sequences of length N. 

The one-stage optim!zation procedure seems as a suboptimal 

solution to the problem of 

min trX (N+l ) 

u(l), .•• ,u(N) 

but as we shall prove later, it is identical to the N-stage dynamic optimization. 

One-Stage Optimization Procedure: 

Minimize J
l 

(u ( k » = tr X ( k+l) i k = l, 2, .•• , N 

over ail admissible control vectors u ( k) E ILl 

ILl = [u ( k ): 1 u. ( k) 1 ~ p. J i = 1, 2, ... , s } 
1 1 

where 

J l (u ( k» = tr X ( k) - tr[ X ( k ) CT (u ( k» [C ( u ( k» X ( k ) CT (u ( k » 

+R(k)]-l C(u(k»X(k)} 

with given initial X ( l ) . 

This is a sequence of identical function minimizations over a closed 

(2.53) 

(2.54) 

(2.55) 
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bounded set in the real Eucl idean space R
S 

• 

An efficient numerical method of minimization is again the conjugate 

gradients procedure which is summarized below for function minimization [24 J, [30 J. 

Define: 

u. 
1 

g. 
1 

= 

the minimizing arguement at the i-th iteration, 

the function value corresponding ta ,u
i 

' 

o J
1 

(u ) 

oui u = u. 
1 

the gradient vector corresponding to u. 
1 

Choose initially u and evaluate 9 
o 0 

s =-g 
o 0 

Repeat at each iteration 

O. = 0 to minimize J ( u. + 0 s. ) 
1 1 1 

- + s u.+1 - u. o. • 
1 1 1 1 

gi+l = 9 (u i+l ) 

T 

~. = 
1 

9 i+l 9 i+l 
T 

g. g. 
1 1 

The elements of the minimizing argument u. are truncated at their 
1 

saturation levels, and the corresponding elements of g. are set to zero in the 
1 



computation of ~. , as mentioned in Section 2.4.2. 1 

:11 the sequel we make use of an important matrix identity. 

Lemma 2.1 

· 30 

Let X, Rand .. C be nxn, mxm and mxn matrices, respectively. 

Suppose that X is positive definite and R positive definite. Then 

[X -1 + CT R -1 C ] - 1 = X - X CT [C X. CT + R ] - 1 C X 

Proof: 

See e.g. [2 J, appendix 7B. 

We are now prepared te:> prove that the sequential one-stage optimization solution 

is optimal. 

Theorem 2.1 

For the model (2.6), (2.9) 

x ( k+ 1 ) = x ( k ) 

y ( k ) = C (u ( k » x ( k) + v ( k ) 

and the N-stage optimization problem (2.31) - (2.34), the one-stage optimization 

procedure (2.53) - (2.55), is optimal. 

Proof: 

Using lemma 2. l, the state equation (2.29) can be written as 

(2.56) 

(2.57) 

(2.58) 



• 
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x -1 
( k+ l ) = X -

l 
(k) + CT { u ( k » R - l (k) C ( u ( k )) 

since Q ( k) = 0, and From the Kalman filtering theory it follows that X ( k) 

is positive definite if R ( k) and X ( r) are positive definite. Thus we can 

write 

X- 1 ( N+l) = X-1 
(N) + CT (u ( N » R- 1 ( N ) C ( u ( N » 

=X-1 {N-l )+CT (u(N-l »R"';'l,{ N-1) C (u( N-l) 

+ CT (u ( N » R- 1 (N ) C ( u ( N ) ) 

• N 

~ X-
1 

( l ) + I CT {u ( i ) ) R-
1 

(i) C ( u (i) ) 

i=l 

Hence the cost function (2.31) can be written as 

. N 
J (u) = tr X ( N+ 1) = tr [X -

1 
(1 ) + l CT (u ( i» R -

1 
(i ) C {u ( i» ] -

l 

i=l 

The N-stage minimization calls for the minimization of J {u ( l ) , 

u(2), ..• ,u{N» withrespecttoitsarguments u{i), i=l, .•• ,N. 

From (2.61) ~·his function is seen to be symmetric at ail the variable vectors. We 

denote by u* ( i) the minimizing vector u ( i) such that the minimum is attained 

as 

J* ( u ) = J {u* ( l ) , ... , u* ( N » 

One way to minimize the cost function J ( u) is by first determining 

(2.59) 

(2.60) 

(2.61) 

u* (1) , then u* (2) etc., up to u* (N). Suppose that u* (1) was determined 
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then 

1 
J (u)= min J{u) 

u{l ) 

= tr [X -
1 

( 1 ) + CT { u* ( 1 » R -
1 

(1 ) C { u * ( 1 » + ~ CT {u (i » ,R -
1 

(i) C { u ( i » r 1 

i=2 

N 
-1 \' T -1 -1 = tr [X * ( 2 ) + L C (u·{ i » R (i) C { u ( i» ] 

" 

i=2 

Now 

J 
1 

(u) ~ J ( u) y. u ( i ) , i = 2, ... , N 

end in pcrticuler set u ( i ) = O~ i = 2, ... , N. Then 

J 1 (u ) = min tr X ( 2), given X ( 1 ) 

u{l} 

Next determine u* ( 2 ). Then 

J2 (u) = min } (u) 

u(2) 

= tr [ X * - 1 ( 2 ) + CT {u * ( 2 » R -
1 

(2) C { u * ( 2 » 
N 

+; CT {u{i»R-
1

{i)C{u{i»J-
1 

t-l 

i=3 

N 
= tr [X *- 1 

(3 ) + l CT { u ( i ) ) R -
1 

( i ) C { u ( i ) ) ] -
1 

i=3 

(2.62) 
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2 1 
J (u)~J (u)~J(u) v u ( i ) , i=3, ..• ,N 

and set in particular u (i) 0, i = 3, .•• , N. Then 

2 
J (u) = min tr'X ( 3) J . given X* ( 2 ) 

u(2) 

and carrying this procedure to the end, we arrive at 

N J (u)·=J*(u)= min J(u(l), •.• ,u(N» 

u(l), .•• ,u(N) 

the required optimum, which is achieved by the sequential one-stage minimization: 

min tr X ( k+1 ),given X ( k) , k = l, 2, ... , N. 
u (k) 

(2.63) 

(2.64) 

Q.E.D. 

ln addition to the computational simplicity of the single-stage 

optimization method, it has anotner significant advantage. While the dynamic 

procedure solves for an input sequence of length N, where N is a fixed integer, 

the stage optimization method Cal beapplied on-line, and can be terminated when 

the error covariance trace function decreases under a certain limit. For the case 

where Q = 0, see Appendix B. 

2.5 Properties of the Estimator 

Sorne properties of the identified model and filter, under the optimal 

input policy are of interest. For easy reference we rewrite the model (2.7), (2.9) 
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x ( k+ 1 ) = x ( k ) + la) ( k) i la) (k) '" N [0, Q ( k) ] (2.65) 

y ( k ) = C ( u ( k ) ) x ( k ) + v ( k ) ; v (k) '" N [0, R ( k) ] (2.66) 

For the case where we assume w ( k ) = 0 , which is a practical 

assumption, especially in the cases where the system is constant, or near constant 

and the observation sequence is short 1 we use identity (2.56) repeatedly, as was done 

in the proof of Theorem 2. 1 , to obtain 

x ( k+l ) = [X- 1 ( 1 ) + 
k l C

T
(u(i»R-

1
(i)C(u(i»]-1 

i=l 

Definition 2.1 [2 ] 

The information matrix of the system (2.65), (2.66) is 

k 

S. ( k, 1 ) = I CT (u ( i ) ) R-
1 

(i ) C ( u ( i ) ) 

i=l 

Using the information matrix Equation (2.67) is rewritten 

x ( k+ 1 ) = [X -
l 

( l ) + S. ( k, l ) f 1 

ln order to be able to estimate ail the state variables, the system 

has to be observable. We gi~e now two definitions of observability which are due 

to Kalman [33 J, [34 J. For detailed discussion of the problem of observability 

(2.67) 

(2.68) 

of discrete linear systems, and the filtering problem, the reader is referred to [2 J, [13]. 
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Definition 2.2 

The system (2.65) , (2.66) is said to be k-completelyobservable 

if, and only if, 

s. ( k, 1 ) > 0 for some k ~ 1. 

It is S - uniformly completely observable if there exists a posit1ve interger Stand 

positive constants a, ~ such that 

o < aIs; S. ( k, k-$ ) s; ~ l 

for ail k >$ . 

If A and B are matrices then the relation A > B or A - B > 0, 

means that A - B is positive definite. We introduce now sorne notations. 

Let J
k 

be an indexing set 

J k = (l, 2, .'.' k } 

and let M. be the composite matrix 
1).. 

M. = 
lÀ 

where C ( i) = C ( u ( i ) ). 

ln order to be abje to estima te ail the system parameters we must 

(2.69) 

(2.70) 

(2.71) 

(2.72) 
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establish the observability property of the system (2.65), (2.66) , which is done in 

the following theorem. It is assumed that the dimension of the observation vector y 

is sma 11er than that of the state vector x 

Theorem 2.2 

The system (2.65), (2.66) is k-completelyobservable, if and 

only if, the input sequence [u ( l ) ; .. " u ( k) } contains vectors u (il ), u"( i
2

), 
"' 

.• " u ( i"\) such that M. is of maximu~ rank, n - the demension of x. 
1\ lÀ 

Proof: 

By definition 2.2 

.t ( k, 1 ) > 0, where .t ( k, l ) = 

.t ( k,l ) is positive definite if 

k 

the system is k-compleely observable if, 
k 
L: CT (i ) R-

l 
(i ) C ( i). By definition, 

i=l 

~ = z T [ L: CT ( i) R-
l 

( i ) C ( i ) ] z > 0 ; V z :F 0 

i=l 

where z is a veetor of appropriate dimension n. Define the veetors 

e(i) = C(i)z , i=l, ... , k 

and the sealcr ~ in (2.73) can be written as 

k 
~= IeT(i) R-l(i)e(i) 

i=l 

By cssumption R ( i ) > 0 thus From (2.75), ~ ~ O. 

(2.73) 

(2.74) 

(2.75) 
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To prove sufficiency assume that there exists M. of maximum 
lÀ 

C.(il) e. (i 1 ) 

M. z= z= =1= 0 i V z 1 0 
lÀ 

C (i
À

) e (iÀ) 

Hence for every non-zero vector z t~ere exist a non-zero vector e ( i ) , and 

II > O. Consequently oS: ( k, 1 ) > 0 and the system is k-completely observable. 

(2.76) 

To prove necessity, assume that the system is k-completely observable. 

Then by Ec;uation (2. 73) ~ > 0 y. % '1 0, and by Equction (2.75) there must exist 

ot least one e ( i ) '10, i e J
k

, for every z '10. Use· Equation (2.74) to obtain the 

composite equation 

e ~ il) C .(i 1 ) 

= z = M. z 

e <\) C (i
À

) 
.Ix 

which ineans that there exists an M. of full rank. 
lÀ 

Corollary 2. 1 

:f: 0 . Vz/O , 

Q.E.D. 

The system (2.65), (2.66) is S-uniformly completely observable 

if and on Iy if, for each subsequence of length S of the input sequence, the 

necessary and sufficient condition of the Theorem 2.2 is satisfied, and the control 

vector is bounded 

(2.77) 
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Proof: 

If the necessary and sufficient condition of the theorem is satisfied 

for each control subsequence of length S, then 

~ (i,i-S) >'0; Vi> S; i E J
k 

and taking k to be finite, there exist~ a and ~ such that (since u ( i) is 

bounded Vi) 

~ (i,i-S) - a 1 ~ 0 and ~I-~(i,i-S)~O 

for every i > S, i E J
k

. Thus (2.70) is satisfied. 

Corollary 2.2 

For the system (2.65), (2.66) to be k-completely observable, it 

is necessary and suffie ient that the input sequence of length k, has at leost n lm 

unequal vectors. 

Proof: 

Since the rows of the observation matrix C ( i ) = C ( u ( i ) ) are 

Polynomials of the elements of the input vector u ( i ) , then the rows of C ( u ( i ) ) 

will be linearly independent of the rows of C ( u ( i ) ) whenever u ( i ) = u ( i ) . 

Thus M. is of full rank and by Theorem 2. 2 the system is k-completely observable. 
ln lm 

The following theorem establishes a property of the functional used 

in the input optimization problem. 
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The error functional that was used in the input optimization problem 

is the trace function of the error covariance matrix, that is 

J ( u ) = tr X ( k+ l ) 

Obviously it contains the sum of the individual error variances of ail the parameters 

estimates. We can show that for the n~ise free parameters model it is a non-increasing 

function of time. 

Theorem 2.3 

For the constant parameter model 

x ( k+ l ) = x ( k ) 

y(k)=C(k)x(k)+v(k) 

the functional tr X ( k) is a monotone non-increasing function of the stage k 

Proof: 

For the givsn system assuming X ( l ) > 0, the error covariance 

matrix is given by (2.67) and there readil y fo Ilows that 

X(k»O , li k. 

Thus also 

C(k)X(k) CT(k):?! O. (2.78) 

Q. E. D. 



and assuming R ( k) > 0 also 

C(k)X(k)CT(k)+R(k» 0 

Using now Equation (2.29) for the covariance matrix we have 

Denoting 

x ( k+1 ) = X ( k) CT (k) [C ( k) X ( k ) CT ( k) 

+ R ( k) J-1 C~ ( k) X ( k) 

Y(k)=X (k)CT (k) 

B (k ) = C ( k ) X ( k ) CT (k) + R ( k ) 

Equation (2.73) becomes 

x (k+1 ) = X( k) - y ( k) B ( k ) yT ( k ) 

40 

(2.79) 

(2.80) 

(2.81 ) 

. T 
where Y ( k ) B ( k) Y (k) ~ 0 since B ( k) > O. Thus from (2.81) it follows 

tr X ( k+1 ) = tr X ( k) - tr Y ( k ) B ( k) yT ( k ) (2.82) 

and 

tr X ( k+ 1) ::; tr X ( k ) (2.83) 



41 

since tr Y ( k ) B ( k ) yT ( k) ~ O. 

Q. E. D. 

By the last theorem, the error variance at any stage is not greater than 

the one in the previous stage, for any input used. The input optimization achieves 

the fastest decrease of the error covariance. 

The next theorem establ ishes a bound on the error covariance matrix. 

Theorem 2.4 

If the system (2.69), (2.70) is S-un iformly completely observable, 

and X ( 1 ) is positive defin ite, then X ( k ) is uniformly bounded from above by 

-1 . 
~ ( k, 1 ) for ail k > S and X ( k) vanishes asymptotically, X ( k ) ~O as k~oo. 

Proof: 

By Equotion (2.68) we have 

X - 1 (k+ 1 ) = X - 1 (k) + ~ ( k, 1 ) (2.84) 

and thus 

-1 
X· (k+1) "" ~ (k, 1 ) (2.85) 

Since byassumption the system is S-uniformly completely observable, 

then for k > S, ~ ( k,l ) > 0 and 

-1 
X ( k+1 ) < ~ ( k, 1 ) . (2.86) 

ln addition, for large k 
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~( k,l ) = .t ( 5+1,1 ) + ~ ( 25 + 2, 5 + 2) + ..• 

a sum of positive definite matrices. Thus 

x ( k+ 1 ) < ~ -1 ( k, 1 ) -) 0 as k -) .CO • 

Q.E.D. 

Corollary 2.3 

Under the conditions of theorem 2.4, X ( k) does not depend on 

the in itial condition of the covariance matrix X ( 1 ), for k sufficientiy large. 

Proof: 

From Equations (2.84) and (2.87) it follows that 

X-1 (k+l ) ~ ~ ( k,l ) 

for sufficiently large k, since ~ ( k, 1 ) is a growing sequence of positive definite 

matrices, and X ( 1 ) is constant. 

2.6 The Cramér-Rao Lower Bound 

(2.87) 

The Cramér-Rao Lower Bound (CRLB) plays an important role in the 

area of statistical parameter estimation. We present now a short discussion on its 

connection with our identification problem. References [35 ] and [38 J- [40 ] 

are sorne among many wh ich derive and discuss the ideas and results that we use. 

Consider the following problem. We are given the observation 



43 

equation 

y ( k ) = 9 ( k, ; ) + v ( k) ; k = 1, 2, ... , N (2.88) 

where y ( k) is the observation m-vector, 9 (k, ;) is an m-vector function of 

the parameter n-vector ~. ~ is a fixed ~ut unknown vector. v ( k) is a zero mean 

stationary, white Gaussian random vector sequence, wi th the covariance matrix 

(2.89) 

Let 

F(y(l), y~2), ... ,y(N), ~)=F(y,~) (2.90) 

... 
be the cumulative distribution function of the observations. Let ~ be any unbiased 

estimate of ~, made from y ( k ) , k = 1, ... , N. Let r ( N) be the covariance 

matrix of the esti mation error, i. e. , 

r ( N ) = E [( ~ - ~) ( €_ ;) T J. (2.91) 

Define 

B = J [ 0 lo~ F~ ( y, ~) ] [0 109
0 

F; ( y, ~ ) J T d F ( y, ; ) (2.92) 

Then the Cramér-Rao or information inequality states, [35 J- [40 J, 

(2.93) 

B is the Fisher information matrix, and B-
1 

is the Cram~r-Rao lower bound on the 
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error covariance matrix. In (2.93), the equality holds for efficient estimators. It 

can be shown that maximum likelihood estimators are asymptotically efficient, 

and when the observation is linear in the unknown parameter the estimator {which is 

the Kalman filter in our case} is efficient so that r ( N ) = B-
l 

. 

Equation (2.93) holds for any v ( k) which is some discrete 

stoch'astic process, but B is extremely hard to evaluate, since F ( y, ;) is 

genera!ly not known. But for v ( k) wh ich < is zero mean, stationary, wh ite discrete 

Gaussian process with covariance R as in (2.89) B becomes 

N 
B = \' [09 (k, ~) ] 

L 0; 
k=l 

where we note that 0 9 (k, ~) is an (nxm) matrix with columns o ; 

og. (k, ~) 
1 

-~o~~:---' i = 1, 2, ... , m. 

Using our observation model (2.9) we have 

9 (k, ~ ) = C ( k ) ; 

where ; = x ( k ), k = 1, .. " N and i = x ( N+ 1 ). Hence 

o 9 (k, S ) = CT ( k ) 
o ~ 

so that Equations (2.94) and (2.93) become 

N 
B = l CT ( k) R- l C ( k ) 

k=l 

(2.94) 

(2.95) 

(2.96) 

(2.97) 
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N 
r(N)=[ I CT (k)R-1 C(k)]-1 (2.98) 

k=l 

Nahi and Wallis [36 ] determine optimal input for identification 

of dynamic systems by minimizing a functional of the CRLB. In our case, this would 

me an for the trace function: 

min 
N 

tr [L 
u ( k ) E .n. k= l 

ln section 2.4. 1 we formulated the optimal input problem as 

min tr X ( N+ 1) ; k = 1, ... , N 

U(k)E.n. 

which for the noise free parameter model 

x ( k+ l ) = x ( k ) 

can be written by using (2.67) as 

N 

(2.99) 

(2. 100) 

min tr [X -
1 

( l ) + I T -1 -1 
C (u (k » R C ( u ( k» ] i k = l, ... , N (2. 101) 

u ( k ) E.n. k= l 

and since X-
1 

( 1) is constant the optimal input sequence that satisfies (2.99), also 

satisfied (2.101) and thus minimizes the trace of the CRLB. This is the best any input 

sequence can do, under the trace functional, irrespective of the filter that is used 

to estimate the parameters. 
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2.7 System Simulation 

Several systems were simulated, and the optimal input sequence ob-

tained by straightforward application of the stage minimization method. The following 

is one example. 

2.7. 1 Example 

The optimal input sequence is calculated in this example for a 

system with two inputs and two outputs. The inputs-output relation is a second order 

polynomial 

where the parameters a .. are unknown constants. The measurement vector y ( k) 
IJ 

is generated by this system with 

v (k) = [v
1 

(k) T 
v
2 

( k) ] 

v (k) ""N [0, R ] i R = diag [2.0 1.0 ] 

The parameters are modeled as 

where 

x ( k+ 1 ) = x ( k ) 

. ï 
x(k)=[oll (k) ..• 014(k)021 (k) ... 024 (k) ] 



and the observation equation is 

y(k)=C(k)x(k)+v(k) 

where 

o 
C ( k) 

o o o 

The initial covariance matrix is taken to be large, 

X (1)= 

100 

20 
; 

20 

100 

20 

20 

. 
20 20 100 

and the control has the saturation constraint 

o 

1 u. ( k) 1 ~ SAT i = 1, 2 1 k = 1, 2, •.• 
1 
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o o 

The optimal input sequence of length 8, [u ( 1 ), .•• , u ( 8 ) } , 

is computed by the stage minimization method, for two control saturation constraints 

(1) SAT = l. 

(2) SAT = 5. 



48 

The solution does not depend on the actual system observations, but 

onlyon the assumed model and noise statistics. It is not unique, as can be expected 

from the local convergence properties of ail gradient numerical techn iques. Starting 

at each stage-minimization with an initial guess of 0.5 for the two control components, 

we arrive at the solution shown in Figure 2.1 for SAT = 1, and Figure 2.2 for SAT = 

5. The initial value of the cost functi?n is tr X ( 1 ) = 800, and it is reduced to 4.559 

in the first case and to 0.0815 in the second .case. 

The two optimal input sequences are applied to two systems having 

two different sets of parameters, and the estimates as weil as the absolute percentage 

errors are averaged over 50 runs with randomly selected noise samples. These averages 

are compared for the cases of SAT = 1, and SAT = 5 in Table 2. 1. As can be expected 

the control with Othe larger saturation constraint yields smaller identification errors, and 

better average estimates. The estimates are those obtained by filtering eight system 

observations, [y ( 1 ), ... , y (8 ) } , and thus are the elements of the vector 

x (918). The initial estimates are taken as 

x(l)= [4.0 .... 4.0 JT 

and the error in the parameter estimates is calculated as 

â. - a. 
1 1 

a. 
• 1 00 i i = 1 , . . ., 8 

1 

The conjugate gradients method stops the search iterations whenever 

the improvement in the cost at two consecutive iterations is smaller than a certain 
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FIGURE 2.2 OPTIMAL INPUT FOR CONTROL-BOUND SAT=5. 



51 

input SAT =.5. input SAT = l. 
actual average average average average 

parameters estimates errors estimotes errors 

a11 = 3.0 3.01 1.02 2.85 24.81 

a12 = -4.0 -4.00 0.77 -3.73 28.12 

°13 = 6.0 6.02 2.46 6.28 12. 11 

a14 = -1.5 -1.47 5.46 -1.75 54.26 

°21 = -0.5 -0.49 4.45 -0.61 107.8~ 
< 

°22 = 1.5 1.49 
< 

1.66 1.64 45.80 

°23 = 0.8 0.82 13.22 0.94 55.39 

°24 = 2.5 2.52 3.39 2.33 24.58 

System 1 

a11 = 0.3 0.31 10.25 0.20 248.13 

a12 = -1.5 -1.50 2.06 -1.30 75.25 

°13 = 3.0 3.02 . 4.92 3.26 24.09 

a14 = -4.0 -3.97 2.04 -4.20 19.97 

°21 = 12.0 12.01 O. 19 11.84 4.59 

°22 = 4.0 3.99 0.62 4.18 17.23 

a23 = -0.5 -0.48 21. 16 -0.34 90.37 

a24 = 1.5 1.52 5.65 1.31 41.18 

S~stem 2 

TABLE 2.1 PARAMETER ESTIMA TES AND ERRORS. 
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value, where the last search is in the direction of steepest descent. 

After several conjugate gradient steps the solution algorithm 

switches to ordinary gradient search for one or more iterations before continuing 

with conjugate gradients. This action is found to improve the rate of convergence 

toward the final solution. 

The simulation was done using the IBM 360/75. The execution 

time was 11 .29 seconds for this example. 
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CHAPTER III 

DUAL CONTROL OF DYNAMIC 

L1NEAR STOCHASTIC SYSTEMS 

3. 1 Introduction 

Using the approach of ~strêim, Wittenmark and Wieslander [3, 5 J, 
< 

an adaptive control law is derived for the regulation problem of a Iinear stochastic 

system. The system is modeled bya dynamic discrete input-output relation with one 

input and one output, with parameters which are assumed to be stochastic processes. 

For systems with known parameters the output regulator consists of 

the minimum-variance policy [1 J. A natural extension to the case of unknown 

parameters is still the minimum-variance poHcy, with the estimates substituted for 

the unknown parameters. This policy however, completely separates the identification 

and control, and the control is computed with complete disregard to the identification 

error variance. 

The adaptive regulator policy takes into consideration the error 

variance of the parameter estimates and adapt itself, in producing the control signais, 

-. . 

to the uncertainty of the estimation. It is compared by Wittenmark [5 J, with the 

extended minimum variance regulator that uses the parameter estimates only, and is 

found superior. 

The adaptive control policy is derived by minimizing the expected 

va lue of the squared output at each stage. The resu It is a feedback law, wh i ch depends 
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on the system parameter esti mates and their error variance. But the estimation and 

control are separated and the controller does not act in any way to improve the 

identification. Thus it is not dual [16, 17 J, and allows two kinds of 

phenomena to occur, wh ich resu It in low performance. These are burst and turn­

off phenomena. Wittenmark and Wieslander [4, 5 J use the adaptive control 

with additive perturbation signal te) improve the parameter estimation and hence 

improve the controller performance. 

Our motivation is to design the control signal by considering 

directly the estimation error covariance, as weil as the expected squared output. 

We use a measure of this error covariance to constrain the control signal in such 

a way that it ac.ts to keep good estimation together with good control. 

Since our controller, and the one used bi Wittenmark and 

Wieslander, are concerned with both identification and control they are of 

dual nature (Feldbaum [16J). But the perturbation added to the adaptive 

control signal contributes to improving the identification in a passive way, 

wh ile our controller seeks and plays an active role in supervising the identification 

process. 

We start by developing the adaptive non-dual control law, 

and consequently, formulate and design the adaptive dual control poliey. 
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3.2 Formulation of the Problem 

A discrefe iinear model is considered with scalar input and scalar 

output. , The model describes the input-output relation in the plant 

where 

y ( k ) = al (k) Y ( k- l ) + a 2 ( k ) Y ( k-2 ) +. . . + an ( k ) Y ( k- n ) 

+ b
l 

(k) u ( k-l ) ~ b
2 

( k ) u ( k-2,) + .... b
n 

( k ) u ( k-n ) 

+v{k) 

k = l, 2, ..• discrete time or stage index 

y ( k) - output 

u ( k) - input (control) 

a. ( k ), b. ( k ), i = l, ... , n time varying unknown parameters 1 1 

(3. 1) 

v ( k ), k = l, 2, ... a sequence of equally distributed, independent, 

normal random variables, with zero mean and variance R, 

where 

v ( k) ,..., N (0, R), k = l, 2, ... 

COy [v ( i ) , v ( j ) ] = R U (i-j), i, j = l, 2, ••• o 

U (i- j) is the discrete i mpu Ise function o 

__ {Ol U (i-j) o 

i = j 

i =F j 

We define as admissible, any control law, su ch that the control signal 

at stage k is a function of the observed outputs to stage k, and past control signais 
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to ti me k-l, i. e., u ( k ) is a function of y ( k ), y (k-l ), .•. , u ( k-l ), 

u ( k-2 ), ... 

We wish to design an optimal controller, that will keep the output 

of the system as near zero as possible. This is the regulator problem. A suitable 

performance index to be minimized is 

2 . 
y (k) J 

< (3.2) 
k::::l 

The minimizati6n of this 1055 function yields an N-stage control 

policy which is of dual nature [16 J, [17 ]. It not only computes the best 

control, based on past and present observations, but a Iso acts to improve the system 

identification and increase the information about the system. 

This problem, however, leads to a dynamic programming solution 

which does not possess an analytic form, and which can not be obtained in real 

time even for a first order system, [3 J, [5 ] . 

To arrive at an on-line solution we choose the single-stage 

performance index 

(3.3) 

It turns out that the solution using this 1055 function separates the 

system indentification and control parts. The control law will make the predicted 

value of y (t) equal to zero, but will not make any attempt to improve the 
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parameter estimates. Thus it is not a dual control. The result of this may be, as 

wi Il be later demonstrated, an unsatisfactory controller. By adding a certclin 

requirement involving the identification quality, we later develop a technique for 

a dual control strategy. 

The control law that minimizes the loss function (3.3) is called 

optimal non dual control. 

3.3 The Optimal Non-Dual Control Law 

Defining the vector 

x ( k ) = [a 1 (k) ... a (k) b 1 (k) .•• b (k) ] 
n, n 

(3.4) 

We rewrite the modei equation (3. ïj 

y ( k ) = tp (k- 1 ) x ( k ) + v ( k ) (3.5) 

where, 

tp (k-l ) = [ y ( k-l ) •.• y ( k-n ) u ( k-l ) ... u ( k-n ) ] (3.6) 

The unknown parameters are assumed to be stochastic, Gauss-Markov 

processes 

x ( k+ 1 ) = x ( k ) + (,) ( k ) (3.7) 

where (,) ( k) is a sequence of independent,equally distributed,normal vector random 

variables, with zero mean and covariance matrix Q, 

(,) ( k ) ,... N [0, Q ] 



The adoptive control problem: 

min E [y2 ( k+ l ) ] 
u (k) 

subjectto equations (3.5) and (3.7). 

To proceed we make use of a fundamental lemma of stochastic 
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control theory. Following ~strom [1 ] let xeX and yeY be a vector and a 

scalar randQ:Tl variables respectively, defin~d on a probability space, and let the 

control variable be ueU. Let the loss function 9 be a function which maps 

XxYxU into the real numbers. The expected loss is E [g ( x, y,u ) ] where 

(3.8) 

E is the mathematical expectation with respect to x and y. We are interested in 

the minimization of the expected loss E [ 9 ( x, y, u) l, with respect to the control 

variable ueU, which is restricted to ail functions that map Y into U. Let 

min E [ 9 (x,y,u )] denote the minimum of E [g (x,y,u ) ] with respect to 
u (y) 
ail admissable control strategies. 

Lemma 3. l (~strom) 

Let E [. 1 y ] denote the conditional mean given y. Assume that 

the function f (y,u) = E [g (x,y,u) 1 y ] has a unique minimum with respect 

to ueU for ail yeY. Let u
O 

(y) denote the value of u for which the minimum 

is achieved. Then 

min E [ 9 ( x, y, u) ] = E [ 9 ( x, y, u 
0 

( y)) ] 
u (y) 

= E [min E [ 9 ( X, y,lJ) 1 y ] } 
y 

where E denote the mean va lue with respect to the distribution of y. y 
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Since E [. 1 y ] is a function of y, and the operation 

min f ( X, u ) defines a function X ~ U, we note that the operation min E [ • 1 y ] 
u u 

thus defines a function Y ~ U. . 

Using lemma 3. l, expression (3.8) is equivalent to 

min E [y2 ( k+l ) 1 Yk ] 
u (k) . 

subject to equations (3.5) and (3.7), where 

y k = [y ( k ) y ( k- 1 ) .•• u ( k- 1 ) u ( k-2 ) ... J 

is the collection of past measurements and control values. 

The expected loss of (3.8) is a function of the collection Yk as 

weil as the systems parameters. We know only Yk and thus use the fundamental 

(3.9) 

(3. 10) 

lemma 3. 1 to obtain the admissible minimizing control u ( k) = u ( y ( k ),y (k-l ), 

... ,u ( k-l ),u ( k-2 ), ... ). 

The solution of (3.9) proceeds as follows: 

V
O = min E [ y2 ( k+l ) 1 Yk ] 

u(k) 

= ~(k1 E [(al (k+l ) y ( k ) + ... + an ( k+l ) y ( k-n+l ) 

2 
+ b

1 
(k+ 1 ) u ( k ) + ... + b n ( k+ 1 ) u ( k-n+ 1 ) + v ( kt 1) 1 Yk ] 

= min E [b ~ (k+ 1 ) u 
2 

( k ) + 2 b 1 (k+ 1 ) u ( k ) a T ( k+ 1 ) 
u (k) 

• Y ( k ) + 2b 1 (k+ 1 ) u ( k ) v ( k+ 1 ) 1 y k ] 

+ terms independent of u ( k ) (3. 11) 
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where we define the vectors 

T 
a
c

( k) = [a, (k) O 2 
( k ) ... an ( k ) 0 b

2 
( k ) b3 ( k

 ) ••. b n ( k ) ] (3.12) 

T 
Y ( k ) = [y ( k ) Y ( k-l ) •.• y (k-n+l ) 0 u ( k-l) u ( k-2) ... u (k-n+ 1) ] (3. 13) 

We define now 

x ( k \ i ) = E [x ( ~ ) \ Yi ] . 

x(k\i) = x(k)-x(kli) 

P ( k 1 i ) = cov [; ( k 1 i ) , ~ ( k 1 i ) ] 

= E [X' ( k 1 j) ~T ( k 1 i ) ] 

which are recognized as the optimal Kalman Filter state estimate, error and error 

covariance matrix, for the linear system of equations (3.7) and (3.5). 

Using (3.15) equation (3.11) becomes 

V
O 

= min E [( ~ (k+l 1 k ) + b, (k+l 1 k»2 u
2 

( k) + 2 (h, ( k+l 1 k ) 

u (k) 
~ 

A 

+b, (k+l1k»u (k)v (k+l )+2(b, (k+llk) 

+ b, ( k+ 1 1 k ) ) u ( k ) ( â T (k+ 1 1 k ) + ~ T ( k+ 1 1 k ) ) 
c c 

.y (k) 1 y k ] 

+ terms indepdent of u ( k ) • 

Using (3.14) and (3.16) and taking the conditional expectation 

V
O 

= min [( b ~ (k+ 1 1 k ) + Pb b (k+ 1 1 k » u 
2 

( k ) 

u (k) 1 1 

(3. 14) 

(3. 15) 

(3.16) 

(3.17) 
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+ 2 (hl (k+1I k ) â:( k+1I k ) + P:+
1 

(k+11 k» y (k) u (k)] (3.18) 

+ terms indepdent of u ( k) • 

where 

âJ k+1 1 k ) = [â
1 

( k+1 1 k ) .•• ~ ( k+1 1 k ) 0 b2 ( k+l 1 k ) ... b
n 

(k+ 1 k)] 13.19) 

Pb b (k+llk ) = cov [b1 (k+1Ik ) , b1 (k+llk ) J= E [b1
2 

(k+ll k ) ] (3.20) 
1 1 

P
b1b1 

(k+l 1 k) is the (n+l ) x ( n+l )~dement of P ( k+1 1 k ), and P n+l ( k+l 1 k) 
~ 

is the n+l column of the matrix P ( k+l 1 k). Note that the transition from (3. 17) 

to (3. 18) used the orthogonal projection property of the optimal filter - the estimate 

and error are orthogona l, i. e. , 

E [xT (i Ij); (i Ij) J= 0 (3.21 ) 

by the orthogonal projection lemme [6 J. Equation (3.21) also holds component-

wise [2 ] . 

The minimizing u ( k) is now found by differentiating the expression 

to be minimized in (3. 18) and equating the result to zero. 

2 ( h 12 
( k+ 1 1 k ) + Pb 1 b 1 (k+ 1 1 k » u ( k ) + 2 ( b 1 (k+ 1 1 k ) a~ T ( k+ 1 1 k ) 

+ pT ( k+ 1 1 k » Y (k) = 0 
n+1 

yielding the optimal control U
O 

( k ) 

o 
u (k) = -

[~ ( k+ 1 1 k ) â! ( k+ 1 1 k ) + P n: 1 (k+ 1 1 k) ] 

&1
2 

( k+l 1 k ) + Pb b ( k+l 1 k ) 
1 1 

y ( k ) (3.22) 
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This is the optimal non dual control law. It is not acting to improve 

the parameter esti mation. 

/t is adaptive and depends not only on the predicted values of the 

parameters, but also on the measure of uncertainty in their estimation - the error 

variances of the parameters prediction. 

The estimates and error variance are obtained using the Kalman filter 
,( 

equations (e.g. [2 J), with the system (3.7) and observation (3.5). 

x ( k+l 1 k) = x ( k 1 k ) x{ll°)=x (3.23) 

P{k+llk) = p{klk)+Q ; P(ll°)=P (3.24) 

x ( k 1 k) = x ( k 1 k- 1 ) + K ( k) [y ( k ) - tp ( k- 1 ) x ( k 1 k- 1) ] (3.25) 

P ( k 1 k ) = P ( k 1 k- 1 ) - K (k ) fi) ( k- 1 ) P ( k 1 k- 1 ) (3.26) 

K (k ) T T-1 = P { k 1 k- l),p (k- 1 ) ['p ( k- 1 ) P ( k 1 k- 1 ) cp (k-1 ) + R ] (3. 27) 

The foregoing is summarized in the following theorem. 

Theorem 3. 1 

For the system given by equations (3.5) and (3.7), let the admissible 

control u ( k) be a function of past i~puts and outputs, up to stage k. Then the 

control law that minimizes the criterion (3.3) is given by (3.22) and the Kalman 

fi /ter equations (3.23) - (3.27) • 

The choice of performance criterion (3.3) separates the identification 
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and control parts. The parameters are first predicted as x (k+l 1 k) and the control 

is then computed using these predicted values, and their estimation error variances. 

If however the identification is poor then the control will be computed in error and in 

addition, nothing will be done by the controller to improve the identification. If the 

estimation was perfect then -the error variances are ail equal to zero, and the controller 

redùces to the minimum variance strategy [1 ] , with the estimates substituted for 

the true parameters. Here the error variaQces are added to the estimates and thus 

influence their relative weight in (3.22), according to their accuracy. 

A serious drawback in the use of this non dual adaptive control law 

is the frequent occurence of the turr. off and burst phenomena. These phemomena were 

noticed and investigated by ~strom, Weislander and Witten mark [3 ] - [5 J. 

The burst phenomenon may occur after a period of good identification. 

The estimates are then close to the plants parameters and the error variances are 

small. If the plants parameters change in such a way, that the identifier is too slow 

in catching up, large output values occur which result in large input signaIs as weil. 

This in turn improves the identification and reduces the output values. 

The burst phenomenon is especially sensitive to the gain parameter 

estimate. From the control law (3.22) it is seen that if the gain is identified as a 

small number (this can easily happen even if b
l 

is not very small) and if its estimate 

error variance Pb b is at the same time small too, then the controller (3.22) 
1 1 

produces large values and the output oscillates with large signais. 
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The h.irn-off phenomenon shuts off the contro 11er, in the sense that 

the control values are almost zero (in computer simulations these values were of the 

-4 -8 
order 10 - 10 ). The reason for the control tu rn-off can be explained as follows. 

If after a period of good estimation the gain parameter b ( k ) , and then also its 

estimate b ( k ), become small over a period of time, then the control u
O 

( k) 

will be small too and consequently the filter gain Kb ( k ) will decrease, as there 
1 ., 

is not much information about b l( k) in the observation equation. Th is in turn 

may result in the next estimate being even smaller while the error variance 

Pb b ( k+l 1 k) will increase, and u ( k+l ) and K ( k+l ) decrease further. 
l l 

The control 1er may remain in the turn-off mode, or as frequently occurs, switch 

between the tum-off and turn-on modes. If was observed during systems simulations 

that the turn-off occurs when the gain parameter becomes small or crosses zero 

while switching signs. In these cases b1( k ) quickly became very small, of the 

-5 -8 
order 10 -10 . The turn-off occurred also in sorne cases when the gain bl ( k) 

was not small but was poorly identified as a small number. Thus the small b1( k) 

together with large Pb b ( k+l 1 k ) result in small control signal and small filter 
l l 

gain which does not improve and leaves the bad estimate at its low value, while 

the error variance increases. 

The turn-off phenomenon will terminate if, as a result of virtually 

no control, the output signal will increase to a large enough value such that the 

control will increase, being a function of the output, and improve the gain 

parameter identification. 
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Wittenmark and Wieslander [4 ] give an explanation to this 

phenomenon by observing that the identifier, being a Ka!man fi Iter acfs to 

whiten the innovation process [la J. Forasystemwith two pa ra meters a and b, 

~ .• ( k ) = y ( k ) - !p ( k-I ) x( k 1 k - l ) 

" = y ( k ) - y ( k- 1 ) â ( k 1 k- l ) - u ( k- l ) b ( k 1 k- l ) 

A 

= y ( k- 1 ) [a ( k ) - â ( k 1 k- l ) J + u ( k- 1 ) [b ( k ) - b (k 1 k- l ) J + v ( k ) 

" This can be done in two ways. Making the ,estimates â ( k 1 k-l ) and b ( k 1 k-l ) 

.. 
as close to a ( k) and b ( k) as possible, or making b (k 1 k-l ) and consequently 

u ( k-l ) almost equal to zero, whi/e y ( k-l ) is small. In either case 

II( k) ~ v ( k ) 

a white noise process. 

A rigorous analysis of this phenomenon is extremely difficult, since 

the system with the adaptive controller (3.22), and the fi/ter equations constitute a 

complex nonlinear stochastic process. 

ln general we see that there is a conflict here between identification 

and control. For good identification there is a need for large control signaIs (large 

signal to noise ratio) while the minimum output variance strategy, requires small 

control values. Wieslander and Witten mark L4 J, [5 J, suggest a method to 

overcome the above-mentioned drawbacks of the adaptive non dual controller. They 

argue that since the controller is good if the identification part works weil, Ct small 

signal which is time varying may be added to the control, thus obtaining a suboptimal 

dual adaptive controller. 

J 
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The additional small signal can be a square wave or a pseudo random 

binary sequence. This perturbation wh île adding somewhat to the loss function keeps 

the system stimulated and improves the identification. They investigate [4 J, [5 J 

the perturbation controfler 

- uP ( k) = u
O 

( k) + ( -1 ). S (3.28) 

where S is sorne constant arrived at thro~sh system simulation and experimentation. 

This square wave perturbation controller is simulated and compared to the non dual 

control 1er. Their results show that the perturbation controller successfully prevents 

the turn-off and burst phenomena in their examples. 

ln the next section we develop a new technique for a suboptimal 

dual adaptive control. 

3.4 A Technique for Dual Adaptive Control 

As is demonstrated by Wittenmark and Wieslander [4, 5 J, the 

perturbation controller improves the performance main Iy by preventing the turn-. 
off phenomenon. The pertubation signal does not allow the control to be completely 

turned off, and thus maintains continuous tracking of the gain parameter. It is not 

however, concerned with improving in general the identification, and is not of 

active dual nature in this sense 
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We are thus motivated to seek a controller that will not only control 

the system output, but one that will also observe the estimation error covariancp. and 

will actively maintain it at a low level. 

Substituting (3.27) in (3.26), obtain 

. T -1 P (k Ik) = P ( k \k-1 ) - P ( k \k-1 ) tp ( k-1 ) [tp ( k-l ) P ( k 1 k-1 )" (k-1) + R ] 

~ ( k 1 k- 1 ) (3. 30) 

., 
and after applying lemma 2. 1 th is becomes (P ( k 1 k-1 ) , R > 0 ) 

-1 -1 T-1 P .< k 1 k ) = P ( k 1 k- 1 ) + tp (k- 1 ) R tp ( k- 1 ) (3.31) 

The error covariance matrix of the parameter estimate x( k+l 1 k ) 

appearing in the control law (3.22) is P ( k+1 1 k) and is given as a function of 

P ( k 1 k ) byequation (3.24). 

P ( k+ 1 1 k ) = P ( k 1 k ) + Q (3.32) 

Our intention is to modify the control law (3.22) in order to improve 

the identification of the random system parameters, and thus to improve the overall 

perf()rmance of the controller. To achieve that we wish to monitor some functional 

of the identification error variê:.mce, which indicates the quality of the parameter 

estimates. We then would like the control law to act in relation to the measure of 

uncertainty, in such a way that the identification error remains small. This is to be 

accomplished in real-time, and hence we require this error functional to be such a 

function of the control signal that will permit us to compute u (k) analytically. 
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The matrix p-1 (k 1 k ) in (3.31) is related to the information matrix 

of definition 2.1 [2]. It is actually identical to ~ ( k,l) of definition 2.1 

for the case where the parameters are constants, Q = O. p-1 (k 1 k ) contains 

a measure of the information available about the system parameters. It is also a 

function of the control. It is in addition, the inverse of the error matrix, and hence 

the following functional 

p (k+ 1 ) = tr P -
1 

(k+ 1 1 k-f1 ) (3.33) 

satisfies ail the requirements mentioned above as it is an estimation error functional, 

and at the ~ame time a quadratic function of the control as is seen by using 

equation (3.31). 

p ( k+ 1 ) = tr P -
1 

(k+ 1 1 k+ 1 ) = tr P - 1 
(k+ 1 1 k ) + tr rp T ( k ) R - 1 

tp ( k) (3. 34) 

using the identity 

T T 
tr zz = z z 

for any vector z, equation ( 3.34) becomes 

P ( k+ 1 ) = 'tr P - 1 (k+ 1 1 k ) + R -1 tp (k) tp T ( k ) (3.35) 

from equations (3.6) and (3. 13) we have 

T 2 2 2 2 
tp ( k ) tp (k) = y (k) +. •• + y (k-n+ 1 ) + u (k) + u (k- 1 ) 

+ •.• + u ( k-n+1 ) 

= u2 ( k) + yT (k) Y ( k ) (3.36) 

--_._-- ~ 
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thus (3.35) becomes 

p ( k+ 1 ) = tr P -1 (k+ 1 1 k) + R -
1 

[ u 
2 ( k ) + y T (k) Y ( k) ] (3.37) 

We are now ready to formulate the new adaptive control problem. 

Dual Control problem formulation: 

Choose the control u ( k ). to minimize the loss function 

v = E [y2 ( k+ 1 ) 1 k ] (3.38) 

subject to the constraint 

p ( k+ 1 ) = tr P-
1 

(k+ 1 1 k+ 1 ) ~ P ( k+ 1 ) (3.39) 

where p (k+1) is a predetermined function. 

The constraint (3.39) comes to ensure that the amount of information 

about the system parameters iskeptabovea certain level. 

Equation (3.37) yields for the constraint (3.39) 

tr P -1 (k+ 1 1 k ) + R -1 Y T ( k ) Y ( k ) + R -1 u 2 ( k ) ~ fi (k+ 1 ) (3.40) 

clearly, from this inequality the control that satisfies the constraint is 

lu(k)l~ü(k) (3.41) 

where 

ü (k) = 1 [R P ( k+ 1) - R tr P -
l 

(k+ 1 1 k) - y T ( k) Y ( k) ] 1/2 1 (3.42) 
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assuming that the square root exists as a real number. 

To determine the control law that minimizes the loss function (3.38), 

and satisfied (3.41), we make use of the diagram in figure 3. 1. We plot the part of 

the loss function wh ich is dependent on u ( k ). Since we use the same loss function 

here as in the previous section where the non dual controller was developed, we can 

use expression (3. 18). The first term is quadratic in u ( k ) and the second is linear 

in u ( k). These are plotted in Figure 3. 1.' 
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FIGURE 3.1 LOSS FUNCTION PART, DEPENDING ON u (k) 
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ln Figure 3. 1 u 
0 

( k) is the adaptive non dual optimal control found 

earlier. ft is seen that in order to keep the loss function V ( u) as low as possible 

while observing the constraint (3.41), we must choose the control 

u* ( k ) = ü ( k) sgn u 
0 

( k) if u ( k) > \ u 
0 

( k) 1 (3.43) 

and 

u* ( k ) o = u ( k) (3.44) 

where 
1ifc>O 

59n c = 
-1 if c < 0 , 

The trace constraint (3.39) implies by (3.41) and (3.42) a minimal 

value for the control at each stage. Any control value larger than this minimum 

value ü ( k), is better from the point of view of information. Thus if the minimizing 

control, from the loss function point of view, is farger than the minimum u ( k) we 

just use it, since it will give us more information in any event, with the best control 

at the same time, i.e., it will make tr p-l (k+l 1 k+1 ) larger than p (k+l ) and 

will provide the best control simultaneously. 

We assumed above that the square root in (3.42) is a real number. 

If it is not so, it means that tr p-l (k+1Ik+1 ) is larger than p( k+l), even with 

no control at ail. This simply means that the identification is good and the information 

measure is large enough without the weight of u ( k ) in the observation y ( k+l ). 
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Thus we take, 

ü ( k) = 0 if tJ ( k) < 0 (3.45) 

where 

tJ(k)=R [~(k+1 )_trp·,l (k+1Ik)J_ y T (k)Y(k) (3.46) 

We may now summarize the foregoing in a theorem. 

Theorem 3.2: Dual adaptive control law. 

. . 
For the system given by equations (3.5) and (3.7), let the admissible 

control u ( k ) be a function of pa st inputs and outputs, up to stage k. Then the 

control law that" minimizes the cost function, 

2 V . = E [y (k+ 1 ) 1 y k ] 

subject to the constraint 

tr P -
1 

(k+ 1 1 k+ 1 ) ~ P ( k+ 1 ) 

with P (k+1 ) predetermined, is given by 

where 

{

ü ( k) sgn 
u* ( k ) = 

Uo ( k) 

uO(k) if luo(k) \<ü (k) 

if 1 u ° ( k) \ ~ ü (k) 

b
1 

(k+l 1 k ) âJ k+1 1 k ) + p +1 (k+l 1 k) ] T Y ( k ) 
uO( k ) = n 

b ~ ( k+ 1 1 k ) + Pb b (k+ 1 1 k ) 
1 1 

(3.47) 

(3.48) 

(3.49) 

(3.50) 
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is the non dual adaptive control law (3.22), and 

[ I.l ( k) ] 1/2 if I.l ( k) > 0 
ü (k)= (3.51) 

o if I.l (k) ~ 0 

where 

I.l (k) = R [7>( k+1) - tr p-
1 

(k+llk) J- yT (k) Y(k) (3.52) 

From (3.49) we note that disregarding the trace constraint (i. e. , 

ü ( k ) == 0), the dual controller becomes identical to the non dual one, 

o 
u* ( k ) = u ,( k) . 

As was said above the function 1> ( k+1 ) must be predetermined. This 

can only be done through system simulation and experimentation. Practical 

considerations of this aspect and applications are left for the next chapter. Of 

major importance is also the knowledge of the system and parameters noise statistics, 

without which the filter is not estimating optimally. This aspect is dealt with later, 

but here we bring forth an interesting property of the adaptive control laws (3.22) 

and (3.29), wh ich is the controller invariancy under amplification of the system noise 

samples. This will be made clear in the sequel. 

Theorem 3.3: 

For the system given by (3.5) and (3.7) and the dual control law (3.49), 

the parameter estimates and error covariance, are invariant under amplification of the 

system noise sample paths. Moreover, if the noise is amplified by a factor c then 
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the resulting control and loss functiün are likewise amplified by c and c 

respective Iy. 

Proof: 
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The proof fo Ilows by induction. We assume that the theorem ho Ids 

for sorne stage i (e. g. i=l ) , and show that i t then ho Ids for stage i+ 1 • 

Combine equations (3.26) and (3.27) 
~ 

P ( i+1 \ i+l ) = P ( i+1 1 i ) - P ( i+1 \ i) ,pT ( i ) 

• [tp(i)P(i+l\i)f,OT (i)+R J-1tp(i)P(i+1Ii) (3.53) 

and by (3.24) and (3.6) 

P ( i+ 1 \ i) = P (i 1 i) + Q (3.54) 

tp( i ) = [y ( i ) Y (i-1 ) ••• y (i-n+1 ) u (i) u (i-1) ••• u (i-n+1 ) ] (3.55) 

We denote ail variables correponding to the case where the noise sample is amplified 

by factor c, with superscript c, e.g., u
C 

(k), xC (i) 1 etc. 

Henc~, 

(3.56) 

By assumption and (3.54) 

pc ( i 1 i) = P ( i 1 i) , pC ( i +1 1 i ) = P ( i+ 1 1 i ) (3.57) 
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equation (3.53) yields using (3.56) - (3.58) 

pC (i+l\i+l) = pC (.i+1 Ii) _ pC (i+1\i) t,OcT( i) 

• [(,Oc (i) pC (i+1 \i) '~ c~i) +Rc f1 ~c(i)pc(i+1\i) 

= P ( i+l 1 i ) -' P ( it1 1 i ) c t,O T ( i ) 

r c tp(i} P (i+1\i) rp 

= P ( i + l \ i ) - c 
2 

c -
2 

P ( i + 1 \ i ) ,.tJ T ( i ) 

• [cp(i)P(i+1\i)cpT (i)+RJ-ltp(i)P(i+l\i) 

= P ( i+l \ i+l ) 

By definition, 

vC 
( i+l ) = cv ( i+l ) 

and by assumption and (3.23) 

AC ( . 1 ') - A ( • \ . ) A C ( '+1 \. ) A ('+1 1 . ) x· 1 1 - XII ,x .1 1 = XII 

From (3.5) and using (3.58) obtain 

yC(i+l) = tpc(i)xc (i+1 )+vc (i+1) 

= c tp ( i ) x ( i+ 1) + cv ( i+ 1 ) 

= cy ( i+l ) 

(3.58) 

(3.59) 

(3.60) 

(3.61) 
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using the fact that XC ( i+1 ) = x (i+1 ). 

Rewrite equation (3.25) using (3.27), and the above results 

xC ( i+1 1 i+1 ) = xC( i+l 1 i ) + pC ( i+l 1 i) tfl cT ( i ) 

• [f,O c( i) pC ( i + IIi) f,O c T( i) + R r 1 [l (i + 1 ) - (/ (i ) sf (i + 1 \ i) J 

= x (i+ Iii ) + 'p ( i +) li ) C tfl T ( i ) c - 2 

~ 

·[tp(i)P(i+l\ i}tpT(i)+RJ-
1

c [y(i+1)-tp(i)x(i+1 li) J 

= x ( i+1 \ i+1 ) (3.63) 

(3.59) and (3.63) prove the first part of the theorem, and From (3.62) it is seen 

immediately that 

(3.64) 

\t thus remains ta show that U
C 

( i+1 ) = cu ( i+l). We first show this for the non 

dual control. From (3.50) 

2 
u~o (i~l ) = - [b

c
1 (i+l\i) + P~lbl (i+l\ i)-l 

. [bc
l (i+1\ i) â~ (i+l\i) + P~+l (i+1\ i J T yC (i+l ) 

- - [ b~ ( i+l 1 i) + Pb b (i+l \ i ) ]-1 
l 1 

. [b
1 

(i+1 li) â~ (i+l\ i) + P
n

+
l 

(i+1\i)JT c Y (i+1 ) 

= c ua ( i+l) (3.65) 

-~ 
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using (3.59), (3.62) , (3.63) and the definition of Y (i+1 ) as in (3.13). 

Now from (3.52) 

-1 
~c (i+1) = RC [pc (i+2) _ tr pC (i+2Ii+1) J_ ycT (i+1) yC (i+l) 

= c 2 [p (i+2) - tr p-
1 

(i+2\ i+1) J- c
2 

yT (i+1) Y (i+l ) 

= c
2 ~ (i+l ) . 

and thus by (3.51) 

= 
{ 

c [~ ( i + 1 ) ] 1/2 
li c 

( i+l ) . ° 
-= c u (i+1) 

if cf.! (i+1 ) > ° 
otherwise 

and using (3.65) and (3.67) in (3.49), we finally prove for the dual control law 

= { c li ( i+l ) 

c u
O 

( i+l ) 

= c u* ( i+1 ) 

if 1 cu
o 

( i+l ) \ < c li ( i+l ) 

otherwise 

We must now show that the theorem holds for i=l . Assume the 

initial conditions 

y(k)=O, u(k)=O; k::; 0 

(3.66) 

(3.67) 

(3.68) 
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Now 

/ (1) = tp( 0) x + V
C 

(1) = cv (1 ) 
o 

=cy(l) (3.69) 

since 
c 

tp (0) = li' ( 0) = O. 

By (3.24) 

pC ( 0 \ 0 ) + Q = P + Q 
o 

= P ( 1 \0 ) (3.70) 

and thus by (3.52) 

c 2 
J.I (l)=c J.I(l) (3.71) 

since RC = c2R and y C 
(1 ) = c y( 1 ). This in turn points to (by (3.51) ) 

-c -u (l)=cu(l) (3.72) 

and lastly in this line, by (3.49) 

c 
u * ( 1 ) = c u* ( 1 ) (3.73) 

\t is now easily verified by using the above results, and the filter equations (3.23) -

(3.27) that 

XC (1 Il) = x ( 1 Il) and pC ( 1 \1 ) = P ( 1 \1 ) 
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and th is concludes the proof. 

The implication of theorem 3.3 is the following. The system noise 

which is the noise in the obse~vation, is of little importance to the adaptive control 

poliey, assuming of course that this noise covariance R, is known. Whether this 

noise intensity is very low or very high, does not matter to the systems iden.tification 

and control. This of course, is not the case with the parameter proeess noise 

intensity which has a direct bearing on th~eestimation error variances. In ehapter 

5 it is shown that the observation noise covariance R, is easily identified, using 

an adaptive filter in a system simulation with incomplete knowledge of noise 

covariances. The control performance de pends on good identi ;;cation which is not 

easy to accomplish with large noise covariance in the parameter process. But 

this performance is invariant under small or large observation noise. 
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CHAPTER IV 

ADAPTIVE CONTROL SYSTEM SIMULATION 

4. 1 Introduction 

ln thisChapter we investigate the performance of the dual adaptive 

control policy, as applied to several' stochastic systems. The systems parameters are 

'stochastic processes, with different driving~noise intensities, or deterministic unknown 

time functions. The model parameters are assumed to be random processes in every 

case, as was assumed in Chapter 3. The noise covariance of the parameter process 

is used in the control policy and must be known. 

ln some examples we assume exact knowledge of this covariance, 

and in others the actuell value is assumed different from the value used. 

The dual controller ls compared with the non-dual control law in ail 

the examples, and in some it is also compared with the perturbation control policy 

[3 ]- [5 J. For the purpose of comparison we use the accumulated loss function 

k 
L ( k) = L y2 (i ) (4. 1) 

i=l 

Ali the examples but two, deal with first order systems, i.e., systems 

with first order dynamics, containing two unknown parameters, one of which is the 

gain b
1 

. Two examples are concerned with a second order system, having three 

random parameters. The simulation was done on an IBM 360 mode 1 75 computer. 
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4.2 First-Order System Simulations 

The systems simulated here are of first-order, and have two unknown 

parameters. Thus the input-output representation of the model is 

y ( k) = a ( k ) y ( k- 1 ) + b ( k ) u ( k- 1 ) + v ( k ) 

or in the form of equations (3.5), (3.7) 

y ( k) = fP( k-l ) x ( k ) + v ( k) 

x ( k+ 1 ) = x ( k ) + w ( k ) 

where the state representation of the parameter process is of second order, and 

and where 

tfJ (k-1 ) :;: [y ( k-1) u ( k-1 ) ] 

x(k)= [a(k) 

w(k)= [w (k) 
a 

v (k ) ..... N [0, R ] 

b(k) JT 

T 
wb ( k) J 

w ( k) ,.., N [0, Q ] 

For this model the non-dual adaptive control law, Equation (3.22), is 

(4.2) 

(4.3) 

(4.4) 

(4.5) 

(4.6) 

(4.7) 

(4.8) 

(4.9) 

(4.10) 

u 
0 

( k ) = - [b 2 
( k+ 1 1 k ) + P bb ( k+ 1 1 k ) f 1 [b (k+ i 1 k ) â ( k+ 1 1 k ) + P ab (k+ l 1 k ) J y (k) 

(4. 11) 



since here by (3.12), (3.13), 

Sc ( k+ 1 1 k) = [a ( k+ 1 1 k) 0 l 

y ( k) = [y ( k) 0 ] T 

and by definition 

The perturbation controller, Equation (3.28) is 

p 0 k 
u (k) = u (k)+(-l). 5 

and the dual control law is by (3.49) - (3.52) 

__ tu ( k) S9n u 0 
( k ) if 

o -lu (k) 1 < u(k} 

u* ( k ) 
U

O 
(k) otherwise 

/jJ( k ) if J.I(k) > 0 

u (k) = 
o otherwise 

J.I ( k ) = R [ P ( k+ 1 ) - tr P -
1 

(k+ 1 1 k ) ] - y 
2 

( k ) 

The Filter equations are by (3.23) - (3~ 27) 
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(4. 12) 

(4. 14) 

(4. 15) 

(4. 16) 

(4. 17) 

(4. 18) 

x(k+llk) = x(klk-l )+K (k)[y(k)-tp(k-l)x«klk-l) J (4.19) 
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T T-1 
K (k) = P(klk-1)tp (k-1) [tp(k-1)P(klk-1)~ (k-1)+RJ (4.20) 

P (k+1Ik) = [I-K (khp(k-1 )JP (klk-1) [I-K(k)tp(k-1)]T 

+ K ( k ) P ( k 1 k+ 1 ) K ( k ) + Q (4.21 ) 

Eq~ation (4.21) is used for the error covariance matrix computation, because in this 

form P is always updated as a positive definite matrix, even if the gain is computed 

in error, due to computer round off. It is important for the filter stability that P is 
,( 

positive definite [13 J. 

It should be noted that the error covariance update as in (4.21), is 

more time consuming than the conventional method of equation (3.26), but its 

numerical precision is better [15 J . 

The trace of the covariance matrix inverse, is needed for the dual 

controller and is given in the present case very simply as 

t P-1 = tr P 
r det P (4.22) 

ln its simplest form, the controller uses for p (k+1 ) a constant 

p ( k+1 ) = p 
c 

(4.23) 

this form requires the minimum amount of computation, and the implementation 

is the simplest. There are however two shortcomings of this form. In the first instance 

since at the beginning of control action we have very little information, we must 

assume large initial error variances, which means that tr p-1 is smalt, and thus the 

controller produces large signais, whose function is to improve quickly the parameter 
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estimates. But the loss function at the sorne time increases sharply as the control 

is bad. 1 f however we argue that at steady state we don It care about the poor 

initial control, then it is obvious that employing this kind of control, the transient 

initial period of much uncertainty, becomes very short, and the filter "catches 01'1" 

fast. It was found that if p is designed as in Figure 4. l then it is-possible to 
c 

shorten the filter transient period, and to prevent very large control signais at the 

same time. In the initial period up to t1 , Pc is increased e-::enly, as more 
~ 

information is 

p (k) 

FIGURE 4. l A DESIGN FOR THE TRACE CONSTRAINT 

obtained by the filter. At the interval [t
1

, t
2 

J Pc is kept constant to ensure that 

the information does not decrease. At stage t
2 

the filter is assumed to be already 

in ste ad y state and from then on more attention is given to the control part, assuming 

that the filter is capable of tracking the parameters without much interference. Thus 

Pc is decreased and kept a constant, so that the controller will interfere with the 
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filteringpart, only when the information measure decreases sharply. 

The determination of p (k+l ) as in Figure 4. l still makes it a 

constant (except for a short transient period), and the controller depends strongly 

on the tr p-l (k+1Ik) function as is seen From Equation (4.18). This was 

found unsatisfactory in sorne cases or at least, given to improvement. It was observed 

during system simulations that the controller using a constant "'fi (k+1 ) , WClS slow 

"' 
in many cases, to detect the turn-off phenômenon, and take the necessary action to 

end it. The reason is that because the tr p-1 is a nonlinear function of the different 

parameter error variances, it is possible that one of these variances will increase 

appreciably, without decreasing the tr p-l function significantly. 

From the re lation 

-1 
tr P = 

it is seen that tr p-I is a function of the denominator difference which is the P 

matrix determinant. The inverse trace may remain quite large even when P
bb 

increases, because the determinant may remain small. 

During the turn-off phenomenon the fi Iter loses track of the gain 

parameter b ( k ) , and the error variance P bb thus increases. But the tr p-
1 

may not decrease, and may even increase for sorne length of ti me. The fi /ter 

later adjusts p-l to the information loss, and tr p-l eventually decreases. It 

is also observed that during the turn-off state, only the parameter a ( k ) is being 

(4.24) 
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effectively identified since From the observation equation 

y ( k+ 1 ) = a ( k+ 1 ) Y ( k ) + b ( k+ l ) u (k ) + e ( k+ 1 ) 

it is seen that without the u ( k ) signal, the filter receives information only about 

a ( k+ 1 ) and thus it has more conn .{ence in its estimate. Under these conditions 

we have 

(4.25) 

and (4.24) is approximated as 

1 = P 
aa 

(4.26) 

assuming that 

2 . 
P Pbb »P b ua a 

(4.27) 

We now argue that we would Iike to have approximately the situation, in which 

P 
,... 

Pbb = aa 
(4.28) 

then (4.24) becomes 

-1 2P 2 aa 
tr P ~ p2 

= p-
ao aa 

(4.29) 

Comparing (4.26) and (4.29), we modify the dual controller to improve 

its ability to detect the information loss about the gain b, by modifying p ( k+1 ) 

of Equation (4.23) to be 
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if 
M 

Pc P bb ( k+ 1 1 k) ~ P bb 

P ( k+1 ) = ab 
M 

P (k+l Ik ) 
if P bb ( k+ 1 1 k ) > P bb 

aa 

(4.30) 

M 
where P

bb 
is a fixed value which is sort of upper bound for P

bb 
( k+l 1 k ), over 

wnich p (k+1 ) departs from its constant value p , and ab is fixed in the 
. c 

range 1 < 'b < 2. Again, these two values must be determined by experimentation 

through simulation. The value of P~ determines how closely P
bb 

( k+1 1 k) is 

being tracked separately, in order to be kept below a certain level. 

This intuitive technique is not quite possible for higher order systems, 

but a simpler way is just to leave fi (k+1 ) as a constant, and change ü ( k) of 

equation ( 4. 17) as follows 

ü (k) = 

u 

o 
M 

if fJ ( k ) > 0 

if 

if 

fJ ( k) ~ 0 and 

fJ ( k) ~ 0 and 

M 
P bb ( k+ 1 1 k ) ~ P bb 

M 
P bb ( k+ 1 1 k) > P bb 

(4.31) 

where u
M 

is a constant. This technique simply forces a relatively large control signal 

when the gain parameter estimation error reaches above a certain value, thus keeping 

a good estimate of the gain parameter and preventing the turn-off phenomenon right 

at its start. 

These modifications of the dual controller are not necessary at ail, if 

we choose Pc (the constant value of p (k+1)) large enough. But then, together 
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with very good estimation, there will be a certain degradation of the control, and a 

resulting increase in the loss function. 

We next derive the lowest possible average loss-funetion. For 

this purpose we derive the expected loss for the minimum variance poliey of a system 

with known parameters. Thus the system is given by 

y ( k ) = a 1 y ( k- l ) + a 2 y ( k- 2 ) + .•• + an y ( k-n ) 
" 

+,b
1 

u (k-I) +b
2

u (k-2) + ... +bnu(k-n) +v(k) (4.32) 

The expected loss is 

E [V (k+ l ) ] = E [ y 
2 

( k+ l ) ] 

= E [(al y(k)t .•. +a
n

y(k-n+l)\f-b2u(k-l) 

+ ••• + bn u ( k-n+l ) ~,b1 u ( k ) 

+ v ( k+l »2 J (4.33) 

differentiating (4.33) with respect to u ( k ) and equating to zero 

2 
2b

1 
u (k) + 2 b

1 
[al y (k) + ... +a

n 
y (k-n+l ) +b

2 
u (k-l ) 

+ .•. + b u ( k-n+l ) ] = 0 
n 

(4.34) 

yields the minimizing control 

l ' 
u. (k)=--b [al y(k)+ ... +a y (k-n+l ) 

mm l n 

+ b
2 

u ( k-l ) + ... + b
n 

u ( k-n+l ) (4.35) 
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To find the optimal loss, substitute (4.35) in (4.33) 

E [V • (k+ 1 ) ] = E [v 
2 ( k+ 1 ) ] = R 

man 
(4.36) 

and the optimal accumuJated expected loss is 

k 

E [l . (k)] = \' E[V. (k)] = k R 
man L mm 

(4.37) 

i:;: 1 

The average execution time for the dual control/er system simulation 

was about 4.7 msec. per stage, on the 1 SM 360 mode 1 75 computer. 

4.2. 1. E?<ample 1. Average Performance Comparison 

ln this example the non-dual, dual and perturbation control/ers are 

compared, by obtaining their respective average accumulated loss functions. This 

is done by averaging the 1055 over fifty runs, using different randomly selected noise 

samples. The initial state vector x ( ° ) (parameters), is taken randomly from a 

normal distribution, 

N [i' , r ] where 
o 0 

T 
i' = [0.7 1.5 ] 

o 

ro = diag [0.01 0.1] 

The initial parameters vector estimate is 

r
â (l\OJ 

>è(11°) = .. 
b(ll°) 

= 



and the initial error covariance is taken as, 

P (1 10) = diag [4.0 4.0 ] 

reflecting high uncerfainty in x { l 10 } . 

The noise data is, 

the parameters, 

R = 0.04 

Q = diag [qa qb ] = die'g [0.0002 0.02 ] 

The dual controller used p ( k+l ) as in e9uation (4.30 ) with 

P.. = 20. 
c 

M P
bb 

= 2. 

90 

and the perturbation controller used a square wave with amplitude (Equation (4.15» 

6 = 0.02 

These constants where found to yield best results by simulation. 

The three control policies performances, are compared in Figure 4.2, 

which shows the average accumu lated loss curves of Equation (4. 1). 

Figure 4.3 shows the same curves as Figure 4.2 but with the loss of the 

initial 50 stages eliminated i . e., L ( k ) - L ( 50 ) where L ( k ) is the average 

accumulated loss at stage k. 
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_.-.-.-.- perturbation control 
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known parameters 
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FIGURE 4.2 AVERAGE ACCUMULATED LOSS FUNCTIONS, EXAMPLE 1. 

l (k)- L (50) 

--__ non-duo 1 contro 1 
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known parameters 
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FIGURE 4.3 NORMALIZED AVERAGE ACCUMULATED LOSS FUNCTIONS, 

EXAMPLE 1. 
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Comparing the results described in Figures 4.2 and 4.3, we can 

conclude that the dual and perturbation control 1er are about equal and superior 

to the non-dual control policy. 

4.2.2 E>Çample 2. Single Run Results. 

ln this example we investigate one run of the 50 runs batch, that 

was used in Example 1. The simulation data and parameters are the same as in 

Example 1. We wish here to study in n:'I0re detail the differences in the operation 

of the dual and non~·dual adaptive control law5. 

Figure 4.4 compares the accumulated loss functions of the two 

control policies. Since the performance depends directlyon the quality of 

identific'ation,we show in Figure 4.6 the random gain parameter time evolution 

b ( k ) , and its estimates b ( k) , using the two controllers. Figure 4.7 describes 

the gain parameter error covariance P
bb 

(k ) , and Figure 4.5 shows the parameter 

a ( k) sample path, as weil asits estimates â ( k ) , under the two control 

strategies. 

From Figure 4.4 we observe that the two controllers are almost 

identicai in their performance, up to stage 180. Very different in the interval 

180 to 350 approximately, and equal again from stage 350 onward, as the slopes 

of the two loss functions are about the same. In the interval 180 to 350 we 

see first, that the slope of the non-dual controller los5 function is greater th an 

that of the dual one, and has a sharp jump in the interval 320 to 350. 
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The reason for the deterioration in performance under the non-dual 

policy is seen in Figure 4.6, where the turn-off phenomenon is observed. The gain 

parameter b ( k ) is identified as almost zero (the control signais are also almost 

zero). The rapid increase in the loss function starts at about stage 200, as from then 

on, the gain b ( k) is quite large and hence its estimation error is also lerge, end 

at the same ti me the parameter a ( k) is growing et a fest rate es is seen in 

Figure 4.5. At stage 320 e lerge jump in the 105s function is seen. The reason 
< 

for this is that the control signais being effectively zero and the fact that a ( k) 

is greater then one combine to make ari unstable free system. Since there is no 

control, the uncontrolled system is 

y ( k ) = a ( k ) y ( k- l ) + v ( k); e ( k ) > l 

an unstable system. This mode of control-turn-off, coupled with instability ends 

when the large output values y ( k ) , force an increase in the control values as is 

seen in Equation (4.11) ,·where y (k) becomes dominant. The increased control 

signais that occur around stage 340 improve drastically the estimate of b ( k ) , 

and P
bb 

(k) reduces very sharply as is seen in Figures 4.6 and 4.7. The 

control turn-off thus ends and the system experiences good control. 

The dual controller prevents the turn-off phenomenon by monitoring 

a measure of the error covariance and ects to maintein good identification. 

The importance of good identification of the gain parameter is c1ear, 

as its absence leads to the turn-off of the controller. The dual controller in producing 
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rp.latively large signais for information correction, brings about better identification 

of b ( k ) , but somewhat inferior identification of a ( k ), in comparison to the 

non-dual controller action. The reason is very si mply the fact that the gain parameter 

is being weighted more importantly th an a ( k) in the observation y ( k ) when 

using the dual control policy. This can be observed in Figure 4.7. This fact 

however has a negligible influence o~ the resulting control.signals. It is important 

to note that the relatively large control signais are not produced constantly but only 

when there is a reduction in the information available. Mostly the control signais 

are those needed for good control, as are produced by the non-dual controller. 

4.2.3 Example 3. Average Performance with Incomplete Knowledge of Noise 

Covariance. 

ln this example we once more wish to compare the non-dual, dual 

and perturbation control policies, by obtaining the average accumulated loss-

functions in the three cases. Unlike Example l however, here we do not assume 

exact knowledge of the random parameters noise statistics. The actuol noise covariance 

Q , is not known and an assumed value Q is used in the filter. Under this 
as 

condition the estimates are not optimal any more. It was shown in the literature 

[2 J, [6 J- [8 J , that if the assumed noise covariance is larger than the actual 

one, then the estimation error covariance, is bounded by the error covariance 

resulting from the assumed Q . Note that Q is greater than Q if Q - Q 
as as as 

is positive definite. It th us seems logical to choose the unknown noise covariance, 
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as larger than the actual value. 

As in Example 1 we simulate 50 runs of the system using random 

noise semples, and random initial conditions of the perameters. We use the same 

values as in Example 1 for x ( 0 ), ~ ( 1 10) and p ( 1 10 ), as is given 

below 

x ( 0 ) ....,. N [y 0 ' 

T 
Y = [0.71.5] 

o 

r = diag [0.01 0.1 J 
o 

x(l\O) = [â(110) b(l\O)JT 

P (1 10) = diag [4.0 4.0] 

The noise parameters are 

R = 0.04 

T = [O. 1 O. 1 ] 

Qas = diag r. qa qb J = diag [0.0002 0.02] 

the assumed covariance of the perameter process which is used in the filter 

equations. 

The actual noise covariance is 

Q = 1 Q 
36 as 

and this value is used in the plant simulation. 
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The accumulated loss functions are averaged over the 50 runs in 

the three control cases, and are shown in Figure 4.8. The non-dual control loss 

curve exhibits a large rise in the interval of stage 400 to stage 450 approximately. 

This is the contribution of one particular run. Eliminating this run From the average 

calculation yields the loss curves of Figure 4.9. 

A comparison of the loss curves in Figures 4.8 and 4.9 clearly 
" 

indicates the superiority of the dual controller in th is case where the noise 

covariance is not known exactly. 

Since the assumed noise covariance Q is the same as in 
as 

Example 1, the dual and perturbation controllers used the same parameters that 

we,,:a found to yields best results ,in the system of Example 1. 

The dual controller' parameters 

= 20. M 
Pbb = 2. 

The perturbation square wave amplitude 

fi = 0.02 

Under these conditions the dual controller performed better than the 

perturbation controller. It should be noted however, that this conclusion is based 

solely on simulation and numerical experimentation of limited nature, and as such 

is not general. 
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4.2.4. Example 4 Single Run Results With Incomplete Knowledge of Noise 

Covariance. 

As was done in Exemple 2, we investigate here one run of the fi ft y , 

used in Example 3. The dual and non-dual control policies are compared, simulating 

the system with the same noise samples and initial conditions. The simulation 

parameters are those given in Example 3. Results are shown in Figures 4.10 - 4.13. 

The accumulated loss curv~s are compared in Figure 4.11. Figure 4.10 shows the 

a ( k ) parameter smaple path and its estimates â ( k ). The same information is 

given in Figure 4. 12 for the gain parameter b ( k) and its estimates b (k) , 

white Figure 4. 13 describes the gain parameter error variances under the two 

control regimes. 

Theweak performance of the non-:dual control poticy for this case, 

where the parameters noise covariance is not exactly k~own, is clearly seen in 

Figure 4. 11, which demonstrates a sharp rise in the loss function, starting around 

stage 100 and terminating around stage 160. The reason for this is clear from Figures 

4.10, 4.12 and 4. 13. The control is turned-off as is seen in Figure 4.12, where 

,. 
b ( k) is practically zero in the interval k e [20, 160 J. There follows a free 

system of the ferm 

y ( k ) = a ( k ) y ( k-1 ) + v ( k ) 

. but as long as a ( k) < 1 the loss is not very large. At stage 120 and over, the 

value of a ( k ) is closer to, and even greater than 1. The output values become 
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large with a sharp increase in the loss-function as a result. 

ln Figures 4. 12 and 4. 13 we see that the error variance of the gain 

estimate increases constantly while in the turn-off mode, and then decreases sharply 

at around stage 160, when the turn-off phenomenon terminates, and the identifier 

starts t~acking the gain b ( k ) once more. 

ln this example the identification of b ( k) as weil as of a ( k ) 

is constantly poor using the non-dual controller, as compared to the dual controller. 

This is quite expected since the information about .the noise statistics is in error· 

and thus the identification part of the control policy becomes more important. 

4.2.5 Example 5 RepeatedTurn-off Phenomena 

Observing the.results of Examples 2 and 4 , it may be suspected that 

the tu rn-off phenomenon is confined to the initial transient period of the control 

action. This seems to be the case, since Figures 4.6 and 4. 12 indicate the early 

occurrence of the turn-off (zero gain estimates). Ta refute this impression we 

continue in the present example the run used in Example 2, up to the stage 2250. 

Thus, the results of control simulations are identical to those of Example 2 up to 

stage 750, and the curves corresponding ta stC?ges 750 to 2250 are given here in 

Figures 4.14 - 4.17. Figure 4.16 shows that using the non-dual control policy, the 

turn-off phenomenon occurs at stage 1450 approximotely, after a long period of 

good identification. In the same figure we see also that the dual controller ends 

the turn-off of ter sorne time, when the error variance increases to a certain level, 
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,., 
as can be seen in Figure 4.17. The estimate b (k+l 1 k) repeatedly becomes 

almost zero, and the control turned-off. But the dual controller repeatedly 

terminates this turn-off situations. The loss function is normalized to zero 

at k = 750 in Figure 4.15. The steep rise in loss with non-dual control around 

stage 2100, corresponds to the combination of turn-off, 'and parameter a ( k ) 

approximately of value 1. 

4.2.6. Example 6 Two Forms Of Dual Controller 

We now wish to compare the p~rformance of a simple dual controller 

where the trace constraint is simplest as in (4.23) 

-p (k+1 ) = Pc 

where Pc is just a constant and an improved dual controller where the trace 

constraint is given by equation (4.30) 

if P bb ( k+ 1 1 k ) ~ P ~ 
p ( k+l) = 

P ( k+l 1 k ) 
aa 

and p is of the form described in Figure 4. 1 • 
c 

The simulation parameters are 

otherwise 

Q = diag [0.0002 0.025 ] ; R = 0.04 



x(O)""N[y',r] 
o ' 0 

T 
Y = [ 0.7 1.5 ] 

o 

x(ll°) T = [O. 1 O. 1 ] 

; ro = diag [0.01 0.1] 

P ( 1 10) = diag [0.05 4.0] 

N 
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The accumulated loss L ( k )= I 'y2.( k) and the squared out~ut signal y2 ( k ) 

i=l " < 

were averaged over 50 runs. Figure 4. 18 shows the three average IQSS curves for 

the non-dual, simple dual, and improved dual control policies. The averaged 

squared output y2 ( k) was averaged again over each 10 consecutive stages, 

such that, 

lOi 
y2(i) =0. 1 L 

10(i-1)+1 

7 (k) 

and plotted for the three control cases in Figure 4. 19. 

i = 1, 2, ..• , 40 

The conclusion of this example is clear. Using the simple trace 

constraint, a constant, yields a large improvement in performance. The use of the 

improved trace constraint, which monitors the gain parameter error variance P
bb 

( k ) , 

results in additional gain in performance. 

The dual controller uses the parameters 

M P c = 20. , P bb = 2. , ab = 1. 2 
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4.2.7. Exomple 7 Steody State Results 

We investiat.e nov/ the adaptive control policies over a long period of 

time. The plant parometers are simulated here as stationary pro cesses 

al (k+ 1) = O. 95 al (k) + w 0 ( k ) 

b1 (k+l) = 0.95 b1 ( k ) :- wb ( k ) 

with additive constant components 

a ( k) = 0
0 

+ 0
1 

(k) 

b(k) = b
o 

+ b
1 

(k) 

ond have a relotively large driving noise intensity 1 

Q = diag [0.002 0.4 ] ; R = 0.04 

The controller design however, uses the ossumed wiener process given by equation 

(4.4), 

o ( k+l ) = a(k)+w (k) 
a 

b ( k+l ) = b ( k ) + wb ( k ) 

The other parameters of th is si mu lat ion are 

0 1 (0) ""' N [0.3, O. l ] 

o = 0.6 o 
. , 

b
1 

(0) ,.... N [1., 4. ] 

b = 2.0 
o 
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â ( 1 10) = O. 1 . , b(lI O)=O.l 

P ( 1 10) = diag (O. 1 4 ] 

The 1055 curves for the non-dual, dual and perturbation controllers 

are shown in Figure 4.20, for a sum of 5000 stages. 

The performances of the dual and perturbation controllers are 

equally better than the non-dual controll~r<as is seen from the difference of the 

curves slopes. 

The parameters here are generated by a stationary pro cess in order 

to limit their variance at steady state, since the variance of the non-stationary 

(random walk) model process, grows indefinitely with time. 

4.2.8. Example 8 Steady State Without Exact Knowledge of Noise Covariance 

ln this example we '.=ompCire the performance of the three controllers 

for the sam~ system as in Example 7 , but with ~he following differences. Here the 

assumed Q is greater than the actual covariance matrix Q 
as 

Q = 9 • Q 
as 

where 

Q = diag [0.002 0.4 ] 

as in the previous example. Aiso the assumed observation no ise variance R , is 
as 
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sma/ler than the actual one R 

R 
as 

1 
= "9 R 

where 

R = 0.36 

The assumed noise covariances are used in the control law, with 

~ 

the results shown in Figure 4.21. The identification fails in tracking the parameters, 

and the burst phenomenon occurs once and again, under the non-dual control law. 

ln order to draw the accumulated loss curve for the non-dual control, which 
k 

reached a value in the order of 10
21 

, the accumulated loss L ( k ) = l y2 ( k) 

i=l 
is reset to zero at the end of each burst. It is significant that the parameter a ( k ) 

is strictly less than one and even 

a(k) ~ 0.9, Vk 

so that the system isstoble along the whole control period. Aiso the tu rn-off 

phenomenon does not occur in th is example. 

Figure 4.21 demonstrates the great advantage of the dua 1 control 

law, which by improving the parameters identification, prevents the repeated 

occurrence of the burst phenomena, thus maintaining satisfactory control. 

4.2.9. Example 9 Deterministic Unknown Parameters 

The present example was used by Wieslander and Wittenmark (4 ] . 
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The parameter a ( k) and b ( k) are deterministic time functions, a ( k) is 

a constant and b ( k) is as shown in Figure 4.22. The noise parameter used by 

the fi Iter are 

Q = diag [10- 7 2.10-3 ] R :: 0.09 

and the initial parameters guess is 

x ( 1 10) = [O. 1 0.1 l < 

with initial covariance matrix 

P(1\0)=[4.0 4.0 ] 

Figure 4.22 shows that using the non-dual control law the tum-off 

phenomenon occurs when the gain b ( k) decreases from its constant value of 0.5 

This tum-off situation remains in this example to the end of the simulation period, 
,.. 

with almost zero values for control and b ( k). Using the dual control technique 

results in good estimation of b ( k) and better control. Figure 4.23 describes the 

loss curves under non-dual, dual and perturbation control laws, and for no control 

u ( k) = O. The turn-off in this case render the system with virtualfy no control. 

The identification of the a ( k ) constant parameter is good, using the dual or 

non-dual control, and is not shown. The accumulated loss curves of the perturbation 

and dual controlfer are virtually identical in this exemple. 

The dual controller parameters are 
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p = 50. 
c 1 

M P
bb 

= 4. l , M 
u = 0.2 (Equation (4.31») 

The perturbation controller uses a square wave with amplitude 5 = 0.15 • 

4.2.10 Example 10 Non-Gaussian Parameter Process, Average Performance 

ln this example (and ·in the next one), we depart from the Gaussian 

process, which we use everywhere else in genereting the system random parameters 

in agreement with our model assumptions. 

Consider the event process such that 

Prob (event at stage k) = Y 

with the events being independent, i.e., 

Prob (event at k 1 event at j) = Prob (event at k),.., i. 

Th is is essentia!ly a disciete Po isson process. 

Assume the event to be a discrete impulse, the magnitude of which is 

Gaussien distributed, with zero mean and variance a2 . The magnitudes of impulses 

at different tîmes are independent. This process is white and has a variance of ya
2• 

Let w ( k) be that process, and let 

a ( k+ l ) = a ( k ) + w (k) 
a 

b ( k+l ) = b ( k ) + wb ( k ) 



where 

(0) ( k ) = [(0) (k) 
a 

T 
Io)b ( k) ] 

cov [(0) (k) ; (0) (j) = diag [i' 0'2 
a 

1'16 

Since our controller depends only on second order statistics, the 

Kalman filter that is used, is the optimal Iinear filter for this process. 

The system to be controlled is simulated using the above process for 
< 

the parameters. Fifty runs are simulated, and the average accumulated loss functions 

are computed and shown in Figure 4.24, for the dual, non-dual and perturbation 

controllers • 

The non-dual controller experiences many turn-offs, which are prevented 

by the dua 1 and perturbation contro lIers. 

The parameters noise process is simulated with 

2 
0' = 0.001 

a 

and the event probability is 

i' = 0.05 

; o. l 

The actual covariance of the process is thus 

Q = diag [0.001 0.1 ]·0.05 

but the filter uses the assumed covariance 

-~ 



117 

Q = ,diag [0.01 O. l ] 
as 

The observation noise is ,v ( k) "" N [0, R J, R = 0.04 . 

4.2. 11 Example 11 Non..;Gaussian Parameter Process, Single Run Results 

Here we give sorne results of one run of the 50" used in the previous 

example. The dual and non-dual controllers are compared in Figure 4.25, which 
~ 

describes their respective accumulated loss functions. Figures 4.26 and 4.27 show 

the b ( k) and a ( k) parameters respeetively, as weil as their respective 

estimates under the two control laws. 

Figure 4.26 shows the tum-off phenomenon occuring whi le using 

the non-dual controller at stage 220, b ( k) is virtually equal to zero. The 

identification of the gain parameter is mu~h better under the dual poliey. 

The identification of a ( k) is good with both controllers, as is 

seen in Figure 4.27. The noise intensity in the generation of a ( k) was taken 

relatively small, as otherwise the system becomes unstable with the non-dual 

contro 11er, because of the frequent turn-off phenomena. 

4.3 Second Order System Simulation 

ln this section we apply the dual control policy to a system of 

, second order with three random parameters. The model representation in this 

case is 
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y ( k ) = al (k) y ( k- 1 ) + a 2 ( k ) y ( k-2 ) + b ( k) u ( k- 1 ) + v ( k ) 

which can be written in the form of (3.5), (3.7) 

where 

and 

y ( k ) = cp (k- 1 ) x ( k ) + v ( k ) 

x ( k+ 1 ) = x ( k ) + (J ( k ) 

VJ (k-1 ) = [y ( k- 1 ) Y ( k-2 ) u ( k- 1 ) ] 

x ( k) = [a
2 

( k) a
2 

( k) b ( k) ] T 

(J ( k ) = [(,l ( k) (,l ( k) (,lb ( k) ] T "" N [0, Q ] 
al a 2 

Q = diag [q q qb ] 
al a 2 

v ( k) ~ N [0, R ] 

The control Equation (3.22) is in the case 

where 

a b (k+ l 1 k) â! (k+ 1 1 k) + P; ( k+ 1 1 k ) 
u (k)= - A Y(k) 

b 
2 

( k+ l 1 k ) + P bb (k+ l 1 k ) 

120 



P; ( k+ 1 1 k ) = [Pal b ( k+ 1 1 k ) 

Y ( k ) = [y ( k) Y ( k- 1 ) ] T 

P b ( k+1 1 k) ] 
a 2 

121 

The dual, non-dual and perturbation controllers are applied to this 

second order system, and the respective performances are compared. The controllers . 

and filter used, are described in Section 4.2. 
r 

Next we give two examples. The first is concerned a comparison 

of average performances of the different- ~ontroll~rs, and the second one investigates 

the identification and control results of a sfngle run. 

4.3.1. Example 1 Comparison of Average Performance 

The average accumulated 1055 functions are computed in this example 

using a 50 runs system simulation, with random noise samples, and random initial 

conditions. Each run is simulated with the dual, non-dual and perturbation controllers, 

and the resulting average loss curves are shown in Figure 4.28. 

The simulation parameters are as follows: 

Q = diag [2.10-5 2. 10-
5 

R = 0.04 

x ( 1 ) ,... N ['Y 0' ro ] 
T 

'Y = [0.3 0.3 1. ] o 

6.10-3 ] 
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r = diag [0.1 O. 1 4. ] 
o 

x ( 1 10) = [0.1 O. 1 0.1 J T 

p(1IO)=[4. 4. 4.J 

The dual control 1er uses, in this simulation, a trace constraint 

of a simple form 

. P ( k+l) = Pc 

where () c is piecewise constant as follows: 

Pc = O. 

P = 40. 
c 

P = 250. 
c 

p = 450. 
c 

, k ~ 15 

, 15 < k < 100 

, 100 ~ k < 300 

, 300 ~ k 

The perturbation controller uses a square wave perturbation signal, of amplitude 

6 = 0.01 . 

Figure 4.28 demonstrates the advantage of the dual control policy over 

the non-dual one. In this case the perturbation controller performance, is almost 

equal and somewhat better thon that of the dual one. 

4.3.2 Example 2 Single Run Results 

We sho~.." in this example sorne of the identification results, of one of 
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the fifty runs that were used in the previous example. In this run the dual and non-

dual controller perform equally weil up to about stage 250, as can be seen from their 

respective loss curves in Figure 4.29. This is true in spite of the fact that the 

identification of the parameters al (k) and b ( k), is quite poor under the non­

dual palicy. However the non-dual contro/ler is adaptive, in the sense that it depends 

not only on the parameter estimates but also on the estimation error variance. This 

dependence or the estimation error serves.well up to stage 250, but is not capable in 
r 

preventing a deterioration in control, in the interval [250, 350 J, which is then 

followed by a period of good control due to better identification. Figures 4.30 

and 4.31 describe the parameters al (k), b ( k) and their estimates 

â 1 ( k) and b ( k). The superiority of the dual controller is c1early demonstrated. 

The estimate of the parameter a
2 

( k) is not shown as its identification is good with 

both controllers. 
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CHAPTER V 

ADAPTIVE CONTROL WITH ADAPTIVE FILTERING 

5. 1 Introduction 

ln a recent paper [9] P.R. Bélanger derives an algorithm for the 

estimation of noise covariance matri~es for Iinear,discrete,time-varying stochastic 

pr~cesses. We apply in this chapter his résu/ts to construct an adaptive fi/ter. The 

noise variances are unknown and must be estimated. By using B~langer's algorithm 

and treating the covariance matrices as time varying pc.:!r!:!meters we update them 

through real-time identification and use the updates in the fi /ter, thus obtain ing 

adaptive filtering. This adaptive filter together with the dual adaptive control 

poliey yields an overall adaptive scheme for stochastic systems with uncertain 

noise parameters. 

5.2. Development Of The Adaptive Fi/ter 

We assume that the noise variances Rand Q are not known. The 

Kalman filter used by the adaptive control poliey is thus not optimal. Applying 

the method of Mlanger [9 J, we estimate on line, at each stage, the noise variances, 

and use the updated values in the fi/ter equations, thus obtain ing an adaptive fi/ter 

that uses progressively better noise variances estimates. 

To derive the adaptive filter we use notations similar to those used 

by Bélanger. The system given in equations (3.5) and (3.7) is now written as, 
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x ( k) = A ( k- l ) x ( k- l ) + c.l ( k- l ) 

y(k) = H(k)x(k)+v(k) 

where the matrix A ( k-l ) is included for generality, and 

H ( k) ~ tp (k- l ) 

x ( k) and ~ (k-1) are as in Equations, (3. 4) and (3.6) respective Iy, and 

c.l (k) ,.., N [0, Q ] 

v ( k) ,.., N [0, R ] 

where Rand Q are constant unknown $c<,,!ar and matrix respectively. 

Assume that Rand Q can be represented in the form of a 

linear combination, 

N 

R = L ai Ri 

i=l 

where R. and Q. are known. The problem is to find â - the best estimate 
1 1 

of the vector a 

(5.1) 

(5.2) 

(5.3-a) 

(5.3-b) 

(5.4-a) 

(5.4-b) 

(5.5) 
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Assume a filter of the form 

x ( k 1 k- 1 ) = A ( k- 1 ) x ( k- l 1 k-2 ) + K ( k~ 1 ) Il ( k- l ) (5. 6) 

Il ( k) = y ( k ) - H ( k ) x ( k 1 k-l ) (5.7) 

where Il (k) is the innovation sequence [10], and where the gain sequence 

K ( k) is to be chosen such that, th~ filt~r is uniformly asymptotically stable. 

We choose the gain as 

K ( k ) = A ( k ) P ( k 1 k- l ) H T ( k) [H ( k ) P ( k 1 k- l ) H T (k) + R (k) ] -
l (5. 8) 

where we use for the unknown covariance R, its estimate at stage k, such that 

,. 
R ( k ) 

N 

= l â j 

j=l 

( k) R. 
1 

â. ( k) being the estimate of o. at stage k. The covariance matrix sequence 
1 1 

satisfies 

(5e 9) 

P ( k 1 k-l ) = ~ ( k-l ) P ( k-l 1 k-2) ~ T ( k- l ) + Ô (k) + K ( k) R( k ) KT ( k ) (5. 10) 

where again 

N 
Q(k)=I â

i 
i-l 

( k) Q. 
1 

is the estimate of Qat stage k, and 

(5. 11) 
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~( k) = A ( k ) - K ( k ) H ( k ) 

If Rand Q were known, the gain sequence K ( k), using 

these covariances, will be optimal and the innovation sequence ZI ( k) will be 

,. " 
white. We use the Kalman gain (5.8) with the estimates R( k) and Q (k) . 

Thus the gain is not optimal but the resulting filter is uniformly asymptotically 

stable [2 ] . 

Under this stability condition, B~langer de rives the following 

result for the lagged products [9 ] 

N 
E [ ZI ( k ) ZI T ( k- t ) ] = l 

i=l 

where the f. ( k,l) are given recursively by 
1 

f. ( k, 1) o. 
1 1 

f. ( k,O) = H ( k) M. ( k,O ) 
1 1 

f. ( k,l) = H ( k ) M. ( k,l ) . , 1> 0 
1 1 

and the vectors M. ( k, 1 ) by 
1 

M. ( k,l ) = 
1 

~ ( k-l ) M. ( k-1, 1-1 ) 
1 

. , 1 > 1 

M. ( k,l ) = ~ ( k-l ) M. (k-l,O) - K ( k-l ) R. 
1 1 1 

M. ( k,O ) = s. (k) H
T 

(k) 
1 1 

M. ( k,l ) = 0 . k <- 1 , 
1 

(5. 12) 

(5. 13) 

(5. 14) 

(5. 15) 

(5.16) 

(5.17) 

(5. 18) 

(5. 19) 



The S. (k) scalars satisfy 
1 
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s.> ( k+l ) = ~( k ) S. ( k) ~ T ( k ) + K ( k) R. KT (k ) + Q. (5.20) 
1 1 1 1 

S. (0) = 0 (5.21) 
1 

Next, it is desired to obtain the estimate â (k). We proceed 

by defining the scalar 

cr (kt 1) = Il (k) Il ( k-I ) (5.22) 

and the row vector 

F (k,l) = [ f
1 

(k,l) f
2 

(k,l) ] ••• f
N 

(k,l) J (5.23) 

Equation (5. 13) may now be wri tten as 

E [ cr (k,l) ] = F(k,l)a (5.24) 

and by defining a noise variable 11 (k, 1 ) , we mey write 

cr (k, 1) = F ( k,1 ) a + 11 (k, 1 ) (5.25) 

where, c1early 

E [11 (kt 1 ) ] = 0 (5.26) 

We now agree to measure the lagged products 0'( kt 1) in the order 



131 

O'(l,O), 0'(1,1 ), ... ,O'(l,L), 0'(2,0), ... , 0'(2,L), ... 

and use an integer t to count these observations 

t =. ( k- 1 ) ( L + 1 ) + 1 + 1 (5.27) 

Equation (5.25) becomes 

0'( t) = F ( t ) a + Tl ( t ) t (5.28) 

To estimate a, the following optimization problem is posed: 

Find the vector â (t) that minimizes 

t 

J (t) = l [O'( i ) - F (i) a] T R ( i ) [O'( i ) - F ( i ) a ] 

j=l 

T -1 + (a-a ) r (a-a) 
o 0 0 

(5.29) 

where R( i ) , i = 1,2, .•• ,t and r are positive definite matrices. 
. 0 

This optimization problem is amenable to the recursive solution 

â ( t ) = â ( t-1 ) + r( t ) FT ( t ) R-~ (t) [O'( t) - F( t ) â (t-l ) ] (5.30) 

r ( t ) = r( t- l ) - r ( t-l ) FT ( t) [F ( t) r(t- 1 ) FT (t) + R ( t) ] 
l 

F ( t) r(t-l ) (5.31) 

with initial conditions 

â (0) = a 
o 



132 

If the following conditions hold 

(1 ) E [a J = x 
0 

(2) 
. T 

E [a-a ) (a-a ) ] = ro o 0 

(3) 71 ( t ) . is wh ite 

(4) R (t) = E [71 ( t ) 71( t) ] 

Then â ( t) is the min imum-variance esHmate of a, and r( t) is the error 

covariance matrix. Under these conditions Equations (5.30) (5.31) represent 

'" the Kalman filter for the system 

a(t) = a(t-1) 

0'( t) = F ( t ) a ( t ) + 71 ( t ) 

Thus we use the filter (5.30) - (5.31), with a as the best 
o 

prior estimate of a, and a guess of the initial r . R (t) is generated 
o 

from the Equations (see [9 J) , 

w ( k ) w ( k-1) ; 1 =1 0 

R (t ) = 

2w(k) vi(k) ; = 0 

w ( k) = F ( k,O ) â ( k ) 

5.3 Dual Control With Adaptive Filtering 

ln this section we apply the adaptive filter to the dual controller 

(5.32) 

(5.33) 

(5.33) 

(5.34) 
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that was developed in Chapter 3. The system is given by Equations (3.5), (3.7) 

At Stage k 

x ( k+ 1 ) = x ( k ) + II) ( k ) 

y ( k ) = (fj (k- l ) x ( k ) + u ( k ) 

The dual controller is given by (3.49) - (3.52) 

li .( k) sgn u 
0 

( k) if 1 u 
0 

( k ) 1 < li ( k ) 

u* (k) = 

otherwise 

u
O 

(k) = - [b / (k+1Ik) ]-1 [b
1 

(k+1Ik) â
c
( k+1l k ) 

+ p +' (k+ 1 \) ] T Y ( k ) 
n 1 

Ijï( k) if Jl ( k) > 0 

li (k) = 

o otherwise 

(5.35) 

(5.36) 

(5.37) 

(5.38) 

(5.39) 

. 1 T 
Jl ( k ) = R [11 ( k+ 1 ) - tr P - (k+ 1 1 k) ] - y (k) Y ( k ) (5.40) 

0c( k) and Y ( k) are given by (3.12) and (3. 13) respectively. 

The esti mate and error variances are given by the adaptive fi /ter 
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x ( k+ 1 \ k) = x ( k 1 k- 1 ) + K ( k ) li (k) (5.41) 

li ( k) = y ( k ) - t,O ( k- 1 ) X ( k 1 k- 1 ) (5.42) 

K ( k ) = P ( k 1 k-1 ) ~ (k-1 ) [(D (k-1 ) P (k Ik-1 ) t,O T (k-1 ) 

+ R '( k) J-,l (5.43) 

P (k+ 1 \ k) = ~ ( k ) P (k 1 k- 1) ~ T ( k ) + K ( k ) R ( k) KT ( k) + â (k) (5.44) 

N ,.. 
= l âi (k) Q (k) Q. 

1 

i=l 

N 
R(k) = \' â. ( k ) Q. L 1 1 

i=l 

â ( k) = [â1 (k) 02 ( k ) •• .• oN (k) J T 

~ ( k) =.1 - K ( k ) t,O (k-l ) 

with the relation 

t = ( k-1 ) ( L + 1 ) + 1 + 1 i i = 0, 1, 2, ••• , L 

in mind, â ( k) is updated according to 

â ( k) = â [t
k 

= k (L+l .> J 

t k is the va lue of t, where the â is updated, 

t
k 

= (k-l ) ( L + 1 ) + L + 1 = k (L + 1 ) 

(5.45) 

(5.46) 

(5.47) 

(5.48) 

(5.49) 

(5.50) 
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â (t) is then estimcted by the filter of (5.30) and (5.31). 

Initially the filter is not updated and the lagged products are not 

measured, in accordance with a requirement of B~langer's algorithm, by which, 

the norm of the state transition matrix of the Kalman error, must be negligibly 

small. 

We start by fixing an initi~1 period in which the parameters are 

identified by using some fixed a , and thus the resulting Q and R • At the 
o 0 0 

end of this interval we start the adoptive filter by measuring L +1 innovations 

Il ( i ) = y ( i ) - <p ( i- 1 ) x ( i 1 i-1) ; i = 1 ,2, ... , L + 1 • 

Wh en i = L +1 we determine k=l , t=l and start the dual-control-adaptive-

filtering policy. At each stage k the integer t varies by L+1 units. 

at k: t = ( k- 1 ) ( L + 1 ) + 1 , ... , (k-1 ) ('. ~ +1 ) + L + 1 

The u~ate â( k) is done at the upper value of t, t
k 

= (k-1) (L+1 )+L+1 =k(L+1) 

5.4 System Simulation 

The system simulated is of first order with two random parameters as 

described in Chapter 4, Section 4.2. The observation equation is, 

y ( k ) ='p (k-1 ) x ( k ) + v ( k ) (5.51) 

cp ( k- 1 ) = [ y ( k-1 ) u ( k-1 ) ] (5.52) 
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The parameters are the random walk processes, 

x ( k+ 1 ) = x ( k ) + w ( k ) (5.53) 

x ( k ) = [a(k) b(k)JT (5.54) 

w(k) 
. T 

= [ w
a 

( k) wb ( k ) ] (5.55) 

W ( k) <V N [0, Q] , v (k) ,... C 0, R ] (5.56) 

< 

The noise covariances Q and Rare not known. Their actual values are 

Q = diag C qaaqbb ] = diag [0.0002 0.02 J (5.57) 

R = 0.04 (5.58) 

The following matrices and scalars are assumed 

Q1 = diOlg [0.002 0 ] (5.59) 

Q2 = diag [0 0.08 ] (5.60) 

(5.61) 

R
1 

= 0, R2 = 0 1 R3 = 0.16 (5.62) 

The filter uses the estimated covariances 

3 .. \' Q (k) = â. ( k) Q. L 1 1 
(5.63) 

i=l 

3 
" \' R (k) = â. ( k) R. L 1 1 

(5.64) 

i=l 
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5.4.1 Example 1 Comparison Of Average Performance 

Four modes of control are simulated and compared as to the 

performance of the control policies. 

The first case" is that of non-dual control as given by Equation (5.38), 

and non-adaptive filtering. The second case consists of the dual control strategy 

as given by Equat.ions (5.37) - (5.40) , w!th non-adoptive filter. In the third 

case we use the non-dual controller but with an adaptive fi Iter, and finally the 

fourth control case is that of dual control and adaptive filtering. 

ln the first and second cases, where a non-adaptive filter is used, it 

is assumed for the vector a 

a =[1.1.1.] 
o 

a constant vector. Consequently the filter and controller use the assumed noise 

covariances Q 
as 

Qas = diag [0.002 0.08 ] 

R = 0.16 
as 

while the actual covariances are those given by (5.57) and (5.58). 

(5.65) 

The value of a in (5.65) is used as the initial guess of â ( t) in 
o 

the adaptive filter, â ( 0) = a ,and the noise covariances are tracked and updated 
o " 

in the third and fourth control cases according to (5.63) and (5.64). The initial 
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error covariance matrix in the fi Iter for a (t) is taken as r( 0) = l, the 

unit matrix. 

The four performance curves are averaged over 45 runs, which are 

simulated with randomly chosen noise samples. 

The initial estimates of the system parameters are taken as 

â. ( t) = O. 1 b. ( 1 ) = O. 1 

and the filter initial error covariance matrix is 

P(lIO)=diag [4.04.0] 

The actual initial values of the system parameters are taken 

randomly from the distribution 

0(1 ) ~ N [0.7, 0.01 ] 

b (1 ) ""' N [1.5, 0.1 ] 

The average accumu lated loss functions 

K 

t ( k) = l y2 ( i ) 

i=l 

are given in Figure 5.1 . The performance of the non-dual controller with adaptive 

filtering is approximately the sarne as that of the dual controller with non-adaptive 

filtering. The superior identification of the first, is partly cancelled by the non-

duality of its control law, wh ich leads to the occurence of turn-off and burst 
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FIGURE 5.1 AVERAGE ACCUMULATED ·LOSS FUNCTIONS, EXAMPLE 1. 
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phenomena. The advantage of the dual controller in the second case, is on the 

other hand offset by the inferior indentification capability of the filter which is 

using the wrong noise covariances. 

The performance of the non-dual control with non-adaptive filter, is 

seen to be quite poor, while the combined dual controller and adaptive filter gives 

a very large and fundamental improver:nent. 

, The dual controller uses the.. trace constraint according to Equation 

(4.30) in Section 4.2, with 'the parameters, 

P = 11. 
c 

. , M 
P

bb 
= 2.5 . , 

5.4.2 Example 2 Single Run Results 

ln this example we compare the performance of the four control 

policies, for a single run, one of those used in the previous example. In the four 

cases the same noise samples are used. The four control policies are: 

(1) Non-dua 1 control, non-adaptive filter. 

(2) Dual control, non-adoptive filter. 

(3) Non-dual control, adaptive filter. 

(4) Dual control, adaptive filter. 

The four accumulated loss curves are shown in Figure 5.2. In three 

of them there is a large jump of the loss function just after stage 900. The cause of 

this jump is the burst phenomenon. The gain parameter b ( k ) becomes small above 
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stage 900 and changes its sign a number of times. Ifs estimation under the first 3 

control strategies mentioned above, is quite poor, but the estimates are small in any 

... 
case. The estimates b ( k) just prior te stage 900, were quite good and the errer 

variance Pub ( k) was small. The result is that the controller (5.49) produces 

erroneously large signais and the burst phenomenon is on. After a relatively short 

period (50 - 150 stages in our case) the fi Iters catch on and the burst ends. 

"' 
ln the two cases of dual confrol we obtain the best results, especially 

in the fourth control policy, of dual control and adaptive filtering. The burst in 

this case appears very' mildly, and is ended shortly due to better tracking of the 

parameters, resulting from the control duality coupled with the filter adaptivity. 

We now proceed to observed the performance of the adaptive fi Iter 

in the case of dual control with adaptive filtering. Figure 5.4 shows the estirnated 

covariance function q" ( k) , and Figure 5.5 describes the other covariance 
aa ,. 

estimates q bb ( k) and R ( k) , as weil as their actual values. 

It is seen that the observation noise covariance R is estimated very 
,. 

efficiently, as R ( k) converges very fast after about 400 stages - te its final 

value. This final value is about 0.0355 as compared te the actual value of R - 0.04. 

As was pointed out in Chapter 3 the dual adaptive control policy, is invariant 

under the observation noise intensity, as long as R is known. The adaptive filter thus 

efficiently identifies this parameter. 

The identification of the gain-parameter noise covariance qbb ( k ), 

isdone lessefficiently, asitisseen in Figure 5.5. The convergence of qbb (k) to its 
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,. 
actua 1 va lue is slower th an that of R ( k ). But the covariance filter produces a 

very bad estimate of the a ( k) parameter noise covariance. As is seen in Figure 

5.5, qbb (k), diverges from its true value. \t must be noted however, that the 

estimate â ( k) plays the least important ro/e in the adaptive control/er, and :; 

also assumed to vary slowly in comparison to b ( k ). Hence its identification is 

quite good, despite the peor knowledge of q . Even if the error in estimation . . aa . 

a (k) is large, it affects only Iittle thecpntroller, since the control law is 

independerit of the error variance p ( k ) , as can be seen from '~)e control 
aa 

Equation (4. 11). 

o 
u (k)=-

A 

b ( k+ i 1 k ) â ( k+ 1 1 k ) + P ab ( k+ 1 1 k ) 

i? ( k+ 1 1 k ) + P bb ( k+ 1 1 k ) 

ln Figure 5.3, one can see ·the error variances of the noise covariance . 
A 

parameter estimates r ( k). \t is seen that r R ( k ) - the error variance of R ( k) 
,. 

decreases fast and stays very small reflecting the good R ( k) estimate. P ( k) 
qbb 

decreases also as the estimate qbb ( k) improves, and the variance r ( k ) 
qaa 

decreases on Iy very slowly reflecting a low confidence in qbb ( k ). However, the 

fact that it decreases, points out that the estimote ,q ( k) will probably improve 
aa 

in the future or at least wi Il not diverge further. 
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This thesis considers three main topics which are related to each 

other: optimal input design for identification of multivariable, steady state nonlinear 

systems; dual adaptive control of linear, stochastic, dynamic systems with random 

parametersj implementation of dual adaptivr;! controller with adaptive filtering. 

ln the following we present a list of the thesis main contributions 

in an abbreviated form, which to the best of the author's knowledge are original. 

Other material in the thesis body is considered as by-products of the main contributions. 

6. 1 Thesis Contributions 

l,. Optima 1 input synthesis for 'steady-state systems by formulation of 

an optimal control problem in matrix form. 

2. Development of conjugate gradients algorithm for the solution of the 

Two-Point-Boundary-Vcilue-Problem with matrix equations. 

3. Alternate simplified solution to the dynamic minimization problem 

by sequential function minimizations. 

4. A technique for obtaining a dual adoptive control law, by using 

a measure of the system information matrix. 

5. A comparison by simulations of the dual, nondual and perturbation 

controllers . 
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6. Application of Bélanger's noise covariance estimator to the 

implementation of the dual adaptive control law with adaptive 

filtering. 

6.2 Suggestions for Further Research 

1. A further theoretical,and practical investigation of the dual 

controller trace constraint' <p ( k) will result in better 

implementation of the dual control policy. 

2. The application of the theory to stochastic multivariable systems 

is an open field for research in the problem of adoptive dual 

real time controllers. 

6.3 Final Observations 

The optimal input which is designed in Chapter 2, allows best 

. identification with relatively small number of system disturbances from its steady-state. 

The dual adaptive controller is seen, by system simulations, to perform 

about as weil as the perturbation controller when the noise sratistics are known, but 

seems to perform better wh en the noise statistics are not completely known. 

With incomplete knowledge of the noise covariance matrices, the dual 

adaptive controller in conjunction with adaptive filtering is seen to perform efficiently. 
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APPENDIX A 

We show here that the convexity [18 ] or directional convexity [19 ] 

assumptions, needed for the application of the discrete minimum principle, do not hold 

for the discrete optimal control problem of (2.31) - (2.32). 

Regarding the dynamic constraint Equation (2.29) wh ich is rewritten as 

x ( k+ 1 ) - X ( k ) = F k ( X < ( k ) 1 U ( k ) ) (A.l) 

with 

. 
u (k) E .n. = (u (k): 1 u (k) 1 ~ p } , (A. 2) 

the convexity property states that the sets. 

v ( k,u ) = (F
k 

( X ( k ) 1 U ( k ) ': u ( k) E .n. } (A. 3) 

are convex for any X ( k) and k = i" .. 1 N. 

We recell thet the set V ( k, u) is convex if every pair of 

elements X, Y e V (k, u) implies 

a x + ( 1-a ) y E V ( k, u ), 0 < a < 1. (A.4) 

The next example shows that the convexity essumption does not 

hold in our case. Consider the measurement system 

2 
y ( k ) = u (k) xl (k) + u ( k ) x

2 
( k ) + v ( k ) (A.5) 
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where y ( k) and u ( k) are scalars. Thus 

y(k)=C(u(k)x(k)+v(k) (A. 6) 

To evaluate Fk ( X ( k) , u ( k» we take X ( k) = 1, Q ( k ) = 0, and obtain 

From Equation (2.29) 

, 
4 3 

u u 

(A. 7) 
3 2 

u u 

where we use u· and R for u ( k) and R ( k ), and k is fixed. We show that 

the set 

v ( JJ ) =[ F ( u ) \ u \ ~ p } (A. a) 

is not convex. 

1 
Take 0 - '2 ' u1 = 71 , u2 = -1] such that \ 1]\ ~ p and 11 ~ O. Then 

a F (u1 ) + ( 1-0 ) F ( u
2 

) 

~ 3 4 3 ~ 

11 11 11 -1] 
1 1 1 1 --- 2 2 4 2 

3 2 4+ 2+R 3 2 17 +11 + R 
1'/ 11 

1] 1] 
-T] 1] 

4 0 1 17 
- - , V(u) (A. 9) 

T]4+1]2+R 
0 

2 
T] 
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Since no u exists such that u2 = 0 and u 
3 = o. The set V ( u) is thus 

not convex. 
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APPENDIX B 

Theorem 2. 1 is extended here to the case where the parameters are 

mode led by stochastic processes. The system mode 1 is 

x ( k+ 1 ) = x ( k ) + w ( k ) (B. 1) 

y ( k ) = C ( k ) x ( k ) + v ( k) ; C ( k ) = C ( u ( k ) ) (B. 2) 

"' 
w ( k ) '" N [0, Q ( k ) ,] (B.3) 

v(k)",N [0, R(k)] (B.4) 

Theorem 2. 1 applies to the parameter model (B. 1) as weil. The 

proof is exactly the same as that of Theorem 2.1, but the notation is more cumbersome 

here. The covariance matrix Equation (2.29) is 

X(k+1 )=X (k)+X (k)CT(k) [C(k)X(k)CT(k)+R(k) ]-l C (k)X(k)+Q(k) 

(B.5) 

which, after applying lemma 2.1 becomes 

x ( k+ 1 ) = [X -
1 

(k) + CT ( k ) R -
1 

(k) C ( k) ] -
1 

+ Q ( k ) (B. 6) 

and recursively we may write (using Rand Q for R ( k) and Q ( k ), for 

simplicity) , 

X ( N+ 1 ) = [ [ .•. [X -1 (1 ) + CT ( 1 ) R C ( 1 ) J -1 + Q J - 1 + CT ( 2 ) R -1 C (2) J - 1 

+ Q J-1 + ..• + Q J-1 + CT ( i ) R- 1 C ( i ) J-1 + Q J-1 + ... 

+CT (i+1) R-
1 

C (i+1) J-1 +Q ]-1 + ... +CT (N)R-1C(N)r1+Qr1 

(B.7) 
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where C ( i) = C ( u ( i» , i = 1 , ... , N. 

The dynamic N-stage optimization problem is 

min tr X (n+1 ) (B.8) 

u(l), ... ,u(N) 

where tr X ( n+1 ) is again a symmetr~c function of ail the stage vectors u ( i) and 

by the sorne proof of theorem 2. 1 it is seenthat (B. 8) can be done sequentially by 

N single stage minimizations. 


