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Minimal Stable Partial Realization*?

G. LEDWICH$ and J. B. MOORE$

An asymptotically stable minimal order realization of a partial sequence of Markov
parameters is achieved by reducing the problem to a standard but minimal one in
decision algebra.

Summary—In this paper two equivalent sets of necessary and
sufficient conditions for the existence of an asymptotically
stable partial realization are developed. Both sets are
expressed as multivariable polynomial equations which may
be tested for the existence of a solution in a finite number of
rational steps via decision methods. Should a solution exist, it
may be evaluated with the aid of polynomial factorization.
The first set of conditions are based on results due to Ho and
Kalman, and are useful for the case where the number of
specified Markov parameters is greater than the order of the
realization. For other cases, the second set of conditions
which include results from a companion paper on minimal
observers, require less computational effort to be tested.

1. INTRODUCTION

SINCETHISpaper is concerned with asymptoti-
cally stable partial realizations of time invariant
systems using decision methods, the relevant
aspects of both these topics are now reviewed.

1.1 Asymptotically stable partial realizations
An important modelling or realization problem

is to determine a state-space model of a given
system from a particular input-output descrip-
tion of that system. Gilbert [l] first achieved
minimal order realizations of a specified transfer
function matrix, but his algorithm requires that
the transfer function matrix elements have
distinct poles. Kalman [2] developed an al-
gorithm to reduce the state-space of any
non-minimal realization to a minimal one. Ho
and Kalman [3] use the Markov parameters Yj
forj=l,2, . . . of the proper rational transfer
function matrix G(s) to produce a minimal
state–space realization. Other minimal realiza-
tion algorithms exist which may be more
computational efficient [4-7]. Note that in prac-

*Received 16 April 1975; revised 6 October 1975; revised 5
March 1976. The original version of this paper was presented
at the 6th IFAC Congress which was held in
Boston/Cambridge, MA. during August 1975. The published
Proceedings of this IFAC Meeting may be ordered from:
ISA—Instrument Society of America, 400 Stanwix Street,
Pittsburgh, PA 15222, U.S.A. This paper was recommended
for publication in revised form by associate editor J.
Ackermann.

tWork supported by The Australian Research Grants
Committee.

$Electrical Engineering Department, University of New-
castle, New South Wales, 2308, Australia.

tice only the first 2n~.x parameters need be
specified where n~.. is an upper bound on the
order of such a realization.

Let us consider, the linear time-invariant
system with state–space equations

x(t) =Ax(t)+ Bu(t), y(t) =C’x(t)+Du(t)
(1.1)

with u an r-vector input, y an m -vector output
and x an n-vector state. Its transfer function is

D + C’(S1– A)-’l?

=D+crBs-l +C’ABs-2+ CrA2Bs-3+ . . .

Recalling that the Markov parameters Yj of a
transfer function G(s) are defined from G(s) =
YO+Y,S-’+Y2S-2+ . . . it is now clear that the
system (1.1) is a realization of G(s) if and only if

yO=D, Yj=C’Ai-’B for j=l,2,. . .
(1.2)

When only the first M Markov parameters are
available and it is required to determine [C, A, B ]
such that Yj = C’Ai-’B for j = 1,2, . . . M, then
we have what is known as a partial realization
problem. An algorithm to determine a minimal
partial realization, in general not unique, is given
in Tether [8] or Kalman [9] (note also [10]).
Unfortunately this algorithm will not guarantee
asymptotic stability of the realization even when
it is known that the system giving rise to the
Markov parameters is asymptotically stable.
Efforts to include a stability constrant on this
form of canonical realization are described in
[16]. The algorithm presented can be im-
plemented for relatively simple systems but
would require further research effort to give a
precise procedure to implement the various tests
for higher order multivariable systems. In this
paper decidability theory and polynomial factor-
ization are applied to achieve minimal asymptoti-
cally stable partial realizations—admittedly at
the expense of computational effort.
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1.2 Decision methods
The decision methods of interest to us here

determine whether or not a vector u exists such
that ~(u) = Oand g(u)> Owhere ~(”) and g(”) are
vectors with each element a polynomial in any
given element of u. Such a decision can be made
in a finite number of rational steps [11]. Unfortu-
nately the number of steps increases exponen-
tially with the number of unknowns, the ele-
ments of u, and the number of inequalities.
Reference [12] provides a method for determin-
ing a solution v which satisfies the above
equalities and inequalities—given of course
knowledge that such a u exists. This solution
method involves polynomial factorization and
thus in theory involves an infinite number of
steps.

Perhaps the key contribution of this paper
consists of the efficient use of results due to Ho
and Kalman, to formulate the stable partial
realization problem in a form suitable for
solution by decision methods [11, 12]. Of the two
solutions presented, the approach using the
Ho-Kalman results, is most efficient for the case
when the number of specified Markov parame-
ters A4 satisfies n ts M s 2n T where n T is the
order of the minimal asymptotically stable partial
realization. When M > 2n T the Ho-Kalman
algorithm may be applied directly. But when
M < n t some of the ideas of a companion
paper [13] for designing special classes of mini-
mal order observers are employed. (Actually it
was the observation by T. E. Fortmann that
certain observer problems could be expressed as
stable partial realization problems that initiated
our investigations of this topic.) There is
intentionally some duplication of [13] in this
paper for the case M < n t since for the reader
whose chief interest is the stable partial realiza-
tion problem, much of [13] would be obscure.

Section 2 reviews some known realization
results and extends these to derive a set of
necessary and sufficient conditions for an asymp-
totically stable partial realization. A series of
Hankel matrix properties are developed in
Section 3 including a set of lower bounds for the
order of a minimal realization. In Section 4, these
properties are used to simplify the decision
problem presented in Section 2 and a procedure
is presented which may be used to evaluate the
minimal order asymptotically stable partial real-
ization. In Section 5 an alternative method to that
described in Sections 2-4 is presented and is
shown to be more efficient for the case M < n t.

2. REALIZATION THEORY

In this section necessary and sufficient condi-
tions for the existence of an asymptotically
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stable partial realization are presented. In de-
veloping these conditions, the relevant results of
realization theory and partial realization theory
are reviewed.

2.1 Case Y,, Y,, . . . specified

In the first instance we review realization
results for the case where an infinite set of m x r
Markov parameters Y,, YZ,. . . are specified—
see Ho and Kalman [3].

First Ho –Kalman result. The transfer func-
tion G(s) (possibly non minimal) with specified
Markov parameters Yj for j = 1,2, . . . has a
denominator

+ ~l~l~~~?and only ~;s) =Sq+flq_lsq-’ +...

Y#O+ Yj+l~, + . . . + Yj+q_,p .-l + Yj+q = o

for j=l,2,. . . (2.1)

Before summarizing a second result from [3] it
is useful to define the Hankel matrices Ha. and
~.. in terms of the specified Markov parameters
Yjf0rj=l,2,. ..aS

[ ‘1”

Y, Y, “ “ Yj

Y, Y, “ . Yj+,

Hij= o . ,
. .

~ Y,+l . 0 Yi+j-,

Hij =

Y, Y, . . Y,m
Y, Y. . . Y,+,

1“Y,+, Y,+* . . Y,+,

(2.2)

Second Ho -Kalman result. For a transfer
function with Markov parameters Yj for j =
1,2,. . . and a denominator polynomial (3(s) of
degree q, an irreducible realization is of order

n = rank H.. (2.3)

Recall that the rank condition rank H.q s p

for some p < min {mq, rq } is equivalent to the
determinant conditions

lH~+,l = O for all t’ (2.4)

where H~+, denotes the t’th (P + 1)x (P + 1)

submatrix of Hqa.
With knowledge of the order n of the

realization, a system realization may be deter-
mined using the Ho–Kalman algorithm [3] or
[4-7].

2.2 Case Y,, Y,, . . . Y~ specijied
When only the first M Markov parameters
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Y,, Y2,... YM are specified, we have what is
known as a partial realization problem. An
algorithm described by Tether [8] and Kalman [9]
achieves a realization for this case, but there is
no guarantee that the realization is asymptoti-
cally stable. In this section we achieve asymptot-
ically stable partial realizations using the Ho-
Kalman results as a starting point. It now proves
convenient to introduce the following point of
notation.

Point of notation. An n th order realization
having a transfer function with the first Al
Markov parameters Y,, Y,, . . . Y~ and a qth

order denominator polynomial ~(s) will be
denoted as an [n, q, M] realization. An asymptot-
ically stable [n, q, M] realization will be denoted
an [n, q, M, As] realization.

Now since an asymptotically stable partial
realization is required, it is necessary that the
characteristic polynomial /3(s) have left half
plane zeros. Equivalently, there must exist
parameters u,, w, and some positive constant ●

such that

result the transfer function denominator polyno-
mial is ~ ( V~, s ) and since /3( Va, s ) is defined as in
(2.5) the realization is asymptotically stable.

For q = M equation (2.6) involves no restric-
tion on ~(s). An arbitrary /3(s) maybe chosen to
have strictly negative zero and 11~~ will be fully
defined using (2.7), for any such choice. Using
the second Ho–Kalman result above it is clear
that the order of an asymptotically stable partial
realization must in this case satisfy n <
min {Mm, Mr).

The key lemma of this section, now stated, is
an immediate consequence of the above claims
and the second Ho–Kalman result.

Lemma 2.1. A [n, q, M, As] realization exists
for some n s p if and only if the following
condition (C 1) is satisfied.

Condition (C 1). There exists a

V., YM+I, YM+2, . . . Yd-, such that (2.6) is
satisfied and, with Y4, Ya+,, . . . Y2, -, chosen
satisfying (2.7), rank llq, s p (or equivalently for
p < min {mq, rq} the (p + 1)x (p + 1) submat-
rices H~+, of Ha, satisfy (2.4)).

/wq>s)=YJi(vq)s’ (2.5)

I

q/2
II [S2+(U? +6) S+(W?+ 6)] for q even
{Z*

.

(s + W/+ E) ’qfl[S2+(U?+E)S +(w?+ E)] for q odd
is,

where V, (of dimension q ) is used to denote the
vector consisting of all vi and wi.Now we are in a
position to make the following claim.

A necessary and sufficient condition for a
[., q, &f, As ] realization is that there exists a
parameter vector V* such that with /3,( V, )
defined in (2.5)

~dvq)~” ‘@l(vq)yl+l+. . .+~.-l(vq)yj+q-l

+ Yq+j=o

for j=l,2,. ..(q)q) (2.6)

Necessity follows by application of the first
Ho–Kalman result in the previous subsection.
Sufficiency is seen by construction of such a

. .
reahzatlon. The parameters YM+,, YM+Z,. . . Ya_,
(where Q = max {q + 1, M + 1}) are chosen arbit-
rarily while Ya, Yq+l, . . . maybe calculated from

Yi=–[po(vq )Yj.q+/31( v.) Yi-q+l +...

+ Bq-1(vq)yi-.l (2.7)

fori=~, ~+ l.... Having so defined an infinite
series of Markov parameters, a realization may
be constructed as in [3]. By the first Ho–Kalman

Remarks. (1) The condition (C 1) is in the form
of multivariable polynomial equalities and thus
the decision methods of [11, 12] may be applied.
For this decision problem there are q + nn x
(max{O,(q – M)}) unknowns. In the next sec-
tions we show how both the number and
complexity of the equalities (2.4) can be reduced
significantly so that the computational effort in
testing condition (C 1) can be reduced to manage-
able proportions.

(2) For the case of scalar input realizations or
scalar output realizations, Yi are either row or
column vectors and thus m = 1 or r = 1, inevit-
ably n = rank Hq. s q. This means that in the
statement of Lemma 2.1, p = q and the inequal-
ity (rank H,. < n ) in (C 1) is automatically
satisfied.

3. PROPERTIES OF H..

In this section we explore some properties of
Hankel matrices defined in (2.2) where the Markov
parameters Y,, Y2, . . . satisfy (2. 1) for some q.
In particular, we explore the properties of Ha,
since these will be useful for simplifying the
condition (C 1) o; the previous section.

Property (P 1) [5]. (i) Dependence of the i th
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row of Ha. on rows above the ith row of H.q
implies dependence of the (i + km )th row on
rows above the (i + km )th row in H~a for
k=o, l,... (ii) Dependence on the ith column of
H.. on columns to the left of the ith column of
Hqa implies dependence of the (i + Irr)th column
on columns to the left of the (i + kr)th column in
H.. fork =0, l,....

The next property of Hankel matrices is given
in terms of a special class of submatrices of Hqa
denoted H(w, A) obtained by an ordered deletion
of rows and columns of H.. defined from the
integer indices A = [A,A*. . .A, ]’, p=

[/.klP2. . . I.Lm]’ as follows.
Definition: H(p, A ) is obtained from H,. by

deleting the rows numbered [i + (~i + k)m ] and
the columns numbered [j + (Aj+ k)r] for i =
l,2,. ..m, j=l,2,. ..randk =0,1,. . ..

Property (P2). Given that there exists an n
such that rank H.a z n then there exist vectors
A,p satisfying

(3.1)

such that rank H(M, A) = n. Equivalently, given
that rank H(p, A) # n for some n and all p, A
satisfying (3. 1), then rank Hqq < n.

Proof. The definition of rank tells us that the
inequality rapk Hqq a n implies that there exists
a full rank n x n matrix obtained from Hqq by
deleting rows and columns according to the
following rule. The ith row of Ha. is deleted if it
is contained in the range space of the rows above
it and the ith column of H.. is deleted if it is
contained in the range space of the column to the
left of it. Application of property (P 1) now
ensures us that our full rank n x n matrix is in
fact H(LL, A ) for some p and A satisfying (3.4) as
desired.

We now move on to a consideration of an
important property of the Hankel matrix H~~
defined from (2.2) with Y,, Yz, . . . Y~ specified
and Y~+,, Y~+2, . . . Y,~ unspecified. To deter-
mine a lower bound for the rank of such matrices
irrespective of the selection of Y&f+,,
Yhf+2,. . . Y,~, attention is focused on certain fully
specified submatrices of H~~ namely the Hankel
matrices H,,,~+l.,, and H~+I-~,,., where

q is the smallest integer a j /m
cl is the smallest integer z j/r

Integer indices p.* = [p ?I.L%. ..1A ~]’ and A* =
[A~A~... A?1’ are defined as follows

q–l a–l

p?=k~oRi+knt,A!=~ Ci+kr (3.2)
k -O

where

{

Oif the jth row of H,,,~+,-,, is
R, = dependent on rows above it. (3.3)

1 otherwise

{

Oif the jth columns of H~+l-.,,., is
C, = dependent on columns to the left of it.

1 otherwise
(3.4)

The above choice of rows (or columns) is the
same as the choice of independent rows (or
columns) in the algorithm of [8]. The indices
p *(A*) are the observability (controllability)
Kronecker indices [14] of the minimal partial
realization, and as a consequence we have the
following property adapted from [8].

Property (P3). With Hqq defined in (2.2)
where Y,, Y,, . . . Y~ is specified and
Y M+l,Yhf+2, . . . YZM unspecified, and p * and A*
defined above, a lower bound on the rank Hqq is
given from

rank Hqq > n * (3.5)

where

n*=~A?=~p?= rank H(IA*, A*) (3.6)
i-l i-l

Some usefuf bounds. (1) The order of the
minimal partial realization n * is clearly a lower
bound for the order of the minimal stable partial
realization n ~. (2) Let the Hankel matrix Hab be
the smallest submatrix of Jhi which contains all
rows for which Rj = 1 (i.e. “independent” rows)
and all columns for which Cj = 1 (i.e. “indepen-
dent” columns), also let q*= max (a, b ). With
the first Ho-Kalman result in mind, upon
reflection we see that q * is a lower bound for q

in any [“, q, M] realization and is also a lower
bound for the q t of the minimal stable partial
realization denoted [n t, q t, A4,As ].

4. MINIMAL ORDER ASYMPTOTICALLY STABLE
PARTIAL REALIZATION

To determine a minimal order asymptotically
stable partial realization denoted an
[n t,q t,M, As ] realization, the value of n t, the
minimal order itself, is first calculated being the
following efficient procedure.

4.1 Steps to calculate nt
Step 1. Test for the existence of a

[“, q, M, As] realization, for q = q*, q*+ 1,...
by applying decision methods to determine
whether or not for q = q*, q* + 1, . . . a parame-
ter vector V. exists such that with pi ( V. ) defined
in (2.5) polynomial equaIity condition (2.6) is
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satisfied. The lowest integer q for which such a
realization exists is denoted q~n. Note that q * is

readily calculated as described in the previous
sections.

Step 2. Apply decision methods to the condi-
tion (C 1) for /3( V., s ) defined as in (2.5) to test
for the existence of an [n, n, A4,As ] realization
for n=ii, ii+ l,... where ii = max (qti., n *),
until the conditions are satisfied. The lowest
integer n is denoted n t’. Note that n * is readily
calculated as described in the previous section.

There is a considerable saving in the above
procedure for calculating n t in testing for an
[n, n, A4,As ] realization for n = ii, fi + 1,...
rather than in testing for an [n, q, M, As]
realization for n=ii, fi+ l,... and q=

qmin,qmi.+1,. . .. The justification stems from the
following lemma.

Lemma 4.1. The non-existence of an
[n, n, M, As ] realization for some n implies the
non-existence of an [n, q, M, As] realization for
all q.

The above lemma is established by application
of the following two properties of realization:

(a) The existence of an [n, q, M, As ] realiza-
tion of G(s) implies the existence of an
[n, q +<, M, As] realization of G(s)L (s)/L (s) =
G(s) for any polynomial L(s) of degree /’, where
/=1 ,2,....

(b) The existence of an [n, q, M, As ] realiza-
tion of G(s) for q > n implies the existence of an
[n, q, M, As ] realization for q = n, since there
must be at least (q – n ) pole–zero cancellations
possible in G(s).

Remarks. (1) The algorithm must terminate
since n Ts M x min (r, m). (2) For the case of
scalar input or scalar output realizations, n t =
qfin. To see this note that with step 1 im-
plemented, lemma 2.1 tells us that there exists an
[n, q~., M, As] realization for some n s qti.. But
the property (b) above is violated unless n = q~in.
Thus n t = qtin and step 2 above is not required.
(3) For the multiple-input, multiple-output real-
ization cases (m >1, r > 1), by setting qti” = q *
in step 2, step 1 can be eliminated at a possibly
small increase in computational effort. It is
shown in [17] that there exist cases where
qti” > n* so either term may be a more useful
lower bound. (4) Having determined n, n t and
q t may be evaluated by testing the conditions
(Cl) for the existence of an” [n T, q, M, As]

. .
reahzatlon for q = qfi., q tim+l,. . ., q t which is
the lowest values of q for which a realization
exists. Alternatively one may test for q =
nt, nt– 1,... until a realization fails to exist,
depending on whether q is expected closer to n T
than qfi”. (5) To test the condition (C 1) there are
of the order of (n !)2 determinant equalities.

Fortunately (C 1) may be considerably simplified,
both in the number and complexity of the
determinant tests as we now go’ to show. The
simplifications we describe are crucial to achieve
a practical algorithm but unfortunately the
manipulations are intricate.

4.2 Simplification of condition (C 1)
(This subsection may be omitted as a first

reading of the paper). The properties (P 1)-(P3)
of Hankel matrices are exploited to achieve a
simplification of the condition (C 1) for the cases
m >1, r >1. In particular the conditions (2.4) are
simplified. For convenience we adapt the follow-
ing convention.

Convention. The columns and rows of a
submatrix of H,~, possibly with its rows and
columns interchanged, are assigned the numbers
of the corresponding rows and columns of E&.

Four steps are now described to achieve
a simplification of (2.4) given that & is de-
fined from (2.2) where the Markov parameters
Y,, Y,, . . . satisfy (2. 1) for some q, and
Y,, Y*, . . . Y~ are specified. Using the Conven-
tion above, the simplified equalities are readily
stated although one has to be careful with
bookkeeping details in practice. The four steps are
now described along with a brief justification of
each step.

Step 1, description. Examine in turn the first
m (M – q + 1) rows of lZQQfor linear dependence
on the rows above the row in question. If the i th
row is dependent on the rows 1,2, . . . i – 1, then
delete this row. Likewise if the ith column is
dependent on the columns 1,2,. . . i – 1, then
delete this column. Note that property (P 1) is
used to accomplish this step. Our depleted
matrix or submatrix is denoted R.

Assertions (i) Rank A = rank 24... (ii) Prop-
erty (P 1) holds with H.. replaced by ~ and the
rows [columns] of E denoted according to the
convention above.

Justification. The above assertions are jus-
tified since only dependent rows [columns] of
H.. are deleted, and so whether or not a row
[column] of A is independent or not can be
determined without knowledge of these depen-
dent rows [columns].

Step 2, description. Calculate p * and A* via
(3.5)-3.7) and thereby obtain H(p *, A *) a sub-
matrix of H~~. (H(p *, A*) is also submatrix of
H.. and ~) . Rearrange rows and columns of ~
to form

where both E4 and H(IA *, A *) are submatrices of
H.
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Remark. This operation merely groups the
independent rows and columns of I-&.

Assertions. (i) Rank H(I.L*, A*) = n*. (ii) Rank
~ = rank A = rank H... (iii) Property (P 1) part
(i) holds with H.q replaced by [~,, ~,] and the
rows of [~q, ~.J denoted according to the
convention above. Also, property (P 1) (ii) holds

[1H,‘lth‘“”‘ep’acedby174
and the columns of

[1H,~4denoted according to the convention above.

Justification. The first two assertions above
are immediate. The third assertion follows from
property (P 1) holding for R and the properties of
H(I.L*, A*). Thus in constructing [H,, ~,] from
H, if the ith row is deleted, then the (i – km )th
row is also deleted for k = 1,2, . . .. As a
consequence, property (P 1) part (i) holds with
H., replaced by [~,, ~,] as desired. In a similar
manner the remainder of assertion (iii) can be
established.

Step 3: Description. Form the matrix

H,= Hg– H3H-’(/L*, A*)~2

Assertions. (i) Rank H.. = n*+ rank ~,. (ii)
Property (P 1) holds with H~a replaced by ~, and
the rows and columns of ~, designated by the
numbers given to the corresponding rows of Ed
when these are assigned according to the
convention above.

Justification. We have the following

J. B. MOORE

step 2 a full rank submatrix of H(P, *, A*)
containing only specified elements. The simplifi-
cation is achieved at the expense of not
producing a least order ~, in step 3.

Step 4, description. Form the submatrices
E,(/Z., X.) of - where ~:=

[(l.L,-PY)(Pz- P!).. .(;: -p%)] and A. =
[(A,– Af)(A, –A%). . . (A, – A?)] with (3.1) hold-

“
ing. (Here n = ~ u, = X A,.)

i-l i-l
Assertions. (i) Given that there exists an n such

that rank HI = n —n*, then there exist vectors IL
and ~. as defined above with (3.1) holding such
that rank H,(P., ~.) = (n – n*). (ii) The condi-
tions (2.4) are equivalent to the conditions

lE@.+,, 1.+,)1= Ofor all possible F.+,, x.+,
(4.1)

Justification. The arguments used above to
demonstrate that property (P2) follows from (P 1)
for Ha. also demonstrate that the above asser-
tion (i) follows from assertions (i) and (ii) of step
3. Assertion (ii) follows from assertion (i).

As a consequence of assertion (ii) above, we
can restate condition (C 1) as

Condition (C2). There exists a V,, Y~+,,
YM+2,. . . Yq_, such that (2.6) is satisfied and with
Yq, Ya+,, . . . Y,.., chosen to satisfy (2.7), the
equations (4. 1) are satisfied.

Remarks (1). Observe that the submatrices
H~+, of (2.4) are of dimension (n + 1)x (n + 1)

[

H(/L*, A*) 27,
H, H, 1
Irow

operations

J

[
H(p*, A*) H,
o H, 1

column

[

H(p*, A*) O
~ g3 H, 1

Irow
operatiom

column

[

z“=
operations

~o

o
H,1

-1

Assertion (i) above is now immediate. From the whereas the submatrices ~,(1.I .+,, ~.+,) of (4.1)
above diagram note that [~J R,] is obtained from
column operations on [~j ~~]. As noted earlier,
property (P 1) part (i) holds for [~, Ed] and since
the property is not affected by column opera-
tions, including deletions, we have that it also
holds for [~, ~,] and ~,. Likewise it may be

[1
H,

shown that (P 1)part (ii) holds for - and thus for
H,

R,. We have thus shown that (P 1) parts (i) and (ii)
hold for ~,.

Remark. H(I.L*, A*) may contain elements
which are polynomial functions of the unknown
parameters making the expression of the deter-
minant and adjoint of H(I.L*, A*) more difficult.
The difficulty may be avoided by separating in

are of dimension (n + 1 – n*) x (n + 1 – n*). This
means that a determinant equality
@,(& .+,, ~n+,)l = O is considerably simpler than
the equality lH~+,l = O for even moderate n*.
Moreover, the number of equalities in (4.1) is
considerably less.

The number of equalities in (2.4) is

‘24=(~Tl)(.~1)
where

A=A!

()B B!(A –B)!”
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The number of equalities in (4.1) is no greater
than

N.., = (n–n*+rn-l

)(

n–n*+?–l
~–n* ~—n* )

where m is the number of w ~ z A4– q + 1 and f
is the number of A~ = A4– q + 1. For the case
n=6, n*=4, rn=?=3, q= 3, Nz,d=7392 and
Nd., = 36-a spectacular reduction. (2) If
If(p *, A*) contains some elements not fully
specified, then, the determinant test (4. 1) will not
be polynomial equalities in the unknown
parameters. This problem is avoided by looking
instead at determinants of submatrices of
det [H(p *, A*)]~,. (3) For any A. and jL. for
which a realization exists, this realization may be
constructed having An(I-L.) as the controllability
(observability) indices of that realization. Of
course at least one such set of indices for which a
realization exists are Kronecker indices so these
can be identified from the set of An or P. for
which a realization exists and a canonical
realization as in [15] constructed using these.

I

Example. M = 2, r = m = 2

Assuming for the moment that c in (2.5) is
zero, Y~ is defined in terms of Y, and YZ for
q=2as

[

—w*—v* —Vz
Y,= o

W2—V2 1

giving

[

11 1 1
H., = o –1 o 1

11 –W2– V2 –V2

01 0 W2—V21

[11HQ. L*, A*)= o _~ ,n*=2

Now step 1 of the simplification of (C 1) is not
relevant, step 2 is trivial as ~ = I&, and step 3
gives

H, =
[

—W2—V2

o WW-[:w -!l-’[::1
[_ W2+V2+1 V2——

o 1–W2+U2–1 “

1

4.3 A minimal order asymptotically stable par-
tial realization

With knowledge that an [n f’, q, M, As ] realiza-
tion exists for a known n T and some q T < q < n T
obtained using the techniques of the previous
subsection, such realization may be calculated as
follows.

Step 1. The polynomial equalities of (C2) are
solved by polynomial factorization for the
elements of Vq, YM+I, YM+2, . . . Y..

Step 2. The parameters Y,+,, Y4+z,. . . Y,. are
calculated via (2.7). Thus Y,, Y2, . . . Y2~ and
thereby 1-1.. and & are determined.

Step 3. The Ho–Kalman algorithm [3] or one
of the simpler algorithms [4–7] is applied to H,.
and & to yield a realization of order n T with
the desired properties that it is minimal and
asymptotically stable. Of course, in the event
that scalar input or scalar output realizations are
involved the full power of the multivariable
algorithms are not required. For this case
realizations in the observable or controllable
canonical form are readily achieved once the /3,
are calculated from V..

The steps of the algorithm and to simplification
are now demonstrated on a simple example.

In this example it is clear that there are no v
and w such that rank HI = Oso clearly n 7> n * =
2. Checking for rank ~, = 1 we examine 1~,1
which is zero for V2= 1 + W2, since (2.6) is
trivially satisfied we may choose the solution
W2= 1, V2= 2. This gives an extension

and

[153
Y,=ol,

thus

H
1 011
0–101

HM~ = *
13–2

o 10–1

Using the Ackerman-Bucy procedure [4] a
realization of third order may be calculated
which turns out to be asymptotically stable. In
particular,
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For this example the minimal realization is of
order 2 while the minimal stable realization is of
order 3.

5. ALTERNATIVE APPROACH

In this section we formulate our realization
problem as a decision problem which may be
solved by decision methods using a specializa-
tion of the results in [13]. The alternative
approach includes fewer unknowns, in some
cases when n t > M, than the methods of earlier
sections.

For the case Y,, YZ,. . . Y~ specified and
Y M+,,Y ,M+, . . . unspecified, equation (1.2) re-
duces to

[Y, Y*... Y~]=C’R, R=[BAB. .. AB]’B]

or

v, 7 [C’ 7

For a fully specified sequence of Markov
parameters, Kalman showed that any state
realization is irreducible if and only if the system
is completely controllable and observable. We
now state a corresponding result for asymptoti-
cal y stable partial realizations.

Lemma 5.1. A necessary condition for the
system (1. 1) with system matrix [A, B, C], an
asymptotically stable partial realization of the
Markov parameters Y, Y,. . . Y~, to be of
minimum order is that R and Q defined above be
full rank matrices.

Proof. Necessary conditions for minamality
are that [A, B ] is completely controllable and
[A, C] completely observable. For the case
M < n the rank conditions on R and Q are

equivalent to the controllability and observabil-
ity conditions and the lemma is immediate. For
the case M > n, we proceed by showing that if
the lemma is not true we are led to an
contradiction. In particular we show that if
[A, 1?, C] is an asymptotically stable partial
realization with R not of full rank then a lower
order asymptotically stable partial realization
can be constructed.

For R not of full rank, we have for some
singular D, that R = DR. Now this relationship
implies that the system [A, B, C] and
[AD, B, D’C] have identical Markov parameters

Y, Y,. . . Y~ since C’B = C’DB, C’AB =
C’D(AD)B , . . . C’A~-’B = C’D(AD)~-’B.

Now the pair [AD, D’ C] is not completely
observable since its observability matrix can be
expressed as the product of two matrices one of
which is the singular matrix D. Denoting the
observable component of the system
[AD, B, D’ C] as [&& ~~], it is clear that
[AD, BD, CD] has Markov parameters
Y,, Y,, . . . Y~ and is lower order than the
realization [A, B, C]. It remains to be shown that
[&, ED, ~~], for some choice of D, is an
asymptotically stable realization, to complete the
proof. In fact we show that {A,[iiD 1}for some D
is a subset of {Ai[A ]}.

Without loss of generality let A be upper
triangular and let the n – ith row of R be
dependent on the rows below it. For this case

D=[;-i- ~ ;] ‘=[;’ i i]

(5.2)

where A, and AZ are upper triangular matrix of
order (n – i – 1) and i, respectively and x
denotes a submatrix of appropriate dimension.
Manipulations yield the following forms for
(AD) and & since it is the n - ith state of the
system which is clearly unobservable.

since A 1 and Az are upper diagonal and
submatrices of A this shows that {Al(i’iD)} is a
subset of {A,(A )}.

The above rank condition allows us to reduce
the number of unknown parameters in (5.1) by
considering the equivalent conditions.

C’ = [Y, Y, . . . Y~]R’(RR’)”’ (5.3)

[Y, Y,... Y~][det (RR’)Z – R’(RR’)AR] = O
(5.4)

det (RR’)> O (5.5)

or

B’= [Y{... YLIQIQ’Ql-’ (5.6)

[Y; . . . YL][det(Q’Q)l– Q(Q’Q)AQ’I =0
(5.7)
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det(Q’Q)>O (5.8)

where XA denotes the adjoins of the matrix X.
To determine the existence of an n th order

asymptotically stable partial realization decision
methods can be applied to the polynomial
expressions (5.4) and (5,5) or (5.7) and (5.8) with
the stability constraint on A. This test only
involves the unknowns of A and B (or A and C)
rather than all parameters of A, B and C as in
(5.1).

This decision problem is a specialisation of
one studied in [13]. In [13] the above decision
problem is greatly simplified by use of [A, C] in a
special form with a set of structural indices m

r
where Z n, = n. In [15] several structural forms

in,
are available with a reduced parameter set but
the lower block triangular form for A described
in [4] appears most desirable here. For this form
the diagonal blocks of A are in the single output
observable canonical form, thus the stability,
constraint on A is satisfied by choosing the
parameters describing the characteristic
polynomial in (2.5). The number of unknowns in

the decision problem is now ~ (r+ 1– i)n,. An
i=l

upper limit on the number of such unknowns is
m. Similarly if [A, B ] is chosen in the special
form the number of parameters would be less
than mr. Thus an upper bound for the number of
unknowns which are involved using these struc-
tural forms is min (m, mn ).

Since the complexity of the decision problem
depends largely on the numbers of unknowns,
and the number of unknowns for the methods of
the previous section totals (n – M)rm for n > A4,
the methods of the section should be used for the
case (n – M)rm 2 min (m, mn ).

Since for multivariate systems it is possible for
an n th order realization to exist for one set of
structural indices ni and not for another set, it
should be noted that the decision problem must
be repeated for all possible choices of ni. This
implication of the property for realizations is

treated in [18]. We will have
(n+:-l)

decision problems for the [A, C] form and

(n+iW-1
)

for the [A, B] form: where
n

r’)
x!

Y= y!(x–y)!

Unfortunately the complexity of the computa-
tions for both procedures given in the paper for
the design of minimal order stable partial
realizations increases exponentially with the

order of the realization. For the special case
m = 1 or r = 1, single output or input systems, it

is only necessary to test one simple set of
equalities involving n unknowns. If r >1 and
m >1 the decision problem is inevitably more
tedious to implement.

6. CONCLUSIONS

In the paper we have pointed out that the
decision methods of [12] can be applied to yield a
solution to the problem of minimal order
asymptotically stable partial realizations. In
exploring the application of decision methods to
this problem, the objective is to minimize by
analytic ‘means, the number of unknowns in the
underlying polynomial equalities and so minim-
ize the complexity of the decision problem and
thereby achieve more efficient solutions than
could otherwise be obtained as in [16]. Proceed-
ing towards the objective has been fruitful, both
in defining a relevant simplified decision problem
and in giving insight into the nature of the
minimal order asymptotically stable partial real-
ization problem itself. Unfortunately the com-
plexity of the completions for both procedures
given in the paper for the design of such
realization increases exponentially with the
order of the realization. A “curse of dimensional-
ity” overshadows the work as in Dynamics
Programming for control, Viterbi Algorithms for
communications and shortest route methods for
operations research. For the special case r = 1,
m = 1, single input or output systems, there is no
difficulty as it is only necessary to test one simple
set of equation involving n unknowns. For r >1
and m >1 the decision problem is inevitably
more tedious to implement.
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