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Multiplier Methods: A Survey*t 
DIMITRI P. BERTSEKAS:~ 

An analysis of the convergence properties of multiplier methods demonstrates their 
superiority over ordinary penalty methods for constrained minimization. 

Summary--The purpose of this paper is to provide a 
survey of convergence and rate of convergence aspects of a 
cltass of recently proposed methods for constrained 
nfinimization--the, so-called, multiplier methods. The 
results discussed highlight the operational aspects of 
multiplier methods and demonstrate their significant 
advantages over ordinary penalty methods. 

1. Introduction 

DURING recent years, penalty function methods as 
ctescribed in [F1] have been widely accepted in practice as 
an effective class of methods for constrained optimization. 
Let us briefly describe penalty methods for the equality 
constrained problem 

minimize f ( x ) ,  
(1) 

J subject to x 6 X, hi(x) = h~(x) . . . . .  h,,(x) = O, 

where f, hi, h2 . . . .  , h,, are real-valued functions on R", 
n-dimensional Euclidean space, and X is a given subset of 
R". The penalty function method consists of sequential 
minimizations of the form 

minimize f ( x ) + c ~  ~, ~[h~(x)] (2) 
x E X  i = 1  

for a scalar sequence {ck} such that c~ ~< c~+ t for all k and 
c~ ~oo .  The scalar penalty function ~:  R ~ [0, +oo] is 
,,;uch that 

~(t) 1>0, V t ,  9~(t) = 0 if and only i f t  = 0. (3) 

The most common penalty function is the quadratic 
(~(t) = ½t~); however, on some occasions it may be 
desirable to use other penalty functions. The sequential 
~aainimization process yields 

lim inf f ( x ) + c k  ~, ~[ht(x)] . (4) 
ck ''~o° X ~ X i = l  
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In view of property (3) of the function ~, the optimal value 
of problem (1) can be written as 

inf lim I f ( x ) + e k  ~ ~[h,(x)] I (5) 
x 6  X Ck'->o~ ~ i ~ l  I 

and hence the success of the penalty method hinges on the 
equality of expressions (4) and (5), i.e. the validity of the 
interchange of 'lira' and 'inf'.  One may show under 
relatively mild assumptions that this interchange is valid for 
wide classes of problems as explained for example in 
IF1, L1, P1, Z1]. Basically these assumptions require 
continuity of  the functions f,  ht and ~, at least near a 
solution, and guarantee that a solution of problem (2) 
exists. Simultaneously with the generation of the minimiz- 
ing points x~ of problem (2), penalty methods generate the 
sequence Lgk} where y~ = (c~ ~b'[hl(x~)] . . . . .  ck ff'[h,,(x~)]) 
where ~b' denotes the first derivative of ~----assumed to exist. 
The sequence {Yk} under appropriate assumptions is known 
to converge to a Lagrange multiplier of the problem (see 
e.g. IF1, L1, Z1]). 

Penalty methods are simple to implement, are applicable 
to a broad class of problems and take advantage of the very 
powerful unconstrained minimization methods that have 
been developed in recent years, for solving problem (2), 
in the case where X = R n. These are the main reasons for 
their wide acceptance. On the negative side, penalty 
methods are hampered by slow convergence and numerical 
instabilities associated with ill-conditioning in problem (2) 
induced by large values of the penalty parameter c~. 

Another important class of methods for solving problem 
(1) is based on sequential minimizations of the Lagrangian 
function defined for every x e R" and y = (yX . . . . .  ym) e R "  
by 

gig 

L(x, y) = f(x) + ~, y~ hi(x). (6) 
e B I  

In the simplest and most widely known such method, as 
discussed, for example, in ILl], one minimizes L(x, y~) 
over x e X for a sequence of multiplier vectors {Yk}. This 
sequence is generated by iterations of  the form 

Yk+I ~ = Yk~+etkhi(xD, i = 1 . . . . .  m, (7) 

where x~ is a minimizing point of L(x, y~) over x ~ X, and 
ct~ is a stepsize (scalar) parameter. The iteration above may 
be viewed as a steepest ascent iteration aimed at finding an 
optimal solution of an associated dual problem. For  this 
reason the corresponding algorithm is called a primal-dual 
method. Methods such as the one described above are 
known to have serious disadvantages. First, problem (1) 
must have a locally convex structure in order for the dual 
problem to be well defined and iteration (7) to be meaningful 
as discussed in ILl]. Second, it is usually necessary to 
minimize the Lagrangian function (6) a large number of 
times since the ascent iteration (7) converges only moder- 
ately fast. Thus primal-dual methods of the type described 
above have found application only in the limited class of 
problems where minimization of the Lagrangian (6) can be 
carded out very efficiently due to special structure as shown 
in ILl, L21. 
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134 DIMITRI P. BERTSEKAS 

In the last few years, a number  of researchers have 
proposed a new class of methods, called methods of 
multipliers, in which the penalty idea is merged with the 
primal-dual philosophy. In these methods, the penalty 
term is added not to the objective function f but rather to 
the Lagrangian function L of (6) thus forming the 
Augmented Lagrangian function 

Lc(x,y) = f ( x ) +  ~_,yi hi(x)+c ~, ~[hi(x)]. (8) 
i = 1  i ~ l  

A sequence of minimizations of the form 

minimize L~,(x, Y.O = f (x )  + ~ yl¢ i h i (x  ) 
aeGX i = l  

+ ck 2 ¢fi[hi(x)l (9) 
i = 1  

is performed where {ck} is a sequence of positive penalty 
parameters. The multiplier sequence {Yk} is generated 
according to the i teration 

yk+l t = yki+Ck ~'[hi(xk)], i = 1 . . . . .  m, (I0) 

where ~ '  is the first derivative of ~, assumed to exist, and 
x~ is a point  minimizing over x ~ X the Augmented 
Lagrangian Lc~(x, y~). The initial multiplier vector Yo is 
selected a priori and the sequence {c~} may be either pre- 
selected or generated during the computat ion according to 
some scheme. Initially the method was proposed for a 
quadratic penalty (~(t)  = ½t 2) in which case iteration (10) 
is written as 

y~+t i = y~i+c~hi(xk), i = 1 . . . . .  m 

and is a special case of i teration (7) considered earlier. 
Now if we select a penalty parameter  sequence {c~} with 

c~ 400 and the generated sequence {Yk} turns out  to be 
bounded,  then the method is guaranteed to yield in the 
limit the optimal value of problem (1) provided sufficient 
assumptions are satisfied which guarantee the validity of 
interchange of 'lira' and ' inf '  in the expression 

lim f ( x )  + ]~ yk i hi(x) + c~ ~[hi(x)l 
Ck--)~o i = 1  i ~1 

similarly as for the penalty method considered earlier. The 
impor tant  aspect of multiplier methods, however, is that  
convergence may occur without the need to increase ck to 
infinity, i.e. convergence may be induced not  merely by ever 
increasing values of the penalty parameter  but also by the 
multiplier i teration (10). Thus the ill-conditioning 
associated with penalty methods can be avoided. In 
addition, iteration ( 1 O) converges fast to a Lagrange multiplier 
vector of  problem (1), under  relatively mild assumptions, 
much faster than in primal-dual methods considered 
earlier. Furthermore,  there is no need for problem (1) to 
have a locally convex structure in order for the method to 
be applicable. 

By moderat ing the disadvantages of  both  penalty and 
primal-dual methods, multiplier algorithms have emerged 
as a most  attractive class of methods for constrained 
optimization. Since their original proposal in 1968, a 
considerable amount  of research has been directed towards 
their analysis. The aim of this paper  is to provide a survey 
of the convergence and rate of convergence aspects of 
multiplier methods with some emphasis placed on demon- 
strating the impor tant  role of the inherent structure in 
problem (1) as well as the form of the penalty function 
employed. There is an  important  and aesthetically pleasing 
duality theory associated with multiplier methods which, in 
contrast  with past duality formulations, is applicable to 
convex as well as non-convex programming problems. For  
an  excellent account of these developments the reader may 
consult the survey paper of Rockafellar [R6]. 

The paper is organized as follows. In Sections 2 and 3 
we describe the convergence and rate of convergence 
properties of multiplier methods with quadratic-like 
penalty function under second-order sufficiency assump- 
tions on problem (1). In Section 2 we provide an inter- 

pretation of multiplier methods as generalized penalty 
methods while in Section 3 we view the multiplier iteration 
(10) as a gradient iteration for solving a certain dual 
problem. The results and the simple computational 
example provided illustrate the significant advantages of 
multiplier methods over penalty methods in terms of 
reliability and speed of convergence. In Section 4 we 
describe the form of multiplier methods as applied to 
problems with one-sided and two-sided inequality con- 
straints. In Section 5 we provide convergence and rate of 
convergence results for the case of a convex programming 
problem. We also demonstrate how the choice of penalty 
function can affect significantly the performance of 
multiplier methods. In Section 6 we briefly describe a 
number  of variations of multiplier methods and point out 
connections with other related methods. Finally, in Section 
7 we survey the literature relating to multiplier methods for 
infinite dimensional problems and particularly optimal 
control problems. 

2. Multiplier methods from a penalty viewpoint 

Given problem (1), consider the augmented Lagrangian 
function Lc: R n × R m -+ (--t~, +o9] 

m 

Lc(X, y) = f ( x ) +  y" h(x)+ c ~, ~[hi(x)], (11) 
i = 1  

where ~:  R ~ [0, + ~ ]  is a penalty function satisfying (3) 
and c~>0 is a penalty parameter.  In the above equation 
h(x) denotes the m-vector (hi(x) . . . . .  hm(x)} viewed as a 
column vector and the prime denotes transposition. We 
shall utilize the following two assumptions related to 
problem (1) and the penalty function ~. 

Assumption (S):  There exists a local minimizing point 
of problem (1) which is an interior point of X and satisfies 
the standard second-order sufficiency conditions for an 
isolated local minimum ([L1], p. 226), i.e. f, hi are twice 
continuously differentiable in a neighborhood of )~, the 
gradients Vhi(-¢), i = 1 . . . . .  m, are linearly independent 
and there exists a Lagrange multiplier vector 
)7 ~ R "  such that  VL0($, 37) = 0 and z'V z L0($, 37) z > 0 for 
all z ~ R ~ with z ~ O, Vhi(2)'z = 0, i = 1, ..., m, where 
VLo, V 2 L0 denote the gradient and Hessian matrix with 
respect to x of Lo(x, y) = f ( x )+  y' h(x). 

Assumption (Q): The penalty function ~:  R + [0, +=¢] 
is twice continuously differentiable in an open interval 
containing zero and ~ " ( 0 ) =  1, where ~" denotes the 
second derivative of ~b. 

The penalty function considered in original studies of 
multiplier methods was the quadratic ~(t)  = ½t 2 which of 
course satisfies (Q). Since functions satisfying (Q) behave 
similarly as ~(t)  = ½t 2 we refer to such penalty functions as 
essentially quadratic. Notice that  property (3) of the penalty 
function implies that ~'(0) = 0 when qb is differentiable in a 
neighborhood of zero. Notice also that,  in view of the 
presence of the penalty parameter c in (1 1), there is no loss 
of generality in assuming ~"(0) = 1 rather  than ~"(0) > 0. 

The following proposition yields estimates related to 
minimizing points of Lc(x, y) of (11) and forms the basis for 
establishing the validity and convergence of multiplier 
methods as well as ordinary penalty methods. 

Proposition 1: Let (S), (Q) hold and assume that tile 
Hessian matrices V2f(x), V 2 hi(x), i = 1 . . . . .  m and the 
second derivative ~"(t) are Lipschitz continuous in 
neighborhoods of 2 and zero respectively. Then for any 
given bounded set Y c R ~ there exists a scalar c*/> 0 such 
that for every c > c* and every y e Y the function L~(x, y) 
has a unique minimizing point x(y, c) within some open 
ball centered at ~. Furthermore,  for some scalar M >  0 we 
have 

Ilxfy, c ) - ~ l l <  M I l y - ~ I [ ,  ¥ c > c * ,  y ~  Y, (12) 
O 

[[y(y,c)-Yl[<~ M I I y - y l I ,  ¥ c > c * ,  y ~ r ,  (13) 
C 
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where the vector ~(y, c) ~ R m has coordinates given by 

y,(y, c) i = yt+c4'[hi[x(y, c)]], i = 1 . . . . .  m (14) 

4 '  is the first derivative of 4,  and II ' l l  is the usual 
Euclidean norm. 

The proposit ion above can yield bo th  a convergence and 
a rate of convergence result for a method of multipliers 
which updates the current multiplier vector y~ by means of 
the iteration 

yk+l t = yki+c~ 4'[hi[x(yk, c~)]], i = 1 . . . . .  m 

and constitutes the strongest convergence result available 
for nonconvex problems. It shows that if Yconta insp  in its 
interior, the generated sequence {Yk} remains in Y (this 
can be enforced if necessary by, for example, leaving Yk 
unchanged if Y~+I ~ Y), the penalty parameter  c~ is 
sufficiently large after a certain index, and the minimization 
of L~(x, y~) yields the local minimum x(y~, c~) which is 
closest to y, then we obtain x0'k, ck) --> 2, Yk ~ Y. We make 
this result precise in the following proposit ion:  

Proposition 2: Under  the assumptions of Proposition 1, 
let Y be an arbitrary sphere centered at .~. Consider also a 
non-decreasing positive penalty parameter  sequence 
{ck} such that  for some integer )~>~0 we have c$~>max 
{M, c*} where M and c* correspond to Y as in Proposit ion 
1. Let {Yk} be a sequence such that  y~ ~ Y and generated 
for all k >I ~: by 

y~+t i = ykt+Cl~ 4'[hi(x~)], i = 1 . . . . .  m (15) 

where xk is the local minimizing point of Lck(', Y~) closest 
to £ in the sense of Proposit ion 1. Then x~ -~ 2, y~ ~ ft. 
Furthermore,  if c~ ~ ~<oo and y~ ;~ ~7 for all k we have 

l i m s u p  l i ~  "~'~- (linear convergence) (16) 

while if c~ --> oo and y~ ~ p for all k 

lira II y ~ + x - Y  II = o (superlinear convergence).  (17) 
~-,~ II y ~ - ) 7  II 

Interpretation of  results--computational aspects. Since 
Proposit ion 1 applies to bo th  multiplier methods and pure 
penalty methods (y~ = 0 for all k) it provides a natural  
vehicle for comparison of these methods. From estimates 
(12) and (13) it follows that  in the penalty method (y~ = 0) 
it is ordinarily necessary to increase the penalty parameter  
c~ to infinity. It  follows also from Proposit ion 2 that  it is 
not necessary to increase c~ to infinity in order for the 

method o f  multipliers to converge. Thus the ill-conditioning 
effects associated with large penalty parameters can be 
eliminated or at least moderated in multiplier methods. 
The second important  advantage of multiplier methods 
may be inferred by comparing the convergence rate of the 
two methods as given by the estimates (12) and (13). While 
in multiplier methods the convergence rate is linear or 
superlinear (c.f. (16) or (17)), the convergence rate of 
penalty methods is much worse. This advantage in speed 
of convergence has been verified in many computat ional  
studies where a consistent reduction in computat ion time 
ranging roughly from 80 to 30% has been reported when 
the multiplier i teration (15) was employed over the case 
where y~ was kept constant.  For  illustration purposes we 
provide the following example which is, of course, trivial 
in terms of computat ional  complexity, but nonetheless is 
representative of the computat ional  savings resulting from 
employment of the multiplier i teration (15). 

Computational example: Consider the two-dimensional 
problem 

min ½[(xa)2+ ½(x2)2]. 
Xtq- x2= 1 

The Augmented Lagrangian for a quadratic penalty 
function is 

½l(xl) 2 -t- ½(X2) 2] - t - Y k ( X  1 -t" X 2 - -  1) + ½c~ (x 1 + x ~ - 1) 2. 

Minimization of the Augmented Lagrangian yields 

c ~ - y k  3(c~-y~)  
x k l = ~ '  x k ~ =  1+4c'-----~ 

The optimal solution is 2 x = 0"25, ~2 = 0.75 and the 
corresponding Lagrange multiplier is p = -0 .25 .  In Table 
1 we show the results of the computat ion for the penalty 
method where Yk = 0 for all k and for the multiplier 
method where 

Yk+l = Yk+C~(X~l+x~ ~ -  1) 

and Y0 = 0. Notice that  the multiplier method requires a 
smaller number  of minimizations to obtain the solution 
within four significant digits of accuracy than  the penalty 
method. The number  of minimizations required for bo th  
methods decreases when the penalty parameter  is increased 
at a faster rate. However, the effects of ill-conditioning are 
felt more under  these circumstances when the unconstrained 
minimization is carried out numerically. 

It is perhaps worthwhile to note the fact that  the global 
convergence property of the method of multipliers con- 
cluded in Proposition 2 is contingent upon the generation 

TABLE 1 

c~ = 0"1 x 2 k 

Penalty Multiplier 

x~ 1 x~ 2 xk 1 xk 2 

c~ = 0.1 x 4 k 

Penalty Multiplier 

Xk I Xk 2 Xk I Xk 2 

C~ = 0"1 X 8 ~ 

Penalty Multiplier 

Xk 1 Xk 2 Xk I Xk ~ 

0 0"0714 0-2142 
1 0-1111 0"3333 
2 0"1538 0.4615 
3 0'1904 0.5714 
4 0.2162 0-6486 
5 0.2318 0.6956 
6 0"2406 0.7218 
7 0-2452 0-7356 
8 0"2475 0-7427 
9 0-2487 0.7463 

10 0.2493 0.7481 
11 0.2496 0.7490 
12 0"2498 0.7495 
13 0.2499 0.2497 
14 0.2499 0.2498 
15 0"2499 0.2499 

0"0714 0-2142 
0"1507 0"4523 
0"2118 0"6355 
0-2409 0"7227 
0"2487 0-7463 
0-2499 0-7497 
0"2499 0"7499 

0"0714 0.2142 
0-1538 0"4615 
0.2162 0"6486 
0.2406 0.7218 
0"2475 0-7427 
0"2493 0.7481 
0.2498 0.7495 
0-2499 0"7498 
0"2499 0"7499 

0.0714 0.2142 0.0714 0"2142 0"0714 0"2142 
0-1813 0.5439 0.1904 0'5714 0.2074 0.6224 
0"2407 0.7221 0.2406 0"7218 0-2484 0.7452 
0"2496 0"7489 0"2487 0.7463 0"2499 0"2499 
0"2499 0.7499 0'2498 0"7495 

0"2499 0"7499 
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of the points x(Yk, cD, by the unconstrained minimization 
method employed, at least for all k after a certain index. 
These points are, by Proposit ion 1, well defined as local 
minimizing points of Lck(x, Yk) which are closest to .f. 
Naturally L,~(x, Yk) may have other local minimizing 
points to which the unconstrained minimization method 
may be attracted, and unless the unconstrained minimiza- 
tion method stays after some index in the neighborhood of 
the same minimizing point  of Lok(x, Yk) our convergence 
analysis is invalid and there is no reason to believe that  the 
method of multipliers should do better, or worse, than the 
penalty method. On the other hand, it should be noted that  
the usual practice of using the last point xk of the kth 
minimization as the starting point of the ( k +  1)th minimi- 
zation is helpful in producing sequences {xk} which are 
close to one and the same local minimizing point of 
Lck( x, Yk). 

Another  point concerns the fact that the estimates (12) 
and (13) of Proposition 1 are valid only for c greater than 
the threshold value c* which depends on the set Y as well 
as on the data of the problem. In convex programming 
problems one may take c* = 0, as will be seen in Section 5, 
but in general the constant c* is unavailable and for this 
reason it is impossible to know a priori the range of values 
of penalty parameter  e for which the estimates (12) and (13) 
are in effect and induce fast convergence. This situation, 
however, is not really troublesome if one adopts a penalty 
parameter  adjustment scheme whereby c~ is monotonically 
increased with each minimization; for example, by 
multiplication by a constant factor /3> 1, i.e. ck+~ = tick 
for all k. Then, since c1~ -+ 0% eventually (12) and (13) will 
become effective. It is to be noted that  large values of c 
induce an ill-conditioning effect in the unconstrained 
minimization procedure which tends to make the problem 
min~ L~k(x, YD harder to solve. On the other hand, (12) 
and (13) indicate that for large values of c the convergence 
of {Yk} to )7 is faster. On balance a procedure of continu- 
ously increasing c usually works well and the author  
strongly recommends it provided: 

(a) the penalty parameter  is not  increased too fast,/3 is 
not much larger than one, in which case too much ill- 
conditioning is forced upon the unconstrained 
minimization routine too early; 

(b) the last point x(Yk, cx) of the kth minimization is 
used as the starting point in the ( k +  1)st minimiza- 
t i o n - t h i s  policy tends to reduce the effect of ill- 
conditioning since x 0 %  c~) and x(yk+~, ck+O tend to 
be close to each other. 

Another  possible penalty parameter  adjustment scheme, 
recommended by Powell [P3], is to increase ck by multiply- 
ing it by a certain factor/3 > 1 only if the constraint  viola- 
tion as measured by II h[x(y~, c~)] II is not decreased by 
a certain factor over the previous minimization, i.e. 
ck+~ = tick if II h[x(y~, c~)] 11>711 h[x(Y,~-a, ck-~)l II and 
ck+~ = c~ otherwise where f l > l ,  ~,< 1 are some pre- 
specified scalars. This is also a very satisfactory scheme. 
One may prove under our assumptions that  for some 
constant M' and all c~, ck-1 which are sufficiently large and 
satisfy c~> ck-a there holds 

previous minimization. It is to be noted that the case where 
a separate penalty parameter is used for each constraint 
corresponds to merely scaling these constraints. It is easy 
to prove a simple modification of Proposition 1 to cover 
this case. 

Geometrical interpretation. A transparent  geometrical 
interpretation of the method of multipliers which demon- 
strates the basic conclusions of Propositions 1 and 2 may 
be obtained by considering the primal functional (or 
perturbat ion funct ion)p  of problem (1) defined for values 
of u in a neighborhood of the origin by 

p(u) = min f(x), 
Mx)=u 

where the minimization is understood to be local in a 
neighborhood of 2. Clearly p(0) is equal to the value of 
problem (1) corresponding to 2, i.e. p(0) = f(2) .  

Furthermore,  under (S) one may show that  p is twice 
continuously differentiable in a neighborhood of the origin 
and 

Vp(0) = - 2 .  
Now one may write 

min L,(x, y) 

I.,'( " )J} = min r a i n  x)+ ~y ih , ( x )+c  h~(x 
hi(~c)=u't i=l i=1 

= min p(u)+ ~y iu~+c u' , 

where the minimization above is understood to be local in 
a neighborhood of u--O. This minimization may be 
interpreted as shown in Fig. I. It can be seen from the 
figure that,  if c is sufficiently large so that  p(u) + c ~'~=1 ~(u~) 
is convex in a neighborhood of zero, the value min~ L,(x, y) 
is close to p(0) for values o f y  close to )~ and large values of 
c, as indicated by (12) and (13). The multiplier iteration 
(15) is shown in Fig. 2. A closer examination of this figure 

I/," / /  
rrdn [ c ( x , ~ )  = f ( ~ )  ' / 
x m // j/ 

? ' = ©  x... " ' x~  [~  (x ,~  '; . , , ,  . . . . . . .  
U 

-Y i>,,i.//77 

/ 

FiG. 1. Geometric interpretation of minimization of 
the Augmented Lagrangian. 

--At 
II h[x(y~, c,,)l II < ""--II h[x(y~-l ,  ck-1)] li- 

Ck 

As a result the scheme described above will generate a 
penalty parameter  sequence that  will be constant  after a 
certain index, i.e. c~+1 = c~ for all k sufficiently large, 
while it will achieve convergence by virtue of enforcement 
of asymptotic feasibility of the constraints, i.e. 

lim II h[xO'k, c~)] II = 0. 
k--~ oo 

Still another  possibility along the same lines is to use a 
different penalty parameter  for each constraint  equation 
hi(x) = 0, and to increase by a certain factor only the 
penalty parameters which correspond to those constraint  
equations for which the constraint violation as measured by 
I hdx(Yk, ck)] I is not decreased by a certain factor over the 

p~.(u): p(u) cizi¢(ub 

g~ 1 / I  p(t;) 
I 

FIG. 2. 

mir /  ~ I; (" ,)',<, j ) 
x 

ra in  i ( x , '% ) 
x " ' 

Geometric interpretation of the multiplier 
iteration. 
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suggests that this iteration converges to 9 even if c~ is 
constant but sufficiently large after a certain index and the 
convergence is faster for large values of c~ as in (13). It 
is interesting also to note that the two figures demonstrate 
the crucial ingredients for the success of iterations of the 
form (15). It is necessary among other things that p(u) be 
either differentiable or convex near zero and, furthermore, 
p(u) + c 2~=1 ~(u~) must be convex with sufficiently large 
'curvature' near zero. These conditions are satisfied under 
(S) and (Q) but they are also satisfied under different sets of 
assumptions some of which will be presented in Section 5. 

Multiplier methods with partial elimination o f constraints. 
In the multiplier methods described above each one of the 
equality constraints of the problem has been eliminated by 
means of a generalized penalty function. In some problems 
it is convenient to eliminate only part of the constraints 
while retaining explicitly the remaining constraints during 
sequential minimization of the Augmented Lagrangian. 
Thus a possible multiplier algorithm for the problem 

minimize f (x) ,  

subject to h~(x) = O, l~(x) = O, i =  1 . . . . .  m, 

j =  1, ..., r, 

is based on sequential minimizations of the form 

m 

minimize f ( x )  + ~ {yk ~ hi(x) + eL ~[hi(x)]}, 
i = 1  

subject to l~(x) = O, j =  1 . . . . .  r. 

The multiplier iteration is given by 

y~+1 k = Y~+ck$'[h,(xk)],  i = 1 . . . . .  m, 

where xk solves the minimization problem above. 
The convergence properties of such algorithms are very 

similar to those for multiplier methods with full elimination 
of constraints, and one may prove direct analogs of 
Propositions 1 and 2 for these algorithms. 

Notes and references. The method of multipliers (12) 
with ~(t) = ½t z was originally proposed by Hestenes [H1] 
and independently by Powell [P3] in a different but 
equivalent form. It was also proposed a year later by 
Haarhoff and Buys [H2].* Of these authors only Powell 
discussed the convergence properties of the method. 
Powelrs paper predicted the superiority of the method over 
the ordinary penalty method but while it provided some 
analysis of asymptotic behavior it actually stopped short of 
proving local convergence of the method for a bounded 
penalty parameter. Such local convergence results, based 
on the assumption that the starting multiplier vector Yo is 
sufficiently close to Y, were given later and apparently 
independently by Buys [B7] and Rupp JR8], (see also 
Wierzbicki [W1 ]). These authors showed also that the rate 
of convergence is linear but did not provide sharp estimates 
of the convergence ratio. Such estimates will be given in the 
next section. Propositions 1 and 2 have been proved for the 
case of a quadratic penalty function (~(t) = ½t 2) by the 
author [B1-3] and independently by Polyak and Tret 'yakov 
[P2]. The extension provided here admits essentially the 
same proof as for a quadratic penalty. An analysis of 
multiplier methods with partial elimination of constraints 
is provided in [BS, 9]. 

* Polyak and Tret 'yakov [P2] give independent credit for 
the proposal of the multiplier method to Syrov and 
Churkveidze (see [P2]). It is to be noted that there has been 
considerable interest and significant recent work on 
multiplier methods in the Soviet Union. Professor 
Rockafellar kindly pointed out some related papers of 
Polyak, Gol'shtein and Tret 'yakov [G1, P7, T2]. There is 
no English translation of these papers and the author is not 
familiar with their precise contents. 

3. Multiplier methods from a primal-dual viewpoint 

Gradient interpretation of  the multiplier iteration. 
Consider problem (1) under assumption (S) and a penalty 
function ~ satisfying assumption (Q). It is clear that in a 
neighborhood of 2 problem (I) is equivalent for every 
e~>O to the problem 

min I f ( x ) + c  ~ (~[h~(x)] / (18) 
h(X)  = 0  ~ i ~ 1  / 

in the sense that both problems have .~ as local minimum 
and 9 as associated Lagrange multiplier vector. The 
Hessian with respect to x of the Augmented Lagrangian 
L¢(x, y) of (11) evaluated at 2, 9 is given by 

V ~ Lc(~, 9) = V2 L00Z, 9)+ e ~ Vh~(~) Vhi(~)'. 
i = l  

One may show easily using (S) that for c~> c*, where c* is a 
suitable non-negative scalar, the matrix V2Lc($, Y) is 
positive definite, a fact pointed out and utilized in an 
algorithmic context by Arrow and Solow in 1958 [A2]. As 
a result, for c>.c*, problem (18) has a locally convex 
structure as defined in [L1] and one may define for c>~c* 
the dual functional 

qc(Y) = minL~(x, y). (19) 

In the above equation the dual functional is defined in a 
neighborhood of 9 and the minimization is understood to 
be local in a neighborhood of .~. By using the implicit 
function theorem and our assumptions one may show that 
such neighborhoods exist for each c>~c*. In fact one may 
show that if x(y, c) is the locally minimizing point in (19) 
then qc is a twice continuously differentiable concave 
function in its domain of definition with gradient given by 

Vq¢(y) = h[xfy, c)] (20) 

and Hessian matrix evaluated at y given by 

V~ qe(Y) = - Vh[x(y, c)] [V 2 L~[x(y, c), y]]-I 

x Vh[x(y, c)]', (21) 

where Vh(x) is the m x n  matrix with rows Vhi(x), 
i = 1, ..., m. Furthermore, qc(Y) is maximized at Y. 

Now in view of (20) the iteration of the method of 
multipliers 

yk+l ~ = y~i+c~'[hdx(y~, c)]], i = 1 . . . . .  m (22) 

may be written as 

Yk+x = yk+ caP[x(yk, c)] Vqc(yk), (23) 

where ap is the diagonal m × m matrix having as its ith 
diagonal element the scalar S01 ~"[Ahi[x(yk, c)]] dA. This 
expression is obtained by Taylor's theorem using the 
fact ~'(0) = 0. 

From (23) one can see that the multiplier iteration (22) 
may be viewed as an iteration of the ascent type for finding 
the maximizing point 9 of the dual functional qc. Since 
(~[x(y, c)] tends to the identity matrix as x(y, c)-+ ~ (in 
view of (~"(0) = 1), iteration (23) becomes a fixed stepsize 
steepest ascent iteration in the limit as y~ -+ ft. In fact if 
~(t) = ½t 2 then (23) is equivalent to the steepest ascent 
iteration. 

A tight bound on the convergence rate of  multiplier 
methods. Based on the interpretation of the multiplier 
iteration as a gradient iteration one may obtain a sharp 
rate of convergence result for iteration (23) by using a 
simple variation of a known result [P4] for the steepest 
ascent method. This result involves, however, the eigen- 
values of V 2 qc(Y) of (21) which strongly depend on c. A 
modification of this result which is more amenable to 
proper interpretation is provided by the following pro- 
position. 

Proposition 3: Let (S), (Q) hold and assume that Y0 is 
sufficiently close to 9. Then the sequence (Yk} generated by 
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(22) converges to 37. Furthermore,  assuming y~ # 37 for 
all k 

lim sup [{yk+I -p  II ] 1 I ~-,~o II y ~ - 2  II < m a x  , (24) ~=1 ........ 1 - c e d D )  

where edD) denotes the i th eigenvalue of the matrix 

D = - Vh(2) [V 2 Lo(2, p)]-I  Vh(2)' 

and it is assumed that  the inverse of V2L0 exists. In 
addit ion the bound (24) is sharp in the sense that,  if ¢ and 
f a r e  quadratic functions and h~, ..., hm are affine functions, 
then there exist starting points Y0 for which (24) is satisfied 
with equality. 

Dependence of  convergence rate upon assumptions (Q) 
and (S). The proposit ion above confirms the fact that  the 
convergence rate of the multiplier i teration (22) is linear 
with convergence ratio essentially inversely proport ional  to 
the penalty parameter  c. This fact, however, is strongly 
dependent upon the assumptions (Q) and (S). If  either of the 
assumptions is relaxed the convergence rate may become 
sublinear or superlinear as the following examples show. 

Example 1 : Consider the scalar problem 

min{½x 2 I x = O }  

with optimal solution .~ = 0 and Lagrange multiplier 
07= 0. For  y < 0 ,  ¢(t)  = ~ t l t [  3 , c =  1 the minimizing 
point of Ll(x ,y)  is x(y, 1) = [ - 1 + , ] ( 1 - 4 y ) ] / 2 .  For  a 
starting point Y0 < 0 the iteration (22) yields 

Yk+l = [1 -~ / (1 -4y~) ] /2  

and lilnk-.~o(Yk÷l/Yk)= 1, i.e. we have sublinear con- 
vergence rate. 

Example 2 : Consider the same problem as in Example 1. 
For y~<0, ¢(t)  = - ~ [ t l  ~, c =  1 we obtain x ( y , l )  = 
[ -  i + ~/(1 - 4y)]2/4. For  a starting point Y0 < 0 the iteration 
(18) yields 

Y k + t  = Yk + [-- 1 + x/(1 -- 4y)]/2 

One may show that  

lim [ Y~+I ] 1 
k-co yk ~ 

and hence we have superlinear convergence (order 2). 

Example 3 : Consider the problem rain (~- ] x ]a I x = 0}. 
Again here 2 = )7 = 0 but (S) is not  satisfied. For  y < 0, 
~b(t) = ½t 2, c =  1 the minimizing point of L~(x,y) is 
x(y, l ) =  [ - l + ~ / ( l - 4 y ) ] / 2 .  For  a starting point y0<0  
the iteration 0 8 )  yields 

Yk+l = Y~+ [-- 1 +~/(1 --4yk)]/2. 
Again 

lim [ Y~+I [ 1 
/0...¢'oo y /¢2  

and we have superlinear convergence. 
The convergence behavior exhibited in the above 

examples may be explained by close examination of the 
geometrical constructions of Figs. 1 and 2. It may be seen 
from these figures that  the convergence rate is influenced 
substantially by the rates of change of the derivatives of the 
primal functional p(u) and the 'penalized' primal functional 
p(u)+c ~ = 1  ¢(u0  near u = 0. The convergence is faster 
as the rate o f  change of  Vp(u) is small and the rate of  change 
of  c q~'(ui) is large near u = O. 

In Example 1 the rate of change of ~'(ut) is small near 
u, = 0 and convergence is slow, while in Example 2 it is 
large and convergence is fast. In Example 3 the rate of 
change of Vp(u) is small near u = 0 thus explaining the fast 
convergence. An extreme case of small rate of change of 
V p(u) is when p(u) is a linear or affme function in which 
case Fig. 2 shows that  the method of multipliers converges 
in a single iteration. A general convergence rate result 

which establishes the behavior described above will be given 
in Section 5. 

The following example shows also that in the absence of 
(S) iteration (22) may not lead to convergence for any 
c > 0 when ~ is essentially quadratic. 

Example 4: Consider the problem min { -  ] x I 0 ] x = 0) 
where 1 < p < 2. Then for any c > 0 one can find a neighbor- 
hood of 2 = 0 within which the Augmented Lagrangian 
Lc(x, y) does not  have a local minimum for any value of 
y ~ R when ~ is essentially quadratic. This situation can be 
corrected by using ¢fi(t)= [ t lP '  or qS(t)= [ t [P '+½t 2 
where p'  satisfies 1 < p'  < p. 

Notes and references. The primal dual framework 
adopted here for viewing the multiplier iteration (22), with 
~b(t) = ½t ~, was suggested by Luenberger [L1] and by 
Buys [Bl l ]  in his well-written disertation which is devoted 
to multiplier methods. Proposition 3 was proved by the 
author  [B4] for the case ~(t)  = ½t 2 and in a more general 
setting where the parameter c may change from one itera- 
tion to the next. For  related duality frameworks for 
viewing the method of multipliers see [RI, R2, R4, R6, 
B1-3, P2, P5, A1, M1, W2]. The duality frameworks of 
JR4, B1-3, P2] are global in nature in the sense that  the 
dual functional is everywhere defined. The construction in 
[R4] is carried out under very general assumptions. In 
[B1-3] and [P2] the assumptions are more restrictive; 
however, the dual functional constructed has strong first 
and second differentiability properties. 

4. Treatment of  inequality constraints 
The original papers on the method of multipliers [HI, 

P3, H2] do not  deal with or express inability to handle 
inequality constraints. It turns out, however, that one may 
handle inequality constraints trivially by converting them to 
equality constraints by using additional variables but 
without loss of computat ional  efficiency due to increased 
dimensionality. 

One-sided inequality constraints. Consider the following 
problem involving one-sided inequality constraints 

min f (x) .  (25) 
g j (x )~<o  

J ~ l ,  . . . ,  r 

The problem above is equivalent to the equality constrained 
problem 

rain f (x) ,  (26) 
f l j (~)  + Z) 2 = O  

J ~ l ,  . . . ,  r 

where zl . . . . .  Zr are additional variables. Thus one may use 
a method of multipliers to solve problem (26) in place of 
(25) and if (S) holds for problem (26) the results of the past 
two sections are applicable. One may prove that  if {2, p) 
are an optimal solution-Lagrange multiplier pair satisfying 
the standard second-order sufficiency conditions for 
optimality ILl] (including strict complementarity, i.e. 
p J > 0  if and only if g~(2) = 0) for problem (25) then 
(S) holds for problem (26) in connection with the pair 
{(~, ;71 . . . . .  2r), fi} where 2j = [ gj(.Q It, j = 1 . . . . .  r. 

Turning to the multiplier iteration for problem (26) the 
Augmented Lagrangian is 

r 
Lc(x, z, y) = f (x )  + ~ f[g~(x) + z~ 2] 

j = l  

r 

+e y. ¢[g~(x)+z?]. 
i = l  

Let us make the following assumption on ¢. 

Assumption (G): ¢ is real valued, strictly convex and 
continuously differentiable on R. Furthermore,  4(0) = 0, 
¢ '(0) = 0, limt . . . .  ¢ ' ( t )  = - ~ ,  limt-,® ¢ ' ( t )  = +co. 

Then minimization of Le(x, z, y) can be carried out first 
with respect to zl . . . .  , z~ yielding after some calculation 

r 
Lc(x, y) = min Lc(x, z, y) = f ( x ) +  ~,~[g~(x), y~, c], 

z j = l  ( 2 7 )  
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where ~ is defined by 

ff[gj(x), y~, c] = 

y~ g~(x) + c~[gj(x)] if y~ + c ~'[g~(x)]/> 0, 

min {fl ~" + c~(~-)} if f l  + c~'[g~(x)] < 0. 
"r~R 

The form of the function above is shown in Fig. 3. An 
equivalent form of (27) which is somewhat more convenient 
for analytical purposes is given by 

1 r 
r~e(x, y) = f ( x )  + -~ ~ p[cg~(x), y'], (28) 

J= l  

where p:  R x R --> R is defined by 

At+~(t)  if A+~'(/)~>0, 

p(t, A) = min (A~- + ~(~')} if A + ~ ' ( t ) < 0 ,  
-reR 

with 
$<t) = ~ (~(t/c). 

If  ~ satisfies assumption (G) so does ~ and vice versa. For  
a quadratic penalty function ~(t) = ~(t) = ½t ~ we obtain 

l p ( c t ,  A ) = 1 c ~c [(max {0, A + ct}) 2 -  A ~] 

which is the original function considered by Rockafellar 
[R1-3]. Thus minimization of L,(x,  z, y) with respect to 
(x, z) is equivalent to minimization of L,(x,  y) with respect 
to x which does not involve the variables z~ . . . . .  z~. 

~(t,y,c) 

y+ c~p'(8) : 0 ~ y t  

F I G .  3 .  P e n a l t y  

8 

function for one-sided inequality 
constraints. 

The minimization in (27) yields the minimizing values of 
z~ . . . . .  z, as functions of x, y, c and once these values are 
substituted in the multiplier iteration (15) for problem (26) 
one obtains by straightforward calculation the iteration 

y~+x ~ = max {0, y ~  + c~ ~'[g~[x(y~, c~)]]} 

= max {0, y j+,~ ' [c~  g~[x(y~, c~)]]}, j = 1 . . . . .  r. 

(29) 

where x(y~, c~) minimizes (locally) Le~(., y~) given by (27) 
or (28). 

Thus even though additional variables are used to 
convert problem (25) to the equality constrained problem 
(26), the multiplier iteration for problem (26) takes the 
form (29) which does not involve these additional variables. 

Two-sided inequality constraints. Consider the following 
problem involving two-sided inequality constraints 

min f ( x ) ,  (30) 

$=i~ ..., r 

where f,  g~ are real-valued functions on R" and ~x~, fl~ are 
given scalars with ot~ < flj for all j. Each two-sided con- 
straint in problem (30) could, of course, be separated into 
two one-sided constraints which could be treated as 
described earlier in this section. This would require, 
however, the assignment of  two multipliers per two-sided 

constraint. A more efficient method for handling such 
constraints which requires only one multiplier per two- 
sided constraint is obtained by considering the following 
problem 

min f ( x )  (31) 

uj=0,  J = l ,  ..., r 

which involves additional variables ul . . . . .  u, and is 
equivalent to problem (30). Now consider a multiplier 
method for problem (31) where only the constraints u~ = 0 
are eliminated by means of a generalized penalty function, 
a partial elimination of constraints. This method consists 
of sequential minimizations over x, ul . . . . .  ur of the form 

minimize f ( x )  + ~ [yk ~ uj + c~ ~(u~)], ) 

~-x t (32) 
subject to aj<~e~(x)-u~<<.fl~, j = 1 . . . . .  r. 

The multipliers yk ~ are updated by means of the iteration 

yk+l j = y~+Ck~'(U~k), j = 1 . . . . .  r, (33) 

where ux k, ..., ur k together with a vector xk, solve problem 
(32). Now the minimization in problem (32) can be 
carried out first with respect to u s yielding the equivalent 
problem 

m f ( x )  + ~ pj[gj(x), yk :~, ce] , (34) 

where the function pj is defined by 

l y'[e~(x) - #jl + c ~[e~(x) - #~1 
if y~ + e ~'[g~(x) - fl~l >i O, 

y~[e~(x)- ~1 + c ~[e~(x)- ~l  
p~[g~(x), f l ,  c] = if yJ + c ~ '[g~(x)-  ct~] <~ 0, 

otherwise. 

The form of the function above is shown in Fig. 4. Notice 
that this function is continuously differentiable in x 
whenever the functions g~ are continuously differentiable. 

pj (t,y.c) 

Y(t / y * c q b ' ( ~ )  : 0 / 

Fta. 4. Penalty function for two-sided inequality 
constraints. 

-'-t 

The minimization in (32) yields the minimizing values of 
ul, ..., ur as functions of x, y~ and c~ and once these values 
are substituted in (33) one obtains after straightforward 
calculation the multiplier iteration 

( yj +e~ ,¢,'[e,(x~)-/3A 
if y~  + c~ ~'[g~(x~)-- flj] >~ 0, 

y~+x j : y ~ +  c~ ~'[e~(x~)-~j]  

if y~t+c  k ~ [g~(x~)- o~j] -.~0, 

0 otherwise, 
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where x~ solves the problem (34). Thus again the additional 
variables z~, ..., z~ need not enter explicitly into the 
computations.  

Notes and references. The extension of multiplier 
methods to cover the case of one-sided inequality con- 
straints is due to Rockafellar [R2, R1]. The method for 
treating two-sided inequality constraints by using a single 
multiplier per constraint  was given recently by the author  
[B8, B9]. A similar approach has been used to construct 
approximation algorithms for non-differentiable or ill- 
conditioned optimization problems [B7-10, G2]. A number  
of approaches other than the one presented here have been 
suggested for treating inequality constraints [K1-5, M l, 
M2, P5, S1, A1]. In these approaches, Augmented 
Lagrangians suitable for inequality constraints are 
introduced directly. An alternative approach which 
attempts to identify those inequality constraints which 
are active at the optimal solution and subsequently treats 
them as equality constraints does not  seem to be very 
satisfactory. 

5. Muhiplier methods for convex programming 

The developments of Sections 2 and 3 require second- 
order sufficiency assumptions for problem (1) but do not  
require convexity of the objective or the constraint  
functions. For  the case of a convex programming problem 
much stronger convergence and rate of convergence 
results may be obtained. Consider the problem 

minimize f (x) ,  I 
(35) / subject to x ~ X = R  m, gl(x)<~O . . . . .  g~(x)~O. 

For  simplicity we do not  consider (affine) equality or two- 
sided constraints. The results to be presented have direct 
extensions to cases where such constraints are present. 

Assumption (C): The functions f, gx . . . . .  g, are real- 
valued convex functions and the set X is closed and 
convex. Furthermore,  problem (35) has a non-empty and 
compact set of optimal solutions X *  and a non-empty 
and compact set of Lagrange multiplier vectors Y*, or 
Kuhn-Tucker  vectors according to the definition of [R7]. 

Consider in accordance with the previous section the 
Augmented Lagrangian as in (28). 

1 r 
Lc(X, y) = f ( x ) +  c j~=aP[Cgj(x), yq, (36) 

where p:  R x R ~ R is defined by 

)tt +q~(t) if A+~ ' ( t )  ~> 0, 

p(t, A) = min{h T+~(t)} if A+q~'(t) < 0, 
" r E R  

and ¢ satisfies assumption (G). The multiplier iteration is 
given by 

yk+l j = max {0, ykJ+~'[c~ gj(xk)]}, j = 1 . . . . .  r, 

(37) 

where x~ is any minimizing point O f Lrk(', Yk) over the 
constraint  set X. One may show that  under  (C) for any 
y ~ R m with f>~0 ,  ] = 1 . . . .  , r, and c > 0  there exist such 
minimizing points of Lc( ' ,y)  [K2, K3]. The following 
result has been proved by Kort  and the author  [K2-5]. A 
related result was proved independently by Rockafellar 

2 [R3] for the case ~(t)  = ½t under somewhat different 
assumptions. 

Proposition 4: Let (C), (G) hold. Then for any starting 
point y o u R  m with yoJ~>0, j = 1 . . . . .  r, and any {ck} 
bounded below by a positive number,  a sequence {Yk} 
generated by iteration (37) satisfies 

lim Ill Yk-- Y* III = 0, 
/¢--~CO 

where Y* is the set of Lagrange multiplier vectors of 
problem (35) and III • III is given for all y ~ R"' by 

Ill y -  Y* III = rain 11 y - y *  [I- 
y *  E Y*  

Notice that there is no requirement that ck is sufficiently 
large. Furthermore,  convergence is attained for an 
arbitrary starting point Y0. One may also prove that any 
limit point of a generated sequence {Xk) is an optimal 
solution of problem (35). Rockafellar JR3] has also proved 
the remarkable fact that  for q~(t) = ½t 2 the sequence {y~,~ 
converges to some Lagrange multiplier vector fi, even 
though Y* may contain more than one point. A similar 
result is not available for q~ nonquadratic.  

We also note that  the iteration (37) has an interesting 
geometrical interpretation in dual space as a proximation 
algorithm as shown in JR3] for ~(t)  = .~t 2 and [K3-5] for 
the more general case. 

Concerning the rate of convergence of iteration (37) 
the following result is given in [K2] and a weaker version 
is given in [K3, K4]. 

Proposition 5: Let (C), (G) hold and assume: 

(a) there exist scalars 342 >1 Mt  > 0 and p > 1 such that for 
some neighborhood N O of the origin 

Ml[t l° - l<~l~ ' ( t )  l<~M2ltl  °-l, v t e g o ;  (38) 

(b) there exist scalars ¢$ > 0, 7 > 0, a > 1 such that  the dual 
functional defined by 

qo(Y) = 
inf f ( x )+  y g j ( x )  i fy~>0,  

x E  X ~  '=  

j =  l , . . . , m ,  

otherwise (39) 

satisfies 

qo(Y)-maxqo(Y) <<- - 7  III y -  ¥ *  Ill ~, 
y 

Vy e {y I II1 y -  Y* II1<~}. (40) 

Then if ct = (p - 1) -1 (~r- 1) -1 > 1 there holds 

lim sup III y k + l -  Y* III < + ~ ,  
k-,~ I l l y k -  Y* III ~ 

i.e. the sequence {111 y k -  r '*  III} converges to zero super- 
linearly with order of convergence at least a. 

Some remarks may be helpful in explaining the assump- 
tions and the conclusion of the above proposition. Assump- 
tion (a) is a growth assumption on ~. Roughly speaking it 
states that,  in a neighborhood of zero, ~(t)  behaves like 
] t I o. The assumption is satisfied, for example, for 

~(t) = It  l ° ' + [ t l ° ' + . . . + l t ? "  

with p = min {pl, Pz, -.., P,}. Similarly assumption (b) is a 
growth assumption on the dual functional qo. It says that 
in a neighborhood of the maximum set Y*, q0fY) grows 
(downward) at least as fast as 7 IIJ y -  II* III°. When q0 has 
a unique maximizing point )7 and is twice continuously 
differentiable in a neighborhood around that  point, as for 
example under assumption (S), then a may be taken equal 
to 2. When qo is a polyhedral concave functional, as for 
example in a linear programming problem, then a may be 
taken arbitrarily large. 

Proposition 5 shows that the rate of convergence of 
iteration (37) depends crucially on the form of the penalty 
function 5b (via p) and on the form of the dual functional 
qo (via a). Thus by using the penalty function 

q~(t) = I t  I p 

or the computationally more efficient (see [K5]), penalty 
function 

~(t)  = [ t ]P+½ t 2 

and p sufficiently close to unity, an arbitrarily high order of  
convergence may be achieved. In Example 2 of Section 3 
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we have, by considering the equivalent convex programm- 
ing problem min {½ x2 I x>~0}, a = 2 and  p = ~ and the 
order 2 convergence is explained by the above proposition. 
In Example 2 we have a = t and  p = 2 and the supedinear  
convergence is again explained. In  linear programming 
problems, where a may be taken arbitrarily large, the order 
of convergence is infinity. This is consistent with a result of 
[B6] which shows that  for polyhedral convex programs and 
when ~(t)  = ½ t 2 the method of multipliers converges in a 
finite number  of iterations. 

One may show that  if p = a = 2 in (38) and (40), as for 
example when (S) and (Q) hold, the convergence rate of 
(111 y ~ -  Y* III} is at least linear as shown in IK2]. When 
( p -  1) -1 ( a -  1) - I  < 1 the convergence rate may be sublinear 
as shown in Example 1 of Section 3. In any case, however, 
the convergence rate of methods of multipliers is much 
more favorable than  the one of the corresponding penalty 
methods where Lc~(x, 0) is minimized for a sequence 
c~ ~ oo, i.e. y~ = 0, Vk. This is shown in [K2] where an 
estimate on the convergence rate of such penalty methods is 
derived. Given that  multiplier methods under  (C) are 
convergent for an arbitrary non-decreasing penalty 
parameter  sequence, their advantages over penalty 
methods are overwhelming when the problem is convex. 

6. Inexact minimization--variations o f  multiplier methods 

The methods described in previous sections may be 
viewed as the basic multiplier iterations. As is frequently 
the case in constrained minimization methods it is possible 
to introduce a number  of variations and modifications 
which are aimed at improving computat ional  efficiency. 
There is a plethora of such modifications of multiplier 
methods as well as other related methods and in this 
section we make an attempt to classify them in three broad 
categories. 

(a) Methods with inexact minimizations. These methods 
are characterized by the fact that  the minimization of the 
Augmented Lagrangian (11) is not  carried out exactly but  
only approximately. The unconstrained minimization 
process is terminated as soon as some stopping criterion is 
satisfied. The stopping criterion becomes more stringent 
after every multiplier i teration so that  minimization is 
asymptotically exact. 

Consider for convenience the case of equality constraints 
only and a quadratic penalty ~ ( t ) =  ½t 2. The most 
natural  possibility is to terminate the kth  unconstrained 
minimization when a point x~ is found satisfying 

II VZc~(x~, Yk) II<e~ (41) 

where {ek} is a decreasing sequence with ek ~ 0. This was 
suggested by Buys [B7] as a natural  extension of related 
procedures for penalty methods. Another  possibility is to 
use the stopping criterion. 

II VZc~(x~, Y~) I I<n~ II h(x~) II (42) 
o r  

II VLo~(x~, y~) II ~<min {e~, "q~ II h(x9 II} (43) 

with (ek} and ( ~ }  decreasing sequences with ek ~ 0 ,  
~/~ ~ 0. These and other closely related stopping criteria 
have been considered in [B1-4, P2, K2-5]. Rockafellar in 
his convergence analysis of JR3] considered terminating the 
minimization at an  e~-optimal solution of the Augmented 
Lagrangian (with e~ ~ 0) and showed later [R6] the relation 
of such termination procedures with implementable 
gradient-based stopping criteria such as those mentioned 
above. 

When inexact minimization is employed the multiplier 
i teration may take several alternate forms. One possibility 
is to use the same iteration as with exact minimization 

Y~+x = Y~ + c~ h(xD. (44) 

Other possibilities include the iteration 

Y/c+1 = YkWfltc h(xk), (45) 

where 

h(x~)' Vh(x~) VLck(xk, Yk) 
flk = Ck h(xk)' Vh(x~) Vh(x~) 'h(xk) (46) 

suggested by Miele et aL [21] in a somewhat different 
setting and the iteration 

Yk+l = - [Vh(xD Vh(x~)'] -x Vh(xk) Vf(xk) (47) 

suggested by Haarhoff  and Buys [H2], Buys [B7] and Miele 
et al. [21]. Both iterations (45), (47) reduce to the basic 
iteration (44) when the unconstrained minimization is 
carried out exactly. 

Computat ional  experience thus far indicates that  
considerable savings may be realized by making use of 
inexact minimization. It is unclear whether from the 
practical point of view any particular combinat ion of the 
stopping criteria (41), (42) or (43) and of the iterations 
(44), (45) or (47) is superior than the others. F rom the 
theoretical point of view it has been established [B5] that  
the stopping criterion (41) may lead to a substantial 
deterioration of the convergence rate of the method to the 
point where the rate of convergence is not any more linear. 
By contrast  the stopping criteria (42) and (43) are character- 
ized by an  asymptotic rate of convergence which is identical 
to the one associated with exact unconstrained minimiza- 
t ion [B5]. Additional convergence rate analysis relating to 
methods employing inexact minimization may be found in 
[B1-3, P2] for non-convex problems and in [K2-5] for 
convex programming. For  convergence analysis see 
[BI-5, K2-5, P2, R3]. 

(b) Modifiedmultiplier iterations. Methods in this category 
are characterized by multiplier iterations which are 
different from the basic iteration (44) even for the case 
when minimization of the Augmented Lagrangian is exact. 
Consider again the case of equality constraints only. 
Based on the analysis of Section 3 the method of multipliers 
is a steepest ascent method for maximizing the dual 
functional qc of (19). It is possible to consider, in place of 
the steepest ascent iteration, a Newton or Quasi-Newton 
iteration of the form 

Yk+l = Yk-  Gk Vge(Yk) (48) 

with Gc equal to either the inverse Hessian matrix 
[V 2 q,(yk)] -x where 

V 2 qc(Yk) = - Vh(xk) [V 2 L,(xk, yk)] -1 Vh(xk)' (49) 

or some approximation to [V 2 qc(y~)] -1. I f  the minimiza- 
t ion of L,(x, y~) is carried out by a method utilizing 
second derivatives, such as Newton's  method, then V~qc is 
available at the end of the minimization cycle and little 
additional effort is required to implement (48). This 
possibility has been suggested by Buys [Bll] .  Another  
possibility suggested by Fletcher [F5] (see also Brusch 
[BI2]) rests on the fact that  when L~(x, Yk) is minimized by 
using a quasi-Newton method such as the Dav idon-  
Fletcher-PoweU method one obtains usually, but  not  
always, an  approximation of [V ~ Lc(xk, Yk)] -1 which in 
turn could be used to generate an  approximation of V ~ qc 
via (49). This last possibility does not require the availability 
and computat ion of second derivatives--a major ad- 
vantage. Other modifications suggested for convex 
programming problems are based on alteration of the 
stepsize of the basic method of multipliers by means of 
extrapolation [B4, B5]. 

It is difficult to evaluate the utility of modifications such 
as the ones described above since there is not  much 
related computat ional  experience available at the present 
time. Undoubtedly iterations such as (48), (49) or Quasi- 
Newton versions of them become less desirable as the 
dimension of the problem increases. It  is also unclear 
whether the potential computat ional  savings are worth the 
extra programming effort involved. This is particularly so 
since the simple steepest ascent iteration of the method of 
multipliers already has good convergence rate. Regarding 
convergence of iterations such as (48) there is available a 
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general local convergence result due to Buys ([Bll] ,  
Theorem 4.9), which guarantees convergence provided the 
starting point Y0 is sufficiently close to )7. Some rate of 
convergence analysis for a Quasi-Newton iteration of the 
form (48) was also given recently in [H3]. We offer below a 
new global convergence result for the case of Newton's  
method where G~. = IV 2 qco'k)] -1 in (48) and the Hessian 
matrix V2qe is given by (49). The result is given for 
~(t)  = ½tL A related result may be proved for a general 
essentially quadratic penalty function. The proof  follows 
in a simple manner  from the analysis of [B1] and [B3]. 

Proposition 6: Let the assumptions of Proposition 1 hold, 
and assume ~ ( t ) =  ½tL For  any given bounded set 
Y ~  R m let c* and x(y, c) be as in Proposition 1. Then there 

exists a scalar M such that  

" I Iy -P l I~  Vc>c*,  y e  Y, I l P ( y , c ) - 2 l l  <<-M c e , 

where 

po' ,  c) = y -  [D,O')I -~ h[x(y, c)], 

De(y ) = -Vh[x (y ,  c)] IV 2 Le[x(y, c), yl]-I  Vh[x(y, c)]'. 

Proof: Consider the duality framework of [B1] (Section 
4) or [B3] (Section 3) and the functions p, Pc and d~ defined 
there. We have in terms of the notat ion of [B1, B3] 

p(y, c ) - y  = y - p -  [V z d,(y)] -x h[xo', c)] 

= Vpc(O)- Vpe[h[xo', c)]] + V 2 pc[h[xo', c)]] 

x h[x(y, c)]. 

Now under  our assumptions h is Lipschitz continuous in 
the region of interest with Lipschitz constant  denoted by 
L, and V~pc is Lipschitz continuous with Lipschitz constant,  
denoted by K, which is independent of c. By using these 
facts and Taylor 's  theorem in the expression above we 
obtain 

11Y0,, c ) - ~  l l < g  II h[x(y, c)] 11z/2<<.gz ~ II x0,, c ) - ~  11~/2. 

Using the result of Proposit ion 1 (c.f. (12)) we obtain 

KLZ M 2 II y - . ~  II ~ 
II PO', c ) - y  II< 2c 2 

and by setting AT/= KL ~ M2/2 the desired relation follows. 
Q.E.D. 

It is to be noted that  one may easily modify the proof  of 
the proposit ion above to show that  if [D,O')] -1 is replaced 
in the definition of)~(y, c) by a matrix Gco') where 

II G,O' ) -  [Oeo')] -~ 11 < 

and e is some constant,  then 

I I < M  II Y--37 II ~ ~_,~1 II y - Y  II 
Jl p(y, c ) - f i  cZ c 

where A~/is the constant  in Proposit ion 6 and A:/~ is some 
other constant.  I f  G,O,) satisfies 

II acO,)-[BoO,)] -1 II < ~ II h[xo' ,  c)]ll 

then the estimate becomes 

II yO,, c ) - y  II <~ ( M +  eMz~J I Y - Y  II~, 

where 3;1 is the constant  in Proposit ion 6 and 3718 is some 
other constant.  The estimates above show the extent of 
degradation of speed of convergence when approximations 
to the inverse Hessian of the dual functional are used in a 
Newton iteration. Such approximations,  for example, may 
be obtained through equat ion (49) when xk is an  approxi- 
mate minimizing point of the Augmented Lagrangian. 

Based on  Proposit ion 6 one may establish a convergence 
result similar to Proposit ion 2 for the Newton iteration 
(48) where Gk is equal to [V ~ qekO,D] -a as given by (49) 

with x~ being a minimizing point of Lck(', Yk)- Conver- 
gence is obtained for an), starthrg point provided the initial 
penalty parameter is sufficiently large. This is perhaps 
surprising since usually one can guarantee only local 
convergence for Newton's  method. The convergence rate 
is at least second order and is governed by 

M l l Y ~ - Y l l  2 
II yk+x-Y II< 

C k 2 

which indicates extremely fast convergence. Notice that the 
error II y k + l - Y  II is inversely proportional  to the square of 
c~ rather  than c~ as in the case of the steepest ascent 
iteration. F rom the practical point of view, however, the 
potential computat ional  savings associated with the 
Newton iteration are not spectacular since the ascent 
iteration usually takes very few iterations to converge to 
within a satisfactory degree of accuracy. In fact, 3-6 is a 
typical range. 

For  the case of the inequality constrained problem 

min f ( x )  
aj(x!~<o 

the analysis given above is applicable once the problem is 
reformulated to one involving exclusively equality con- 
straints by introducing additional squared variables. The 
form of the Hessian matrix of the dual functional qc can be 
obtained by differentiation of the gradient Vqc which can be 
calculated to be 

Oqco') 
Oy ~ = m a x  g A x o ' , e ) l , -  c ,  ] =  l . . . . .  r. 

Let us reorder the indices o fy  and g so that for some integer 
p with O ~ p ~ r  

gt[x(y,c)l> YJ for j =  1 . . . . .  p, 
C 

gj[xo', c) l<  - y ~  f o r j  = p + l  . . . . .  r. 
e 

It is possible to prove under our assumptions that for c 
sufficiently large we have g#[x(y, c)] # -yS/c for all j .  Then 
we can write 

o:?) ...... 0 ] 

with I is the ( r - p )  x ( r - p )  identity matrix and 

Deo') = - GO,, c) [V ~ Lc[xO,, c), yl1-1 GO,, c)', 

where GO,, c) is the p x n matrix having as rows the 
gradients Vgl[xO,, c)] . . . . .  Vgl[xO,, c)], and Lc is given by 
(27). In view of the above relations the Newton iteration 
for the dual problem 

Yk+l = Yk-- [ V2 qe(YD] -1 Vq~O'D 

can be written in a convenient form. Similar Newton 
iterations may be obtained for the case where there are two- 
sided inequality constraints present. 

(c) Related methods. There have been several methods 
proposed recently which utilize the penalty function idea as 
well as multiplier adjustment formulas. Many of these 
methods do not  involve exact or even asymptotically exact 
minimization of an  Augmented Lagrangian al though they 
do include intermediate iterations on the primal variables, 
while others involve 'continuous '  adjustment schemes for 
the multipliers. Such methods cannot  be viewed as 
variations of multiplier methods but  rather  as independent 
methods. Their relation, however, with multiplier methods, 
though not very clear as yet, is undoubtedly strong and thus 
it would be an  omission if we did not  mention them. 
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Several methods of  the Lagrangian type have been 
proposed by Miele and his associates [M5-8] for the case of 
equality constraints only. These methods are seeking 
saddle points of a Lagrangian function to which a quadratic 
penalty term has been added. For  none of these methods 
there exists yet a convergence or rate of convergence 
analysis although some local convergence results can be 
inferred using known results for Lagranglan methods, see 
e.g. [P6]. A wide class of Lagranglan methods has also 
been proposed and rigorously analyzed by Mangasarian 
[M1, 2]. These methods are applicable to inequality 
constraints as well, and do not require positivity con- 
straints on the corresponding Lagrange multipliers. 
Furthermore, the related Lagrangian functions have strong 
differentiability properties. 

A different type of method has been proposed by 
Fletcher IF2] based on the observation that the problem 

min f (x )  (50) 
Mx~O 

may be solved by solving 

min f (x )  - h(x)'N+V f (x)  + ½ ch(x)'Oh(x), (51) 
x 

where the m x n matrix N + is given by 

N + = [Vh(x)Vh(x)'] -x Vh(x). (52) 

The penalty parameter c is sufficiently large and Q is a 
positive definite matrix, perhaps depending on x. In this 
way a single minimization is required to solve the problem 
as opposed to a sequence of minimizations required in the 
multiplier method. The vector 

- - N  + Vf(x) 

may be viewed as an estimate of the Lagrange multiplier of 
the problem, as in (47), and thus (51) may be viewed as 
minimization of an Augmented Lagranglan where the 
multiplier vector is not constant but rather continuously 
depends on the value of x. Fletcher has proposed several 
possible implementations of his ideas [F2-4] and has 
provided related convergence and rate of convergence 
analysis. In particular he has provided IF4] superlinearly 
convergent algorithms for solving problem (51) which 
employ only second derivatives of the functions f a n d  h, as 
opposed to third derivatives that Newton's method requires. 
A related algorithm which incorporates an automatic 
scheme for adjusting the penalty parameter has been 
proposed and analyzed recently by Mukai and Polak [M9]. 
Two drawbacks of methods based on Fletcher's ideas are 
the lack of a priori knowledge of a suitable range for the 
penalty parameter, although the implementation of [M9] 
alleviates somewhat this disadvantage, and the need to 
compute the matrix N + of (52) at each function evalua- 
t i o n - a n  expensive operation when the number of con- 
straint equations is large. In addition a satisfactory way to 
handle inequality constraints directly has not as yet been 
established. 

7. Infinite dimensional problems 
The minimization problems considered thus far are 

defined over a finite dimensional space and there is a finite 
number of equality and inequality constraints. For  such 
problems the convergence analysis has reached to date a 
fairly satisfying stage of development. This is not as yet the 
case for infinite dimensional problems such as those 
appearing in continuous time optimal control. There have 
been, however, some advances in this area. Consider 
three, possibly infinite dimensional, linear spaces S, Sx, Sn 
and the problem 

maximize f (x) ,  / (53) 

subject to x ~  X, h(x) = O, g(x)<~O, J 

where f : S ~ R ,  X c S ,  h : S ~ S x ,  g : S ~ S n  and the 
inequality g(x)<~O is with respect to a cone C c  Sn [L3], i.e. 
we write g(x)<~O if g(x) e C. 

The present paper has dealt so far with the case where S, 
$1, S~ are finite dimensional spaces. Infinite dimensional 
special cases of problem (53) and multiplier methods based 
on quadratic-like penalty functions have been considered by 
Rockafellar [R3], Rupp [R8-10], Polyak and Tret 'yakov 
[P2] and Wierzhicki and Kurcyusz lW2]. Reference [R3] 
considers a convex programming problem with no equality 
constraints and Sn finite dimensional and provides global 
convergence analysis for the multiplier iteration (29) with 
¢(t) = ½ t ~. References IR8-10] consider various optimal 
control problems where there are either a finite number of 
isoperimetric constraints or the dynamic system equation 
constraint is eliminated by means of a generalized penalty 
function. Aresult  similar to Proposition 1 of this paper has 
been given in [P2] for the case where S, $1 are Hilbert 
spaces, X = S and there are no inequality constraints. 
Contrary to the finite dimensional case the treatment of 
inequality constraints is not anymore a simple extension of 
the equality case. Nonetheless inequality constraints have 
been treated in an interesting manner in [W2I for the case 
where Sn is a Hilbert space and some convergence analysis 
has been given. There are no results so far dealing with 
the case where the constraint spaces $1 or $2 are infinite- 
dimensional Banach spaces. Such results would be most 
useful since they would cover important cases of optimal 
control problems with state constraints. 

It is to be noted that from the point of view of practical 
computation it is important to take into account the fact 
that solution of an infinite dimensional problem in a digital 
computer requires some type of 'finite dimensional' 
approximation procedure. There are two general computa- 
tional approaches for such problems. The first is to 
approximate the infinite dimensional problem by a finite 
dimensional version and then apply a particular algorithm 
to the latter. There has been considerable outstanding 
work by Jane CuUum [C1--4], and others [B13, D1] 
relating to approximation procedures for optimal control 
problems which are stable in the sense that the original 
problem may be solved to within an arbitrary degree of 
accuracy by solving a finite dimensional approximation of 
it. There is of course no difficulty in combining multiplier 
methods with such an approach. The second possibility is 
to establish the validity of a certain 'theoretical' algorithm 
for solution of an infinite dimensional problem and 
subsequently provide an implementable version, i.e. a 
finite dimensional approximation, of this algorithm. There 
has been very little analysis in the literature addressing the 
related theoretical and practical issues even for classical 
methods, a notable exception being the adaptive integration 
procedure of Klessig and Polak [K6] for unconstrained 
optimal control problems. No attention has been given so 
far to approximation procedures in connection with 
multiplier methods as applied to infinite dimensional 
problems and this appears to be an interesting subject for 
investigation. 

8. Conclusions 
The presentation of the convergence properties of 

multiplier methods given in this paper should demonstrate 
to the reader that multiplier methods are superior to 
ordinary penalty methods for the great majority of 
practical problems. On the basis of this fact multiplier 
methods currently occupy a prominent position among 
methods for constrained optimization. In the opinion of 
most researchers in the field they are the best methods 
available for problems with nonlinear constraints in the 
absence of special structure. They are also very suitable for 
multi-dimensional problems with many constraints, such as 
constrained optimal control problems, where gradient 
projection methods and the reduced gradient method, or 
Newton and quasi-Newton versions of them, may en- 
counter difficulties due to large dimensionality. At the 
present time the properties of  multiplier methods as 
applied to finite dimensional problems seem to be fairly 
well understood. This is not as yet the case for infinite 
dimensional problems. A considerable amount of research 
remains to be done in this area. Furthermore, future 
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research will undoubtedly provide new insights and will 
broaden the scope of application of primal-dual iterations 
in constrained optimization and possibly in other areas 
such as, for example, approximation. 
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