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Automatic Tuning of Simple Regulators with
Specifications on Phase and Amplitude Margins*

K. J. ASTROM and T. HAGGLUND

Simple robust estimation techniques provide new methods for automatic tuning of PID
regulators which easily can be incorporated in single loop controllers.

Key Words—Adaptive control; control nonlinearities; describing function; identification; limit cycles;

Nyquist criterion; PID control; relay control.

Abstract—The paper describes procedures for automatic tuning
of regulators of the PID type to specifications on phase and
amplitude margins. The key idea is a simple method for
estimating the critical gain and the critical frequency. The
procedure will automatically generate the appropriate test signal.
The method is not sensitive to modelling errors and disturbances.
It may be used for automatic tuning of simple regulators as well
as initialization of more complicated adaptive regulators.

1. INTRODUCTION

THEMAJORITY of the regulators used in industry are
of the PID type. A large industrial plant may have
hundreds of regulators. Many instrument engineers
and plant personnel are used to select, install and
operate such regulators. Several different methods
have been proposed for tuning PID regulators. The
Ziegler—Nichols (1943) method is one of the more
popular schemes. In spite of this, it is common
experience that many regulators are in practice
poorly tuned. One reason is that simple robust
methods for tuning the regulators have not been
available. This paper addresses the problem of
finding automatic tuning methods. The methods
proposed are simple to implement using micro-
processors. They offer the possibilities to provide
automatic tuning tools for a large class of common
control problems.

The methods are based on a simple identification
method which gives critical points on the Nyquist
curve of the open loop transfer function. The key
idea is a scheme which provides automatic
excitation of the process which is nearly optimal for
estimating the desired process characteristics.

* Received 16 November 1983; revised 4 April 1984, The original
version of this paper was presented at the IFAC Workshop on
Adaptive Systems in Control and Signal Processing which was
held in San Francisco, California, U.S.A. during June 1983. The
published proceedings of thisIFAC Meeting may be ordered from
Pergamon Press Ltd, Headington Hill Hall, Oxford, OX3 0BW,
U.K. This paper was recommended for publicationinrevised form
by guest editor L. Ljung.

tDepartment of Automatic Control, Lund Institute of
Technology, Lund, Sweden.

645

The methods proposed are primarily intended to
tune simple regulators of the PID type. In such
applications they will of course inherit the
limitations of the PID algorithms. They will not
work well for problems where more complicated
regulators are required. The technique may,
however, also be applied to more complicated
regulators and the experiences obtained so far from
experimentation, in laboratory and industry,
indicate that the simple versions of the algorithms
work very well and in addition that they are robust.

The proposed algorithms may be used in several
different ways. They may be incorporated in single
loop controllers to provide an option for automatic
tuning. They may also be used to provide a solution
to the long-standing problem of safe initialization of
more complicated adaptive or self-tuning schemes.
When combined with a bandwidth self-tuner it is,
for example, possible to obtain an adaptive
regulator which may set a suitable closed loop
bandwidth automatically.

There are other alternatives for tuning regulators
automatically. Self-tuning regulators based on
minimum variance, pole placement or LQG design
methods may be configured to give PID control.
Such approaches have, e.g., been considered by
Wittenmark and Astrom (1980) and Gawthrop
(1982). These regulators have the disadvantage that
some information about the time scale of the process
must be provided a priori to give a reasonable
estimate of the sampling period in the regulator.
There are some possibilities to tune the sampling
period automatically. Different schemes have been
proposed by Kurz (1979) and Astrém and Zhaoying
(1981). These methods will, however, only work for
moderate changes in the process time constants.
The method proposed in this paper does not suffer
from this disadvantage. It may be applied to
processes having widely different time scales.

Conventional self-tuning regulators based on
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recursive estimation of a parametric model requires .

a computer code of a few kilobytes. The algorithms
proposed in this paper which are based on
determination of zero-crossings and peak detection
may be programmed in a few hundred bytes.

The paper is organized as follows: the estimation
method is described in Section 2 and analysed in
Section 3. Simple algorithms for automatic tuning
to amplitude margin and phase margin
specifications are given in Sections 4 and 5. Results
from laboratory and industrial experiments with the
algorithms are presented in Section 6. In Section 7,
the use of the new algorithms to initialize
conventional adaptive controllers is discussed.

2. THE BASIC IDEA

The Ziegler—Nichols rule for tuning PID
regulators is based on the observation that the
regulator parameters can be determined from
knowledge of one point on the Nyquist curve of the
open loop system. This point is the intersection of
the Nyquist curve with the negative real axis, which
is traditionally described in terms of the critical gain,
k., and the critical period, .

In the original Ziegler—Nichols scheme, described
in Ziegler and Nichols (1943), the critical gain and
the critical period are determined in the following
way: a proportional regulator is connected to the
system; the gain is gradually increased until an
oscillation is obtained; the gain when this occurs is
the critical gain and the period of the oscillation is
the critical period. It is difficult to automatize this
experiment, and perform it in such a way that the
amplitude of the oscillation is kept under control.
Another method for automatic determination of
specific points on the Nyquist curve is therefore
proposed.

The method is based on the observation that a
system with a phase lag of at least = at high
frequencies may oscillate with period ¢, under relay
control. To determine the critical gain and the
critical period, the system is connected in a feedback
loop with a relay as is shown in Fig,. 1. The errror eis
then a periodic signal with the period ¢,. If d is the
relay amplitude, it follows from a Fourier series

PID ——J
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FI1G. 1. Block diagram of the auto-tuner. The system operates as
a relay controller in the tuning mode (¢) and as an ordinary PID
regulator in the control mode (c).

expansion that the first harmonic of the relay output
has the amplitude 4d/z. If the process output is a, the
critical gain is thus approximately given by

4d
" na

ke (1)

This result also follows from the describing function
approximation. Notice that the describing function
N{a) for an ideal relay is given by

_M

N(a) .
na

(2)

It may be advantageous to use other non-
linearities than the pure relay. A relay with
hysteresis gives a system which is less sensitive to
measurement noise. This case is discussed in more
detail below.

A simple relay control experiment thus gives the
information about the process which is needed in
order to apply the design methods. This method has
the advantage that it is easy to control the
amplitude of the limit cycle by an appropriate
choice of the relay amplitude. Notice also that the
estimation method will automatically generate an
input signal to the process which has a significant
frequency content at w, = 2n/t,. This ensures that
the critical point can be determined accurately,

When the critical point on the Nyquist curve is
known, it is straightforward to apply the classical
Ziegler—Nichols tuning rules. It is also possible to
devise many other design schemes that are based on
the knowledge of one point on the Nyquist curve.
Algorithms for automatic tuning of simple regu-
lators based on the amplitude and phase margin
criteria will be given in Sections 4 and 5.

It is possible to modify the procedure to
determine other points on the Nyquist curve. An
integrator may be connected in the loop after the
relay to obtain the point where the Nyquist curve
intersects the negative imaginary axis. Other points
on the Nyquist curve can be determined by
repeating the procedure with linear systems
introduced into the loop. New design methods
which are based on such data are described in
Astrom and Hagglund (1984b).

Determination of amplitude and period

Methods for automatic determination of the
frequency and the amplitude of the oscillation will
be given to complete the description of the
estimation method. The period of an oscillation can
easily be determined by measuring the times
between zero-crossings. The amplitude may be
determined by measuring the peak-to-peak values
of the output. These estimation methods are easy to
implement because they are based on counting and
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comparisons only. Since the describing function
analysis is based on the first harmonic of the
oscillation, the simple estimation techniques require
that the first harmonic dominates. If this is not the
case, it may be necessary to filter the signal before
measuring,.

More elaborate estimation schemes like least
squares estimation and extended Kalman filtering
may also be used to determine the amplitude and
the frequency of the limit cycle oscillation.
Simulations and experiments on industrial pro-
cesses have indicated that little is gained in practice
by using more sophisticated methods for determin-
ing the amplitude and the period.

3. ANALYSIS

The reasoning in Section 2 is purely heuristic.
Analysis is needed to understand when the method
works and when it does not work. Natural questions
are: When will there be limit cycle oscillations?
When are those oscillations stable? How accurate is
the describing function approximation? What
happens if the Nyquist curve intersects the negative
real axis at several points? Partial answers to these
questions are given below.

Exact expressions for the period of oscillation
were originally derived by Hamel and Tsypkin. An
exposition of the results are also given in the text-
books by Tsypkin (1958), Gille, Pelegrin and
Decaulne (1959), Gelb and Vander Beide (1968),
and Atherton (1975). Conditions for oscillations are
given below.

Theorem 1. Consider the closed loop system
obtained by a feedback connection of a linear
system having the transfer function G(s) with a relay
having hysteresis. Let H(z,z) be the pulse transfer
function of the series combination of a sample and
hold with period © and G(s). If there is a periodic
oscillation, then the period T is given by

HT2, ~1) = = 3)

where ¢ is the hysteresis width of the relay and 4 is
the relay output. O

The characteristics of the relay with hysteresis are
shown in Fig. 2. The result of Theorem 1 is easily
understood by assuming that there exists a periodic
oscillation with period T. Sampling the system with
period T/2 at sampling instants which are
synchronized to the relay switches then gives the
sampled input and output signals

g keven
V(KT/2) = {—8 k odd

—d

F1G. 2. Characteristics of a relay with hysteresis.

—d keven

u(kT/2) —{ 7 kodd”

The steady state transmission of the sequence
{u(kT/2)} through the sampled system is charac-
terized by the gain H(T/2, —1). The condition (3) is
thus obtained by tracing the propagation of square
wave signals around the closed loop.

A formal proof of Theorem 1 is found in Atherton
(1982) and in Astrém and Hégglund (1984a), which
also gives conditions for the stability of the limit
cycle. The latter paper also covers the more general
case of asymmetric oscillations.

It follows from well-known series expansions of
the pulse transfer function that

H(r,—1)= ————ImG . (4
g ) a=om[l + 2n] " i) 4

» 4 (n+2nn,

The describing function approximation (2) is
obtained simply by using the first term in this series
expansion. The validity of the describing function
approximation (2) can thus be evaluated from this
formula. In many cases it gives the period of the
oscillation with an error of a few per cent, which is
accurate enough for the intended purpose. It is
easily shown that the describing function approxi-
mation gives the exact period for an integrator with
time delay. Another example illustrates the pre-
cision that is typically obtained.

Example 1. Consider the linear system

1

=G Dera

From the describing function approximation, the
period of oscillation is

2 1
T="x63—.
Js Ja
The value of the pulse transfer function for z = —1

becomes

20 a—1|l+e " @El4e ™

] _ -t _ ,ar
H(r,—l):——1+ 1 [1 e 11—e ]
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For large values of a, the period of oscillation is
approximately given by

Tzi—:;z6.9i. ]
i a

Va0

The describing function approximation may,
however, give misleading results as is seen by the
following example.

Example 2. Consider a linear system with the
transfer function

G(s) = e % q b,ty > 0.

s+ a

Since the Nyquist curve intersects the negative real
axis at many points, the describing function analysis
predicts several possible limit cycles. The value of

the pulse transfer function for z= —11s
b e”(e™ — 1)~ 1
H(t,—1) =~ .
@ =1) a 1+e™

The period of the oscillation is given by

2ln bd — ag
bd(2e™ — 1) + ag|

T=2r= (5)

da

It is shown in Astrom and Higglund (1984a) that
the limit cycle is stable. O

The transfer function G(s) in Example 2 becomes
strictly positive real if the time delay goes to zero.
The describing function approximation then pre-
dicts that there will not be any oscillation. The
system will however exhibit a stable periodic
solution under relay control. The period is obtained
by letting t, in equation (5) go to zero.

Stable periodic solutions will not be obtained for
all systems. A double integrator under pure relay
control will give, for example, periodic solutions
with an arbitrary period.

It would be highly desirable to give a complete
characterization of the systems for which there will
be a unique stable limit cycle. Theorem 1 and the
stability conditions in Astrém and Higglund
(1984a) give some guidance, but the general
conditions are still unknown. Consider, for example,
stable systems. It follows from sampled data theory
that

lim H(tr, = 1) = —G(0) = —K

ndivel

where G(0) is the DC gain of the process.
Furthermore, if G(s) goes to zero as s > oo it also
follows that H(0, —1) = 0. Provided that &K 1is

larger than d, equation (3) thus always has at least
one solution. There may of course be several
solutions. It follows from Theorem 3 of Astrom and
Higglund (1984a) and Theorem 2 of Astrom et al.
(1984) that the periodic solution is stable at least if ¢
is sufficiently large. It is conjectured that there is a
unique stable limit cycle for stable systems.

4. AMPLITUDE MARGIN AUTO-TUNERS
When the critical point is known, it is
straightforward to find a regulator which gives a
desired amplitude margin. A simple way is to choose
a proportional regulator with the gain

k= kA, (6)

where A4,, is the desired amplitude margin and k, is
the critical gain.

Sometimes this solution is not satisfactory
because integral action may be required. Since the
frequency response of a PID regulator can be
written as

1
inT;

Grlio) = k[1+ —(1 — *TT)|  (7)

it follows that any PID regulator with the gain given
by (6) and

L= (8)

where @, = 27n/t, also gives the desired amplitude
margin. The integration time can then be chosen
arbitrarily, and the derivative time is given by
equation (8).

5. PHASE MARGIN AUTO-TUNERS
Consider a situation when one point on the
Nyquist curve for the open loop system is known.
With PI, PD or PID control it is possible to move
the given point on the Nyquist curve to an arbitrary
position in the complex plane, as is indicated in Fig.
3. The point 4 may be moved in the direction of

IImG

1 .
T Oliw)

D

Re G

AXGliw) jw G(iw)

F1G. 3. Shows that a given point on the Nyquist curve may be

moved to an arbitrary position in the G-plane by PI, PD or PID

control. The point 4 may be moved in the directions G(iw),

Glim)/ior and iwG(iw) by changing proportional, integral and
derivative gain respectively.
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G(iw) by changing the gain and in the orthogonal
direction by changing the integral or the derivative
gain. It is thus possible to move a specified point on
the Nyquist curve to an arbitrary position. This idea
can be used to obtain design methods. Systems with
a prescribed phase-margin are obtained by, e.g.
moving A to a point on the unit circle. An example is
given below.

Example 3. Consider a process with the transfer
function G(s). The loop transfer function with PID
control is

1
k|1 T+ — .
<( + 8 d+ST)G(s)

Assume that the point where the Nyquist curve of G
intersects the negative real axis is known. Let this
point correspond to w = ,. The following con-
dition is obtained from the condition that the
argument of the loop transfer function at w, is

¢m — 7.

1
(,OC']} - T = tan d)m- (9)

There are many T; and 7T; which satisfy this
condition. One possibility is to choose T; and 1; so
that

T = aT,. (10)

Equation (9) then gives a second order equation for
T, which has the solution

4
tan ¢, + \/ — + tan?¢,,
o

= . 11
T, Yo (1)

Simple calculations show that the loop transfer
function has unit gain at w, if the regulator gain is
chosen as

COS ¢l7l
= ——— =k, cos ¢, 12)
Glwa] ~ < (

where k, is the critical gain. The design rules are thus
given by the equations (9)—(12).

There are many other possibilities, e.g. the
parameter T; may be chosen so that ,T; has a given
value. O

A point on the Nyquist curve which is different
from the critical point is obtained when the relay has
hysteresis. The design method in Example 3 can be
extended to cover this case too. The negative
reciprocal of the describing function of a relay with
hysteresis is

1 T 3 e
Sy e s R i 13
N e e g M

where d is the relay amplitude and ¢ is the hysteresis
width. This function may be described as a straight
line parallel to the real axis, in the complex plane.
See Fig. 4. By choosing the relation between ¢ and d
it is therefore possible to determine a point on the
Nyquist curve with a specified imaginary part. In the
next example, this property is used to obtain a
regulator which gives a desired phase margin of a
system.

Example 4. Consider a process with transfer
function G(s), controlled by a proportional regu-
lator. The loop transfer function is thus kG(s).
Assume that the design goal is to obtain a closed
loop system with the phase margin ¢,,. Choose the
relay characteristics so that the negative reciprocal
of the describing function goes through the point P
defined in Fig. 4. The parameters are then

d= % &= a* sin(Pm)

where a* is the desired amplitude of the oscillations.
The desired phase margin is obtained if the Nyquist
curve goes through the point P in Fig. 4. Since the
intersection between — 1/N(a) and kG(iw) can be
determined from the amplitude of the oscillation,
this point can be reached, e.g. by iteratively
changing the gain k. The formula

k, — k,_
kn+1 = kn - (Ll,, - C’>!‘)i4“C’—l__1 (14)

y — y—1

has a quadratic convergence rate near the solution.
Integral and derivative action can be included, using
the methods proposed in Example 3.

There are many possible variations of the given
design methods for PID regulators. All methods are
closely related because they are based on infor-
mation about the process dynamics in terms of one
point on the Nyquist curve. The points where the
Nyquist curve intersects the real axis or straight
lines parallel to the real axes are simple choices. The

Pry

KG(iw)

FiG. 4. The negative reciprocal of the describing function N(a)
and the Nyquist curve of G(s).
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design methods may be modified. Other relations
between T; and T, than those given by (10) may be
used. Other criteria like damping or bandwidth may
be chosen instead of the phase or amplitude
margins. It is also possible to have design methods
which are based on knowledge of more points on the
Nyquist curve. See Astrém and Higglund (1984b).

6. EXPERIMENTS
A large number of simulations and experiments
on laboratory processes and industrial plants have
been performed in order to find out if a useful auto-
tuner can be designed based on the ideas described
in the previous sections. The results of the
experiments are briefly summarized in this section.

Practical aspects

There are several practical problems which must
be solved in order to implement an auto-tuner. It is,
for example, necessary to account for measurement
noise, level adjustment, saturation of actuators and
automatic adjustment of the amplitude of the
oscillation.

Measurement noise may give errors in detection
of peaks and zero-crossings. A hysteresis in the relay
is a simple way to reduce the influence of
measurement noise. Filtering is another possibility.
The estimation schemes based on least squares and
extended Kalman filtering can be made less sensitive
to noise. Simple detection of peaks and zero-
crossings in combination with an hysteresis in the
relay has worked very well in practice. See, €.g.
Astréom (1982).

The process output may be far from the desired
equilibrium condition when the regulator is
switched on. In such cases it would be desirable to
have the system reach its equilibrium automatically.
For a process with finite low-frequency gain there is
no guarantee that the desired steady state will be
achieved with relay control unless the relay
amplitude is sufficiently large. To guarantee that the
output actually reaches the reference value, it may
be necessary to introduce manual or automatic
reset.

1t is also desirable to adjust the relay amplitude
automatically. A reasonable approach is to require
that the oscillation is a given percentage of the
admissible swing in the output signal.

Different estimation schemes have been explored
by simulations covering wide ranges of process
dynamics and different types of auto-tuners. The
effects of measurement noise and load disturbances
have been investigated. The experiments indicate
that the simple estimation method based on zero-
crossing and peak detection works very well. The
experiments also indicate that simple minded level
adjustment methods often are satisfactory.

Implementations

The auto-tuners have been implemented on
several different computers. A DEC LSI 11/03 was
used in some early experiments. The algorithms
were coded in Pascal using a real time kernel. Small
laboratory processes were controlled. The experi-
ments showed that the simple algorithms were
robust and that they worked well. The algorithms
were also coded in Basic using the Apple II
computer. This implementation was very easy to use
because of the graphics and the interactive user
interface. Experiments have also been performed
using the IBM PC and dedicated micro processors.

Experiment on a laboratory process

An experiment made with the Apple II imple-
mentation will now be presented. Figure 5 shows the
result when the auto-tuner was applied to level
control in a tank with a pump and a free outlet. The
pump was controlled from measurements of the
water level. The tuning procedure can be divided
into two phases. The first phase is an initial phase
which brings the process to equilibrium, ie. to the
desired reference level. The second phase is the final
tuning phase. The two phases are described in more
detail below.

Phase 1. When the process dynamics is totally
unknown, the relay feedback is used with a setpoint
half way between the current and the desired
setpoint. A crude estimate of critical gain and critical
period is made based on one period of oscillation.
This is done in the first phase. Based on this rough
characterization of the process, a conservative PI
controller is designed which ramps the system to the
equilibrium with a slope determined from the
estimated time constant. This first phase can be
omitted if the process is manually moved to the
equilibrium.

Phase 2. When the desired level is reached, the
estimation procedure starts. A relay with a small

0.5
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FiG. 5. Experiments made on the tank process.
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hysteresis is introduced in the loop as shown in Fig.
1. The relay amplitude is adjusted automatically so
that an oscillation with desired amplitude is
obtained. The amplitude and the frequency of the
oscillation are estimated by peak detection and
determination of the times between zero-crossings
of the control error.

The design method was based on a combination
of phase and amplitude margin specification. It was
required that the Nyquist curve intersects the circle
with radius 0.5 at an angle of 225°. Two step
responses are shown in Fig. 5. The lack of symmetry
depends on the nonlinearity of the pump. The high
frequency disturbance in the control signal is caused
by round-off errors in the AD-converter, eight bits
only.

7. INITIALIZATION OF ADAPTIVE CONTROLLERS

The new estimation procedure presented in this
paper has been used to derive a technique to tune
simple regulators automatically. Initialization of
conventional adaptive controllers is another impor-
tant application. Adaptive and self-tuning con-
trollers based on parameter estimation require prior
knowledge of the magnitude of the time delay of the
process. This is needed to select the sampling period.

An upper bound of the time delay is given by t,/2,
which follows from Example 2 for first order
systems. It is also true for systems having monotone
step responses. A suitable sampling period for a self-
tuner can thus easily be determined from the upper
bound of the time delay. Having obtained a suitable
sampling period, parameter estimation may also be
applied to the signals obtained during the auto-
tuning to give good initial parameter estimates for a
self-tuner. By combining the auto-tuner with a self-
tuner of the type discussed in Astréom and
Wittenmark (1973), it is possible to obtain an
adaptive regulator which can work for processes
having a wide range of time delays and time
constants.

Another interesting system is obtained by
combining an auto-tuner with the bandwidth self-
tuner discussed in Astrom (1983). A reasonable
estimate of the desired bandwidth can be obtained
from the critical period. It is then possible to design
an adaptive regulator which by itself can determine
areasonable value of the closed loop bandwidth and
then execute a control law which gives this. More
elaborate combinations of control algorithms are
suggested in Astrom and Anton (1984).

8. CONCLUSIONS
Simple methods for tuning PID regulators have
been proposed. The methods have been investigated

theoretically and experimentally. The methods are
robust and easy to use. In contrast to other methods
based on self-tuning control they do not require
priori information about time scales. The methods
will of course inherit the limitations of the PID
algorithms. They will not work well in situations
where more complicated regulators are required.

The algorithms may be used in many different
ways. They may be incorporated in single loop
controllers to provide an option for automatic
tuning. They may also be used to initialize more
sophisticated adaptive algorithms.
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