LUND UNIVERSITY

Expert Control

Astrém, Karl Johan: Anton, John J.: Arzén, Karl-Erik

Published in:
Automatica

DOI:
10.1016/0005-1098(86)90026-9

1986

Link to publication

Citation for published version (APA):

Astrom, K. J., Anton, J. J., & Arzén, K.-E. (1986). Expert Control. Automatica, 22(3), 277-286.

https://doi.org/10.1016/0005-1098(86)90026-9

Total number of authors:

General rights

Unless other specific re-use rights are stated the following general rights apply:

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.

* You may not further distribute the material or use it for any profit-making activity or commercial gain

* You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00


https://doi.org/10.1016/0005-1098(86)90026-9
https://portal.research.lu.se/en/publications/4272d5f7-e763-4791-b69e-f720e8cfdba7
https://doi.org/10.1016/0005-1098(86)90026-9

Automatica, Vol. 22, No. 3, pp. 277-286, 1986
Printed in Great Britain.

0005~1098/86 $3.00 + 0.00
Pergamon Journals Ltd.
© 1986 International Federation of Automatic Control

Expert Control*

K. J. ASTROMH, J. J. ANTON] and K.-E. ARZEN¥

A novel approach to on-line control is based on a collection of diagnosis estimation
design and control algorithms being orchestrated by an expert systeim.
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Abstract—There has been substantial progress in the theory and
practice of automatic control through application of mathemati-
cal analysis and numerics. Symbolic data processing has,
however, so far only had marginal influence on control systems
despite the fact that the actual engineering of control systems
contains a substantial amount of heuristic logic. This paper
shows how the logic may be replaced by an expert system. This
leads to simplification of conventional systems and makes it
possible to obtain control systems with new capabilities.

1. INTRODUCTION

THE PURPOSE of this paper is to illustrate some uses
of expert system techniques in control systems. It is
first observed that the actual implementation of
control laws often incorporates a substantial
amount of heuristic logic. This is true for simple
regulators as well as for more sophisticated
multivariable control loops. Expert system metho-
dologies provide a systematic approach for dealing
with heuristic logic. Selected basic elements of an
expert system are presented. An example illustrates
how expert system ideas can be incorporated into
feedback laws. It is shown that this approach can be
used to simplify the heuristic logic and also to
provide new functions in a control system.

The approach taken in this paper is to improve
the primary control function by introducing an
expert system as a part of the primary feedback
loop. There are other applications of expert systems
in the control field. Moore et al. (1984) have
proposed an expert system which supervises a
conventional control system and aids the operator
by performing intelligent alarm functions and
performance analysis. Trankle and Markosian
(1985) have also used an expert system combined
with a control design package to reconfigure control
laws for a flight control system.
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2. THE PRACTICE OF AUTOMATIC CONTROL

There has been a very significant development of
control theory over the past thirty years. This has
led to many new ideas and concepts, as well as
increased insight and new design procedures. The
inspiration has largely come from two sources:
mathematics and digital computing. However, this
vigorous theoretical development has so far only
had a modest impact on the practice of automatic
control.

The making of a control system can be composed
of the following activities: modelling, identification,
analysis, simulation, control law design and
implementation. It is fair to say that developments
over the past 30 years have had a drastic influence
on identification, analysis and  design.
Implementation has changed in the sense that
digital systems are now replacing analogue systems.
The basic system structure and the algorithms have,
however, remained the same.

Although major progress has been made in
linear and non-linear systems theory, there are
several instances where theory lags application
needs. Typical examples are systems with selectors
and anti-wind-up mechanisms. Such systems are
frequently approached purely empirically.

Consider for example an ordinary PID regulator.
Its linear behaviour can be described by the model:

u(t) = k[e(t) +% J e(s)ds + Tddfl(f)} 1

where u(t) is the control signal and e(t) the error
signal. PID control can be understood very well
from this linear equation, suitable values of the
parameters can be determined etc. To obtain a good
PID regulator it is also necessary to consider
operator interfaces, operational issues like switch-
ing smoothly between manual and automatic
operation, transients due to parameter changes, the
effects of non-linear actuators, wind-up of the
integral term, maximum and minimum selectors etc.
An operational industrial PID regulator consists of
an implementation of (1) and heuristic logic that
takes care of these issues (Fig. 1). Although these
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FiG. 1. Block diagram of an industrial PID regulator with heuristic logic.

heuristic factors are of extreme importance for good
controller performance they have not attracted
much interest from theoreticians. They are instead
hidden in practical designs and rarely discussed in
the control theory literature. One reason for this is
that the theoretical analysis is quite difficult,
another is that many researchers are unaware of
these issues.

It can thus be concluded that practical solutions
even to such mundane problems as PID control are
not done by theory alone, but that heuristics play an
important role. This shows up as logic that
surrounds the implementation of the linear control
law given by (1). The standard way of building
industrial process control systems is to combine
PID regulators with maximum and minimum
selectors, logic and sequencing circuits. It is a very
noticeable trend that DDC (Direct Digital Control)
systems and PLC (Programmable Logic
Controllers) systems are merging. The design of
such combined systems also involves a lot of
heuristics.

Heuristics are even more important in multivari-
able and self-tuning regulators. In these cases the
fundamental control law is much more complicated
than the control law given by (1). To obtain a well-
functioning adaptive control system it is also
necessary to provide it with a considerable
amount of heuristic logic. This goes under different
names such as supervision safety nets or safety
jackets; see Clark (1981) and Isermann (1982).
Experience has shown that it is quite time
consuming to design and test this heuristic logic.

Although this paper concentrates on a simple
control loop the authors believe that there are also
applications for expert control at the higher levels of
process control with many interacting components.
At these higher levels it is possible to formulate the
control problem in a dynamic programming
framework. In such a formulation the “states” will
be the steady state operating conditions between

changes in the control laws applied to the lower level
components. The states represent the operating
conditions of the total plant. Decisions correspond
to selections of operating conditions (control law
type for a given loop, estimation etc.) carried out by
lower level controls. There are also multiple plant-
wide performance measures. Heuristics are im-
portant at both high and low levels. Dynamic
programming formulations have not been widely
used in practice due to computer requirements
(Bellman, 1957). Some attempts have been made to
use dynamic programming while making heuristic
approximations to reduce computations and
storage (Astrom and Helmersson, 1983). Even so
the methods have focused on low level system
components, such as isolated loops.

3 HEURISTICS

In the previous section is was mentioned that
heuristics plays a role in ordinary PID regulators
and an even greater role in systems which combine
PID regulators with sequencing and logic, and in
adaptive regulators, Heuristics shows up in the form
of selectors, if-then-else or case statements. This part
of the code may be much larger than the code for the
core control algorithm. The debugging,
modification and testing of the control logic can
therefore be very time consuming. From a purely
pragmatic point of view of engineering efficiency it
thus makes sense to look at more efficient ways of
implementing the heuristic part of the code.

Once one accepts that control algorithms will
contain heuristics one may also ask what a more
extensive use of heuristics may contribute to control
systems. As an illustration, consider typical adaptive
algorithms such as model reference adaptive
controllers or self-tuning regulators that are
currently being used (Astrom, 1983). These algor-
ithms may be viewed as local gradient algorithms in
the following sense. Starting from reasonably good
a priori guesses of system order, sampling period
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and parameters, the algorithms can adjust the
regulator parameters to give a closed loop system
with good performance. The algorithms are also
capable of tracking a time-varying system provided
that the parameters do not change too quickly. They
will not work however, if the a priori guesses are too
far off. Most digital adaptive algorithms will fail if
the sampling period is too short. The present
adaptive control algorithms thus have a limited
range in which they will operate satisfactorily.
Outside this range they may result in an unstable
closed loop system. This is in fact the reason for
introducing the safety jackets mentioned in Section
2.

There have recently been proposals for other
types of tuning algorithms that have a wide range of
operability, although possibly lacking the good
local properties of the self-tuners (Astrom and
Higglund, 1983, 1984). It seems appealing to
explore the possibility of designing systems that
combine a range of algorithms. This entails
orchestration of different algorithms to achieve
varying control objectives. Selection of different
control structures is made in current control
systems to a limited extent by hard-wired logic. If
the scope is widened, e.g. by combining algorithms
with different properties, this logic may grow
unwieldy. The objective of expert control is to
encode knowledge representations and decision
capabilities to allow intelligent decisions and
recommendations automatically rather than to
preprogram logic which treats each case explicitly.
Important analogues are found in existing expert
system applications. It is thus useful to look there for
tools that may aid in solving the control problem.

4 EXPERT SYSTEMS

Expert systems is a rapidly expanding area within
the field of Artificial Intelligence (AI) (Winston,
1977: Nilsson, 1980; Barr and Feigenbaum, 1982;
Davis, 1982; Davis and Lenat, 1982; Hayes—Roth et
al., 1983; Waterman and Hayes—Roth, 1983). One
objective of Al is to develop computer-based models
for problem solving. This is a distinctly different task
from that of physical modelling via parameter
identification. The Al based approaches attempt to
model those aspects of a problem which are not
naturally amenable to numerical representation or
which can be more efficiently represented by
heuristics. Expert systems seek to model the
knowledge and procedures used by a human expert
in solving problems within a well-defined domain.
Important examples of expert systems are docu-
mented in Barr and Feigenbaum (1982), Davis
(1982) and Nii et al. (1982).

Knowledge representation is a key issue in expert
systems. Many different approaches have been
attempted such as first order predicate calculus

(logic), procedural representations, semantic net-
works, production systems (the Al versions of the if-
then-else structure mentioned above) and frames,
see e.g., IEEE (1983).

Production systems or rule based expert systems
have some very desirable features for a process
control application. A typical rulebased expert
system has four principal components: (1) system
data base; (2) rulebase; (3) inference engine and
(4) user interface. These are illustrated in the block
diagram in Figure 2.

The system data base

The system data base is the repository of facts,
evidence, hypotheses and goals. For a process
control example, the facts would include static
data such as sensor measurement tolerances,
operating thresholds, alarm level thresholds, con-
straints on operational sequencing, plant com-
ponent configurations etc. Evidence includes dy-
namic data from sensors, instrument engineering
reports and laboratory and test reports.

A practical observation for plant operations is
that evidence as described above is typically diverse
in type, often noisy, somewhat delayed, possibly
incomplete and sometimes contradictory. An
experienced process control engineer has techniques
for dealing with these complications. He can
develop hypotheses to supplement the current
collection of facts. In an expert system, hypotheses
are also generated and stored in the data base to
cope with limitations in known facts or measured
evidence. One important class of hypotheses in an
expert control system will be the various state
estimates made by parameter estimation algor-
ithms. Including them under hypotheses acknowl-
edges both that they are derived from evidence
(data) and that their derivation is conditioned on
other model assumptions.

Goals are other important entries in the data
base. In an expert system they are usually both static
and dynamic in nature. Static goals include the wide
array of performance objectives as: maintain stable

Rulebase Database

|

Inference
engine

|

User
Interfgce

FI1G. 2. A block diagram of a rulebased expert system.
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operation, find optimal stationary operating points
or determine if the current control law can be
improved. Dynamic goals include those established
on line, either by external command or from the
program itself.

Rulebase

The rulebase contains the production rules which
are typically described as: “if (situation) then
action)”. The “situation” represents facts, evi-
dence, hypotheses and goals from the data base. In
a conventional expert system the “action” can be
to add a new entry to the data base or to modify
other entries. In this case the action can also rep-
resent activation of a controller or an estimation
algorithm. These actions are different from those
found in conventional expert systems. The rules may
be viewed as functions operating on the state. Since
the data base is broader in concept than the usual
notion of state in control theory, production rules
are also richer in content than common transition
functions. The rulebase is often structured in groups
or knowledge sources that contain rules about
the same subject. This simplifies the search. The
knowledge sources are models for the essential
problem elements. In a process control application
they include the portion of the operator’s skill to be
automated, the control and estimation algorithms
that may be applied, the appropriate character-
ization of these algorithms, judgemental knowled ge
on when to apply them and supervision and
diagnosis of the system.

Inference engine

The purpose of the inference engine is to decide
from the context (current data base of facts,
evidence, hypotheses and goals) which production
rules to select next. This can be done according to
different strategies (Winston, 1977).

User interface

The user interface of a production system can be
divided into two parts. The first part is the
development support that the system gives. This
contains tools such as rule editor and rule browser
for development of the system knowledge base. The
other part is the runtime—user interface. This
contains explanation facilities that makes it possible
to question how a certain fact was concluded, why a
certain estimation algorithm is executing etc. It is
also possible to trace the execution of the rules.

Planning

Expert control contains an element of planning,
An on-line fault, a command to change production
goals ete., each call for a sequence of steps to bring
the process in line with requirements. Each step in
this plan involves some action to adjust the process.

The actions taken must not interfere with the
preconditions of actions to follow in accordance
with the control plan. With many actions available,
and with many possible sequences, the development
of a control plan may be viewed as a search through
a large network for a path that reaches the currently
established goals. Picture here an experienced
human operator who, given time and enough
information, knows how to bring the process in line
with required operational conditions. This search-
ing and planning in a complex environment is a
fundamental activity in AT systems.

In classical algorithmic control there are well-
defined and highly constrained notions of state and
state transition. These are associated with physical
parameters and operations. In expert control the
goal is to deal with more ambiguous, less
constrained, more qualitative notions, in addition to
the available quantitative knowledge. Control
strategy development in classical control can use
tools like dynamic programming with an exhaustive
search for a plan. Expert control deals with those
process control probems where the sheer number of
alternatives makes the search impractical. For
instance the solution for finding a plan for 8 steps
with 4 options at each step, should reasonably not
deal with all 4% ~ 64000 possibilities. Heuristics
might be found, for example, to select appropriate
steps at plan stages 2, 4 and 6, whereupon the search
would be reduced to 4-4% = 64 options.

Important work on expert systems for planning
has been carried out in the context of robot motion
(Nilsson, 1980; Sacerdoti, 1977) and genetics
experiment design (Stefik, 1981a,b). But the
planning problem for expert control of a complex
plant has elements which are not addressed in
these works such as uncertainty in the state, the
models, and the outcome of an applied action.
(Nilsson (1980) does treat the last consideration in
his program, STRIPS.) In some cases the stochastic
dynamic programming problem formulation pro-
vides a framework for the requisite planning. But
this algorithmic approach which amounts to global
search, may not be feasible. Expert systems have
been applied to similar complex tasks before with
noteworthy success (Buchanan et al., 1969). In the
next section, although no specific planning for-
mulation is put forth, some of the elements of the
planning problem are described for the case of a
single objective for a single loop.

5. AN ADAPTIVE REGULATOR
To illustrate the concepts a simple example in the
steady state control of an industrial process will be
investigated. It is shown that expert control can give
added performance to such a mundane operation.
The different functions that the system is required to
perform are first given. These functions can be
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implemented by a combination of different algor-
ithms and rules. Functions which are related can be
grouped into knowledge sources.

Operations

For simplicity only a single control loop is
considered. Let the goal be to hold a process
variable close to a given set point with reasonable
control actions. If the dynamics of the process and
the disturbances were known, a minimum variance
regulator could be designed. Examples of such
control strategies and the underlying theory are
givenin Astrom (1970). If the process is described by
the sampled model

Ay(t) = Bu(t) + Ce(t), )

where u is the control variable, y the output, e white
noise, and 4, B and C are polynomials in the
forward shift operator, then the optimal control law
is

Ru(t) = —Sy(1), 3)
where the polynomials R and S are given by
#"'CB= AR + BS 4)

and d is the delay in the system, i.e. d = deg A — deg
B. The operations necessary to obtain and maintain
the minimum variance control law given by (3) in a
safe way will now be discussed.

Minimum variance control is the main function of
the system. Models (2) for the process and the
disturbances and a sampling period are required to
apply the function. With the simple minimum
variance control law it is necessary to ensure that the
preconditions for minimum variance control are
satisfied. The most important condition is that the
process dynamics are minimum phase, ie. that the
process zeros are inside the unit disc. A particular
feature of the minimum variance control law is that
the process zeros are cancelled. This may lead to
ringing if the zeros are not sufficiently well damped.
The trade-off between input and output variance is
governed by the prediction horizon d-h, where d is
the delay in (2) and h is the sampling period. Notice
that if the process is stable then the model will
always have zeros with arbitrarily good damping if
the sampling period is long enough (Astrém et al.,
1983). To be able to detect ringing and to take
appropriate actions it is useful to include a ringing
detector. The ringing can be eliminated by
increasing the value of the parameter d; see Astrom
and Wittenmark (1985).

There is a convenient way to find out if a process is
under minimum variance control because the

output is then moving average
y(t) = Ale(t) + ... + fa—re(t —dh +h)],  (5)
where

F=5 (6)
and h is the sampling period. A minimum variance
supervisor can thus be based on the calculation of
the correlation function of the output.

If a sufficiently accurate process model for
preselection of R and S from (3) and (4) is not
available, a self-tuning regulator (STR) may be used
(Astrom and Wittenmark, 1973). Such a regulator
may, under certain conditions, converge to the
minimum variance regulator which could be
designed if the process model were known. The
simple self-tuner is in essence a parameter estimator.
In the STR the model is reparameterized in terms of
the regulator parameters. A parameter estimator will
thus be included. The precondition for parameter
estimation is experimental data obtained when the
process is properly excited. To ensure a proper
operation of the estimator an excitation supervisor
will therefore be introduced. This would in essence
determine the energy of the input signal in the useful
frequency range.

The normal estimation algorithms will perform
well if the parameters are constant or slowly
varying. To cover situations where the parameters
may change suddenly it is useful to include a jump
detector which can be used to reinitialize the
estimator; see Hagglund (1984).

If there is not enough excitation there are two
options: either to stop updating the model
parameters or to introduce perturbation signals
(Astrom, 1984). In those cases when perturbation
signals are allowed the system will be provided with
a perturbation signal generator. The generation of
the perturbation signal requires some information
about the frequency range of interest and about the
allowable perturbation levels. This may be derived
from the knowledge of the delay 4 and the sampling
period h.

The STR also requires prior knowledge. In
particular the following data is needed for the basic
STR (Wittenmark and Astrém, 1984): h, sampling
period; d, delay in number of sampling periods; ng,
degree of the polynomial R; ns, degree of the
polynomial S; A, forgetting factor; 0o, initial
estimate; po, initial covariance and high and low
control limits.

The parameters d and h are crucial since the
closed loop system may become unstable if they are
underestimated. To detect this the system should
therefore be provided with a stability supervisor. It is
possible to determine if the integers ng and ng are
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large enough simply by calculating the covariance
functions r,,(t) and r,,(t) (Astrdm and Wittenmark,
1973). A degree-supervisor can thus be constructed
and included in the system.

The importance of knowledge of the product d+ h
has been emphasized. A robust estimate of this
quantity may be derived from the Ziegler—Nichols
auto-tuner discussed in Astrém (1982). This
procedure gives the critical gain k, and the ¢ritical
period t.. A ke-tc estimator with some supervision, as
is discussed in Astrém and Hagglund (1983), is thus
also provided. A safe estimate of d + h with monotone
step responses is actually ¢,/2. When using the kc-tc
estimator data will also be obtained, which is useful
in estimating other parameters.

If the parameters k. and ¢, are known it is possible
to determine a back-up control based on the
Ziegler—Nichols methods for PID control. Such a
regulator would provide control of the process even
if the performance was far from optimal.

Other functions may also be provided. Assume
that the process dynamics change with the
operating condition of the process. Gain-scheduling
may then be considered. For this purpose it is useful
to have functions like smooth-and-store regulator
parameters, get regulator parameters and a test
scheduling hypothesis. The last function scans the
parameter values stored in a table for a given
process state and determines if the values are
reasonably close. These tables themseclves are
produced during operations where conditions,
parameters and outcomes are stored. The function
that compiles these tables is called a learning
supervisor. It is highly desirable to supervise the
global behaviour of the system in normal operation.
This is done by the main monitor. This computes
means, variances and maximum deviations. From
the information generated by this monitor ques-
tions arise such as: Is the system operating
normally? Are the deviations the same as in the
same period last year?

The functions discussed may be grouped into
knowledge sources as follows:

M ain control: minimum variance control ; minimum
variance supervisor; ringing detector; degree
supervisor.

Back-up control: PID control; ke-tc estimator.

Estimation: parameter estimation; estimation
supervisor; excitation supervisor; perturbation
signal generator; jump detector.

Self-tuning: self tuning regulation.

Learning: get regulator parameters; smooth-and-
store regulator parameters; test scheduling
hypothesis.

Main monitor: stability supervisor; compute means
and variances.

The data base

The system data base stores current process data
to support technical audit and learning. The entries
in the data base must accommodate these demands.

Data base planes. The data base hosts static and
dynamic data consisting of facts, evidence, hy-
potheses and goals. These data types need not be
maintained separately in an implementation.
Rather it is usually more appropriate to divide the
data base along planes that are the focus of the
knowledge sources. One of the most important
planes is the event list.

Event lists. One convenient and often used
approach for dealing with a time-varying environ-
ment in an expert system is to make the processing
“event-driven”. Suitable actions are proposed under
the direction of the supervisory control according to
the nature of events entered on an event list. These
events may be entered into the processing from an
external source, or may result from internal
processing by the knowledge sources on earlier
events. Event types include: threshold crossings for
process levels and rates, human operator command
entries, entry of new hypothesis on process
conditions, modification of an earlier hypothesis,
request for control mode change, announcement of
control mode change and requests by the human
operator for information.

A few examples of event lists will now be given.
Some lists are organized to provide data for the
different knowledge sources. Data used for the main
monitor are shown in Table 1. The entries are time,
the mean values of the control and output signals, u
and y, their standard deviations ¢, and oy, the results
of a stability supervisor and the type of the
regulator. The maximum and minimum deviations
may also be entered. The major control modes are
manual back-up, minimum variance and self-
tuning. An entry is made in Table 1 when the mode
changes or when the set point is changed.

It may be useful to add a few entries in the table
such as max and min values or percentile values. The
mean values entered in the table for event n are mean
values between the events n and n + 1. From the
data shown in Table 1 it is possible to make
deductions like: What are the relations between the
mean values of u and y? Do these relations change
with time? Are there any relations between the
standard deviations and the mean value of the

TABLE 1. MAIN MONITORING TABLE

# |Time(u .Y le Stable |Regulator
y type
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control signal? What are the patterns of the mode
switches? Does the system go to tuning mode after
large set point changes? What control modes are
used most of the time? Are there drastic variations
in performance with time and modes? The answers
to these questions will allow inferences about the
characteristics of the process.

The essential data used in the back-up mode is
shown in Table 2. An entry in this table is made
whenever the system goes into back-up mode or
when a kec-tc tuning is made when the system is in
back-up mode. The entries are the critical gain k.,
the critical period t, and the PID parameters. The
reason for entering both the critical point para-
meters and the PID parameters is to have options
for the system to modify the PID design rules.

The main data generated during periods with
fixed gain minimum variance control are given in
Table 3. An entry into this table is made whenever
the fixed gain minimum variance control is in
operation. The entries are the parameters ny and ng,
the prediction horizon d, the sampling period / and
the regulator parameters.

From Tables 1 and 3 questions can be answered
such as: What structures of minimum variance
regulators are used? Do the structures have any
relations to the operating conditions? Are there any
patterns in the performances obtained? An entry is
made into the parameter estimation table whenever
a parameter estimation is performed. The entries are
time, operating conditions, the perturbations, the
sampling period, the prediction horizon, the
complexity parameters and the regulator
parameters.

Table 4 is related to the parameter estimation.
Data are entered into this table when parameter
estimation is performed either periodically or on
demand when operating conditions are changed.
The table can be used to explore parameter changes

TABLE 2. BACKUP CONTROL TABLE

#  |Time K T |P i D
o3 c

TABLE 3. MINIMUM VARIANCE CONTROL TABLE

# Time nR ng d h Parameters

TABLE 4. PARAMETER ESTIMATION TABLE

Time OC jPerturb. {h d |n n, Parameters

5

and if the changes are related to operating
conditions.

In practice the number of event types is large—a
system of modest complexity may have in excess of
50. The flow of an event-driven system is produced
by the event type together with the rules in the
supervisory control element for the ordering of their
processing. There are also other tables in the system
data base such as a learning control table.

The hypothesis list. The hypothesis list is another
important part of the data base. It is an organized
collection of the derived working understandings of
the process conditions. The organization often takes
the form of levels of abstraction. The lower levels are
typically concerned with immediate inferences from
sensor data. For example, the hypothesis that the
control errors are small is easily deduced from a list
of the current means and variances, see Table 2.
More complicated hypotheses may include making
an estimate of the current level of stability of the
process. Both numerical evaluations and rule of
thumb heuristics can be used for this purpose.

As the level of abstraction increases it may be
necessary to interact with the process engineer to
blend his capability with that of the machine. In
order to provide a mixed initiative capability, it is
important for the engineer to have access to the
rationale upon which system inferences are based.
In an expert system this is provided by the attaching
of rule numbers to internal events. In this way the
data base supports the capability for a technical
audit of the processing,

Another important function of the data base is to
store processing history in a manner suitable for
automatic learning. The idea is similar to learning
from experience in chess or checkers (Samel, 1967;
Michalski et al, 1983). In the process control
problem there are analogous questions. For
example, it is currently difficult to determine
analytical approaches for selecting thresholds for
control mode switching,

6. A PROTOTYPE IMPLEMENTATION

A system employing the PID functions described
in Section 5 has been implemented ona VAX 11/780
running under VMS. The expert system is written in
LISP and the numerical algorithms in PASCAL.
The LISP used is the UNIX dialect Franz Lisp
(Foderaro et al, 1981). The software package
EUNICE (Kashtan, 1982), is used to create a UNIX
environment under VMS. The expert system parts
are based on the framework OPS4 (Forgy, 1979). A
brief discussion of the system is given below. More
details are given in Arzén (1986).

Concurrency is obtained by exploiting the real-
time operating system facilities of VMS. The system
has three parallel processes; the expert system, the
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algorithms and the man—machine communication.
These processes are implemented as VMS subpro-
cesses. They communicate through VMS mail-
boxes. A mailbox is a queue where messages can be
read or written. A message is associated with a line
of text. This mechanism simplifies the com-
munication between LISP processes since in LISP
there is no difference between data and program. A
message can thus be an arbitrary LISP expression.
A process graph of the system is shown in Fig. 3.

The numerical calculations are implemented as a
libarary of algorithms. The algorithms can be
divided into three groups; control, identification
and supervision algorithms. They are coded in a
uniform way with separate parts for initialization,
execution, parameter changes and abortion. This
structure reflects the type of messages the expert
system can send. Messages received by the expert
system are typically results from identification
algorithms or alarms from supervision algorithms.
One design goal has been to make it easy to add new
algorithms and to update old ones.

The expert system is written in LISP and OPS4,
which is a production system framework that uses
forward chaining. Forward chaining means that the
program works from an initial state towards some
goal by successively applying the rules. The
framework OPS4 consists of three parts: the
working memory, which is the data base; the
production memory, which contains the rules and
the inference engine, which controls the rule
execution.

The syntax of a rule looks like

Rulename
{(“condition element” ...
“action” ...)

The “condition elements” are patterns which are
matched against the contents of the working
memory. The patterns may contain variables as well
as constants. If all the condition elements in a rule
are matched then the rule is satisfied and the actions
can be performed. Actions can add new elements to
the working memory, delete old elements or execute

EXPERT SYSTEM ALGORITHMS PROCESS

A==\

MAN - MACHINE COMMUNICATION

F1G. 3. Process structure. The ellipses represent processes and
the rectangles represent mailboxes.

a user written LISP function etc.

The inference engine repeatedly finds all the rules
that are matched. It selects one of them and
performs its actions. When no more rules are found
the system waits for incoming messages. A message
is either a new element to be entered into the
working memory or a LISP function that should be
evaluated. New memory elements may cause new
rules to match and thus start the rule execution
again.

The man-machine communication process is
written in LISP, which fits the purpose. An
interactive environment is achieved automatically
and the communication with the expert system is
simplified. The available commands can be divided
into two groups. The first group contains the usual
commands available to a controller, e.g. commands
for parameter changes or for switching the
operating mode. The second group -contains
commands that have to do with the expert system.
Examples are commands for inspecting the working
memory, commands that start tracing the execution
of rules etc. It is also possible to add, delete and edit
rules on line.

This prototype implementation has been used for
experiments with a PID controller with auto-tuning
and gain scheduling. The tuning is based on the
Ziegler—Nichols auto-tuner (Astrom, 1982). The
algorithms used are a PID algorithm, a relay
algorithm, and a kc-tc estimator. The expert system
has two tables, one for PID parameters measured at
different set points and one for stationary values. An
alarm level supervisor is used to ensure that the
measured output does not exceed critical levels.

The rulebase for this first experiment consists of
approximately 70 rules. This may seem large but can
be explained in two ways. One reason is that this
relatively small problem contains more logic than is
apparent at first sight. All possible cases must be
considered to make the rulebase consistent. The
other, most important, reason is the poor expression
power permitted by the rule syntax in OPS4. Some
examples of rules are

Rule 5
((State is upstart)
(Goal is PID-control)

(PID parameters available)
=

((DELETE) (State is upstart))
((ADD) (State is PID-control) (Start PID)))

Rule 12
((State is = X)
(Alarm has occurred)
-

({DELETE) (State is = X))
((ADD) (State is alarm) (Old state is = X)))
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The symbol = X denotes a variable that can match
any constant in the working memory.

The approach taken in this work has been to take
an existing expert system framework, OPS4, with its
limitations and to incorporate it in a control system.
The reason behind this was to be able to test the
basic ideas behind expert control quickly. The
experiments performed with this system have been
promising. The expert control approach gave a
much cleaner auto-tuner implementation than
other implementations in PASCAL and PLM; see
Astrom (1983). The main reason for this was the
clear separation of the algorithms and the logic.
Another benefit was the ease in changing the logicin
the expert system implementation. An example of
this is that the addition of gain scheduling to the
system required less than 10 new rules to be added.
The approach is thus very valuable for prototyping.

The expert system framework OPS4 is not ideal
for expert control. It has some advantages such as
the possibility to extend the system with user written
functions and its relatively high processing speed.
The system has however no possibility for backward
chaining or reasoning with uncertainty. There are
no facilities for structuring the data base or the rules.
The rule syntax is also somewhat awkward. The
control problems also have a strong planning
element which is not supported by OPS4. The most
important drawback however with OPS4, which it
shares with most of the other existing expert system
frameworks, is that it is not designed for real-time
operation. Real-time expert systems is still an area
where much research has to be done before a true
expert control system can be built.

7. CONCLUSIONS

It is straightforward to extract a more general
pattern from the examples in Section 5. To solve a
control problem using this approach a number of
design approaches are first determined that may be
appropriate for the problem. The design methods
are analysed carefully to determine the conditions
under which they perform satisfactorily and those
when they do not. Next criteria are sought
delineating these conditions. Finally an expert
system is used to decide when and how to apply the
different methods. This approach, which can be
applied to a wide variety of problems, seems to offer
interesting possibilities for combining analytical
and heuristic approaches.

For simplicity, the use of Al techniques has been
applied here to single loop control. This allows an
uncluttered presentation of some of the elemental
concepts that arise when Al and control techno-
logies are merged. A heuristic component has been
added to familiar estimation and control algor-
ithms. A key point is that the incorporation of
heuristics through AT structures results in systems

that are far more flexible and transparent than
systems based on selectors and safety jackets
currently in use in standard hard-wired logic.

Experience from experiments with systems of this
type has shown that the approach is useful in several
respects. It is very effective as a test bench for
defining the logic required for safe operation of
potential control schemes even if this logic is later
implemented differently. The experiments point
toward the conclusion that powerful control laws
can be obtained by combining conventional control
algorithms with an expert system. The approach
taken in this paper also emphasizes the need for new
theoretical results. Design of a stability margin
supervisor is a typical example.

Experience from building expert systems for real
applications has shown that their power is most
apparent when the problem considered is
sufficiently complex. Process control problems are
admittedly complex. Plant operators run systems
with multiple loops, unpredictable material vari-
ations, etc. Over time, and with experience,
operators generate rules of thumb that help them
deal with this complexity. This paper has pointed
out that an expert system can provide a framework
for blending numerical algorithms with this detailed
expertise of the plant operator.
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