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Abstract 

In this paper the numerical robustness of four generally applicable, recursive, least- 

squares-estimation schemes is analyzed by means of a theoretical round-off propagation 

study. This study highlights a number of practical, interesting insights of widely used 

recursive lccut-squares schemes. These insights have been confirmed in an experimental 

verification study as well. 
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1 Introduction 

Recursive least squares (RLS) schemes-are used in a broad class of practical applications, 

such as in the self-tuning regulator schemes developed by Astroni et al. (1977). The 

siniplicity of this class of schemes has been an iniportant motive for their use. Some of the 

other reasons are 1) the versatility of implementations. allowing to exploit. special (shift) 

structures in the regression model, f i s t  demonstrated by Levinson (1947). 2) the well-known 

statistical properties of the RLS estimates, and 3) robust ways to cope with time variations 

in the regression parameters, see T. HBgglund (1983) or R. Kulhavy (1985). 

However. the numerical robustness of a number of RLS implementations is still not 

well understood. This can be concluded from the appearance of simulation studies reporting 

the d i w r g m c c  phenomenon in the ixtiplextientation referred to in this paper as the conven- 

tional RLS implementation. Here the divergence phenomenon is a generic terni used to 

indicate a whole class of problems where the quantities updated in the actual computer 

implement ation lose their theoretical properties. A well-known example is the loss of sym- 

met ry of the parameter error covariance matrix. 

lTntil now no explanation has been given for this phenomenon. only a number of 

"cures" have been proposed. These cures have two disadvantages: 1) they night unnec- 

essarily coriiplicate the numerical implementation and 2) they night give "satisfactory" 

results in simulation, but actually fail in real- time operation. 

In nmiierical analysis. an error analysis is performed to understand the numerical 

robustness of algorithmic implementations. For RLS, such an analysis has been performed 
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in S. Ljung and L. Ljung (1985). Although, this analysis reveals some fundamental un- 

derstanding of the robustness of RLS schemes, it does not answer the following important 

practical questions: 

1. When does the loss of symmetry occurs in the conventional RLS scheme? 

2. How does the loss of symmetry interferes with the loss of positive definiteness of the 

parameter error covariance matrix? 

3. Does the conventional RLS scheme result in nunierically less-accurate results com- 

pared to square root type of RLS? 

4. When using a square root implementation do we choose a covariance-type or an 

information- type RLS? 

To answer these questions, a new and detailed error analysis is perfornied in this 

paper. This analysis considers the following four generally applicable implementations of 

RLS: 

1. Two iinplenientations of the convent.ional RLS (indicated respectively as the CLSl 

and CLS2). 

2. The square-root-covariance R LS iniplenient.ation ( SC'LS ). 

3. The square-root-information RLS iniplenientat.ion ( SiLS).  

These iniplementations are precisely defined in section 2. Section 3 then presents the results 

of the round-off error propagation study for these four implementations. The new insights 

from this error analvsis are evaluated experimentally in section 4. Finally. section 5 presents 

some concluding remarks. 
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2 Recursive Least Squares Estimation 

2.1 The Linear Least Squares Problems 

Let the linear scalar regression model be denoted as: 

where the regressor vector ( r " ~  E R" , t'k is a zero mean discrete white noise sequence with 

variance uf * and (.)' denotes the transpose. When the observations of ( IJ~ ,  Yk) have been 

obtained for k = 1, - - - , N (with N > n), the least. squares (LS) estimate of 19 is defined as: 

N 
8 N  = arg m i n x  ~ " - ' ( y ;  - t ? ' ~ ; ) ~  (2 )  

Here {A"-'} is a sequence of weighting coefficients that result if we discount old data by 

so-called "exponential forgetting ( A  < l)." For this case. simple calculations show that the 

LS estimate (equdon 2)  is given by: 

i=l  

' 

i= 1 

N 

For real- time operation, it is of primary importance to compute the estimates recur- 

sively. Therefore. the set of equations (3-5) is rearranged by simple iiianipulations to the 

following recursive form: 

Rk. = XRk-1 + ~k.9;. (7) 

The set of equations (6-7) is updated froin k 2 0 on. This can be done when for k = 0 the 

initial conditions 0-1 and R-1 are specified. 
~ _ _ _ _  ~~~ _ _ _ _ ~ ~ ~  

'In practice b k  is generally not known a priori. but i5 esthiated during the operation of the HLS. However, 

what actual value for b k  is used in the RLS will turn out to be not important in the analysis of the numerical 

robustness 



2.2 The Conventional RLS Method (CLS) 

The recursive relationships (equations 6- i )  are not well suited for computation, since the 

R x n information matrix Rk has to be inverted each time step. Therefore, it is more natural 

to introduce 

Pk = Rkl  

and by applying the matrix inversion lemma. Ljiing and Si jders t rh  (1983), (equations 6-7) 

become 

Remark I: The linear regression mbdel (equation 1) can he written in the state space 

(12 )  2 yk = p;dk + t?k with E (c:) = bk. 

Together with the initial conditions ( ~ j - ~ ,  P - l ) ,  this model is a special case of the general 

state space tnoclel used in the Kidman filter design (as described in Verhaegen and Van 

Dooren. 1986): 

yk = c k ~ k  + z’k with E( P L . v ~ . )  = RL. 

for the following particular system matrices: 

For these svst.eiii matrices (equations 8- 10) represent the so-called measurement update of 

the conventional Kaliiian filter as defined in Verhaegen and Van Dooren (1986). Therefore. 

equations (8-10) are conforiiiallv indicated in this paper as t.he conventional RLS (CLS). 0 

A conuiionly used implementat.ion of the C‘LS is represented in Table 1 as the CLS1. 

Here we observe that for the calculation of the matrix Kk. the symnietry of Pk-1 is exploited. 
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The only reason for that is a slight reduction in coniputational complexity. Furthermore, the 

performed operation to calculate Pl-l  is inherently symmetric. Therefore, this implemen- 

tation "seemingly" forces the parameter error covariance matrix Pk to remain symmetric. 

However, the theoretical error analysis will prove that exactly the contrary is the case. 

Namely, that when implementing equations (8-10) exactly as they are, as done in the CLS2 

implementation of Table 1, the sensitivity to  the loss of symmetry of pk vanishes. 

quantity 

f i P  

Kk 

pi- 1 

pk 

niatheimtical expression CLS 1 

Kk x f i P  

CLSZ 

Table 1: The ClLSl and CLSZ implementation of the conventional RLS. 

In this table the ('*) indicates that the same matrix-vector xiiultiplication is performed 

for both implementations. 

2.3 The Square Root Covariance RLS Method (SCLS) 

This can be considered as a special case of the square-root-covariance Kahiian-filter iniple- 

mentation, also defined in Verhaegen and Van Dooren (1986). For the sytexii matrices given 

in equation ( 15). the recursive scheme characterizing this iiiipleiiientation becoiiies 

-e Y 
pre-array post, - arrav 

and 1'1 in equation (16) is an arbitrary orthogonal transformation that triangularizes the 
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prearray. Here S k  is the Choleski factor of Pk. defined as follows: 

Remark 2: Another type of square root covariance RLS is the so-called UD-factorization 

algorithm (Bienxmn, 19%). The operational coxxiplexity of this scheme is slightly less than 

the presented SCLS scheme. However, from the point of view of numerical reliability, 

preliminary simulation tests performed in Verhaegen ( 1985) demonstrated a sinular round- 

off error pattern between these two schemes. Therefore, the latter iniplexxientation will not 

he discussed further in this paper. 0 

2.4 The Square Root Information RLS Method (SILS) 

Similarly to the square-root-infonxxation Kahm-filter scheme, we can formulate for the LS 

problem recursions for the C'holeski factor of the matrix Rk, defined in equation (4), and 

the paranieter estimate &. in a combined way. When the Choleski factor of R k  is defined 

as : 

Rk = TiTk (19) 

this implementation becomes 

with lrz operating in a similar manner as VI. The update of the parameter estimates is 

given by: 

Remark 3: Other. so-ca .A fast LSalgorithxxis. such as t,,e Levinson algorithm (Levinson. 

194;) are not included in this paper. This is because their nuiiierical behavior has already 

been analyzed hv an error perturbation study. For example for Levinson related algorithm 

thi, has been done in C'ybenko. 1980. Furtherniore. these algorithiiis iixipose a special 

structure upon the regression model, and this restriction is not considered in this paper. 0 

'The %holeski factor" is often called the "square root." In this paper the term -square root" is itlain- 

hincd as far as the names of the square-root RLS schenies are concerned because of the fanuliarity t.hat it  

has acquired. 



3 Theoretical Error Analysis 

The numerical robustness with respect to round-off errors is analyzed for the four RLS 

schemes described in the previous section. Such an analysis can be split into three parts: 

( 1) the round-off errors nlade in a single recursion, (2)  the propagation of a single error in 

subsequent recursions and (3) the interaction and accuniulation of the previous two error 

sources. In the paper of S. Ljung and L. Ljung (1985) only the second part has been treated. 

The following subsections present a much more refined analysis. 

3.1 Propagation of a Single Error Under CG Computational Precision 

In this subsection we consider the propagation of a single error at  recursion instant k - 1 to 

subsequent recursions. assuming that no additional round-off errors are made. The following 

theorem describes this propagation for the CLSl and C'LS2 implenientation. 

then these errors propagate to the next recursion instant. k in the CLSl ixiiplexiientation as: 

and in t.he CLS2 impleixientation as: 

where O(S2) indicates the order of magnitude of ljSPk.-l / I 2 .  

Proof: (The proof will only be given for the C'LS1 ixiiplexiientation) 

Consider the approximation. 



Then the error on rk updated in the CLSl becomes 

Similar matrix-error analysis then results in the error propagation model (equation 23) for 

6Pk. 

Following the same line of derivation, the error model (equation 24) for 6& results. 0 

Corollary 1: The error propagation model (equation 23) demonstrates that for an ex- 

ponential forgetting factor X < 1, the effect of the Zom of s y m m ~ t r y  causes a 6 l 0 ~  up 

(divergence) in the error on Pk. Therefore, when using the CLS1 implementation it is ahso- 

Iutely necessary to ixiaintain syxxmietry of the matrix Pk to avoid divergence. no matter how 

accurately the computations are performed. This divergence phenomenon: which is due to 

loss of symmetry, is well known, but not understood, in literature. Theorem 1, now gives a 

theoretical explanation of this phenomenon. This theorem furthermore indicates that such 

a loss of symmetry does not occur when using the CLS2 implementation. 0 

Corollary 2: Since for the nionient we assume that no round-off errors are performed in 

the recursions, one inherently coniputes the sarxie equations for the SCLS scheme as for the 

C'LS scheme. Therefore, starting with an error which induces the following error on 

Pk-1: 

6Pk-1 = S k - 1 6 a 5 i - 1  -k & * s k - l  Sl-1 + bSA. - lbS; . -1  (2'7) 

and the error 6d&. - ,  . the error propagat ion iiioclels (equations 25-26) hold for t.he SC'LS 

ixiiplexxient at ion. 

Remark 4: The same error riiodels (equations 23-24) could he obtained by substituting 

the special system inatrices (equation 15) in the error analysis results obtained for the 

conventional Iialman filter in Verhaegen and Van Dooren ( 1986). Repeating such an analysis 

particularly for the C'LS. precisely indicates where the loss of symmetry conies from. 0 

For th? SILS scheme, one rrilit IF rrffy upclat.es the inforniation ixiatrix Rk according 

to equation (7). Here an error Tk-1. sixililarly represented as in equation (22). induces an 

error dRk-, given as: 
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Again assuming no additional errors, this errors propagates according to: 

6Rk = X6Rk-1 ( 29 

Corollary 3: The error model (equation 29) immediately indicates that when using expo 

nential forgetting and infinife precision, "infornlrrtion-matrix"-type estimation schemes are 

exponentially stable. For X = 1 the error propagation does not increase. 

For the CLS1, the CLS2 and the SCLS ixnplementations, the iriatrix (I - Kkpk) 

plays a crucial role in the propagation of both the errors 6Pk-l and 6dk-1. Therefore, let us 

inspect this matrix more closely. Substituting the expression for Kk, obtained by comparing 

equations (6) and (8) and using equation (7 )  we find that: 

Now, consider the effect of an error induced a t  tixiie instant 4.0 < k on the computed 

quantities B k  and 8,. When P k  remains symmetric, this effect becomes according to 

equation (25): 

- 

(31) 
1 bpk= Xk-ko d(k,ho)SPko~(k,Bo)'  + 0(6*) 

and according to equation (24): 

that the conditions which guarantee that the residual (9 ,  - ~ : 1 9 , - 1 )  becomes a zero-mean 

random variable hold. Then the second term in the right-hand side of equation ( 32) vanishes 

when we consider only the mean of 6&, as denoted by E(b1jk.). Vncler this assumption. we 

will only analyze the propagation of E(6&) in the sequel. 

The errors bPk, and E ( 6 d k o )  are attenuated if the transition matrix d ( P , k o )  is a 

contmciton. In the next theorexxi it will he shown that this is indeed the case if the regressor 

vector SA. is persist.ently exciting. Let us first define this condition of the regressor vector. 

Definition 1: The regressor vector G; is persistently exciting over the observation interval 

ko 5 i 5 k when using an exponential forgetting factor X 5 1. if the following condition is 



fulfilled, 
k 

for some positive constants a and p. 

Theorem 2: When the regressor vector cp; satisfies condition equation (33) over the interval 

(ko, k), the transition matrix q5( I C ,  ko) is a contraction. 

Proof: 

The matrix R k  is defmed in equation (4 )  as, 

k 

i=O 

Since ko < k we have that: 

Therefore, when equation (33) holds. the matrix difference (Rk - Xk-koRko) is positive 

definite, or alternatively denoted: 

When we now expres.s p( A*. k o )  as Ak-koRklRko,  using equation (30),  @( k, ko) is clearly 

positive definite. This coriipletes the proof. 

Corollary 4: When the following conditions are met. 

1. When the regressor vector is persistently exciting. arid hence. Rk' remains hounded 

(which can easily he shown). 

2. When A < 1. 

3. When no additional round-off errors are made in subsequent recursions. 

then tlieureiii 2 guarantees that. a h g l e  errur ~PL., ,  iri  equation (31) or E(6>ko) in equa- 

tion (32 )  decavs exponentially when using the C'LS:! and SC'LS implementations. For the 

case X = 1. the contraction of Rkl  Rko guarantees that the error propagation remains stable. 

For the C'LSI impleriientation this holds when additionallv the svnmietrp on PA. is forced. 
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Another divergence phenomenon reported in literature is the loss of posttzoe definzte- 

ness of Pk. The question we might ask is how this phenomenon is related or interferes with 

the loss of symmetry discussed so far. Some insight into this complicated matter is gained 

by the following theorem. 

Theorem 3: When the errors on the parameter error covariance matrix Pk-1 are symmetric 

and preserve its positive definiteness, the Pk updated by equation (10) remains positive 

definite. 

Proof: 

Since Fk-1 is positive definite, it may he written as, 

- 
P&-1 = XDX' (34) 

where X X '  = I n  and D = diag( d1, - a ,  dn), with d; > 0. Since -Y is of full rank, we might 

write the regressor vector pk as: 

v& = X / r  (35) 

with / r  = ( j t 1 , - - - , / ~ ~ ) ' .  

Substituting equations (34-35) in the update relationship for pk, we obtain: 

Evaluating the matrix between brackets results in: 

(36)  

-1- I (37) 

- I  

where a; = XcTld;+ xy=l @idj. The characteristic polynonlial of the matrix between 

brackets in equation (37) can he evaluated for exaiiiple by using t.he symbolic nianipulation 

soft.ware package by MACS\-&l.IA (1983) for different values of I t .  For all values of n, this 

polynomial can he written as: 
I1 - 1 

(-1)":" + x ( - l ) i a ; z '  = 0 with u; > 0 (38) 
i=O 

Obviously; this polynotnial has onlv positive roots: therefore, F k  is positive definite. 
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3.2 Round-Off Errors Made in a Single Recursion 

In the second part of the theoretical error analysis, we study the round-off errors made in 

a single recursion. The following theorem specifies bounds for the errors on the quantities 

updated each recursion in the four RLS schemes under investigation in this paper. 

Theorem 4: Denoting the norms of absolute errors caused by round off during the con- 

struction of Pk, &, &, Tk, and Rk by AP, A*, AS, AT, and AR, respectively, we obtain 

the following upperbounds (where norms are 2-norms), 

xilachine precision e'. cosqi; are defined as follows: 

I . II  

which are usually close to one and EA. is defined in equation (20). 

Proof: The proof would he a repetitinn of the nne given in L'erhaegen and L'an Dooren 

( 1986) for the corresponding Iialxxian filter implementations. taking into account the special 

system matrices (equation 15). Therefore. the reader is referred to this paper. 
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3.3 Accumulation and Interaction of the Round-Off Errors 

The third part of the analysis combines the local error upper hounds given in theorem 4 

with the propagation of a single error, to yield bounris on the total e m f  for the different 

RLS schemes. The total error is denoted by the prefix 6tot instead of 6. Here we make 

the assumption that the total error at  some instant E is the sum of the propagation of the 

previous errors (when introducing no additional round-off errors), plus the local errors made 

during these recursions. 

For the CLSZ, SCLS implenientation the total error in the matrix Pk then satisfies: 

In this equation k, is the nearest time instant. snialler than k, for which 4(E ,krn)  is a 

contractton and is given as: 
k 

This represents the accuxxiulation of the local' round-off errors made each recursion in the 

calculation of Pi in the interval (b , ,  k). When Pi rexiiains hounded. as irxiposecl in condition 

1 of corollary 4, also remains bounded. 

In a similar way, the mean of the total error on the parameter est,iiiiat.es becomes: 

Both equations (39) and (41) model the propagation of the total round-off errors in the 

CLS2 and SCLS implenientation by a linear iiiodel with hounded input. signal. 

Corollary 5: Error niodels (equations 39-41) indicate that when the regressor vector is 

persistently exciting. as defined in definition 1. the round-off errors iiiade in the C'LS2 

and SC'LS implementations renmin bounded. Furthemiore. parts 1 and 2 of theorem 4 

show that the error models for both these implementations are identical. Therefore. only 

considering the numerical robustness no preference should be given to either of them. This 

latter conclition generally does not holcl fnr the CLSI implementation since the "cures" to 

synuiietrize Pk. induce larger errors. This assertion has been confirmed in the experinientd 

analysis made in Verhaegen and Van Dooren (1956) for Iialxiian filter implementations. 
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We now address the loss of positive definiteness under finite arithmetic precision. 

Using the assumption stated in this subsection to describe the total error on Pk, the following 

relationship results: 

with A P  according to theorem 4 bounded as llAP[ 5 eII(Pk + 6Pk))I. 

According to theorem 3, the matrix (Pk + 6 P k )  remains positive definite and we can 

arrange its eigenvalues as: 

The possibility of negative eigenvalues of (Pk *+ b to tPk)  arises with the lower bound 

in equation (42). Insight in the effect of the perturbation A P  on the eigenvalues of (Pk + 
6Pk) - AP is given is given by the following lenuxm, taken from Wikinson. pp. 101-102 

(1965). 

Le- 1: If A and ( A  - E) are n by n symmetric matrices, then 

Applving this leiiuiia to the lower hound of equation (42). yields the following hound 

on the smallest eigenvalue of (Pk + btOtPk): 

Therefore. this eigenvalue will he positive if 

#\,(PA* + bPI.) 1 
Xn(Pk +SP,) - t 

> -  (45) 

This condition indicat.ea t.hat (Pk + SPA.) is nuiiierically not. singular, as defined in M'ilkinson 

(1965). 

CorQllary 6: If the recursion of the parameter covariance matrix PA.-* in equation (10) 

under finite precision preserves the spIruIietrv of this matrix and this niatrix is numerically 



not singular, as stated by equation (45), than the updating via equation (10) can not destroy 

the positive definiteness of the parameter covariance matrix. 

From the computational scheme equation (20) of the SILS we clearly observe that 

it is not necessary to calculate the matrix P and the parameter estimate 19 to continue 

recursions. Therefore, only the propagation of the total error on the information matrix Rk 

is of interest here. This model result from equation (29) and part 3 of theorem 4: 

When the observations are persistently exciting, R k  increases; therefore, the only thing of 

interest here are the relative errors. If these are denoted by d;,,, equation (46) beconies 

Corollary 7: When. the observations are persistently exciting, the scalar y remains snialler 

than 1. Therefore, the linear rrlntive error model (equation 4 i )  shows that the computations 

with "information'* type of RLS implementations will remain exponentially stable for A 5 1. 

Each recursions, the quantities of interest P k - 1  and &.-I may he computed from Tk.-l and 

According to the hounds given in part 3 of theorem 4, these coinputations may he 

deteriorated by the condition number of P k - 1  and Tk-1. 

4 Experimental Evaluation 

The purpose of this section is to experimentally validate the corollaries made in the theo- 

retical error analvsis of section 3. 

To restrict. such a verification study. we refer to a similar study made in Verhae- 

gen and Van Dooren for K & x m  filter implementations as an experimental verification of 

corollaries 2,3.5. and i. 

Of particular interest to the scientist dealing with RLS problexiis is the numerical 

robustness of the conventional RLS scheme, since this scheme is very attractive in a broad 
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class of applications. In the present analysis corollaries 1,4, and 5 focus on this topic. More 

precisely, these three corollaries provide insight into the following questions: 

1. Whether a "wrong" way of implementing the conventional RLS has been the primary 

cause for its "high" sensitivity to the loss of symmetry (corollary l )? 

2. What is the influence of persistent excitation on the numerical robustness of the RLS 
schemes (corollary 4)? 

3. What is the interference between the loss of symmetry and the loss of positive defi- 

niteness of pk (corollary 6)? 

To experimentally evaluate these three corollaries, a nlixed-precision simulation study 

is perfonlied. Here the single-precision quantities, as denoted by (.). represent the erroneous 

quantit.ies, and the double-precision quantities are assumed to be error free. In this exper- 

iniental analysis we will only focus on the errors on PA. and with the above convention the 

total error on this quantity, as denoted by btd in equation (39), is approximated by: 

- 

The regression model taken a5 a test vehicle in this analysis has the following form: 

4 

Two different time histories of (yk. pk.( l),. . . qk.(4); .  for A* = 1. - - - .300. are used in the fol- 

lowing tests. Figure 1 displays these time histories, respectivelv, as measurement, sequence 1 

and 2. 

The first test evaluates corollary 1. For this purpose use is made of nieasurenient 

sequence 1. which guarantees the presistentlv excitation condition to he fulfilled during 

the whole test. Furthermore. an exponential forgetting factor A = 0.95 was taken. The 

approxiniate error, equation (48), the loss of symmetry as computed by llPk - Pill and 

I lpk i l  are plotted for the CLSl implementation in Fig. 2a and for the C'LS2 iniplenientation 

in Fig. 'Lh. These results clearly confirm corollarp 1. 

In the second test corollarv 6 is evaluated. The same experimental condition as in 

the previous test are taken. Figures 3a and 3b. respectively, show the evolution of the 
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smallest eigenvalue and the third diagonal element of P k .  Statistically these quantities 

have to be positive. In the error analysis, it has been reconfirmed that this remains true as 

long as Pk remains symmetric and numerically not singular. The first condition is easily 

violated by the CLSl implementation; therefore, such a guarantee can not be stated for 

this implementation. This is confirmed in Fig. 3. Furthermore, such a loss of positive 

definiteness didn't occur with the CLS2 implementation for all the test performed in this 

simulation study. From Fig. 2b, we clearly see that the loss of symmetry is of different 

orders of niagnitude smaller than the errors on FA.. Therefore. the asynmietxic part of A P  

in equation (42) can be neglected so that corollary 6 holds as well for the CLS2 as for the 

S C! LS implement at ion. 

The evaluation of corollary 4 in the third test makes use of the nieasurement sequence 

2 in Fig. 1. From this figure we observe that the regressor vector pk is not persistently 

exciting during the time intervals (1,40) and (81,300). The impact of this on the round-off 

error propagation in the CLS2 implementation is pictured in Fig. 4. This figure clarifies 

that during the time intervals of lack of persistent excitation the error on PA. and the loss of 

symmetry increase "linearly." At the same time, 11Fk 1 1  increases also linearly. Furthermore, 

the rate of increase is exactly the same in both cases, so that relatively no loss of precision 

occurs. Therefore; the practical impact of the lack of persistent. excitation causing the so- 

called "burst" phenomenon. see Hughes and Jacobs (1974). is far inore iiiiportant than the 

Iiunierical behavior of the considered RLS schemes which preserve the sviiuiietry of Pk. 

5 Concluding Remarks 

In this paper, the numerical robustness of four different RLS schemes is analyzed by means 

of a theoretical error analysis. Apart froin reconfirming the insights obtained in a similar 

analysis for liahnan filter ixnplementations, given in Verhaegen and Van Dooren (1986). 

These are. respectively: 

1. The conventional RLS (CLS) which preserves syxruiietry of the parameter error co- 

variance matrix Pk yields the same accuracy as the SCLS for all the corresponding 

quantities updated in both schemes. 

1T 



2. The SILS is also numerically stable. The accuracy of computing Pk and the LS 
estimates is however penalized when the condition number of Pk is high. However, it 

is also not necessary to compute these quantities in order to continue the recursions 

with the SILS. Therefore, such large errors on Pk and the least squares estimates do 

not accumulate. 

The new insights, of particular interest for applications with R.LS, of this analysis are: 

1. The CLS has been "incomctly" implemented, nlaking it very to the so-called loss 

of symmetry phenomenon. Correct implementation of this scheme overconies this 

deficiency. 

2. The persistency of exitatton of the regressor vector in the regression iiiodel is required 

to guarantee the boundedness of the round-off errors. When this condition is violated, 

the errors on l'k will increase, however, with same rate of increase as 1 1  PkII. Therefore, 

the increase of the errors is of minor importance. 

3. The loss of positive definiteness is caused by the loss of synuiietry 

These conclusions have all been confirlid in an expeririient a1 verification study. 
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Figure Captions 

Fig. 1: Two different measurement sequences for the variables ( y k , ~ , , )  in the regression 

model (1).  

Fig. 2 Propagation of round-off errors in two iniplernentations of the conventional RLS 
scheme ( A  = 0.95, measurement sequence 1). 

Fig. 3 Evolution of certain eigenvalues and diagonal elements of Pk in the CLS 1 imple- 

mentation ( A  = 0.95, measurement sequence 1). 

Fig. 4: Influence off the persistency of excitation of the regressor vector $( k) on the round- 

off propagation in CLS 2 implementation ( A  = 0.95, measureinent sequence 2). 
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(a) EVOLUTION OF SMALLEST EIGEN VALUE OF pk 
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