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Abstract

In this paper the numerical robustness of four generally applicable, recursive, least-
squares-estimation schemes is analyzed by means of a theoretical round-off propagation
study. This study highlights a number of practical, interesting insights of widely used
recursive least-squares schemes. These insights have been confirmed in an experimental

verification study as well.
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1 Introduction

Recursive least squares (RLS) schemes-are used in a broad class of practical applications,
such as in the self-tuning regulator schemes developed by Astrom et al. (1977). The
simplicity of this class of schemes has been an important motive for their use. Some of the
other reasons are 1) the versatility of implementations, allowing to exploit special (shift)
structures in the regression model, first demonstrated by Levinson (1947), 2) the well-known
statistical properties of the RLS estimates, and 3) robust ways to cope with time variations

in the regression parameters, see T. Hagglund (1983) or R. Kulhavy (1985).

However. the numerical robustness of a number of RLS implementations is still not
well understood. This can be concluded from the appearance of simulation studies reporting
the divergence phenomenon in the implementation referred to in this paper as the conven-
tional RLS implementation. Here the divergence phenomenon is a generic term used to
indicate a whole class of problems where the quantities updated in the actual computer
implementation lose their theoretical properties. A well-known example is the loss of sym-

metry of the parameter error covariance matrix.

Until now no explanation has heen given for this phenomenon, only a number of
“cures” have been proposed. These cures have two disadvantages: 1) they might unnec-
essarily complicate the numerical implementation and 2) they might give “satisfactory”

results in simulation, but actually fail in real-time operation.

In numerical analysis, an error analysis is performed to understand the numerical

robustness of algorithmic implementations. For RLS, such an analysis has heen performed



in S. Ljung and L. Ljung (1985). Although, this analysis reveals some fundamental un-
derstanding of the robustness of RLS schemes, it does not answer the following important

practical questions:
1. When does the loss of symmetry occurs in the conventional RLS scheme?

2. How does the loss of syminetry interferes with the loss of positive definiteness of the

parameter error covariance matrix?

3. Does the conventional RLS scheme result in numerically less-accurate results com-

pared to square root type of RLS?

4. When using a square root implementation do we choose a covariance-type or an

information-type RLS?

To answer these questions, a new and detailed error analysis is performed in this
paper. This analysis considers the following four generally applicable implementations of

RLS:

1. Two implementations of the conventional RLS (indicated respectively as the CLS1

and CLS2).
2. The square-root-covariance RLS implementation (SCLS).

3. The square-root-information RLS implementation (SILS).

These implementations are precisely defined in section 2. Section 3 then presents the results
of the round-off error propagation study for these four implementations. The new insights
from this error analvsis are evaluated experimentally in section 4. Finally. section 5 presents

some concluding remarks.



2 Recursive Least Squares Estimation

2.1 The Linear Least Squares Problems

Let the linear scalar regression model be denoted as:
Y = Vi + e (1)

where the regressor vector ¢ € R" , ¢ is a zero mean discrete white noise sequence with
variance of 2 and (.)' denotes the transpose. When the observations of (yk, ¢ ) have been
obtained for k = 1,-.-,N (with N > n), the least squares (LS) estimate of J is defined as:
N
Iy =argminy AV(y - o) (2)
i=1
Here {\V-'} is a sequence of weighting coefficients that result if we discount old data by
so-called “exponential forgetting (A < 1).” For this case, simple calculations show that the

LS estimate (equaion 2) is given hy:

On = Ry fv (3)
N .
Ry =Y gigiAV | (4)
i=1
N ‘ :
fv= Y wimAV (5)

i=1

For real-time operation, it is of primary importance to compute the estimates recur-
sively. Therefore. the set of equations (3-5) is rearranged by simple manipulations to the

following recursive form:
i = Drr + By “enlyne - Dsyv) (6)

Ri = ARi_y + v v (7)

The set of equations (6-7) is updated from & > 0 on. This can he done when for & = 0 the

initial conditions J_; and R_, are specified.

“In practice o is generally not known a priori, but is estimated during the operation of the RLS. However,
what actual value for o is used in the RLS will turn out to be not important in the analysis of the numerical

robustness
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2.2 The Conventional RLS Method (CLS)

The recursive relationships (equations 6-7) are not well suited for computation, since the
n x n information matrix R has to be inverted each time step. Therefore, it is more natural
to introduce

P],:R,:l

and by applying the matrix inversion lemma, Ljiing and Soderstrom (1983), (equations 6-7)

become
Or = Oy + Kilye — Fyon) (8)
. Pe_1¢n
K, = (9)
Aot + ot Pe_1 ¢k
1 P._ ' P
P, = (Pk—l _ l; 1~Pk,¢k k-1 ) (10)
A Agi; + Pl P19k

Remark 1: The linear regression model (equation 1) can be written in the state space

form,

‘9k+1 = (11)
Y = @19k + €, with E (tz) = af (12)

Together with the initial conditions ( 9_1, P_1), this model is a special case of the general
state space model used in the Kalman filter design (as described in Verhaegen and Van

Dooren, 1986):
Tpp1 = Apxy + Bwy, with E(zo) = 9_; . E(xoxh) = P_, and E(wiwi) = Q. (13)
e = Cpzr + v, with E(vpey) = Ry (14)
for the following particular system matrices:
A4i=1.B,=Qr=0. C.=¢, and R, = o} (15)

For these system matrices (equations 8-10) represent the so-called measurement update of
the conventional Kalman filter as defined in Verhaegen and Van Dooren (1986). Therefore,

equations (8-10) are conformally indicated in this paper as the conventional RLS (CLS). O

A commonly used implementation of the ('LS is represented in Table 1 as the CLS1.

Here we observe that for the calculation of the matrix A’ the symmetry of Pj._; is exploited.



The only reason for that is a slight reduction in computational complexity. Furthermore, the
performed operation to calculate P;_, is inherently symmetric. Therefore, this implemen-
tation “seemingly” forces the parameter error cova.riémce matrix P, to remain symmetric.
However, the theoretical error analysis will prove that exactly the contrary is the case.
Namely, that when impiementing equations (8-10) exactly as they are, as done in the CLS2

implementation of Table 1, the sensitivity to the loss of symmetry of P, vanishes.

quantity mathematical expression CLS1 CLS2
f[iP ¥t Pie-1 ¢ X Pioy
r Ao} + @ Pi_1pk Aol + fiP x i ”
K. P16k tif' Py ex Pk
Aoi + vL}I’k-1¢k Tk Tl

. Pi_ 10103 Py . . "
Py - K, x fiP

k-1 ’\012: + ‘PLP’C—}I)(P" ' P, g
P 1 (P_ _ Paorpp Py ) l(p. . _p: "

) AP ETY TR (P - Picy)

Table 1: The CLS1 and CLS2 implementation of the conventional RLS.

In this table the (") indicates that the same matrix-vector multiplication is performed

for both implementations.

2.3 The Square Root Covariance RLS Method (SCLS)

This can be considered as a special case of the square-root-covariance Kalman-filter imple-
mentation, also defined in Verhaegen and Van Dooren (1986). For the sytem matrices given

in equation (15). the recursive scheme characterizing this implementation hecomes

VAo, &k Sk a 0
LRGN [ k (16)
0 71:53,_1 G. Si
pre-array post-array
with the parameter update equation
a 3 \ A v . Y] -
U = l’k—l + ;;—Gk(yk- - dg._lkﬂ-) (1‘)
&

and (') in equation (16) is an arbitrary orthogonal transformation that triangularizes the



prearray. Here S is the Choleski factor 2 of P,. defined as follows:

P, = SkSi. (18)

Remark 2: Another type of square root covariance RLS is the so-called UD-factorization
algorithm (Bierman, 1976). The operational complexity of this scheme is slightly less than
the presented SCLS scheme. However, from the point of view of numerical reliability,
preliminary simulation tests performed in Verhaegen (1985) demonstrated a similar round-
off error pattern between these two schemes. Therefore, the latter implementation will not

he discussed further in this paper. O

2.4 The Square Root Information RLS Method (SILS)

Similarly to the square-root-information Kalman-filter scheme, we can formulate for the LS
problem recursions for the Choleski factor of the matrix Ri, defined in equation (4), and

the parameter estimate J; in a combined way. When the Choleski factor of R is defined

as:

R, =TT, (19)
this implementation hecomes
VAT V- T, &
, A'k 1 §x-1 _ ko &k (20)
rk l’i 0 £k
(48 oL i

with U/, operating in a similar manner as [/;. The update of the parameter estimates is

given by: .
e = I HE) (21)

Remark 3: Other. so-called fast LS algorithms. such as the Levinson algorithm (Levinson,
1947) are not included in this paper. This is because their numerical hehavior has already
heen analyzed by an error perturbation study. For example for Levinson related algorithms
this has been done in Cyhenko. 1980. Furthermore. these algorithms impose a special

structure upon the regression model, and this restriction is not considered in this paper. O

3The “Choleski factor™ is often called the “square root.” In this paper the term “square root™ is main-
tained as far as the names of the square-root RLS schemes are concerned because of the familiarity that it

has acquired.



3 Theoretical Error Analysis

The numerical robustness with respect.to round-off errors is analyzed for the four RLS
schemes described in the previous section. Such an analysis can be split into three parts:
(1) the round-off errors made in a single recursion, (2) the propagation of a single error in
subsequent recursions and (3) the interaction and accumulation of the previous two error
sources. In the paper of S. Ljung and L. Ljung (1985) only the second part has been treated.

The following subsections present a much more refined analysis.

3.1 Propagation of a Single Error Under ~ Computational Precision

In this subsection we consider the propagation of a single error at recursion instant k — 1 to
subsequent recursions, assuming that no additional round-off errors are made. The following

theorem describes this propagation for the CLS1 and ('LS2 implementation.

Theorem 1: Define the erroneous quantities, denoted by (.), at the k — 1 recursion instant

as,

Pi.y=Pi_y +6Pc_; and (§L._1 = ék-l + 61;1»-—1 (22)
then these errors propagate to the next recursion instant & in the CLS1 implementation as:

- 7 . - (Y} 1 - (2 B
6P, = (I - Kiert)SPiLy(I = Kiyi) + $(8Picy - §P_)euRL +0(8%)  (23)

> | -

O0Pr_1¥u

80 = (I - Kigh) [m-l + (9r — Vet )] +000°)  (24)

=
(Agi + @i Peoafne)
and in the C'LS2 implementation as:

L 1 d ! Y - Y4 9 «
0Pr = U = Kipp )8 Pioa (1 - Kiw)' + 0(8?) (25)

0P _1¢n

2. -
(Aot + ¥ Pro1vn)

8 = (I - Kiylh) [519,,_1 + (Yo — 2hdiy )] +0(8%) (26)
where O(42) indicates the order of magnitude of {|§P;_; .

Proof: (The proof will only he given for the C'LS1 implementation)

Consider the approximation,

1 - 1 (1 _ ‘;,A-JPk—l‘f;k
Aot + ¢hPicivk + $k0Pecide Ak + #Picy v Aot + ¢ Pec1vn

) + 0(8%)



Then the error on K, updated in the CLS1 becomes

0K,

_ 5P/:_1«,?]¢ P[:_l‘)ak (1 _ Sa;c‘spk-l&ak ) + 0(62)
AoE + @hPepr | AL+ PLPro1gh Aoi; + @i Pi-19k

Similar matrix-error analysis then results in the error propagation model (equation 23) for
8 P..

Following the same line of derivation, the error model (equation 24) for 69 results. O

Corollary 1: The error propagation model (equation 23) demonstrates that for an ex-
ponential forgetting factor A < 1, the effect of the loss of symmetry causes a blow up
(divergence) in the error on P). Therefore, when using the CLS1 implementation it is abso-
lutely necessary to maintain symmetry of the matrix P, to avoid divergence, no matter how
accurately the computations are performed. This divergence phenomenon. which is due to
loss of symmetry, is well known, but not understood, in literature. Theorem 1, now gives a

theoretical explanation of this phenomenon. This theorem furthermore indicates that such

a loss of symmetry does not occur when using the CLS2 implementation. O

Corollary 2: Since for the moment we assume that no round-off errors are performed in
the recursions, one inherently computes the same equations for the SCLS scheme as for the
CLS scheme. Therefore, starting with an error 85, _,. which induces the following error on
P._q:

§Picy = Si-18Sh_, + 0Si_1Sh_y + 0511854 _, (27)

and the error #0,_,. the error propagation models (equations 25-26) hold for the SCLS

implementation.

Remark 4: The same error models (equations 23-24) could be ohtained by substituting
the special system matrices (equation 15) in the error analysis results obtained for the
conventional Kalman filter in Verhaegen and Van Dooren (1986). Repeating such an analysis

particularly for the C'LS. precisely indicates where the loss of symumetry comes from. O

For the SILS scheme, one inherently updates the informmation matrix R, according
to equation (7). Here an error T}._;. similarly represented as in equation (22), induces an

error d Ry, given as:

§Ri—y = Th8Ti_y + 6T _ Ty + 8T} _16Thos (28)



Again assuming no additional errors, this errors propagates according to:

O0R, = AR, _, (29)

Corollary 3: The error model (equation 29) immediately indicates that when using expo-
nential forgetting and infinite precision, “information-matrix”-type estimation schemes are

exponentially stable. For A = 1 the error propagation does not increase.

For the C'LS1, the CLS2 and the SCLS implementations, the matrix (I — Kiy},)
plays a crucial role in the propagation of both the errors § P,._; and 694 _1. Therefore, let us
inspect this matrix more closely. Substituting the expression for K, obtained by comparing

equations (6) and (8) and using equation (7) we find that:
(I - Kiih) = AR Ry, (30)

Now, consider the effect of an error induced at time instant ko < % on the computed
quantities P, and 5;,. When P, remains symmetric, this effect hecomes according to
equation (25):

8P = s 0lky ko) Puy (ks ko)’ + O(87) (31)

and according to equation (24):

k-ko~-1
89k = @k, ko)sDu + > Bk ko + j)etthgri4j + O(87) (32)
j=0
0P, . pi
(Ao} + @i Pi_19i) °
that the conditions which guarantee that the residual (y; — £!9;_;) hecomes a zero-mean

with u; = (yi~¢'Vi1) and o(k, ko +j) = Hrk=ko+j(1— K;'). Assume now
random variable hold. Then the second term in the right-hand side of equation (32} vanishes
when we consider only the mean of 5y, as denoted by E(69:). Under this assulnption, we

will only analyze the propagation of E(§9;) in the sequel.

The errors 6 P, and E(&éko) are attenuated if the transition matrix ¢(k, ko) is a
contraction. In the next theorem it will he shown that this is indeed the case if the regressor

vector gy, is persistently exciting. Let us first define this condition of the regressor vector.

Definition 1: The regressor vector ,»; is persistently exciting over the observation interval

ko < i < k when using an exponential forgetting factor A < 1, if the following condition is



fulfilled,
k
al <Y eigiN " < BI (33)

i:ko

for some positive constants a and 3.

Theorem 2: When the regressor vector y; satisfies condition equation (33) over the interval

(ko, k), the transition matrix ¢(k, ko) is a contraction.

Proof:

The matrix R, is defined in equation (4) as,

k
Ri =) piglA™
1=0

Since kg < bk we have that:

k
R, = z\k"k"Rko + Z \,:‘,'a,:‘:»/\k—'

i=ko
Therefore, when equation (33) holds, the matrix .difference (R; - Ak—ko B, ) is positive

definite, or alternatively denoted:
/\k'k°Rko < Ry

When we now express @(k,kg) as A"‘hR; leo, using eqﬁation (30), o(k, ko) is Elearly

positive definite. This completes the proof.
Corollary 4: When the following conditions are met.

1. When the regressor vector is persistently exciting. and hence. R;' remains hounded

(which can easily he shown).
2. When A < 1.
3. When no additional round-off errors are made in subsequent recursions.
then theorem 2 guarantees that a single error § Py, in equation (31) or EY 6-«5k0) in equa-
tion (32) decays exponentially when using the ('LS2 and SCLS implementations. For the

case \ = 1, the contraction of R,:IR‘.O guarantees that the error propagation remains stable.

For the ('LS1 implementation this holds when additionally the symmetry on P, is forced.

10



Another divergence phenomenon reported in literature is the loss of positive definite-
ness of Pi.. The question we might ask is how this phenomenon is related or interferes with
the loss of symmetry discussed so far. Some insight into this complicated matter is gained

by the following theorem.

Theorem 3: When the errors on the parameter error covariance matrix P, are symmetric
and preserve its positive definiteness, the P, updated by equation (10) remains positive

definite.

Proof:
Since Pj_; is positive definite, it may be written as,
P.., = XDX' (34)

where XX' = I, and D = diag(d;,---.dy), with d; > 0. Since X is of full rank, we might

write the regressor vector pj, as:

or=Xnp (35)
with "= (I‘h **tyMn ),'

Substituting equations (34-35) in the update relationship for P\, we obtain:

Duu'D _ _,

P. = - h 36
P, = X(D 1+;UD,¢” (36)

Evaluating the matrix hetween brackets results in:

(1 + ¢'Dp)P, =

a —ppadidy o+ —pypndid,
- p1padydy az e =—paptydad, i
X X' (37)
-y ppdid, - I‘ZI‘nd‘.’dn T ay

j#i
where a; = Aofd;+ Y., pldidj. The characteristic polvnomial of the matrix hetween

brackets in equation (37) can be evaluated for example by using the symbolic manipulation
software package by MACSYMA (1983) for different values of n. For all values of n, this

polynomial can be written as:

n-1

(-1)"="+ Y (-1)'¢;z" =0 with a; >0 (38)
=0
Obviously, this polynomial has only positive roots; therefore, P,, is positive definite.

11



3.2 Round-Off Errors Made in a Single Recursion

In the second part of the theoretical error analysis, we study the round-off errors made in

a single recursion. The following theorem specifies bounds for the errors on the quantities

updated each recursion in the four RLS schemes under investigation in this paper.

Theorem 4: Denoting the norms of absolute errors caused by round off during the con-

struction of Py, Uk, Sk, Tk, and Ry by Ap, Ay, As, AT, and AR, respectively, we obtain

the following upperbounds (where norms are 2-norms),

Ap
Ay

As
Ap
Ay

1
<

<

2

IN AN A & IN IN A

(VAN

. CLS1 and CLS2

&1} Pr|

e2(1Bull + [ Kl 1zl
. SCLS

€3||Skl|/ cosd

€4|| Pe||/ cosén

es( 1Dl + [1Kl|-lyell)
. SILS

€sl|Tw|l/ cosd

ez|| Rell/ cosde
€si(Pr)|| P/ coso2
o[k (Te)ler! + K(T)10kll + lex]/cosds]

where x(.) denotes the condition number of the matrix (.), ¢; are constants close to the

machine precision ¢, cos@; are defined as follows:

cospy = || Sill/|Gr | Si]ll

| { 7,
cosas = [|Til/ |
|\ #i/o
. I! & |
cosdz = |£4i/ | !!
e ]

which are usually close to one and ¢,, is defined in equation (20).

Proof: The proof would he a repetition of the one given in Verhaegen and Van Dooren

(1986) for the corresponding Kalman filter implementations. taking into account the special

system matrices (equation 15). Therefore. the reader is referred to this paper.

12



3.3 Accumulation and Interaction of the Round-Off Errors

The third part of the analysis combines the local error upper hounds given in theorem 4
with the propagation of a single error, to yield bounds on the total error for the different
RLS schemes. The total error is denoted by the prefix 6;, instead of §. Here we make
the assumption that the total error at some instant & is the sum of the propagation of the
previous errors (when introducing no additional round-off errors), plus the local errors made

during these recursions.

For the CLS2, SCLS implementation the total error in the matrix P, then satisfies:

1 2 ~m
1Beot Pell < 7=z @0k kom I N1Brot Prn | + A, (39)

In this equation k,, is the nearest time instant, smaller than k, for which ¢(k,kn,) is a

. _m. .
contraction and A, is given as:

k
Ay =Y e|Pi (40)
i=km

This represents the accumulation of the local round-off errors made each recursion in the
calculation of P; in the interval (k,,*). When P; remains hounded. as iinposed in condition

1 of corollary 4, K:' also remains hounded.
In a similar way, the mean of the total error on the parameter estimates hecomes:
18ror Dl < 1B R. Ko VL1l b0 Db, 1| + AT (41)

Both equations (39) and (41) model the propagation of the total round-off errors in the

CLS2 and SCLS implementation by a linear model with bounded input signal.

Corollary 5: Error models (equations 39-41) indicate that when the regressor vector is
persistently exciting, as defined in definition 1, the round-off errors made in the CLS2
and SCLS implementations remain bounded. Furthermore. parts 1 and 2 of theorem 4
show that the error models for hoth these implementations are identical. Therefore, only
considering the numerical robustness no preference should he given to either of them. This
latter condition generally does not hold for the ('LS1 implementation since the “cures”™ to
symunetrize Pi. induce larger errors. This assertion has been confirmed in the experimental

analysis made in Verhaegen and Van Dooren (1986) for Kalman filter implementations.

13



We now address the loss of positive definiteness under finite arithmetic precision.
Using the assumption stated in this subsection to describe the total error on Py, the following

relationship results:
(Pe+6P) — AP < (P + 8totP) < (P £ 6P2) + AP (42)
with AP according to theorem 4 bounded as |AP]| < €||(Pr + 0 Ps)||.

According to theorem 3, the matrix (P, + § P,) remains positive definite and we can

arrange its eigenvalues as:

MP+8P)2 AP +8P) 2 -+ 2 An(PL + 6P ) > 0 (43)

The possibility of negative eigenvalues of (P + d¢0 Pi.) arises with the lower bound
in equation (42). Insight in the effect of the perturbation AP on the eigenvalues of (P, +
§P.) — AP is given is given by the following lemma, taken from Wilkinson, pp. 101-102
(1965).

Lemma 1: If 4 and (A — E) are n by n symmetric matrices, then

An(4 = E) 2 An(d4) = M (E)

Applying this lemma to the lower bound of equation (42). vields the following hound

on the smallest eigenvalue of ( Py + 8;0: Pi):
A (Pr + 810t Pi) 2 M( P + 6P) — e\ (P + 0 Py) (44)

Therefore, this eigenvalue will be positive if

AM(P +0P) 1
AR TS
M(P. +0P) " ¢ (45)

This condition indicates that (P, +d P, ) is numerically not singular, as defined in Wilkinson

(1965).

Corollary 6: If the recursion of the parameter covariance matrix P,_; in equation (10)

under finite precision preserves the symumetry of this matrix and this matrix is numerically

14



not singular, as stated by equation (45), than the updating via equation (10) can not destroy

the positive definiteness of the parameter covariance matrix.

From the computational scheme equation (20) of the SILS we clearly ohserve that
it is not necessary to calculate the matrix P and the parameter estimate 9 to continue
recursions. Therefore, only the propagation of the total error on the information matrix R;

is of interest here. This model result from equation (29) and part 3 of theorem 4:
16tot il < Al|btot Rie—11l + €7|| Ric=1]| (46)

When the observations are persistently exciting, R increases; therefore, the only thing of

interest here are the relative errors. If these are denoted by 4 ,, equation (46) becomes

160e Reell < YA 80e Ric—1ll + €5 (47)
where ¥ = || Rie_y ||/ | Rell-

Corollary 7: When-the ohservations are persistently exciting, the scalar ¥ remains smaller
than 1. Therefore, the linear relative error model (equation 47) shows that the computations
with “information” type of RLS implementations will remain exponentially stable for A < 1.
Each recursions, the quantities of interest P,_; and 191.:-1 may he computed from T},_; and
Eeot. According to the bounds given in part 3 of theorem 4, these computations may be

deteriorated by the condition number of P,_; and T _,.

4 Experimental Evaluation

The purpose of this section is to experimentally validate the corollaries made in the theo-

retical error analvsis of section 3.

To restrict such a verification study, we refer to a similar study made in Verhae-
gen and Van Dooren for Kalman filter implementations as an experimental verification of

corollaries 2,3.5, and 7.

Of particular interest to the scientist dealing with RLS problems is the numerical

robustness of the conventional RLS scheme, since this scheme is very attractive in a broad

15



class of applications. In the present analysis corollaries 1,4, and 5 focus on this topic. More

precisely, these three corollaries provide insight into the following questions:

1. Whether a “wrong” way of implementing the conventional RLS has heen the primary

cause for its “high” sensitivity to the loss of symmetry (corollary 1)?
8

2. What is the influence of persistent excitation on the numerical robustness of the RLS

schemes (corollary 4)?

3. What is the interference hetween the loss of symmetry and the loss of positive defi-

niteness of P, (corollary 6)?

To experimentally evaluate these three corollaries, a mixed-precision simulation study
is performed. Here the single-precision quantities, as denoted by (-). represent the erroneous
quantities, and the double-precision quantities are assumed to he error free. In this exper-
imental analysis we will only focus on the errors on P, and with the ahove convention the

total error on this quantity, as denoted by §,,; in equation (39), is approximated hy:

180t Pill = [Py = Pil (48)

The regression model taken as a test vehicle in this analysis has the following form:
4
we =Y Pign(i) (49)
i=1
Two different time histories of [yr,wr(1),--+.¢r(4)]. for & = 1.---.300. are used in the fol-
lowing tests. Figure 1 displays these time histories, respectively, as ineasurement sequence 1

and 2.

The first test evaluates corollary 1. For this purpose use is made of measurement
sequence 1. which guarantees the presistently excitation condition to he fulfilled during
the whole test. Furthermore, an exponential forgetting factor A = 0.95 was taken. The
approximate error, equation (48), the loss of symmetry as computed by ||P; — }—’LH and
| P.|| are plotted for the CLS1 implementation in Fig. 2a and for the C'LS2 implementation

in Fig. 2b. These results clearly confirm corollary 1.

In the second test corollary 6 is evaluated. The same experimental condition as in

the previous test are taken. Figures 3a and 3b, respectively, show the evolution of the

16



smallest eigenvalue and the third diagonal element of P,. Statistically these quantities
have to be positive. In the error analysis, it has been reconfirmed that this remains true as
long as P, remains symmetric and numerically not singular. The first condition is easily
violated by the CLS1 implementation; therefore, such a guarantee can not be stated for
this implementation. This is confirmed in Fig. 3. Furthermore, such a loss of positive
definiteness didn’t occur with the CLS2 implementation for all the test performed in this
simulation study. From Fig. 2b, we clearly see that the loss of symumetry is of different
orders of magnitude smaller than the errors on P;. Therefore, the asymmetric part of AP
in equation (42) can be neglected so that corollary 6 holds as well for the CLS2 as for the

SCLS implementation.

The evaluation of corollary 4 in the third test makes use of the measurement sequence
2 in Fig. 1. From this figure we observe that the regressor vector y; is not persistently
exciting during the time intervals (1,40) and (81,309). The impact of this on the round-off
error propagation in the CLS2 implementation is pictured in Fig. 4. This figure clarifies
that during the time intervals of lack of persistent excitation the error on P, and the loss of
symmetry increase “linearly.” At the same time, ||P;|| increases also linearly. Furthermore,
the rate of increase is exactly the same in hoth cases, so that relatively no loss of precision
occurs. Therefore. the practical impact of the lack of persistent excitation causing the so-
called “burst” phenomenon, see Hughes and Jacobs (1974). is far more important than the

numerical hehavior of the considered RLS schemes which preserve the symumetry of P;.

5 Concluding Remarks

In this paper, the numerical robustness of four different RLS schemes is analyzed by means
of a theoretical error analysis. Apart from reconfirming the insights obhtained in a similar
analysis for Kalman filter implementations, given in Verhaegen and Van Dooren (1986).

These are. respectively:

1. The conventional RLS (CLS) which preserves symmetry of the parameter error co-
variance matrix P yields the same accuracy as the SCLS for all the corresponding

quantities updated in hoth schemes.
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The SILS is also numerically stable. The accuracy of computing P, and the LS
estimates is however penalized when the condition number of P, is high. However, it
is also not necessary to compute these quantities in order to continue the recursions
with the SILS. Therefore, such large errors on P, and the least squares estimates do

not accumulate.

The new insights, of particular interest for applications with RLS, of this analysis are:

1. The CLS has been “incorrectly” implemented, making it very to the so-called loss
of symmetry phenomenon. Correct implementation of this scheme overcomes this

deficiency.

2. The persistency of excitation of the regressor vector in the regression model is required
to guarantee the houndedness of the round-off errors. When this condition is violated,
the errors on P, will increase, however, with same rate of increase as || P.||. Therefore,

the increase of the errors is of minor importance.

3. The loss of positive definiteness is caused by the loss of symmetry

These conclusions have all heen confirmed in an experimental verification study.
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Figure Captions

Fig. 1: Two different measurement sequences for the variables (y,y,) in the regression

model (1).

Fig. 2 Propagation of round-off errors in two implementations of the conventional RLS

scheme (A = 0.95, measurement sequence 1).

Fig. 3: Evolution of certain eigenvalues and diagonal elements of P in the CLS 1 imple-

mentation (A = 0.95, measurement sequence 1).

Fig. 4: Influence off the persistency of excitation of the regressor vector (k) on the round-

off propagation in CLS 2 implementation (A = 0.95, measurement sequence 2).
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