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Abstrset--This paper investigates the use of Generalized 
Sampled Data Hold Function Control (GSHF) to optimize 
quadratic measures of performance in sampled data control 
loops. The idea of GSHF control is to use sampled data 
feedback, but consider the hold function as a design 
parameter. Explicit solutions are given for the GSHF 
versions of the optimal LQ and LQG regulators. The 
questions of existence, uniqueness and computation of 
optimal hold functions are treated. An example is presented. 

1. Introduction 
THE TRADITIONAL approach to sampled data control as- 
sumes that the discrete time plant model is obtained from a 
continuous time system by using prespecified hold devices--- 
typically, zero-order or first-order hold (Franklin and Powell, 
1980). A digital computer then implements a discrete time 
control law. In such a scheme, the subsequent intersampling 
behavior of the controlled continuous time system is fairly 
well understood (De Souza and Goodwin, 1984; Berger, 
1985; Urikura and Nagata, 1987; Sirisena, 1985; Franklin and 
Emami-Naeini, 1986). Recently, however, a new approach to 
sampled data control has been introduced (Chammas and 
Leondes, 1978a, b, 1979). This method is called "General- 
ized Sampled-Data Hold Function Control" (GSHF), and its 
original feature is to consider the hold function as a design 
parameter. Until now, studies on GSHF control have been 
primarily focused on the resulting discrete time system, and 
little has been said about the intersampling behavior of the 
controlled continuous time system (Juan and Kabamba, 
1987; Kabamba, 1986, 1987; Kaczorek, 1985, 1986; Zavgren, 
1983; Zeng, 1985; Zavgren and Tarn, 1984; Tarn et al., 1988; 
Greshak and Verghese, 1982). 

In this brief paper, we present solutions of optimal design 
problems for GSHF control where the performance index 
penalizes the intersampling behavior of the closed loop 
system. This is accomplished by using penalty indices which 
are time integrals of a function of the state and control of the 
regulated continuous time system. The optimization problem 
then becomes a standard optimal control problem, but where 
the "control variable" is the hold function itself. Existence 
and uniqueness of an optimal hold function is proved for a 
wide class of optimal GSHF regulation problems. The 
specific problems solved in this paper are GHSF-control 
versions of the linear-quadratic and linear-quadratic Gaus- 
sian regulators. The solution of these problems, together 
with our results on existence and uniqueness of optimal hold 
functions constitute the original contribution of this study. 
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Several authors have investigated the intersampling 
behavior of sampled data control systems. Dorato and Levis 
(1971) showed how to compute the penalty matrices of a 
discretized LQG problem based on those of a continuous 
time LQG problem, assuming zero-order hold. De Souza 
and Goodwin (1984) presented a method for computing the 
time-varying output covariance between sampling instants. 
Berger (1985) suggested that the output between samples can 
be predicted by a linear function and used this in adaptive 
control. Ripple-free deadbeat control for sampled data 
systems was investigated in Urikura and Nagata (1987) and 
Sirisena (1985), and a necessary and sufficient condition was 
given. Franklin and Emami-Naeini (1986) showed that a 
continuous time internal model is necessary and sufficient to 
provide ripple-free response for the robust servomechanism. 
However, all these studies assume that the hold functions are 
not part of the design problem. 

Generalized sampled data hold function control has been 
investigated for finite dimensional, continuous time systems 
(Kabamba, 1987; Juan and Kabamba, 1987; Chammas and 
Leondes, 1978a, b; Kabamba, 1986), finite dimensional 
discrete time systems (Kaczorek, 1985, 1986), and infinite 
dimensional, continuous time systems (Zavgren, 1983; Zeng, 
1985; Zavgren and Tarn, 1984; Tarn et al., 1988). The 
kindred idea of periodic compensation of time invariant 
systems has also received attention (Greshak and Verghese, 
1982; Khargonekar et al., 1985). The primary concern of 
these studies has been the properties of the discrete time 
closed loop system, because they determine important 
characteristics of the continuous time system such as stability 
and deadbeat response. As a consequence, the intersampling 
behavior of continuous time systems under GSHF regulation 
has received little attention. However, in Kabamba (1987) it 
was shown that in GSHF control, this intersampling behavior 
may be unsatisfactory. This phenomenon motivates the 
present study. 

2. Problem formulation, notations and definitions 
We use the following standard notations: superscript T 

denotes matrix transpose; E (.) denotes expected value; tr (.) 
denotes the trace of a matrix; 6 (.) denotes the Kronecker 
symbol in both the discrete time and continuous time case; lp 
denotes the identity matrix of order p. Let X e IR "×n, and 
denote the columns of X as xi, i = l , . . . , n ,  i.e. X--- 
[xl . . . . .  xn]. The vec operator on X is defined as 
vec (X) = col [x 1, x 2 . . . . .  xn], where vec (X) • IR '~n×t. 

We consider finite dimensional linear time invariant, 
continuous time systems under sampled-data regulation as 
follows (see Fig. 1): 

Plant and sampler: 

Yc(t) = Ax ( t )  + Bu(t)  + w(t)  (2.1) 

~(k) = Cx(kT)  + v(k).  (2.2) 

Digital compensator: 

~(k + 1) = P~(k)  + U~(k) 

~,(k) = S~(k)  + r e ( k ) .  

(2.3) 

(2.4) 
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FIG. 1. Feedback configuration. 

Digital-to-analog conversion (Hold device) 

u(t) = F(t)y(k), t • [kT, (k + 1)T) (2.5) 

F(t) = F(t + r) ,  Vt (2.6) 

where x ( t ) •  IR" is the plant state vector; u( t ) •  IR" is the 
control input; w(t) •  IR p is a disturbance vector, ¢ (k)•  IR p 
and v ( k ) •  IR p are the discrete measurement vector and 
discrete measurement noise vector, respectively; ~(k) e [R q is 
the compensator state vector; y(k) • IR" is the compensator 
output; T > 0  is the sampling period; F( t ) • IR  "×q is a 
T-periodic integrable and bounded matrix representing a 
hold function; and the real matrices A, B, C, P, U, S, V 
have appropriate dimensions. Without loss of generality, we 
assume that the matrices C and (S, V) have linearly 
independent rows. 

The formalism of equations (2.1)-(2.6) is quite general. 
Zero-order hold (first-order hold, ith-order hold) control is 
obtained by letting the hold function F(t) be a constant 
(first-degree polynomial, ith-degree polynomial, respec- 
tively). Also, by letting q = 0, r = p, and V = lp, we obtain 
the formalism of GSHF control with direct output feedback 
used e.g. in Kabamba (1987). 

For a given hold function F(t), t • [0, T), the problem of 
designing the matrices P, U, S, V for performance of the 
corresponding discrete time system has been extensively 
treated in the literature [see e.g. Franklin and Powell 
(1980)]. Our objective in this paper is, for a given 
compensator (2.3)-(2.4), to determine time histories of the 
hold function F(t) in (2.5), (2.6) that will optimize various 
performance criteria associated with the sampled data system 
(2.1)-(2.6). 

Upon loop closure, the state and control between samples 
satisfy 

x(kT + t) = ~( t )x(kT)  + D(t)S~(k) + O(t)Vv(k) 

+~o(kT+t) ,  t•[O, T] (2.7) 

u(kT + t) = F(t)VC x (kT) + F(t)S~(k) 

where 
+ F(t)Vv(k), t •[0, T] 

• ( t )=exp(At )+D( t )C ,  t~[O, T] 

D(t) = exp ( A ( t -  r))BF(r) dr, t ~ [o, r l  

ff 
T+t 

o~(kT + t) = (A(kT + t - 7" exp r))w(r) dr, 

te[0,  T]. (2.11) 
Defining 

x~(k) = [xT(kT), ~X(k)]X • Ig "+q (2.12) 

~g =[exp(AT)+ucD(T)VC D(T)S] e IR¢,+q,×~,+q , 

(2.13) 

D~ = [ D(T)V] e IR ("+q)×p (2.14) 

(2.8) 

(2.9) 

(2.1o) 

oga(k) = [ c°~k) ] E lR n+q (2.15) 

then the closed loop equations for the discrete time system 
a r e  

Xa(k + 1) = Itlaxa(k ) + Oal)(k ) + ¢.Oa(k ). (2 .16 )  

The closed loop monodromy matrix is defined as W a in 
(2.13), (2.16) and denotes the state transition matrix of the 
regulated discrete-time system over one period. 

Definition. The design problem of finding an optimal hold 
function F(r), r e [0, T] is called a fixed monodromy (free 
monodromy) problem if D(T) in (2.10) is specified (not 
specified). 

A fixed monodromy problem must therefore satisfy a 
design constraint of the form 

D(T) = G, (2.17) 

where typically, the matrix G is chosen such that the closed 
loop monodromy matrix Wa of (2.13) defines a stable discrete 
time system (2.16). 

3. Linear-quadratic Gaussian regulation 
Throughout this section we assume that w(t) and o(k) of 

(2.1)-(2.3) are stationary Gaussian processes satisfying 

E[w(t)] =0, t • [R; (3.1) 

e Io (k ) l=0 ,  k • IN; (3.2) 

E[w(t)vT(k)] = O, t • IR, k • IN; (3.3) 

E[w(t)wT(r)] = R,~ 6 ( t -  r), t, r • IR, R,,-> 0; (3.4) 

E [ v ( k ) v T ( O ] = R o 6 ( k - t ) , k ,  re iN ,  Ro->0; (3.5) 

E[w(t)xT(O)] =0, t •  IR; (3.6) 

EIv(k)xT(O)l = O, k • IN. (3.7) 

Equation (2.9) implies that ~o(k) is a stationary zero-mean 
white Gaussian sequence with covarianee kernel 

E[to(k)~ov(t)] = R ~ ( T )  ,5(k - O, (3.8) 

fo R,o(T) = exp (A(T - r))R,, exp (AT(T - r)) dr. (3.9) 

The performance index has the form 

1 tl } 
J = lim E l -  ( (xTQx + uTRu) dt (3.10) 

,t~ ~ L ty 3o 

where Q e I R  "×", Q = Q T ,  Q>-O, R • I  R"×",  R = R  T, 
R >0. The criterion (3.10) can also be computed as follows 
(see Juan, 1988). 

Proposition 1. Suppose a hold function F(t), t • [0 ,  T] 
stabilizes asymptotically (2.16). Then the criterion (3.10) has 
the form 

( 1 f(k+l)T 
+ uTRu) dt I. (3.11) J=~lmEt~..Jk T "  (xTQx 

J 



Brie f  Paper  179 

Proposition 2. Suppose a hold function F(t), t E [0, T] 
stabilizes (2.16) asymptotically. Then the criterion (3.10) can 
be computed as follows 

J = l t r  (LaMa(T) + R~No(T) + QPa(T)} (3.12) 

where L~ ~ I R(n+q)x(n+q), N~(t) ~ IR pxp, Pa(t) ~ IR "x" are 
obtained as follows 

D(t)=AD(t)+BF(t), D(0) =0  (3.13) 

/l~/a(t) = [exp (ATt) + cTvTDT(t)] 
[ sTDT(t) ] 

x Qlexp (At) + D(t)VC, O(t)S] 
F cTVTFT(t) l 

+ [ sTFT(t ) JR[F(t)VC, F(t)S]; M~(O) : 0 

(3.14) 
exp(mT)+ D(T)VC D~)S]  

UC 
L, [exp (ATT) + cTvTDT(T) cTuT1 

x / sTDT(T) pT J 
F R or) 

+ "ot:°T(') ,  :'+ L # °0J-L° =o 
(3.15) 

No(t) = [N+DI~QO(OV + V+F~(ORF(OVl d~ (3.16) 

f2 P,(t) = R,,(O dr. (3.17) 

Proof. First rewrite (2.10) as (3.13). Define L. = 
lira E[xo(k)xT.(k)]. The stability of (2.16) implies that L~ can 

be computed by (3.15). Moreover, simple algebraic 
manipulations based on (2.7)-(2.11) imply that the cost 
(3.11) can be computed as (3.12) subject to (3.13)-(3.17). 

(a) Free monodromy. 
Proposition 3. A hold function F(t),te[O, T] which 
stabilizes (2.16) asymptotically and minimizes (3.10) must 
satisfy 

f C T V T] 
BTqJ(t)- 2RF(t)[VC, S]La[ S T J 

- 2RF(t)VR~ V T = 0 (3.18) 

where ~(t)  • [R "×" satisfies 

tF(t) = - A r C ( t )  + 2Q[exp (At)  + D(t)VC, D(t)S]La 
r C-r v T] 

x [  sT j + 2QD(t)VRoV T (3.19) 

exp (AT) + D(T)VC D(T)S] 
t~ (T)=-2 [ I " '  O]K°{[ UC e J 

xLo[CTsTVT]+[D(T) U V]RvVT } (3.20) 

exp (ATT) + cTvTDT(T) CTU T] 
sTDT(T) pT J 

×~, rexp (AT) + D(T)VC ^ ' [  . c  D(er)s] 

+ Ma(T ) - K, = 0 (3.21) 

and the matrices D(t), L a and Ma(t ) are given by 
(3.13)-(3.15). 

Proof. The optimization of (3.12) subject to (3.13)-(3.17) is 
performed using standard optimal control theory, but where 
the state variable is the matrix D(t) and the control input is 
the hold function F(t), yielding (3.18)-(3.21). See Juan 
(1988) for details. 

Equations (3.13)-(3.21) define a two point boundary value 
problem for the two n x r matrices D(t) and W(t). The 
first-order gradient algorithm of Bryson and Ho (1975) has 
been used successfully to compute solutions to these 
equations. The examples we have treated suggest that in 
general, (3.13)-(3.21) always have a solution when the triple 
(A, B, C) of (2.1)-(2.2) is minimal, but that this solution is 
not in general unique. However, in the case of fixed 
monodromy, we can guarantee both existence and 
uniqueness. 

(b) Fixed monodromy. 
Proposition 4. If the triple (A, B, C) of (2.1)-(2.2) is 
minimal, and the matrix G of (2.17) is such that the system 
(2.16) is asymptotically stable, then for almost all T, the hold 
function F(t) ,  t e [0, T] which minimizes (3.10) subject to 
(2.1)-(2.6), (3.1)-(3.9), (2.17) exists and is unique. It 
satisfies 

D(t) = AD(t) + ½BR-~ BTV(t) 

[VC, rcx VT1 I-~ 
x S]La[ sT J+VRvVT I , 

D(O) = O, D(T) = G (3.22) 

ffl(t) = --A TqJ(t) + 2Q[exp (At) + D(t)VC, D(t)S]L a 
[ c  T VTI 

x [ sT j + 2QD(t)VR~ V T (3.23) 

F(t)= ½R-'BTw(t){[VC, SILo[ CTsTVT] + VRoVT} -'  

(3.24) 

where La is the positive semidefinite solution of (3.15). 

Proof. See Juan (1988). 

Notice that (3.22), (3.23) can be rewritten as a standard 
Hamiltonian two point bounary value problem for the 
vectors vec (D) and vec (W). The direct solution of (3.22), 
(3.23) therefore requires only solving linear equations 
(Bryson and Ho, 1975). 

4. Linear quadratic regulation 
Throughout this section we assume there is no disturbance 

and no measurement noise: we are regulating the transient 
behavior of the closed loop system against nonzero initial 
conditions. In (2.1)-(2.3) we assume: 

w(t) = 0, v(k)=O, (4.1) 

E(x(0)) = 0, E(~(0)) = 0, (4.2) 

E ( [  ;((00)) ] [xT(0), ~T(0)]) = Xg (4.3) 

and the performance index has the form 

J= E(f:(xTQx + uVRu) dt), (4.4) 

where Q~I R"×", Q=QT, Q>-O, Re lR  "×m, R = R  x, 
R > 0 .  

(a) Free monodromy. 
Proposition 5. A hold function F(t), t e[O, T] which 
stabilizes asymptotically (2,16) and minimizes (4.4) subject to 
(2.1)-(2.6), (4.1)-(4.3) must satisfy (3.13)-(3.21) where 

: C  °0] 
is replaced by X~ and R,, is replaced by 0. "Hie optimal value 
of (4.4) is then 

J = tr (K,,X;) (4.5) 

(b) Fixed monodromy. 
Proposition 6. If the triple (A, B, C) of (2.1)-(2.2) is 
minimal and the matrix G of (2.17) is such that the system 
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(2.16) is asymptotically stable then for almost all T, the hold 
function F(t), t ~ [0, T] which minimizes (4.4) subject to 
(2.1)-(2.6), (4.1)-(4.3), (2.17) exists and is unique. It 
satisfies (3.22)-(3.24) where 

F#' °0] 
is replaced by X~ and Rv by 0. The optimal value of (4.4) is 
then given by (4.5). 

Remark 1. Propositions 5 and 6 reveal that the linear 
quadratic regulator is a particular case of linear quadratic 
Gaussian regulator where Rv = 0 and X~ replaces 

F#' °0] 
In other words, optimizing the transient performance (4.4) of 
a noiseless undisturbed system is equivalent to optimizing the 
steady state performance (3.11) of the same noiseless system 
under some properly defined perturbations. 

Remark 2. Propositions 3, 4, 5 and 6 illustrate the fact that 
fixed monodromy problems are easier to solve than free 
monodromy problems. Not only can we guarantee existence 
and uniqueness of an optimal fixed monodromy hold 
function, but it can be computed directly at the expense of 
solving linear equations. On the other hand, for free 
monodromy problems we cannot guarantee existence of a 
solution, neither can we guarantee its uniqueness, nor can we 
guarantee that the iterative algorithm we used will always 
converge. The hierarchy of difficulty between free and fixed 
monodromy problems is reminiscent of the problem of 
optimal L 2 model reduction (Wilson, 1970) where, if the 
poles of the optimal reduced order model are free, it is not 
guaranteed to exist, nor to be unique, nor to be computable 
by a convergent algorithm; whereas if these poles are fixed, 
the reduced order model is computed directly by solving 
linear equations. 

5. Example 
In this section we illustrate the use of the results of 

Sections 3-4. We compare two sampled data regulators for a 
given plant with respect to an integral quadratic performance 
index. The first regulator is obtained by using a standard 
zero-order hold, preceded by a discrete compensator based 
on pole assignment. The second regulator is obtained by 
using the same discrete compensator, but optimizing the hold 
function with respect to the performance index, under the 
"fixed monodromy constraint" that the discretized plant in 
the second configuration be the same as the discretized plant in 
the first configuration. In other words, we show that it is 
possible to improve the performance of a feedback loop by 
adjusting the hold function, without changing the discrete 
compensator nor the discrete model of the plant. Such an 
improvement is then due exclusively to a better intersam- 

piing behavior. Note that the discrete compensator has not 
been chosen for optimality with respect to the performance 
index, because this optimization would depend on the hold 
function, and the effect of optimizing the hold function alone 
would then be difficult to assesss. 

The plant is a simple harmonic oscillator with position 
measurement of the form: 

y = [ 1  0Ix. 

The sampling period is T = 1. 
(A) The first controller is implemented using a dynamic 
compensator and a zero-order hold 

u(t) = y(t,), t ~ [kr, (k + 1)r) (5.2) 

The discretized model of the plant is then 

x(k + 1) = [ 
0.2837 0.9589q I--0.1433q 

L-0.9589 0.2837] x(k) + [ -0 .1918]  y(k) 

¢(k) = [1 0]x(k). (5.3) 

The dynamic compensator is 

~(k + 1) = [ 
~ 0 .  ~ 7 3 2  

0 0 7-0:  
0 3735q 0.5673 

y(k) = [-1.5094 4.086]$(k) (5.4) 

and has been chosen so that the closed loop eigenvalues 
are located at +1.0 x 10 -3, and +j  x 10 3. The cost function 
has the form (4.4), (4.3) where 

R = I  

Ii°°!1 . 0 1 0 
X 0 = 

0 0 
0 0 

For this regulator, the performance index is computed using 
Proposition 2 which yields 

Ji = 47.82. (5.6) 

(B) The second controller consists of a sampler with 
generalized hold function, together with the same discrete 
compensator (5.4). The hold function is constrained such 
that the discretized plant is the same as (5.3). In other words, 
the closed loop systems A and B have the same dynamics at 
sampling instants. However, in case B, the hold function is 
chosen so as to optimize the cost function (4.4), (4.3), (5.5). 
Aplying Proposition 6 yields the hold function of Fig. 2, with 

v 
L~ 

-I 

GSHF 

ZOH 

0.2 0.4 0.6 0.~ 1 
Time (see) 

FIG. 2. Generalized sampled data hold functions. 
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cost function 

• /2 = 25.43 (5.7) 

which represents a 47% improvement over (5.6). 

6. Conclusions 
The main contribution of this paper has been to present 

methods for optimizing the intersampling behavior of 
sampled data control systems. The basic premise is that the 
hold function itself is the design variable. We have presented 
explicit solutions to the optimal LO and LOG regulation 
problems. It is found that for fixed monodromy problems, we 
can not only guarantee existence and uniqueness of an 
optimal hold function, but we can compute it directly by 
solving a linear two point boundary value problem of 
Hamiltonian structure. This brief paper has only presented 
the basic theoretical results on optimal sampled data 
regulation by GSHF. Engineering design issues and detailed 
examples are considered in Yang and Kabamba (1988) where 
it is also shown that GSHF control can be used to achieve 
simultaneous quadratic performance in several control loops 
using the same controller. 
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