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Inverse fast Fourier transform, window functions, and the Nehari ap- 
proximation theorem are used to generate a family o f  untuned and robustly 
convergent algorithms for  frequency response based identification with 
guaranteed error bounds in the ~ norm. 
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Abs ' t rae t - - In  this paper ,  a class of  algori thms for the 
problem of system identification in ~ are investigated. 
These algorithms are characterized by a two-stage structure 
and involve a class of  window functions. Some conditions in 
terms of  properties of  the window functions are derived, 
which guarantee  robust  convergence of the algorithms. 
Identification errors are analyzed for several common  
window functions. This leads to some insights into the 
trade-off between the error induced by approximation and 
that due to noise. 

1. I N T R O D U C T I O N  

RECENTLY, a problem "system identification in 
~ "  has been formulated by Helmicki et al. 
(1990, 1991a) which is a concrete instance of an 
abstract worst case deterministic identification 
problem formulation by the same authors 
(1991b). In this approach, experimental data are 
taken to be noisy values of the frequency 
response of the system at a given set of 
frequencies. Roughly speaking, the problem is to 
find algorithms which map the experimental data 
into an identified model for which the worst case 
(with respect to the noise and the unknown 
system) identification error converges to zero in 
the g(~ norm as the noise level goes to zero and 
the number of data points goes to infinity. This 
problem is motivated by the fact that it matches 
the framework and assumptions underlying 
modern robust control design techniques which 
give worst case stability and performance 
guarantees provided modeling uncertainty is 
quantified in terms of error bounds in the g(~ 
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norm. The interested reader is referred to 
Helmicki et al. (1990, 1991a) for a thorough and 
detailed discussion of this problem formulation. 

Several nonlinear algorithms have been 
proposed, by Helmicki et al. (1990, 1991a), Gu 
and Khargonekar (1990), Partington (1992a, b) 
for solving the problem of g(~ identification 
recently, which are robustly convergent. (See 
Section 2 for a precise definition.) Helmicki et al. 
(1990, 1991a) gave a robustly convergent 
algorithm based on spline interpolation. Their 
algorithm does converge robustly, but the order 
of the identified model is N 3 where N is the 
number of data points. In a recent paper (Gu 
and Khargonekar, 1990), we gave a robustly 
convergent algorithm based on the classical 
Cesaro sum technique where the order of the 
identified model was allowed to be less than N. 
We also gave a linear algorithm which does not 
converge robustly, but it was shown that the 
worst case error diverges very slowly. More 
recently, Partington (1992a) has given some 
nonlinear algorithms which are related to the 
one by Gu and Khargonekar (1990) and share 
similar properties. In addition, he has shown 
that there does not exist a linear robustly 
convergent algorithm for this specific problem of 
identification in g(~. The paper by M/ikil/i (1991) 
contains a different perspective on g(~ 
identification. 

In this paper, we analyze a class of nonlinear 
algorithms for the problem of identification in 
g(~. This class includes the algorithms proposed 
in Helmicki et al. (1990, 1991a), Gu and 
Khargonekar (1990), Partington (1992a, b) as 
special cases. The algorithms in this class are 
characterized by a two-stage structure: the first 
stage involves taking the inverse discrete Fourier 
transform and multiplication by a suitable 
window function; the second stage involves 
finding the best analytic approximation using 
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Nehari's theorem (Nehari, 1957; Adamyan et 

al., 1971) to the function obtained at stage 1. 
For each choice of the window function, one gets 
an identification algorithm. Indeed, the choice of 
the window function is crucial and determines 
completely the properties of the resulting 
identification algorithm. [The use of window 
functions here is reminiscent of the digital filter 
design literature (Rabiner and Gold, 1975).] 

The principal results of this paper give some 
general conditions on the window function which 
ensure that the resulting two-stage nonlinear 
algorithm is robustly convergent. Thus, one gets 
a large collection of robustly convergent 
algorithms for the problem of system identifica- 
tion in ~ .  We give results on the worst case 
identification error in terms of the properties of 
the window function. 

It turns out that the worst case identification 
error can be broken into two parts: the error 
caused by noise and the error  caused by partial 
data. (For reasons that will become clear later, 
we call the second component  "er ror  induced by 
approximation".)  It is desirable to reduce both 
of these errors simultaneously. Our results 
indicate that this is in general not possible and 
there is a trade-off between these two types of 
errors. This trade-off between the error induced 
by approximation and that caused by noise for 
some specific window functions is analyzed. A 
parametrized window is proposed which in- 
corporates this trade-off as a design parameter  
and therefore appears to be useful for system 
identification in Y(~. The identification algorithm 
generated by this window function is shown to 
be exponentially convergent. In a parallel and 
independent work, Partington (1992b) has 
employed the de la Vallee Poussin kernel to 
obtain an exponentially convergent algorithm. 

System identification is a well established field 
of research with a large body of literature, see 
for example, Ljung (1987). The traditional 
approach to system identification is to take a 
stochastic problem formulation. In some recent 
papers, results on the resulting identification 
error have been obtained by Ljung and Yuan 
(1985), Goodwin et al. (1990), Goodwin and 
Salgado (1989). For deterministic worst case 
error bounds as used in robust control, the 
identification problem is more appropriately 
formulated in a deterministic setting. Recently, 
some papers that take a deterministic approach 
to the identification problem have appeared, see 
for example, Kosut et al. (1990), Krause et al. 
(1990), Krause and Khargonekar (1990), Lau et 

al. (1990), Parker and Bitmead (1987), Smith 
and Doyle (1990), Tse et al. (1991), Younce and 
Rohrs (1990) and the references cited there. 
Many of these papers deal with what may be 

broadly termed as "robust  identification". We 
regard our paper as a contribution to the field of 
robust identification. 

It is possible to formulate other identification 
problems with Y(~ norm as a measure of 
identification error. From this point of view, it is 
perhaps better to keep the terminology "iden- 
tification in ~ "  for a generic class of 
identification problem in which ~ norm is used 
as a measure of identification error. At this time, 
no fixed and well established terminology is in 
place, and therefore,  we will use the phrase 
identification in Y(~ to mean the specific problem 
described at the beginning of this introduction. It 
is hoped that as the field of robust identification 
develops further, a logical and coherent  
terminology will emerge. 

As noted above, the experimental data for the 
problem treated in this paper are taken to be 
noisy values of the frequency response of system 
at a finite set of frequencies. And it is assumed 
that a deterministic bound on the noise is 
available. A relevant question here is how to 
obtain such experimental data. This issue has 
been discussed in great detail by Helmicki et al. 

(1990, 1991a) and some experimental plans are 
proposed to obtain such data. Also, in certain 
types of applications, it is common to perform 
sine-sweep experiments. From an engineering 
point of view, such noise bounds should be 
based on the characteristics of measuring 
instruments as well as knowledge of the physical 
system. It is felt that more research on this issue 
should be quite useful. Also, more research on 
relating other types of "real  data" to these 
assumptions is necessary. The other alternative 
would be to modify the problem formulation. 

In this paper, we will restrict our attention to 
single-input/single-output discrete-time linear 
time-invariant systems. Extensions to the multi- 
input/multi-output case are immediate. The rest 
of the paper is organized as follows. In Section 
2, we describe the two-stage algorithm and give 
some preparatory results. The key conclusion of 
this section is that stage 1 is crucial in 
determining robust convergence as well as the 
worst case identification error. In Section 3, we 
give the main results of the paper. Here  we 
establish some general conditions on the window 
function which guarantee robust convergence. 
We also give some results on worst case 
identification error. Some special classes of 
windows are analyzed in Section 4. Section 5 
contains results of some numerical experiments. 

2. TWO-STAGE NONLINEAR ALGORITHMS 
In this section, we will define the Y(~ 

identification problem as formulated by Hel- 
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micki et al. (1990, 1991a), and then summarize 
briefly some existing results. Some preliminary 
results will also be given. The books by Hoffman 
(1962), Zygmund (1959) are excellent sources 
for the required mathematical background. 

Let ~(= denote the Hardy space of bounded 
analytic functions in the open unit disc 9 .  For 
any function f • ~ ,  the ~ norm of f is defined 
a s  

Ilfll~ := ess sup {If(z)[ :z • ~}. (2.1) 

Let M denote the subset of Y(= defined as 

:= {f : f  • Y(~, f is continuous on unit circle}. 

(2.2) 

As is well known, ~/ is a closed subalgebra of 
~=. 

Let the transfer function f ( z )  = ~ hkz k where 
0 

hk, k = 0, 1 . . . .  is the impulse response of the 
system. A causal lz BIBO-stable discrete-time 
shift-invariant system can be viewed as an 
element in ~ .  If such a transfer function has a 
continuous frequency response, then it is also in 
M. In particular, if the system is l= BIBO-stable, 
then .its transfer function also belongs to M. 
Note that stability here corresponds to having no 
poles inside the closed unit disc. 

The problem of identification in Y(= 
formulated by Helmicki et al. (1990, 1991a) can 
now be described as follows. 

Assume: that the "true" unknown system to 
be identified is a stable, linear, shift-invariant 
discrete-time system with transfer function 
/{•Se~_M. Here 5e is a fixed subset of ~= 
containing the zero element; 

Given: a finite number N of possibly noisy 
experimental frequency response data 

EN( on, £7):= {EN(/~, O):= ft(ei2~(k-')/N) 

+ flk, f leBN(e),  l~<k~<N); (2.3) 

where 

ON(E) := ( 0  = (~1, ~2 . . . . .  ~N) • ~N:  IOk[ ~ E- 

f o r k = l ,  2 . . . . .  N } ;  (2.4) 

Find: an algorithm AN which maps the given 
information EN(~, fl) into an identified model 
hi~ • ~= in such a way that the worst case model 
error 

eN(c) := sup (llh - t~NIL: ¢t • BN(E),/~ • 5e} 

(2.5) 
satisfies 

lim eN(e) = 0. (2.6) 
~ 0 ,  N ~  

EN~+I+k : requiring that (for n even) N 
N * [EN/2+~-K] for k =  1, 2 . . . . .  N / 2 -  1 and E~, 

N EN/2+~ being real. This is always true of real 
data. In this sense, one only has N/2+ 1 
independent frequency response data points. 
The ball of noise BN(C) should thus be taken to 
be those complex numbers which satisfy the 
above complex conjugate symmetry. 

The set 5e captures the prior information on 
the system being identified. An important 
example of 5 e is the collection of all exponen- 
tially stable systems ~ (~p ,  M) as defined below 

~(~p,  M) :=  {f : f  is analytic in ~p 

and I l l -< M, Vz e ~p}, 

where ~o = {z:lzl <P} ,  and p > 1. 
The noise bound in (2.4) is assumed to be 

independent of frequency. As discussed in 
Helmicki et al. (1990, 1991a), this assumption is 
without loss of generality. If the noise bound is 
frequency dependent, then one can use a 
weighting function to transform the original 
problem into the one where the noise bound is 
independent of frequency. 

As in Helmicki et al. (1990, 1991a), we define 
robust convergence as follows. 

Definition 1. An identification algorithm A s  is 
said to be convergent if the worst case 
identification error eN(e) satisfies (2.6). Further, 
if in addition the identification algorithm AN 
does not depend on a priori information on 5e 
and is convergent, then AN is said to be 
(untuned and) robustly convergent. 

As mentioned in the introduction, several 
robustly convergent nonlinear algorithms have 
been proposed by Helmicki et al. (1990, 1991a), 
Gu and Khargonekar (1990), Partington 
(1992a, b). These algorithms share the following 
"two-stage" structure. At the first stage inverse 
discrete Fourier transform and a window 
function is used to arrive at a good possibly 
nonanalytic, i.e. unstable, approximation to the 
given frequency response data. Then in the 
second stage, Nehari's theorem (Nehari, 1957; 
Adamyan et al., 1971) is used to approximate 
this first stage approximation to obtain an 
analytic, i.e. stable, identified model. 

To be more specific, define N-point inverse 
discrete Fourier transform of the 
perimental data as 

1 N - 1  . . 

ktN(k ) = ~1 ~ EilV+l(t~' fl)e-'k(2'~/N)' 
i=0 

given ex- 

j = V - l ,  

(2.7) 

It is natural to require that the identified 
model be real rational. This is ensured by 

where k = 0 , 1 , 2  . . . . .  N - 1 .  The sequence 
fZN(k) can be extended into a periodic sequence 

AUTO 28:2-E 
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as follows: 

t/N(k) = t/N(k + LN),  k, L c 5~ (2.8) 

where ~ denotes the set of integers. 
In this paper, we will study identification 

algorithms having the following structure. 

Two-stage nonlinear algorithm 
Stage 1. Let n(N) be a given monotone 

nondecreasing function from positive integers to 
positive integers such that lim n ( N ) =  oo. Let 

N ~  
W~,k:k=0, +1 . . . . .  +n be a given sequence 
called a "window function" of real numbers. 
Define pre-identified model t/p~;n as 

t/peff= ~ w,.~t/N(k)z k. (2.9) 
k=--n 

Stage 2. Take identified model ^N hid a s  

t/ E'N t /~:=argmin{ll  pi' - f l l  :f~g(~}. (2.10) 

(Whenever there is no possibility of confusion, 
to avoid cumbersome notation, we will not show 
explicitly the dependence of n on N.) 

Clearly, the identification algorithm is com- 
pletely characterized by the window function 
used in stage 1. Stage 2 involves solving the 
optimization problem defined in (2.10). Since 
the pre-identified model is not necessarily causal 
as it may have nonzero negative Fourier 
coefficients, stage 2 requires finding the best 
analytic approximation for the pre-identified 
model. This is the so-called Nehari best 
approximation problem which has been analyzed 
extensively in the mathematics literature. See, 
for example, Adamyan et al. (1971), Nehari 
(1957) and Young (1988) for a complete analysis 
and methods for solving this problem. Suffice it 
to say that there are well established algorithms 
for obtaining f given t/v~ ;u which solves (2.10). 
Moreover, since t/peff is rational (in fact, it is a 
trigonometric polynomial) the resulting ^N hid is 
also a rational function with no poles inside the 
closed unit disc. 

Now the algorithms in Helmicki et al. (1990, 
1991a), Gu and Khargonekar (1990), Partington 
(1992a, b) can be taken to be special cases of the 
above two-stage algorithm. In particular, the 
window function for the spline based identifica- 
tion is 

[ N ' ~ 2 [  . k3:,~2 
W~,o-'- 1, w~,,=k~-~ ) ksln--~-), 

k:/=0, and w, ,k=0 f o r l k ] > n .  (2.11) 

The window function for Cesaro sum based 
identification proposed in Gu and Khargonekar 

(1990) is 

Ikl 
w , . , = l - - - ,  and W,,k=0 for lkl ->n 

n 
(2.12) 

which is a triangular window. For the identifica- 
tion algorithm in Partington (1992a) which uses 
"second Bernstein procedure", the window 
function employed in stage 1 is of the following 
form 

w~,k = cos (ksr/(2n + 1)), and w~,k = 0 

f o r l k l > n .  (2.13) 

It is seen that the only free parameter in the 
above two-stage nonlinear algorithm is the 
window function Wn,, used in (2.9). It will be 
shortly shown that stage 1 plays a crucial role in 
determining robust convergence of the two-stage 
nonlinear algorithm. To make this precise, we 
introduce the following definition. 

Definition 2. Stage 1 of the two-stage algorithm 
is said to be robustly convergent if 

e~.(e) := sup ( l i t / -  "E;N . -  00) hpi I1~. rt E B N ( e ) ,  t~ 

(2.14) 
satisfies 

lim = O. (2.15) ep~(e) 
e~O, N----~ ~ 

We now have the following lemma that shows 
that the first stage of the algorithm indeed 
determines the properties of the identification 
algorithm. (This result is essentially contained in 
Helmicki et al., 1990.) 

Lemma 1. The two-stage nonlinear algorithm is 
robustly convergent if stage 1 is robustly 
convergent. Moreover 

eN(e) --< 2eN(e). (2.16) 

Proof. Using Nehari's best approximation result 
(Nehari, 1957), stage 2 of the nonlinear 
algorithm in (10) yields 

I I t / ~ -  ^E;u E:u < h m I1~ = lit/p, I I , , - I I t / f f ? ~ - t / l l ~ ,  (2.17) 

where I l f l l ,  denotes the norm of the Hankel 
operator defined by f. By the triangle inequality, 

lit/N t/tl~--- ~u t / E u  ^E:N -- IIh,d-- p," I1~+ Ilhp, - t / l l ~  
~E;N <- 2 llhp, - t/ll~. (2.18) 

By taking supremum on both sides of the above 
inequality as in (2.5) and limits as in (2.6), we 
conclude that the robust convergence of stage 1 
implies the robust convergence of the two-stage 
nonlinear algorithm as well as the worst case 
identification error inequality (2.16). [] 
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To analyze the identification error ep~(e) in 
stage 1, note that /~N(k) as in (2.7) can be 
written as 

hN(k) = hN(k) + ~lN(k) (2.19) 

where 

1 N - 1  

hN(k ) = ~[ i~=o fZ(ff(2i#/N))e-Jk(2i#/m 

I N - I  
and r/N(k) = ~ ~ Oi+l e-jk(2i~/N). (2.20) 

I v  i = 0  

The pre-identified model in stage 1 of the 
nonlinear algorithm as in (2.9) can thus be 
written as 

fl pE ;N N ^ N 
= flpi + ~pi  (2.21) 

where 

k = - - n  
W~.khN( k )z* 

and ^N_ ~ W,,krlN(k)z k (2.22) ~ p i  - -  
k = - - n  

with hN(k), tiN(k) defined in (2.20). Hence, /~p~ 
can be thought of as a pre-identified model in 

^ N  stage 1 for noise free case and r/m as the effect of 
noise. 

Lernma 2. Stage 1 of the identification algorithm 
is robustly convergent if and only if 

(i) lim sup {110~11~: 0 ~ BN(E)) = 0; 
~---~0, N ~  

(ii) lim sup {ll/z~-/~lloo:]~ ~ 6e} =0 .  
N--~oo 

That is, stage 1 is robustly convergent if and only 
if /~ = 0 ¢ b ~ can be identified robustly and for 
any system /~ 6 6 e, /~ can be identified exactly 
with E = O. 

call the first term (on right hand side of (2.23)) 

sup {llhp~ - ~11~:~ ~ ~e), (2.24) 

worst case approximation error which cor- 
responds to the noise free case (a number of 
people have worked on such approximation 
problem; see the survey paper by Henrici, 1979), 
and the second term [on the right hand side of 
(2.23)] 

sup (ll¢/p~ll~ : 0 ~ BN(e)}, (2.25) 

worst case noise error which corresponds to the 
pure noise case, i.e. h = 0. 

Ideally, one would like to find an algorithm 
that simultaneously minimizes both the worst 
case approximation error and the worst case 
noise error. However, it will be shown by 
examining the algorithms proposed in Helmicki 
et al. (1990), Gu and Khargonekar (1990), 
Partington (1992a) in Section 4 that there 
appears to be a conflict between these two 
objectives. We would like to emphasize that it is 
not the purpose of this paper to compare 
different algorithms proposed in Helmicki et al. 
(1990), Gu and Khargonekar (1990), Partington 
(1992a). The objective here is to study the 
properties of the two-stage nonlinear algorithms 
within the framework of window functions. 

In view of Lemmas 1 and 2, it is clear that the 
window function employed in stage 1 determines 
the robust convergence of the two-stage 
nonlinear algorithm as well as the worst case 
identification error. It turns out that different 
window functions used in (2.9) can be studied in 
terms of the triangular window as defined in 
(2.12) which will be shown in next section. The 
following result is taken from Gu and Khar- 
gonekar (1990). 

Proof. By the triangle inequality and using 
(2.21) 

sup {[[/~pE;N/~1[~: f/ ~ BN(E), ~ ~ ~}  

sup {llh~-- hll~:/~ ~ ~} 
+ sup (11 ¢'/~11~: 0 ~ BN(E)}. (2.23) 

Hence, if (i) and (ii) are satisfied, then the 
robust convergence of stage 1 follows. Con- 
versely, since [; = 0 ~ 5e, the robust convergence 
of stage 1 implies that (i) is true. Moreover, by 
choosing Ok = 0, robust convergence of stage 1 
also implies that (ii) must hold which completes 
the proof. [] 

Note that the worst case identification error 
e~(e) is bounded by sum of two terms on the 
right hand side of (2.23). It seems appropriate to 

Lemma 3. Let wn.k be the triangular window 
given by (2.12) with n < N .  Then for any/~ ~ M, 

lim sup ~e;N { l lhp i - - /~ I I~ :0~BN(e)}=e .  (2.26) 
N>n--~z¢ 

Thus, in the noise-flee case, the pre-identified 
model / ~  converges to the true system transfer 
function n c as N---~ ~ for the triangular window. 
However, this convergence need not guarantee 
robust convergence even in the noise free case, 
since we are interested in the worst case error 
measured in infinity norm taken over all /~ e b ~. 
Indeed it is easy to see that additional 
boundedness assumptions on 62 are needed in 
order to even expect the robust convergence of 
the two-stage nonlinear algorithm. 

Define Pn to be the collection of all 
polynomials in z with degree no larger than n. 
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Then, Pn c_ M. Each ft, • P, corresponds to a 
finite impulse response system. It is known from 
Zygmund (1959) that for each/z e M, there exists 
a ft,* e Pn such that 

/in(no) = lift-P211~ 
=inf{llfi--Pnll~:Pneen}. (2.27) 

Clearly, such a fi* is an optimal approximation 
of /~ in the set P~ and the optimal error as in 
(2.27) is a function of /~. Note that En(fo is a 
monotone nonincreasing function of n. 

Definition 3. A subset fie___ M is called admis- 
sible, if 

l imtS , ,=0 ,  where 6, , :=sup{E, , ( /~) : /~efie};  
m--+oQ 

and Ms:=sup{ll /~l l~: /~efie}<~.  (2.28) 

Roughly speaking, admissibility requires that 
the set of systems be bounded and be uniformly 
approximative by polynomials. It can be shown 
that admissibility is equivalent to requiring that 
5° be totally bounded in ~ .  This concept is also 
related to some issues pertaining to metric 
complexity discussed by Zames (1979). We will 
assume that fie is an admissible set in the 
remainder of this paper. It is noted that the 
collection of exponentially stable systems 5e := 
~(~p ,  M) as discussed in Helmicki et al. (1990, 
1991a) and Gu and Khargonekar (1990) is 
admissible. Other sets such as in Partington 
(1992a) having certain "smoothness" properties 
are also admissible. 

It is shown in Helmicki et al. (1990, 1991a) 
that the worst case identification error can not be 
smaller than e. Hence, the triangular window in 
(2.12) is in fact an optimal window in terms of 
minimizing error due to noise for identification. 
To distinguish the triangular window in (2.12) 
from other windows, we adopt the following 
notation for pre-identified model hp~ :N when the 
window function in (2.12) is used: 

• - - E ; N = k ~ = _ n ( 1 - - L ~ ) h N ( k ) z k .  (2.29) L N(z) . -  fi,,, 

The polynomial Jn,N is called the Jackson 
polynomial in Zygmund (1959, Vol. II, 22). We 
arrived at it in Gu and Khargonekar (1990) using 
the idea of Cesaro sums. It is noted that 

J~N 1 . - I  = -  ~] L (2.30) 
' /1  i = 0  

where if~ is the partial sum 
i 

L =  ~_, hN(k)z k (2.31) 
k ~ - - i  

with/~N(k) defined as in (2.7). 

3. CHARACTERIZATION OF WINDOW FUNCTIONS 
FOR ROBUST CONVERGENCE 

In this section, we study robust convergence of 
the two-stage nonlinear algorithm. This analysis 
involves a study of the robust convergence of 
stage 1 of the two-stage algorithm in terms of 
properties of the window function. As in 
Zygmund (1959, Vol. I, p. 74), consider a 
doubly infinite matrix of complex numbers 

I 
ao, o ao,~ " '" ao,n " ' ' ]  

I 
al,o a l , l  " " " a l ' n  " " "1 

M . . . . . . . . . . . . . . . .  ] .  (3.1) 

With every sequence of complex numbers 
so, s~, sz, • • • ,  we associate the sequence on 
given by 

a n : = ~ a n , k S k , ( n = O ,  1 ,2  . . . .  ), (3.2) 
k=0 

provided the series on the right converges for all 
n. Suppose 

Nn = la,,~l, and An---- Z a n , k '  (3.3) 
k = O  k = O  

exist and are finite for all n. The following result 
can be found in Zygmund (1959, Vol. I, 74). 

Lemma 4. Let the sequence an.k be as above and 
suppose 

(i) lim a,.~ = 0 for k = 0, 1 . . . .  ; 

(ii) the sequence Nn as in (3.3) is bounded; 
and 

(iii) lim An = 1.  

If the sequence sk tends to a finite limit s as k 
goes to infinity, then on tends to s as n 
approaches infinity. 

For the window function Wn,k used in the 
two-stage nonlinear algorithm, let 

A w n ,  k : =  wn,  k - Wn,k+l, 

and A2wn,k := Awn,~- Aw,.k+l. (3.4) 

Suppose that the window function wn.k is even 
symmetric with respect to k, i.e. w,._k = w~,k for 
all n, k. Then, with above notation, the 
pre-identified model as in (2.9) can be written as 

n - - l  

/~pe/;N= ~ W,.k~N(k)zg __ Z AWn,kik + Wn,ni. 
k - -  n k = 0  

n - 2  

= ~ (k + 1)A2W,,kJk+LN 
k = 0  

+ nAwn,~-,JnN + w,,nL, (3.5) 

by applying summation by part twice. The next 
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result concerns the worst case noise error  as 
defined in (2.25). 

Lemma 5. Suppose that the window function 
used in stage 1 of the nonlinear algorithm is even 
symmetric with respect to k. Then,  there exists 
an absolute constant C~ such that for all 
N > n > 0, the worst case noise error  as defined 
in (2.25) satisfies 

sup {II^N . ^ rlpill~. )7 • BN(•)} 

n--2 ( k  1 ) )  
<- (n IAw..~_,l + ~ + IA2w~,KI 

\ k=0 

+ C, Iw~,~l log (n)•. (3.6) 

Further,  if w~,~ = 0 and A2W~,k has the same sign 
as Aw~,~_l for k = 0 ,  1 . . . . .  n - 2 ,  then the 
above error bound is attained for some 

• BN(•). 

Proof. As shown by Gu and Khargonekar  
(1990), 

sup (IlYK,~II~: ¢7 • BN(•),  fl = 0} < 6, (3.7) 

for all possible k < N .  Also, it follows from 
Zygmund (1959, Vol. II, p. 37) that there exists 
an absolute constant C~ such that 

sup {lli~l)®: 0 • BN(•), /~ = 0} --< C1 log (n)•. 
(3.8) 

Hence,  the error  bound in (3.6) follows from 
(3.5) by setting/~ = 0 and taking norms of both 
sides. Further,  if w~,~ = 0, then the upper bound 
on the right hand side of (3.7) is attained by 
taking f/~ = • for all i which yields Jk,N(e 1~°) = •, 
for all to • [ - : r ,  :r] and k = 0 , 1  . . . . .  n - 2 .  
Therefore,  the right hand side of (3.6) is also 
attainable if A2Wn,k has the same sign as Aw . . . .  
for all possible k which concludes the proof. [] 

The next theorem is the main result of this 
section. 

Theorem 1. Suppose that the window function 
W~,k is even symmetric with respect to k, i.e. 
W~.k = W~.-k for all n, k, n(N) < N/2  and 

lim w~.~log(n)--O. Then,  stage 1 of the 

two-stage nonlinear algorithm is robustly con- 
vergent if the window function W~,k satisfies 

(i) lim A2Wn,k = 0 for k = 0, 1 . . . .  ; 

(ii) N~ := lim sup (N~ := n IAw~,~_~l 

n--2 } 
+ ~ ( k + l )  lA2W~,k[:n>--O < ~ ;  

k=O 

(iii) lim W~,o = 1. 

Consequently, if the above conditions hold, then 
the two-stage nonlinear identification algorithm 
is robustly convergent. 

Proof. First note that Lemma 5, in conjunction 
with the hypotheses, implies that the worst case 
noise error  as defined in (2.25) converges to zero 
as • goes to zero and n goes to ~. It now follows 
from Lemmas 1 and 2 that the robust 
convergence of the two-stage identification 
algorithm is guaranteed if we can establish the 
robust convergence of the worst case ap- 
proximation error  as defined in (2.24). We may 
thus set the noise level • = 0 for the remainder 
of the proof. 

Now, for each function/~ e 5e, we have that 

/~ = / ~ * +  ~m with I1~,~11~--IIh-P~ll~=E,.(fi), 
(3.9) 

where m > 0  is an integer, and Pm,̂ * E,,(/~) are 
defined as in (2.27) and (2.28). Hence,  even in 
this noise free case, we may consider each/~ • 6e 
as a sum of/~*m and a "noise"  term ~m = / ~ - / ~ *  
with "noise level" Em(fQ. Let p~ be the 
coet~cient of z k i n / ~ .  Then,  

Pk = ~ /~*m(e/'°)e -jk°~ dto. (3.10) 
~t 

Hence,  

Mp(~) := sup {IPd :O<-k<-m} <- JlP*mll~ -<2 Ilhll~ • 

(3.11) 

Now, 
N lib - fZpill~ - E,,(ca) + liP* -/i,~ll~. (3.12) 

Using the decomposition in (3.9), the inverse 
discrete Fourier transform in (2.20) can be 
written as 

where 

hN(k) = pN(k) + ~N(k), (3.13) 

1 N - - 1  ^ *  i --ik 
pN(k) = ~ ~ pm(WN)WN and 

Iv i=0 

1N--1 
~N(k) = ~1 ~=o ~m(W~)WTvik' (3.14) 

with W N = e  i2#/N. It is noted that /)~t is a 
polynomial in z of degree no larger than m. 
Hence,  if N > 2m, the polynomial /~* can be 
recovered with inverse discrete Fourier trans- 
form. In particular, with N > 2n - 2m, we have 

f~pN._~*= ~ (Wn, k __ l)pk Zk -t- ~ Wn,k~N(k)z k, 
k =0 k = --n 

(3.15) 
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where p ,  is the coefficient of z* in /~*~. By 
applying Lemma 5 to ~, the above can be 
bounded as 

Ilhp~- P*mll~-< (N. + C1 Iwn,~l log (n))Em(f~) 

+ ~ [1-w,.k[Mp(h), (3.16) 
k = 0  

where Mp(fQ is defined in (3.11) and N, is given 
in condition (ii) in the statement of the theorem. 

To show the robust convergence of worst case 
approximation error,  we need only to show that 
for any given 6 > 0, there exists an N1 > 0, such 
that for all N/2 > n >-N~ (recall that N is the 
number of frequency response data points), the 
worst case approximation error as defined in 
(2.24) is less than 6. This is indeed true. Using 
the fact that 5e is admissible and definition of 6,, 
combined with (3.11) and (3.16), it follows that 

{ []hpi --  P m l l ~  ; fl E sup ^N ~* St} 

<- (N~ + C,w,,~ log (n))6 m 

+ 2  ~ 11-  w~.,l M~. (3.17) 
k = 0  

Recall that 6,, is a non-negative monotonically 
nonincreasing function of m with limit 0. 
Therefore,  there exists an M~ > 0 such that with 
m = M~, 4(N~ + 1)6,, < 6. By the hypothesis 
lim wn,~ log ( n ) =  0, we can find an N~ > 0 such 

that for all n>N~, Clw~,~log(n)<-N~ and 
N~ < Ns + 1. Moreover,  in view of conditions (i) 
and (iii), an integer Nw > 0 can also be found 
such that for all N>-n>-N~, 4 ( m + l ) M s l l -  
wn,k[<6 for k = 0 , 1  . . . . .  m=M~. Set NI = 
max {N~, 1 + M~, N~}. Then for all N such that 
N / 2 > n  >-N~, it follows from (3.12) that the 
worst case approximation error satisfies 

sup (ll~,~ - hll~ :/i c ~e} 

6m + sup {ll/;,,/-P*mll~:/i 
<- 2(Ns + 1)6,. + 6/2 < 6. (3.18) 

Thus, the worst case approximation error also 
converges to zero robustly. As we have already 
noted, the worst case noise error  also converges 
to zero robustly as appropriate limits are taken. 
The proof is complete using Lemma 2. [] 

k =0 ,  1, 2 . . . . .  sup {Ihkl :h e 5e} 4=0 where hk is 
the kth component  of the impulse response of/~. 

Proposition 1. Suppose that the set 5e is 
nontrivial. Assume that the window function 
Wn,k is even symmetric with n <N/2,  and in 
addition, n [Awnm_ll-->0, w~,n log(n)-->0,  as 
n ---> oo and there exists an m > 0 such that A2w~,, 
has same sign Vk>-m and all n > 0 .  Then,  
conditions (i)-(iii) are necessary for robust 
convergence of worst case identification error  as 
defined in (2.14). 

Proof. By Lemma 2, the robust convergence in 
(2.14) implies the robust convergence of the 
worst case approximation error  as in (2.24) and 
the worst case noise error  as in (2.25). The 
nontriviality assumption on 5¢ and the robust 
convergence of worst case approximation error  
imply that for each h e 5¢, the sequence/~N(k) as 
in (2.7) must converge to the true impulse 
response hk as N, n---> oo. It follows that for each 
k, wn,,-+ 1 as n ~ ~. Hence,  conditions (i) and 
(iii) of Theorem 1 are true. Further,  by setting 
noise Ok = eVk, we have that 

n - 2  
^ N ~  rlpi ~, (k + 1)A2w,.~e : 

k = 0  

+ (nAw,,n_~ + ClWn,n log (n))e, (3.19) 

with 0v~ defined in (2.22). By the hypothesis on 
the window function, for n -  2->m, we obtain 
that 

sup (ll0~ll~: 0 ~ gN(e)} 
n--2 m--1 

-> ~ (k + 1)[A2wn,~[ e - ~'~ (k + 1)IAZw~,,I e 
k=m k=O 

- I(nAto~,~_l + C~w~.n log (n))l e. (3.20) 

This holds for all n. Therefore,  taking limit as 
N > 2n ~ 0% and using the robust convergence 
of noise error  we get that, 

(k + 1)[AEwn.kl < oo. (3.21) 
,=0 

This, along with the hypothesis, impl ies  that 
condition (ii) of Theorem 1 is also necessary. [] 

It is noted that Theorem 1 shows only the 
sufficiency of conditions (i)-(iii). With some 
additional assumptions on set 5 ~ and window 
function wn.k, conditions (i)-(iii) also become 
necessary. For doing this, the following notion is 
useful. 

Definition 4. A set 5¢ is called nontrivial if for 

As an application of Theorem 1, we would 
like to analyze the window function (2.11) as 
used in Helmicki et al. (1990, 1991a) next. While 
it was assumed in Helmicki et al. (1990, 1991a) 
that n ~ N 3, we would like to investigate the 
problem of robust convergence when the 
window function (2.11) is used with n-~N/2. 
Set n(N) to be the largest integer no greater 
than N/2. Clearly, the window function in (2.11) 
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can be obtained by sampling the continuous 
function 

with 

w(t) = (sin t/t) 2, w,. k = w(t) 

2kvr 
t= - - i f - ,  k 4:O, Ikl <_n(N). 

It is rather easy to see that conditions (i) and 
(iii) of the Theorem 1 hold for this window 
function in (2.11). So, we only need to verify 
that condition (ii) holds in order to show the 
robust convergence of this algorithm. Now 
consider the twice differentiable function w(t) = 
(sin t/t) 2. We have 

d2w(t) ( t -  - tes int )  dt 2 = 2 2 sin 2t cos~ t 2 

(sin 02 + 2 (t cos t - sin t) 2 (3.22) 
X ~ t4 

It is not difficult to verify that, 

sup { dZw(t) 
t ~  : t e [ 0 ,  J r ] j } = C , < ~  (3.23) 

so that 

1 f0 ~ d2w(t) -~ t - - ~ -  dt <__ C, < ~. (3.24) 

Some elementary calculations then show that the 
constant Ns can be bounded by C~ + C2 for some 
other constant C2 since nAw,.~_l  goes to zero as 
n---~.  Hence, the robust convergence of the 
nonlinear algorithm proposed in Helmicki et al. 
(1990, 1991a) for the admissible set b°= 
~ (~p ,  M) follows from Theorem 1 if n ~ N/2.  
This result is surprising since in Helmicki et al. 
(1990, 1991a), n ~ N 3 is needed in order to show 
the robust convergence when the window 
function (2.11) is used. 

The above idea of sampling twice 
differentiable functions to arrive at the window 
function W,,k is quite common in the digital 
filtering literature. That is, suppose the window 
function can be written as W,,k = w(ktr /n)  where 
k-<n  and w(t) is even symmetric and a twice 
differentiable function in [ - t  r, tr] such that 
w(0) = 1, w(tr) = 0. Then w~,, log (n) = 0, and 
n lAw,.~-ll--~o:lw'(o:)l. In this case, it is not 
difficult to verify that the condition (ii) of 
Theorem 1 can be replaced by 

1 fo c~ dew(t) N ~ = ~  t ~ - - -  d t < ~ .  (3.25) 

The above condition is often much easier to 
check than the condition (ii) of Theorem 1. As 
another application of this idea, consider a 
different window function which is related to an 

ideal low pass filter: 

n k~r 
s i n - - ,  and w~,k=O f o r l k l > n .  wn'k = k--~ n 

(3.26) 

The above window is obtained by sampling the 
function w( t )=  sin t / t  with a~ = :r. It is easy to 
show that 

d2w(t) 2 s i n t - 2 t c o s t - t  2sint  
- (3.27) dt 2 t 3 

By using Taylor expansions for sin(t) and 
cos (t), we have that 

2to  ~ sin t - t cos t 
t2 dt 

Jr ~ (2k + 1)[ dt 

< 2  f0 '~ Jr - ~ t dt = ~ .  (3 .28)  

Hence, 

N = l f ~ f  t d2w(t) 
Jr ~ T -  dt 

2 ~ 

Jr 3 

Further, for the window function in (3.26), 
conditions (i) and (iii) of Theorem 1 are 
satisfied. We can thus conclude that the 
two-stage identification algorithm corresponding 
to the window function in (3.26) is robustly 
convergent. 

sin t - t cos t ) 
ty + Isin tl dt 

(3.29) 

4. ANALYSIS AND TRADE-OFF OF 
IDENTIFICATION ERRORS 

In this section, we will analyze the identifica- 
tion error as well as the trade-offs between the 
approximation error and the noise error as 
defined in (2.24) and (2.25). For system 
identification in Y(~, the performance index of 
interest is the worst case identification error 
measured in the Y(~ norm. By Lemma 1, the 
worst case identification error is bounded by 
twice of the worst case identification error in the 
first stage of the nonlinear algorithm. It is thus 
important to investigate the identification error 
in stage 1 as defined in (2.23). We will first 
consider the noise error which is the worst case 
identification error for/~ -- 0 case as discussed in 
Lemma 2. 

The error bound in (3.6) is not very explicit. 
However, if additional information on the 
window function w~.k is available, the error 
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bound in (3.6) can be made more explicit. The 
following concepts of convex and concave 
windows are useful. 

Definition 5. The window function wn,~ is called 
convex at k if A2Wn,k --> 0, and called a convex 
function if AZwn,k >-- 0 for all k --- 0. The window 
function w.,k is called concave at k, if A2wn,k <-- 0 
and called a concave function if A2wn,k <-~ 0 for all 
k_>0. The window function w.,k is called 
nonincreasing if Awn,k --> 0 for all k >- 0. 

With this definition, we can state the following 
result. 

Theorem 2. Let the window function W,.k used 
in (2.9) be even symmetric and satisfy Wn,~ = 0 
which is nonincreasing and n < N. The following 
error bounds hold. 

(i) If w,,k is a convex function, then 

sup{l l f l~l l=:f lenN(e)}  <_w,,oe; (4.1) 

(ii) If W,,k is a concave function, then 

sup {11¢/~11~: ~ e nu (e )}  -< (2nw,.,_l - w,,o)e; 
(4.2) 

(iii) If W,,,k is convex for k < m ( < n )  and 
concave for k - m, then 

sup {[I¢l~ll=: ~ e Bu(e)} -< (w,,0 - 2(m + 1)Wn, m 

+ 2mW~,m+l + 2nw,,~-l)e; (4.3) 

(iv) If Wn,k is concave for k < m ( < n )  and 
convex for k -> m, then 

sup{ll0~-}l® : 0 e BN(e)} 

--< (2(m+ 1)wn,,,,-2mw,,,m+~--w,,o)e. (4.4) 

Further, the error bounds in (4.1) and (4.2) are 
attainable. 

Proof. It is straightforward to verify the above 
bounds. Hence the details of the proof are 
omitted. 

Remark 1. Using the results in Proposition 1, it 
is clear that for the window functions considered 
above, the three conditions in Theorem 1 are 
both necessary and sufficient for robust conver- 
gence of the two-stage nonlinear algorithm. 

It is noted that the triangular window in (2.12) 
is a concave function. Further,  w~,~ = 0  and 
AW.,k = 1/n for 0 < k --< n. Hence,  the worst case 
noise error as defined in (2.25) never exceeds e. 
case noise error as defined in (2.25) never 
exceeds e. 

The results presented in Theorem 2 exclude a 
large class of window functions because of the 
restriction w~,~--0. For example, Hamming 
window is clearly excluded. In order  to apply the 

results in Theorem 2 for the case Wn.n 4: 0, we 
can simply add a term wn,~M, into the error  
bounds given in Theorem 2, where Mn = 
sup{lli, ll~:~ e o °}-< C llOg (n)Ms with Ms as 
given in Definition 3. Although Wn.n 4:0 implies 
that the corresponding window function is not 
guaranteed to lead to a robustly convergent 
nonlinear algorithm, it is possible to reduce the 
worst case identification error  for fixed order  n. 
The reason is that by allowing nonzero w~,,, a 
smaller value of No as in condition (ii) of 
Theorem 1 might be achieved. This is especially 
true if the order n is not too large and hence 
log (n) is relatively small. 

For example, let us consider the cosine- 
window as in (2.13), which is a concave 
function. In this case, although w,,, 4:0, as 
noted above we can still apply the results of 
Theorem 2. Since w,,, log (n) converges to zero 
as n ~ ~, for n large enough we can neglect the 
contribution of the wn.~ term. Thus, for n large 
enough, the worst case noise error as defined in 
(2.25) is approximately (2n cos ((n - 1)z / (2n + 
1 ) ) - 1 ) e  by (ii) of Theorem 2. In the limiting 
case n ~ o %  the noise error  converges to 
( ~ -  1)e which is more than twice as large as 
the noise error for triangular window. This worst 
case noise error is actually attainable in light of 
Lemma 5. Hence,  if the noise level e is large, 
the identification error will be large as observed 
in Partington (1992a). However ,  this should not 
be taken to mean that the cosine-window as in 
(2.13) is without merit. In fact, if the noise level 
e is small, the cosine-window gives better  
performance than the triangular window. 

Recall the definition of the set ~ ( ~ o ,  M). It is 
a simple exercise to show that for any 
/z e ~ ( ~ o ,  M), its impulse response hk satisfies 
the Cauchy estimate 

Ihkl <- MP -k, k >-- O. (4.5) 

Theorem 3. Let b ° = ~ ( ~ p ,  M). Let the window 
function employed for the two-stage nonlinear 
algorithm be the cosine-window as given in 
(2.13) with n < N .  Then the worst case 
identification error satisfies 

2Mp (2p_ n + (p + 1)z  2 
eN(e) 

- 1 .  2 ( 2 n  + 1 ) 2 ( p  - i)2  

(n -- 1)z 
1 + 2  2ncos  2 n + l  

n~ ) (4.6) + C1 cos2-~--~ log (n) E, 

for some absolute constant C1. Consequently,  
the identification algorithm obtained by taking 
the cosine window is robustly convergent. 
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Proof. We consider the worst case approxima- 
tion error  as defined in (2.24) first. Substituting 
hN(k) in (2.20) into /~pN/ as given in (2.22), we 
have 

n--1 COS ! k~r \ h  
k = - - n + l  

- h, + k~=. [hk[, (4.7) 

where hk = 0 for k < 0 since /~ E Y(o~. It follows 
from Henrici (1979), Gu et al. (1989) that 

hN(k) = ~ htN+*. (4.8) 
L = O  

By noting that cos (x) -< 1, we obtain 

[[/~p~-,~ll~ ~< ~ 1 - cos Ih, I 
k = 0  

+ 2 ~ Ih, I 
k = n  

<~2M ~ p-k 
k = n  

,,-1 { k.~/2 ~ -* 
+ 2M 2 sin2 ~ , ~ - ~ ] P  - (4.9) 

k = O  

Since sin (½k~/(2n + 1)) ~ ½k~/(2n + 1), it is 
now straightforward to obtain the bound for 
worst case approximation error  

sup { Ilhp~ - /~  I1~: h ~ ~(~0p, M)} 
(p + 1)at 2 

~pMPl (2P-"+2(2n+ ~ - ~ -  I)2 ). (4.10) 

To estimate the worst case noise error  as defined 
in (2.25), we can use Lemma 5. Since the cosine 
window is a concave function, by (ii) of Theorem 
2 we get 

n - - 2  

n IAw.,.-,I + ~] (k + 1)1A2w.,,l 
k = 0  

(n - 1)~r 
= 2 n c o s  2 n + 1  1. (4.11) 

Hence,  Lemma 5 implies that the worst case 
noise error  at stage 1 is bounded by 

sup {110~11~: 0 ~ BN(e)} 
( (n - 1)zr nzr ) 

--< n cos 2n +---~ 1 + C1 cos ~ log (n) • 

(4.12) 

for some absolute constant Ca. Since the worst 
case identification error  at stage 1 is bounded by 
the sum of the worst case approximation error  in 
(2.24) and the worst case noise error  in (2.25), 
the error  bound (4.6) is obtained using (4.10), 

(4.12) and Lemma 1. The final conclusion 
follows by taking limit as N > n ~ 0o. [] 

It is shown by Gu and Khargonekar  (1990) 
that the triangular window has a convergence 
rate ¢7(1/n) for the worst case approximation 
error. The cosine-window actually achieves a 
faster convergence rate O(1/n2). However ,  the 
faster convergence for worst case approximation 
error is obtained at the expense of increased 
worst case noise error.  

Another  widely used window is the one-sided 
rectangular window as studied by Gu and Misra 
(1991) and Parker and Bitmead (1987): 

W, ,k=I ,  0--<k--<n and wn. ,=0 ,  otherwise. 

(4.13) 

It is known that the worst case approximation 
error as defined in (2.24) converges to zero 
exponentially (Gu and Misra, 1991; Parker  and 
Bitmead, 1987). However,  the worst case noise 
error diverges in the order  of log (n) (Gu and 
Misra, 1991). 

In light of the above analysis for different 
window functions, we believe that it is in 
general not possible to minimize both the 
approximation error  and the noise error  as 
defined in (2.24) and (2.25) simultaneously. In 
fact, minimizing one seems to amplify the other.  
Therefore,  the use of different window functions 
should reflect the trade-off between the ap- 
proximation error and the noise error.  Further 
research should be devoted to developing 
parametrized window functions which may offer 
such trade-off directly by choosing parameter  
values. Perhaps something similar to the Kaiser 
window for FIR filter design (Rabiner and Gold,  
1975) may be very useful. 

One such window is the mixture of one-sided 
rectangular window and triangular window as 
defined below: 

n + m - k  
Wn,k =1, O <-- k <-- 2m, Wn,k -- 

n - -m  

k 
2m<-k<-n+m, and w n , , = l + - - ,  

n - m  

(4.14) 

m - n - < k - < 0 ,  and W,,k=0, otherwise, 

with 0 < m < n < N. The above window is not 
even-symmetric with respect to k, and therefore 
does not fit directly into the framework of the 
results derived in the previous section. However ,  
the shifted window Wn.k_ m is even-symmetric and 
satisfies all the properties of window functions 
required for the results derived earlier to apply. 
It is noted that if m---> n, the above window 
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function approaches the one-sided rectangular 
window which yields exponential convergence 
rate for the approximation error if fie= 
~ (~p ,  M). On the other hand, if m----~ 0, then it 
approaches the triangular window as in (2.12) 
whose noise error does not exceed e (Gu and 
Khargonekar, 1990). Clearly, the value of 
parameter m shows the trade-off between the 
approximation error and the noise error. 
Moreover, the following error bound can be 
established. 

Theorem 4. Let the window function be given as 
in (4.14) with m < n  < N  and let fie= 9~(~p, M). 
Then the worst case identification error is 
bounded by 

eN(e) _ < ~  ( p - ( N - 1 )  + p-(N-n+m-I) + 2p -zm) 

+ \ n- - -m /e .  (4.15) 

Proof. The worst case approximation error as 
defined in (2.24) can be bounded by 

sup {llnrpU/- hll~:/~ ~ fie} 
2m -- 1 

<- ~ Ihu(k)--hk[+ ~ [h~(k)l 
k=O k = m - n  

n + m  o~ 

+ ~ [hN(k)l+ ~ Ihkl,(4.16) 
k = 2 m + l  k = 2 r n + l  

where hN(k) is given as in (2.20). Using the 
exponential stability condition in (4.5) and 
equation (4.8), we obtain 

sup {llhp%-hllo~:/~ ~ fie} 
M ( p - - ( N - - 1 )  + p-- (N--n+m-- l )  .~_ 2p-2m). 

p - 1  
(4.17) 

To estimate the worst case noise error as defined 
in (2.25), we first shift the window function in 
(4.14) to obtain 

Wo.k := W,.k--m. (4.18) 

It is noted that the window function ff~.k is 
even-symmetric. Moreover, it is easy to show 
that the worst case noise error for ~,k is the 
same as that for the window function in (4.14). 
Further, the shifted window function r0,,k is a 
concave function. Hence, using (ii) of Theorem 
2, we obtain 

( n  2n 1)e sup { II 0~ll~: 0 6 Bu(e)} -< --- m 

+m), 
\ n - - - ~ / '  (4.19) 

The error bound in (4.15) is thus established in 
view of (2.23) and Lemma 1. [] 

Now suppose we choose m in the window 
function (4.14) such that m/n~f l  where 
0 < f l <  1 is fixed. For each n, m is taken to be 
the largest integer no greater than nil. Then we 
see that the resulting window function leads to a 
robustly convergent algorithm for the problem 
of identification in ~ for the admissible set 
~((~p, M) with the important property that the 
approximation error (which is the first part of 
the right hand side of (4.15)) decays 
exponentially in n as n goes to infinity. Needless 
to say, since the noise error is always at least as 
large as e, we can not expect it to decay with 
increasing n. Now as fl becomes closer to one, 
the approximation error decreases, but the noise 
error amplification increases. Thus, fl allows one 
to trade noise error versus approximation error. 

It is noted that the window function as in 
(4.14) has an important property. Let/5~,~ be the 
best approximant to the true model n c of degree 
no larger than 2m as defined in (2.27). Then, as 
in the proof of Theorem 1 with m replaced by 
2m, 

f~ = ~m"~- ~2m, with ~2m := f~ --~m . (4.20) 

Corollary 1. Let h be in M, and let E2m(]l ) and 
p ~  be defined as in (2.27) with m < n < N/2. 
Let the window function be given as in (4.14). 
Then, the pre-identified model /~pu as given in 
(2.22) for the noise-free case satisfies 

IlfZpNi--~mll~(nn~m)E2m(f O. (4.21) 

Proof. Take a fictitious "true model" to b e / ~ , ,  
a n d  ~2m as the noise. Then the result follows 
from (4.19). [] 

The above result shows some advantages for 
using the window function as defined in (4.14). 
In particular, the approximation error will be 
close to the optimal value E2m(h). However, the 
near-optimality of approximation error is 
achieved by amplifying the noise error. The 
trade-off is thus clear in terms of the parameter 
m .  

In many engineering applications, it is 
desirable to keep the order of the identified 
model small. It is interesting to notice that if the 
order of the identified model n is fixed, then one 
may use the above analysis to minimize the 
worst case identification error by choosing an 
appropriate m. This can be approached by 
minimizing the right hand side of (4.15) to 
obtain the optimal value of m. It should also be 
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pointed out that the straight line with nonzero 
slope in the window function (4.14) can be 
replaced by any smooth curve satisfying the 
condition (ii) of Theorem 1. However ,  the 
identification error  may be difficult to analyze in 
this more general situation. 

5. AN ILLUSTRATIVE EXAMPLE 

To demonstrate the trade-off between worst 
case approximation error  as in (2.24) and worst 
case noise error  as in (2.25), we consider 
identification of the following transfer function 

z 2 + 1  

/~ - z 2 + 2 z  + 2" ( 5 . 1 )  

It is assumed that the number of frequency 
response data available is N = 128 with noise 
level e = 0 . 1 .  At  stage 1 of the nonlinear 
algorithm, the window function proposed in 
(4.14) is used with n = 20 and different values of 
m. Using identified models hi~ at stage 2 of the 
nonlinear algorithm, we have plotted magnitude 
of the frequency response of ~ ^N --  h id  v e r s u s  

normalized frequencies for m = 1, m = 4  and 
m = 10 in Fig. 1. It is interesting to note that 
with m = 1, the approximation error  dominates 
the identification error  and with m = 10, the 
noise error  dominates the identification error.  
Further,  with m = 4, the identification error  is 
smallest possible. We would like to point out 
that the identification error  depicted in Fig. 1 is 
not necessarily the worst case error  since we 
have used Ee s~° with 0 a random variable 
uniformly distributed on [ - 1 ,  1] to generate the 
noise. However ,  the simulation does give an 
indication on the trade-off of worst case 
approximation error  and noise error  in terms of 
the parameter  m. 

We have also done numerical simulation of 
the identification algorithm for different window 
functions using the same transfer function as in 
(5.1) and the same noise model with N =  128 

O, 18 

O. 16 / 

/ 

0 . 1 4  / ', 

0.12 " " 

O.a / '. 

~ 0.08 ,' " 

0.05 ', / "', ,' ', 

0 . 0 1 [ ~ 0 . 0 4  "'.." ', ?. -7 

o o l  o a  o 3  o 4  0 5  o s  0 7  o e  o 9  

FIG. 1. Magnitude response of identification errors. 
- - m = 4 , - - - m = l ,  . . . - rn=10 .  

o. a5 

0.2 

i .... ] 

FIG. 2. Magnitude response of identification errors. 

and n = 20. The first window function is the 
Hamming window 

W,,k = 0.54 + 0.46 COS (~-~), and 

W,,k=O for I k l>n .  (5.2) 

The second window is a modification (N 
replaced by n) of (2.11) 

n 2 k n )  2, 
w,.0 = 1, W~.k = (~--~) (sin n /  

k: / :0,  and w , .~=0  for lkl->n. (5.3) 

The third window is as in (3.26). The magnitude 
frequency response of the identification error  is 
plotted in Fig. 2 with a solid line for the window 
function in (3.26), dashed line for Hamming 
window and dotted line for the window function 
in (5.3). We find that the window function as in 
(3.26) achieves the smallest identification error.  
Since no trade-off between approximation error  
and noise error is offered with the three window 
functions above, as expected, the identification 
error for these windows is larger than the 
window function proposed in (4.14). 

6. CONCLUSIONS 

In this paper we have studied a class of 
algorithms for identification in ~ using window 
functions. A number of conditions for robust 
convergence are established. Further,  the trade- 
off between different window functions in 
identification is investigated. The results re- 
ported in this paper may provide guidelines for 
choosing window functions when the two-stage 
nonlinear algorithm is used for identification in 
~ .  
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