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A b s t r a c t - - I n  this note,  a new standard model reference 
control (NSMRC) to arbitrarily fast linear single-input 
single-output time-varying plants with relative degree one is 
presented. A modified version of standard model reference 
control (SMRC) structure is developed which incorporates 
the concept of variable structure design and null adaptation 
process for fast time-varying plants. It is shown that the 
output error will converge to zero in finite time without any 
restriction on the time-varying rate of the plant parameters 
while all signals inside the closed-loop system remain 
uniformly bounded so long as some design parameters are 
chosen properly (large). Superior transient responses as well 
as convergence properties can be observed from the 
simulation results provided. 

1. Introduction 
Ir~ THE FIELD of research on controlling linear time-varying 
unknown systems, adaptive approaches are usually taken 
under some assumptions on the plant parameter  variations 
(suitable time-varying models) such as in Gomart  and Caines 
(1986), Zheng (1987), Middleton and Goodwin (1988), 
Tsakalis and Ioannou (1987, 1989, 1990). No matter what 
class of models is chosen, the restriction on time-varying 
parameters plays an important role in the study of these 
problems. In particular, the time-varying rate of plant 
parameters becomes a crucial assumption if their time- 
varying structure is not known in advance. 

In this note, in contrast with the usual adaptive 
approaches, we propose a nonadaptive new standard model 
reference control (NSMRC) method to solve the problem for 
arbitrarily fast time-varying plants of relative degree one with 
much less-restriction on the unknown parameters.  Our idea 
is originated from the new model reference control (NMRC) 
scheme proposed by Tsakalis and loannou (1989) where a 
"matching condition" can be achieved between the 
compensated closed-loop plant and time-invariant reference 
model when plant coefficients are completely known. By 
using the results described above, together with the concept 
of variable structure design, we get a NSMRC scheme which 
can be used to control the arbitrarily fast time-varying plants 
with unknown parameters. 

2. A matching condition for NSMRC with time-varying 
plants 

Consider a single-input-single-output (SISO) linear 
time-varying plant, which can be described by the following 
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form of differential equations: 

Dp(s, p)[xp(t)] = up(t); Xp(0) = Xpo 

y~(t) = kp(o)Np(s, p)[xp(t)] (2.1) 

where x e ~ R n is an internal state; Up, Yu e R are input and 
output of the plant, respectively; Dp(s, p), Np(s, p) are monic 
linear time-varying PDOs with degree n, m, respectively (see 
Tsakalis and Ioannou, 1987, 1989 for detail); kp(p):/:  
0, Vp->0 is the high frequency gain and Xu(0 ) =  
[Xp(0) . . . . .  x~'-t)(0)] r is the initial condition. 

It should be noted that all the plant parameters 
(coefficients of the PDOs) are uniformly bounded smooth 
functions of p, where p = / t t  is the parameter  time scale with 
/~ -> 0, i .e . /a is the ratio of the time scale of plant parameters 
versus that of plant states. 

The control objective is to design a control law Up(t) such 
that the output yp(t) of the plant tracks the output ym(t) of a 
linear time-invariant reference model 

Ym = Wm(s) r = kmOmt(s) r (2.2) 

where D,,(s) is a monic Hurwitz polynomial, k,, > 0, and r(t) 
is a uniformly bounded reference input signal. To make the 
problem more tractable, several assumptions on the plant 
and reference model are made: (S1) n, m are known. ($2) 
Dp(s, p), Np(s, p) are strongly right coprime PDOs with 
unknown time-varying coefficients. ($3) The sign of kp(p) is 
constant with respect to p and is known a priori. Without 
loss of generality, we will assume that kp(p)> 0, Vp-> 0 and 
the range of kp(p) is a subset of a closed interval on the real 
axis that does not contain 0. ($4) Npt(s ,p)  is an 
exponentially stable PIO. ($5) D,,(s) is designed so that 
degree of Din(s) is n - m. 

In the SMRC structure, auxiliary vectors ~q, if: are 
generated according to the following: 

wt = Awt + lup, ~z = Awz + lyp (2.3) 

where (A, l) is a controllable pair with A e R" ~×,- t  being a 
stable matrix. Let a, = [~qv, ~2 r ,  Yp, r]r  and 0 = 
[0~, 05, 03, Co] r. The following lemma will state a condition 
on the input up so that an exact match between the 
closed-loop plant and the reference model is obtained from 
the point of view of I /O operators for our NSMRC structure. 

Lemma 1. There exists a vector O*(p) such that, if up(t) is 
designed as: 

Up = {c*(p)r + 0~'r(p)ffl + 0~r(p)ffz + O*3(p)yp} 
+ (Izd-l(s)X~(s, p)d-t(s)up 

+ ~td l(s)X~(s, p)d-l(s)yp} 

= { 0*v~ + ~ / t  + #r/z} (2.4) 

where d ( s ) = d e t  ( s l - A )  and X*(s, p ) i s  a PDO whose 
coefficients depend on the derivatives of Or(p), for i = 1, 2, 
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the I /O operator of the closed-loop plant G,.(s, t):r---~yp is 
equal to the time-invariant reference model. 

Proof. See Fu and Chien (1990). [] 

3. A n  N S M R C  fo r  an u n k n o w n  t ime-vary ing  plant  
In this section, the new standard model reference control 

scheme for a fast time-varying plant with relative degree one 
is presented. 

3.1. Error model .  When plant parameters are known and 
under the matching condition for our NSMRC scheme, the 
plant output can be expressed, from an operator  point of 
view, as 

yp = Wm(s)r.  (3.1) 

If the time-varying parameters of the plant are unknown, 
equation (2.4) and, hence, (3.1) will not be achievable so 
that (3.1) has to be modified with e_xtra inpu_t signals besides 
the exogenous input r. Define cp~= 0 i -  O*(p),  i =  1, 2, 
~)3 = 03 -- O ~ ( p ) ,  ~4 = Co -- c ~ ( p )  and ~ = [q~r, ~2 r ,  ~3, ~4]  v 
so that it can be seen that the plant input up originally given 
in (2.4) for matching condition will now become, 

Up = ( 0 . r ~  + #r h + t'q2) + (q ~Ta' - #rt, - #r/2) = u, ,  + u~,2. 
(3.2) 

It is clear that the first term up~ satisfies the matching 
condition for plant input in the NSMRC structure. So, with 
plant parameters being unknown, the output yp should be as 
follows: 

yp = W,, , (s)(c*(p)  I ( ~ ) T ~  --  f~/]l -- ~ 2 )  -]" r). (3.3) 

Define output error e o by e o = y p - y . ,  and apply an 
additional switching signal vp (Fu, 1989) to be defined later 
into the plant input channel, we can then get the following 
output error equation, 

e o : W,,(s)c*o(p) ~(~r~ _/~r/, - lur/2 + vp). (3.4) 

Now, by any minimal realization (A , , ,  bm, Cm) for W~(s), 
the error model can be written as: 

E = A , . e  + bmc*(p)  l ( ~ r ~  --  ~ r ] l  _ l~?l 2 + Vp) 
eo = Crme" (3.5) 

3.2. Control ler  design f o r  fast  t ime-vary ing  plants. In this 
subsection, we focus on an MRAC problem for fast 
time-varying plants using the formulation obtained pre- 
viously. Resolution of the problem usually involves an input 
control law along with a parameter adaptation law. But here, 
a different approach is assumed which forsakes the 
adaptation process and fix 0 at a constant zero vector, i.e. 
0 -=0 so that only a bound on II0"11 is used later in our input 
synthesis to compensate for the lack of knowledge of 0". The 
following theorem will state our main result on the NSMRC 
for fast time-varying plants. 

Theorem 1. Consider the error system (3.5) with a switching 

input vp detined as: 

vp - - s g n  (e , ) ( f io  II~,ll~ +/3L) (3.6) 

where ] l~ , lk=sup~ ,llw(r)lt and let 0=l ) .  Then for any 
time-varying rate of plant parameters, there exist fl~, fi~" > (I 
such that all signals inside the closed-loop system are 
uniformly bounded and the tracking error e,, will converge to 
zero in finite time so long as fl,.c (fl~, 2) and [~l e (fl~', o~). 

[] 

Proof. See Appendix A. 

Remark  1. In this NSMRC scheme, no parameter adaptation 
is used mainly because that any finite speed adaptation can 
not obtain an effective estimation for fast unstructured 
parameter variations. Another  reason is that large amount of 
computation can be dropped and, hence, the complexity of 
the overall control scheme is much reduced. This feature, 
however, can not be shared with a similar scheme but using 
NMRC structure since fixing 0, say, at zero will not provide 
any meaningful regressor signals ready to compensate for 
unknown dynamics of the closed-loop plant. [] 

Remark  2. Although the NMRC scheme can also deal with 
fast time-varying plants, some a priori  knowledge about the 
structure of the fast parameter variations has to be assumed. 
In the case where unstructured parameter variations are 
encountered (as has been discussed throughout this note), 
the slowly time-varying assumption on the plant parameters 
is still crucial to the stability property of the closed-loop 
system there. But it is noteworthy that for any time-varying 
rate /tj->0, fi~] and 131 defined in (A.16) (Appendix A) will 
always suffice in Theorem 1. This, in turn, implies that the 
NSMRC scheme proposed here will have the desired 
property for any time-varying plant so long as its 
time-varying rate # E [0,  ~1]" However,  the cost of 
controlling arbitrarily fast time-varying plants (arbitrarily 
large value of /~j) is the increase of control parameters fl~ 
and fl~' and, hence, the increase of control force vp. [] 

4. Simulat ion 
In this section, we give a simulation example to 

demonstrate the performance of the NSMRC scheme. The 
plant in the present example is the same as the one in that 
presented in Tsakalis and loannou (1987), which is described 
as follows. 

x ~2) + (2 sin (Ht) - 5 exp ( - t * t ) ) x  (1) 

+ (sin 2 (~t) - 5 sin (t~t) exp ( - t~ t ) ) x  = up 

yp = x  ~1) + (3 + sin (t~t))x. 

The reference model and its input are chosen as 
1 

- -  and 10 sin (t), respectively. Figure 1 is the simulation 
(s+ 1) 
for the fast time-varying =(~L =25)  plants with initial 
conditions x(0) = 1.5, xt~)(0) . The control parameters are 
chosen as rio = 30, fit = 15. From the simulation results, we 
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FIG. l. Finite time output tracking and bounded signal response for plant time scale /~ = 25. 
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can see that the perfect tracking property and good transient 
response are achieved. 

5. Conclusion 
In this note, a new standard model reference control 

(NSMRC) approach has been proposed to solve the typical 
MRAC problem for linear time-varying plants. The approach 
has first transformed the time-varying effect of plant 
parameters into some additional signals which, when injected 
to the input channel of the plant, facilitates an exact match in 
the SMRC structure from the point of view of I /O operators. 
The transformation enables us to develop a NSMRC 
structure which is especially suitable for incorporating the 
variable structure design concept whereby the output error 
converges to zero in finite time so long as the design 
parameters are chosen properly (large). In addition, all 
signals insided the closed-loop system will remain uniformly 
bounded. 
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Appendix A: Proof of Theorem 1 
Step 1. At first, we use a similar way to Narendra and 
Annaswamy (1988) to establish the relation between the 
growth rates of all signals in the closed-loop, assuming that 
all signals grow in an unbounded fashion. 

Note that Npl(s, p) is an exponentially stable PIO and 

yp = kp(p)Np(s, p)Dpl(s, p)up = kp(p)Np(s, p)Dpl(S, p)Vp 
(A.1) 

(where Up=Vp since 0 = 0 ) .  Let 9 p = ( S + a ) ( s ~ a ) v  p, 

1 
where a > 0  so that - -  is a stable operator. It is easy to 

s + a  
show that vp = i,p for any initial condition and, hence, 

yp = kp(p)Np(S, p)Dpl(S, p)(s + a ) ( s ~ a ) V  p (A.2) 

which implies that 

1 
1 Op(s, p)Ngl(s, p)kgl(p)yp = s ~ a a  Vp m Vpl. (A.3) 

s+a  

1 p)Npl(s ,p)k; l (p)  is a proper stable Since s + a De(s' 

operator, we can conclude from Lemma 2.6 in Narendra and 
Annaswamy (1988) that 

IVpd -< kl I]ymlL + k2 (m.4) 

for some positive constants k~ and k2. Our purpose here is to 
show that Vp cannot grow faster than vp~ which, together 
with (A.4), implies that vp (plant input) will be bounded by 
yp (plant output). However, to show that Vp cannot grow 
faster than vpl is the same case as Lemma 2.8 in Narendra 
and Annaswamy (1988) if vp satisfies the following 
requirement 

[vp(q)[ >- c2 [v,(q + T)[ (m.5) 

where t I and t 1 + T are the time defined as: 

[q, tt + T] ~ ~2 = {t]lVp(t)l = IlVptl[~} (m.6) 

and c z is a constant e (0, 1). Now, let (A.1) be represented as 
the following state space realization, 

fop(t) = A p ( t ) x p ( t )  + bp(t)vo(t), yp(t) = cp( t )Xp( t ) .  (A.7) 

By the following augmented system, 

dt w2 = A l cp ( t ) l l~21  + 0 vp (h .8)  
Xp 0 Ap( t ) ]Lxp_]  Lbp(t)d 

we can easily show that, for some positive constants k3, k 4 
__  -T  -T  T T and ~ - [wl, w2,Xp] , 

I1~11 -< k3 II~ll + k4 IVpl. (m.9) 

Since Ap(t), bp(t) and cp(t) are uniformly bounded by 
hypothesis. Because [vpl = tip tla',ll~ + fll and lYpl <- 
I1%11 II/pll, we can show that, for some k 5, k6>0 ,  

I1511-<ks I1~,11~ + k6 (A.10) 

which implies ~ and, hence, vp can grow at most 
exponentially fast and the requirement (A.5) is satisfied. 
Consequently, the fact that vp cannot grow faster than yp is 
then established. 

Step 2. Construct a Lyapunov function V(e)= ~erPe where 
P = P r > 0 .  Then the time derivative of V along the 
trajectories of (3,5) subject to Vp can be computed as: 

(/= _er(A~p + pAre) e + er Pbmc,(p)-1 

x ( - 0 * r ~  - t~r/, - ~r/2+ Vp) ( A . l t )  

where we use the fact ¢ = -~)*. By the strictly positive real 
(SPR) property of Win(s), we can find a Q = QT > 0 such that 
A~P + PAre = - Q and Pbm = cm. Furthermore, according to 
assumption ($3), we can conclude that c*(p)>0, Vp->0. 
Then, V in (A.11) can be found as: 

= -erQe + eoC*o(p)-l{--o*Tff -- ~r h -- ~t12 

- -  sgn (eo)(flo Ila',ll® + ill)} 

-< --q Ilell 2 - l ev i  C*o(p)-1{/lo I1~,% + fll 

- I I 0 " 1 1  I1~,11~-~ Irhl-/~ It/21} (A.12) 

for some positive constant q. It is easily shown that 
deg (X~(s, p)) -< (n - 1) + (n - 1) - 1 = 2n - 3, which along 
with the fact that deg (d(s)) = n - 1 implies 
d l(s)X*(s, p)d-l(s) is a strictly proper stable operator 
(Tsakalis and Ioannou, 1989). Hence, we can show that 

It/ll_</~/lllumll~+M2, IT/21---M311Yp,II~+M4 (A.13) 

for some positive constants AS//, i = 1, 2, 3, 4. By the results 
derived in step 1, we have 

[rhl<:M1 [la,,ll~+n2, 1~IE[-<M3II~,,II~+M 4 (A.14) 

for some positive constants Mi, i = 1, 2, 3, 4. Substitution of 
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(A.14)  into (A.12)  then  yields,  

I? -< - q  I[ell 2 - leol c*(p)  ~{(fl()- II0*ll - ~tM~ - # M 0  I1~,1~ 

+ (/~, - ~,M2 - ~M4)). (A.15) 

If we choose  the  des ign  p a r a m e t e r s  rio, fl~ in such a way tha t  

fl,) > fig = II 0")1 +/~M~ + ~tM 3 
(A.  16) 

fli > [Jt = [dM2 + llM,, 

then  ~" < - q  Ilell 2 which conc ludes  tha t  e and,  hence ,  e,, 
approach  zero at least  exponen t ia l ly  fast.  No te  tha t  the  
ze ro -convergence  of  e o directly implies  tha t  the  p lan t  ou tpu t  
y p ( = e o + y , ,  ) is b o u n d e d ,  Vt->-0. Also  by the  fact tha t  v v 
canno t  grow fas ter  than  yp, the  b o u n d e d n e s s  of  all s ignals  in 
the  c losed- loop is es tabl i shed .  

Step 3. Finally.  tile p rope r ty  of finite t ime  conve rgence  on 

ou tpu t  er ror  e o shou ld  be established._ Obse rv ing  the  e r ro r  
mode l  (3.5),  with the  condi t ion  q~ = - 0 " ,  we have  

1 de~, r + eoc,,~bmc,,(p) T * 1 
dt = e ° c ' A m e  

× { - ~ ) * T f f - ~ u ) l ~ -  ttr/2 + vp} 

-< leol {k7 Ilell - k s [ ( f l o -  II0*)l - / , t M ,  - /~M~)  

x Ila',ll~ + (fl~ - ~M2 - /~M4)]}  ( g . 1 7 )  

where  k7, kgz>0 are s o m e  appropr ia te  cons tan t s .  Since 
lie(011 app roaches  zero at least  exponent ia l ly  fast and  (A.16)  
is a s sumed ,  there  exists  a finite T r - > 0  such  tha t  
1 de~ 
~ - - < - k p l e o l  for all t > T  r and  for s o m e  k p > 0 ,  which  

implies tha t  the  switching surface  e o = 0 will be r eached  in 
finite t ime.  This  conc ludes  our  proof .  [] 


