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Variable structure design concept has been successfully incorporated to 
establish a new model reference adaptive controller for SISO plants with 
relative degree two with an aim to achieve good robustness, well-behaved 
transient responses, and good tracking performances. 
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Abstract--Variable structure design concept has been shown 
not only useful in dealing with uncertain systems but also 
useful in establishing controllers in the adaptive context. 
Continuing the work, this research proposed a new robust 
model reference adaptive control for single-input-single- 
output linear plants with relative degree two, a class which 
encompasses a large number of linearized mechanical 
systems. When compared with the conventional MRAC 
schemes, the current approach drastically improves the 
transient behavior and the tracking performance of the 
closed loop system from several numerical simulations. 
Furthermore, if the reference input satisfies the persistently 
exciting condition or if the prior knowledge about the 
interval in which the true parameter vector lies is available, 
the magnitude of the input force can be considerably reduced 
into a more realistic level. In the presence of mild 
unmodelled dynamics and bounded output disturbances, the 
proposed scheme possesses similar well behaved properties. 
It can be shown that the tracking error will, in fact, fail into a 
residual set whose size can be directly related to the size of 
unmodelled dynamics and of output disturbances. 

1. INTRODUCTION 
IN THE RECENT adaptive literature, a great deal of 
concentration is placed on the robustification of 
the adaptive control schemes ever  since Rohrs  et 
al. (1985) pointed out the ext reme sensitivity of  
these schemes to assumptions such as known 
relative degree and f reedom of disturbances. 
Unfortunately,  instability has been observed and 
investigated, e.g. in Krause et al. (1983), 
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loannou and Kokotovic  (1984a), Riedle and 
Kokotovic (1985), As t rom (1985) and Fu and 
Sastry (1987a, b) when some of the assumptions 
are violated. So far, these researches can be 
classified into three categories: (i) to ensure the 
condition of persistency of excitation (PE) in 
order to achieve the robustness of  the controller; 
(ii) to modify the pa ramete r  adaptat ion law; (iii) 
to apply the variable structure design (VSD) 
concept. In the first category, a proper ty  of  
exponential stability of  the nominal system is 
first guaranteed when the PE condition is 
satisfied and then either results with local 
stability are shown (e.g. in Kosut  and Johnson,  
1984; Bodson and Sastry, 1984; Chert and Cook,  
1984; Bodson,  1986; Fu and Sastry, 1987b; 
Kokotovic et al., 1985) or those with global 
stability are obtained (e.g. in Kosut  and 
Friedlander, 1985; Anderson et al., 1986). 
Several results have been obtained in the second 
category such as: concept of a dead zone is 
introduced in Egardt  (1980), Peterson and 
Narendra (1982), Sastry (1984) and Kreisselmeier 
and Anderson (1986); restriction on the search 
region in the paramete r  space based on some 
prior bounds is given in the work in Egardt  
(1979) and Kreisselmeier and Narendra  (1982); 
addition of a linear term - o 0  in the pa ramete r  
update law, generally referred to as o- 
modification, is adopted in Ioannou and 
Kokotovic (1984b), Ioannou (1986), Ioannou and 
Tsakalis (1986) and Ortega  et al. (1987); and 
later el-modification is presented in Narendra  
and Annaswamy (1987) which differs from the 
aforementioned ones mainly in the additional 
term which is now replaced by --el0. In the last 
one, the first a t tempt  to apply VSD concept into 
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model reference adaptive control (MRAC) 
scheme was made in Ambrosino et al. (1984) but 
the resulting controller is generally ill-posed; the 
so called VS-MRAC scheme (Hsu, 1990) 
incorporates switching on the adjustable para- 
meters 0 to achieve tracking performance; and 
the work in Fu (1991) applies switching not only 
to parameter adaptation but also to plant control 
input. 

Continuing the work in Fu (1991), this paper 
presents a new robust continuous-time MRAC 
scheme for single-input-single-output (SISO) 
linear plants with relative degree two, a class 
which encompasses a huge number of linearized 
mechanical systems. Since the reference models 
for this class of plants fail to be strictly positive 
real (SPR), direct extension of the previous 
work to the present case is hardly achievable. 
Therefore, the proposed scheme incorporates 
the similar BSD concept in Fu (1991), but is 
based on the modified MRAC scheme proposed 
in Narendra and Valavani (1978) particularly for 
the case with relative degree two. Although this 
scheme shares the similarity with that in 
Ambrosino et al. (1984), the controller here is 
well-posed and the parameter update process, if 
not turned off, not only has contributed to the 
stabilization of the overall system but also has 
shared the load upon the plant input in handling 
the parameter uncertainties. The latter turns out 
to reduce the magnitude of the input force 
considerably. However, if some prior knowledge 
of the tight intervals in which the system 
parameters lie is available, then the update 
process can, in fact, be turned off so as to lower 
down the input level even more. On the other 
hand, the main difference of our scheme from 
the VS-MRAC scheme introduced in Hsu 
(1990) is that there they applied the VSD 
concept successively to the parameter adapta- 
tion, namely, parameter switching, to handle the 
parameter uncertainties whereas here that 
concept is mainly applied to the input synthesis. 
Further, the effect of replacing the so called 
equivalent control by the so called average 
control in the general VS-MRAC scheme may 
require further assessment in terms of stability 
and convergence properties. As opposed to this, 
the present scheme has taken into account the 
implementation issues and has been well 
investigated with complete analysis. 

The striking features of the proposed MRAC 
scheme in this paper are the drastic improve- 
ment of both transient behavior and tracking 
performance from the conventional schemes 
(Narendra and Valavani, 1978; Narendra et al., 
1980; Ioannou and Tsakalis, 1986) which are 
clearly demonstrated in several numerical 

simulations. Moreover, the magnitude of the 
input force here in general can be reduced 
considerably into a more realistic level, which 
allows one to avoid the occasion with input 
saturation. Besides, it is worth mentioning that 
the scheme is robust to unmodelled dynamics 
and bounded output disturbance, and the 
tracking accuracy can be directly related to the 
size of the non-ideal factors. Because of these 
properties, such a robust control has a potential 
to become a pragmatically feasible MRAC 
scheme. 

The paper is organized as follows: in Section 
2, we formulate the model reference adaptive 
control problem for continuous-time, SISO 
linear plants with relative degree two; Section 3 
describes the structure of the adaptive control- 
ler; investigation of the proposed MRAC 
scheme in the absence of unmodelled dynamics 
and output disturbances but in face of various 
situations is given in Section 4; in Section 5, 
robustness of the proposed scheme is analyzed in 
the presence of unmodelled dynamics and 
bounded output disturbance, and the tracking 
accuracy is related to the degree of those 
non-ideality; some numerical simulation ex- 
amples are provided in Section 6 to demonstrate 
the effectiveness of the proposed MRAC 
scheme; finally, some conclusions are drawn in 
Section 7. 

2. PROBLEM FORMULATION 
The problem to be treated in this paper is 

similar to the one in Fu (1991) but with relative 
degree two. In addition, some slightly different 
assumptions on the plant are made to pose the 
problem properly. It is now stated in the 
following: 

Consider an SISO, linear time-invariant plant 
described by the following transfer function: 

, , M s )  
= r ,  a - ~  (1 + #A/~,(s)) + #AP2(s), (1) 

where P(s) represents the nominal plant 
transfer function of order n, and #API(S) and 
#A/~:(s) are the multiplicative and additive 
unmodelled dynamics, respectively with some 
# e R (Ioannou, 1986; Narendra and Annas- 
wamy, 1987), satisfying the following. 

Assumptions. 

(A1) f~p(s) and dp(S) are monic coprime 
polynomials of known degrees n - 2 and n, 
respectively. 

(A2) The sign of kp is known, and we assume it 
is positive without loss of generality. 
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(A3) 

(A4) 

The nominal plant transfer function /~(s) 
is minimum phase, i.e. ~p(s) is a Hurwitz 
polynomial. 
API(S) and P-IAP2(s ) are both stable 
proper transfer functions. Furthermore, 
suppose that the plant is operated subject 
to a bounded piecewise differentiable 
output disturbance ¢0, i.e. 

Yp =Yp + ~o, (2) 

where I~ol -< P and, for almost everywhere 
in t, I~01 -< Pd for some p, Pd> O. 

The reference model is then described by the 
following transfer function: 

=km am(s)' (3) 

where Am(S) and a~,,(s) are monic but not 
necessarily coprime polynomials of degree n - 2 
and n, respectively. The model transfer function 
satisfies the following. 

Assumptions. 

(A5) /~/(s) is chosen to be stable and minimum 
phase. In addition, there exists L ( s ) =  
(s + a) for some a > 0 such that 2f, l (s)£(s)  
is strictly positive real (SPR) (Anderson et 
al., 1986; Annaswamy and Narendra, 
1988). 

(A6) The sign of km is the same as that of kp, 
i.e. k,,, > 0. 

Now the control objective can be stated as 
follows: under the condition that all the 
coefficients of the plant transfer function Pu(s) 
are not known precisely but subject to 
Assumptions (A1)-(A4), choose a suitable 
adaptive control law so that, for arbitrary 
bounded reference input r(t), the overall system 
is stabilized despite the existence of unmodelled 
dynamics and bounded output disturbance. 
Furthermore, the plant output yp will try to 
follow the model output Ym as closely as possible. 

Here, the basic controller structure is chosen 
to be the one in Narendra and Valavani (1978), 
corresponding to the case of relative degree two. 
As shown in Fig. 1, the dynamical compensator 
blocks F1 and F2 are identical single-input, 
(n -1 ) -ou tpu t  systems described by transfer 
functions: 1(:) e,(s) ..._ (4) 

s n 2 

The monic characteristic polynomial /~(s) is 
chosen such that A(s) = nm(S)f-,(S ) where L(s) is 

, .  ~ +  e, 

FIG. 1. Structure of model reference adaptive controller. 

the one in Assumption (A5). There are a total of 
2n parameters to be tuned for the controller due 
to lack of precise knowledge of Ftp(S) and ap(s). 
The parameters C e R "-1 in the precompensator 
block serve to locate the closed loop plant 
zeros, while D e R  n-1 and d 0 e R  in the 
postcompensator block assign the closed loop 
plant poles. The parameter Co e R then adjusts 
the overall gain of the closed loop plant. The 
parameter vector 0 is thus defined as: 

O r = [Co, C r, do, Dr l  r. (5) 

Refer to the previous problem statement, it can 
now be restated as how to synthesize the control 
input up and on-line update the parameter vector 
0 so that the aforementioned objective can be 
met. In other words, a suitable control law and a 
parameter adaptation law will have to be devised 
to achieve the purpose. These will be investi- 
gated in the following sections. 

3. PRELIMINARIES 
The control scheme to be presented here is an 

outgrowth of the one in Fu (1991) which only 
deals with SISO plants with relative degree one. 
Define the signal vectors w and • :R+---~ R ~ as: 

,*= 

> \ @) / 

Note that for any differentiable function 
hi(-) :R+ =-) R and measurable function 
h2(') :R+ --> R, 

L(s)(hl(t)f~-l(s)(h2)(t) ) 
d ~ 1 

= hl(t)hE(t) +~th l ( t )L  - (s)(h2)(t), (7) 
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where £(s) is as given before and we use 
£-~(s)(h2)(t) to denote the filtered version of 
h2(t) with filter £-~(s). Define the plant input up 
as :  

up = ( 0 ~  + 0r£-~(s) (~) )  + v~, (8) 

which is an implementable input signal once 0 
(gives a suitable parameter adaptation law) and 
vp are specified and from equation (7) is, in fact, 
equivalent to the following: 

u. = L(s)(OrL-~(s)(Ce)) + v,. (9) 

Note that Vp is an additional input to be given 
later. It can be shown from Narendra and 
Valavani (1978) that there exist unique constant 
parameters 0* • R 2" such that, in the absence of 
A/~I(S), AIP2(S), ¢0, and with Vp = 0 in equations 
(8) and (9), the transfer function of the plant 
plus the controller equals that of the model, 
hT/(s), when 0 - 0 " .  This result also directly 
follows from Narendra and Valavani (1978) 
since 

£(s)(O*r£- ' (s)(~))  =- 0*rff. (10) 

This, in turn, implies that in the ideal case with 
vp=0  

yp = P(s)(O*rw) = f.l(s)(r) = Ym" (11) 

NOW let q~=: 0 -  0* denote the parameter 
error vector, and ~=:/~-l(s)(ff)  and ~=:  
£-I(s)(w) denote the filtered version of ff and 
w, respectively through L-~(s). Then, it can be 
verified that with the choice of Up in equation 
(9), 

yp = P(s)(1 + I~AP~(s))(up) + #AP2(s)(up) 

= P ( s ) ( O * ~ )  + P(~)(L(s)(C~) + v~) 
+ U(P(s)AP~(s) + a~(s))(u~) 

=Ym + ~ hT/(s)(L(s)(~Pr~) + v,) 

1 ^ T ~ 
+ ~oM(S)(D * Fz(s) + d~)(¢o) 

+ # ( l  + ~o ~4(s)(D*Tpz(s) + d~) ) 

× (P(s)APa(s) + APz(s))(up). (12) 

Denote eo = y p -  Ym, then equation (12) can be 
written as: 

= ~OJ~(S)E-~(S)(I~)T~ -I- / ~ - I ( s ) ( V R )  + n0  "3!- eo #qi), 

(13) 

where 

~lo = £-~(s )( O * rPz(s ) + d~')(¢o) = A,0(s)(¢o), 

(14) 

and 

( 1 ) 
~, = M-~(s )  + w (D*~P~(s) + d~,) 

CO 
x (P(s)aP,(s)  + AP~(s))L-~(s)(~,,) 

= £,,(s)L-'(s)(Up). (15) 

Here, it can be easily verified that An,(s) and 
A,o(s ) are stable proper and strictly proper 
transfer functions, respectively. Since we have 
assumed I~ol-<-o, equation (14) will imply that 
Irtol<-btp for some bo>0 .  Note that from 
Assumptions (A4)-(A5), a state space repre- 
sentation of the error system given by equations 
(13)-(15) can be readily obtained as: 

= Ame + bm(cpr~ + £-'(s)(Vp) + rh, + #0~), 

eo = c~e, (16) 

and 

rli = c~x~ + d~L-'(Up), (17) 

where (Am, bin, Cm) and (A~, be, c¢, de) are 
1 ~ ^ 

minimal realizations of ~om(s)L(s)  and /~,,(s), 

respectively. In particular, A,~ and A¢ are all 
Hurwitz matrices. 

4. A D A P T I V E  C O N T R O L L E R  DESIGN 

In the previous section, in order to realize the 
input signal up in equation (8), the time 
derivative of 0, namely, 0, and the additional 
signal Vp have to be specified. The former is 
given by the parameter adaptation law whereas 
the latter is given by the control law. 

Define e0 = eo + ~o = Yp-Ym and consider the 
modified gradient parameter adaptation law: 

0 = ~ = -r (~o~  + ~o), 

I 
0( 

a =  Oo I_~01_ 1 t (1+ 1~12 ) 
O 0 / 

I~Oo(1 + I~12) 

if 101 < 0o 
(18) 

if 0 o -  < [01 <20o 

if 101 >- 20o, 

where I'1 denotes the Euclidian vector norm, 
F(>0) is the adaptation gain matrix, and o0(>0), 
00(---10"1) are some design parameters. Such an 
adaptation law is reminiscent of the one in 
Ioannou and Tsakalis (1986). 

Given equations (8) and (18), in the rest of 
this section, focus will be placed on the choice of 
Vp so that the overall system is guaranteed to be 
globally stable and the tracking error is ensured 
to converge to a residual set whose size is a 
simple function of # and p while they are small. 
Let vp be constructed as follows: for some 
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sufficiently small At(>O) and s(>O), 

vp = @@&(I& +f(&J &Cl) 

+ it (f(W)) --f&0 - AW)48), (19) 

where 

I&] L E 

f&J = 
Pal < 6 

(20) 

with 

{ 

+1 x>o 

sgn (x) = 0 x=0, (21) 
-1 x<o 

and n(.):R++R+ is some properly chosen 
differentiable function. 

Remarks. 

(1) The function f(&) given in equation (20) in 
general is not a differentiable function. How- 
ever, if we can show that f(&J, is, in fact, a 
piecewise differentiable function, then the signal 
vp in equation (19) can be re-expressed as: 

i-l(WJ =f@o)&I) + A(&>, 
where A(&,) satisfies (Fu, 1992) 

(22) 

P(%)l +llhtllm + ~d(zlln,ll- + i ll~&llm + n). 

(23) 

whenever max (l&,(t)], ]8,(t - At)]) < E for some 
y1 10, whereas A(&) = s’(t) with c’(t) denoting 
an exponentially decaying signal (we hereafter 
abuse the notation s’(t) to denote all the 
suitably defined exponentially decaying signals) 
whenever min (l&,(t)], It?,(t - At)]) > E. Suppose 
that all the signals inside the closed loop system 
are uniformly bounded, then, it is easily seen 
that there exists 6 > 0 such that ]A(&,(t))] I 8At 
for all tr 0 when At is small. Thus, in general 
the smaller At is, the smaller A(&,) will be. Now 
with equation (22) the error system in equation 
(16) can be more concisely expressed as: 

2 =&e + b,($‘~ +f(4Ml& 
+ A(b) + vo + CLVi), (24) 

e. = cze. 

(2) Seemingly, the implementation of vp in 
equation (19) will require differentiation of the 
signal ;IG(.). However, later in the sequel we will 

explicitly specify the function n(m) (and, in turn, 

d 
-~(a) 
dt > 

so that no explicit differentiation is ever 

required. 
This adaptive controller will first be 

investigated in the ideal case where Api = 
A&(s) = co = 0. The general (non-ideal) case 
will be treated in Section 5. Therefore, 3, = e, 
and E = 5 so that the equation (16) can be 
concisely rewritten as: 

t =&e + b,(#? + t-‘(W,)), 

e. = cfe. 

(25) 

To study the stability property of the overall 
adaptive system, Lyapunov analysis is adopted 
here, i.e. to construct a function V(e, @) as 
follows: 

V(e, #) = teTP,e + f$‘r-‘& (26) 

and to evaluate its time derivative: 

v(e, @) = $eT(AzP, + P=A,)e 

+ eTP,b,(qjTc + i-l(s)(~~)) 

- e,$‘E - ~J@~B, (27) 

where P,(>O) satisfies the following properties: 

-(AzP, + P,A,) = 2Q,(>O) and P,b, = c,, 

(28) 

due to, the SPR property of the transfer function 
M(s),!@) in Assumption (A5). In particular, 
there exist pel, pe2 > 0 and qel, qc2 > 0 such that 
pclI -( P, ‘pc21 and qelZ 5 Q, 5 qe21. 

Now we are ready to state our main results on 
the stability as well as the tracking properties of 
the ideal adaptive system in the foliowing 
theorem. 

Theorem 1. (Global stability and output 
trucking.) Consider the previous problem set-up 
and choose n((f]) as follows: 

IElrh 

151 <h, (29) 

where & ~0, /12>0, and h is a very small 
positive number. Then all signals inside the 
closed loop system are uniformly bounded, i.e. 
e(e) EL”,, w(e) E L?, and 0(m) EL?, and the size 
of the residual set of e, is a class K function of E 
provided that At is sufficiently small. Further- 
more, if /3i and p2 are chosen large enough, then 
the residual set is exactly the interval [--E, E], 
and the set-convergence rate is at least linear in 
time. 
Remark. It can be verified that ~(151) given in 
equation (29) is indeed a differentiable function 
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d 
and ~ z~(-) is actually implemented as: 

d zr(l~l) = f l l -~ l (a~-w)  I~l---h 

f l l - - f f (a~-w) I~1 <h .  

Furthermore, ~r(l~l) satisfies 

where fl~ = (ill h + f12). 
\ 2  

(30) 

(31) 

Proof of Theorem 4.1. First, we will show that 
all signals inside the closed loop system belong 
to the extended L~ space (Vidyasagar, 1978), 

2 n  i.e. e(.)eL$~, w(.) e L®,, and 0 ( . ) •  L2~ by 
investigating the time derivative of the function 
V(e, ep). This investigation will proceed via a 
contradiction argument, i.e. there exists T > 0  
such that some signal inside the system becomes 
unbounded at t =  T. But this presumption 
implies that all signals remain bounded for all 
t e [0, T) so that from equations (20) and (25) 
f(eo(t)) is indeed a piecewise differentiable 
function for all t • [0, T). From the previous 
remark (1) in the beginning of this section, we 
can readily conclude that the system given in 
equation (25) is actually equivalent to the 
following system over that time interval. 

= Ame + bm(~pr~ +f(e0):t(l~l) + A(e0)), 
eo = c~e. (32) 

As a consequence, equation (27) is simplified as: 

f'(e, ¢p) = -era~e - odprO + eof(eo)ZC(l~l) 
(33) 

+ eoA(eo). 

Due to the fact that o~prO >-0 and the previous 
remark about A(eo), whenever e0 is bounded 
away from the interval [ - e ,  e], equation (33) 
becomes 

f'(e, q~) ~< -q~l lel 2 -  leol(fl2- e'(t)). (34) 

Since e'(t) decays exponentially in t, ~" in 
equation (34) will become negative after some 
time elapses. This implies that eo cannot grow 
unbounded at t = T and, hence, neither can the 
parameter error vector ~(t) and the regressor 
vector w(t) due to Lemma A1 and Lemma A2, 
respectively (see Appendix for Lemmas and 
their proofs). This, of course, also implies that 
~(t) remains bounded on [0, T]. Therefore, by 
contradiction, all signals inside the closed loop 
belong to the extended L® space so that equation 
(33) remains valid for all t - 0 .  This further 
implies that there exist At1>0 such that 

IA(eo)l < 6(t)At for all At • [0, At1] and for some 
6(.) • L~ because of equations (23), (30), (32), 
Lemma A3, and the small gain theorem (Desoer 
and Vidyasagar, 1975). However, 6(0 -< 15 for all 
t->0 if e(t), w(t), and q~(t) are all uniformly 
bounded. 

Now, since equation (33) is valid for all t -  0, 
it is clear that 

(/(e, ~))<-- --qel lel ( l e l -  At([Cml-6-(t))) (35) 
\ qel f i '  \ 

which according to Lemma A1 and Lemma A3 
shows that if Iletllo~<l~(>0), then there exist 
12('), 13(.)>0 such that 116,11~<12(11) and 
IlV~ll~<13(ll). On the other hand, the latter 
inequality, in turn, implies that I le,11~- 

~/213(ll). Combining these facts along with 
Pc1 

equation (35), we can easily see that if we 

choose At2 to be min(Atl ,  l o ( ~ )  ) where 

le(0)l 
lo = , then there exists sufficiently large l~ 

11 
so that, for all t >- O, V(t) <- 13(loll ) <--/3(/1) and, 

hence, Ile, ll~-< ~zt3£o~tl) < ll. Consequently, 

e(.) e L~ and ~ ( . ) •  L~, which, in turn, implies 
that ~( . ) •  L~ as a result of Lemma A3. From 
the proof of Lemma A2, it can be verified that 
w(.) e L~ as well. 

To show the size of the residual set is a class 
K function of e, further investigation of equation 
(34) has to be taken. Assume that initially eo 
stays outside the interval [ -e ,  e]. Then lel-> 

E 
le01> and hence, after some time t~ > 0  
Icml Ic.,I 
equation (34) can be rewritten as: 

_ qel 2 
l?(e, q~)-< icml2 leol - le01 (f12- e'(t)) 

< [ qel e2 flze) - - \ i - ~  +½ t >-- t~, (36) 

which implies that V is strictly decreasing during 
this period so that there exists t2 >--t~ such that 
le0(t2)l-<e. However, once e0 falls into the 
interval [ - e ,  e], equation (36) is no longer valid 
and, hence, V may be increasing so that eo 
eventually leaves that interval again. To find out 
the level of magnitude up to which [eol will grow, 
we augment equation (36) via the use of 
equation (33) so that 

_ (  eel e2+ fl28)+ xf2- ic , , i  ~AtV1/2, 
f'(e, ~) -< \lcml2 "~ pc1 

(37) 
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which readily leads to the following conclusion: 

leo] ~ .~/--21c.1V1/2<1_~ ( qel ~2+/32E) ' (38)  
pe~ - 3At  \lcml 2 

and, hence, the size of the residual set of eo is 
indeed a class K function of e. So far, we have 
concluded the first part of the proof. 

In order to show that the residual set is exactly 
[ -e ,  e] when /31 and /32 are chosen properly 
large, we differentiate the output equation (32) 
so that 

eo " eo = eo(cfnAme + CT bm( ¢ r~ 

+ f ( e o ) ~  + A(eo))), (39) 

which, whenever leol > e, provides an estimate 
of the rate of change of leol as: 

2dt le°12-<-le01 kp /32-  IIc,~tml l e l -  3At  

+ kp(fl~ - 141) I~1), (40) 

where the fact c r b ~  = k e is used. Since ~ and e 
are uniformly bounded, so long as/31 and/32 can 
be chosen such that/31---sup I~(t)l and 132 > sup 
1 t~tIc t~tfc 

IIc,~,A,,,ll le(t)l + 6At for some finite tic >0 ,  

equation (40) can be shown to satisfy 

l d  
dt ]e°12 -< -f13 leol, (41) 

for some fla > 0 or, equivalently, 

d 
dt leol -< -2/33, (42) 

for all t -> ti~. This shows that eo will fall into the 
interval [ -e ,  e] at least at the linear rate and will 
never leave that interval afterwards. This 
completes the second part of the proof. Q.E.D. 

Remarks .  

(1) In the theorem, when/31 and /32 a r e  chosen 
properly large, e0 will actually fall into the 
interval [ - e - A e ,  e + A e ]  for some small 
Ae > 0 because the statement leoJ > e should, in 
fact, be replaced by min (le0(t)l, leo(t - At)l) > e. 
Since At is usually very small, Ae is also kept 
extremely small. Therefore, in the following we 
will not differentiate the two testing conditions 
and will neglect Ae simply for ease of 
presentation. 
(2) Suppose e is very small and /31,/32 are 
chosen sufficiently large as required in the proof, 
then the theorem is obviously a drastic 
improvement of the transient response as well as 
the tracking performance of the MRAS from 

those conventional schemes (Narendra and 
Valavani, 1978; Narendra et al., 1980; Ioannou 
and Tsakalis, 1986). 
(3) In order to guarantee that fll and f12 are 
chosen indeed properly large but under the 
situation that 0* is not known and the state e is 
not available, some conservative estimates have 
to be used. From equation (38), V v2 and, hence, 
141 are class K functions of e after some time. If 
e is sufficiently small, fll only needs to be chosen 
to satisfy fll -> 0o (generally >>e) and the bound 
on lel can be obtained through an estimation 
from equations (19) and (25). However, the 
magnitude of the resulting control input may, 
thus, become unduly large. A remedy of this 
situation will be introduced in the following 
corollary. 
(4) In the theorem, in fact, only fl~ needs to be 
chosen large enough provided the magnitudes of 
the reference input and, hence, I~1 are bounded 
away from zero. This fact can be easily seen 
from equation (40). In other words, in a task of 
tracking, determination of fll will be crucial to 
tune the systems performance. 
(5) Usually, e is chosen to be very small to 
guarantee the tracking accuracy. However, 
under practical digital implementation, e is 
chosen only reasonably small to prevent 
excessive switching in the input up due to the 
finite-step-size numerical integration algorithm. 

In the standard adaptive literature, it is well 
known that the parameter error vector ~ in 
general does not converge to zero and will do so 
only when the regressor vector w or, equiv- 
alently, ~ is persistently exciting (Annaswamy 
and Narendra, 1988). From the previous results, 
/31 has to be chosen to satisfy /31 -> sup I~(t)l in 

t~tfr 
order to obtain the well-behaved transient 
response and nice tracking property regardless of 
the type of tasks, i.e. either stabilization or 
tracking. Then, it follows from the previous 
remark (3) that the resulting input may have 
unacceptably large magnitude to meet that 
requirement. However, alleviation of such a 
situation may be attained if Iq~(t)l does converge 
to a fairly small sized interval asymptotically. 
The following corollary will state the condition 
under which this is true. 

Corollary. (Economical  control input due  to P E  
condition.) Consider the previous problem in 
Theorem 1 with the same hypotheses. If, 
furthermore, w is persistently exciting and 
min I~(t)l I> m~ > 0, then the level of magnitude 

t 
of fll to ensure the results of Theorem 1 is a class 
K function of both e and At. 
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By applying an argument similar to that in 
Ioannou and Sun (1990) and equation (40), 
previous remark (4), we can show that the above 
corollary is valid (Fu, 1992). 

It is also a well-known fact in the adaptive 
literature that the convergence of the parameter 
error vector q~ becomes slow when the order of 
the plant increases. The consequence of such 
slow convergence is, then, that ty~ after which 
equation (41) is satisfied will be large and, 
hence, that the convergence of eo will be slowed 
down as well. A remedy of this is to forsake the 
parameter adaptation process and fix 0 at the 
best estimates of 0* that one can get and adopt 
the same control law. The following corollary 
will summarize the resulting property. 

Corollary 2. (Fast output convergence without 
parameter adaptation.) Consider the same 
problem in Corollary 1 but fix 0 at the best 
estimates of 0* that one can get. Then all the 
results in Theorem 1 will remain valid provided 
fl ,  >_ lc~l = lO - O*l . 

The proof is quite straightforward if we 
replace the Lyapunov function V(e, ep) by V(e), 
i.e. 

V(e) = ½erp, e, (43) 

and hence, is omitted here. 

Remark. Usually, if the magnitude of the 
control input is severely constrained, then 
Corollary 1 will suffice to solve the control 
problem and incidentally meet the control 
limitation. However, the slow convergence of 
the output error may not be desirable due to the 
limited rate of convergence of the parameter 
errors q~. Under this circumstance, a remedy is 
to use some prior information about 0* such as 
the knowledge of 0min, 0ma x C R 2n where 0m~,- 
0 " ~  0 . . . .  and, then, apply the mechanism of 
Corollary 2. As a result, both economical input 
design and fast output convergence are achieved 
simultaneously presuming the size of the interval 
[0min, 0max] is much smaller than 0o. 

5. ROBUSTNESS TO UNMODELLED DYNAMICS 
AND OUTPUT DISTURBANCES 

In this section, we will examine the robustness 
property of the adaptive controller in the 
non-ideal case where A/~l(S), A~'z(s), and ¢o are 
present. Recall that the error system in this case 
is given by equations (16)-(17), and the stability 
of the overall adaptive system will now require 
the uniform boundedness of x¢ in addition to 
that of e, w, and 0. Similar to the previous 
analysis, we first investigate whether all signals 

belong to the extended L~ space. Therefore, we 
assume that there exists finite T > 0 such that 
some signal grows unbounded at t = T and, 
hence, for all t e [ 0 ,  T) the system given by 
equations (16)-(17) can be rewritten in the 
following form: 

= A~e  + brn(~bT~ + f(~o)Z -t- 77o 

+/trh + A(@o)), (44) 

&, = C~m e + ~o = eo + ~o, 

~ = A:xc + bc(Or~ + f(~o):r(l~l) + A(~o)), 
(45) 

r h = cffx~ + d¢(Or~ + f (~o )~ ( l~ l )  + A(~o)). 

Construct a function similar to that in (26) as 
follows: 

V(e, (p, x¢) = ½ eTpee + ½ ~pTF-I(p + ½ I~¢~P¢x~, 
(46) 

where P~(>0) satisfies 

-(A~P~ + P;A¢) = 2Q~(>0), (47) 

and differentiate it along the solution trajectories 
of equations (18), (44)-(45) to obtain the 
following: 

I}" = --(eTae e + p.x~Q~x; + a~pro) 

+ {eof(~o)n + eo#(C~X~ + d~(Or~ +f(~o)n  

+ A(~o))) + eor/o + eoA(~o)} 

- (¢o(pT~ -- Izx~P¢b¢(Or~ + f(~,,):r + A(~o))), 
(48) 

which is to be examined under the circumstance 
where [~ol>e. Let p ; l , p ~ 2 > 0  and q¢1, q¢2 : > 0  

be such that pcl<P¢<<-p¢21 and q¢~l<-Q~<- 
q;21. 

Substitution of equations (20) and (29) into 
(48) readily leads to the following: 

t}" < -- (qe, lel 2 + #q¢, Ix~l z + aq  ~rO) 

- I~01 { ( ( 1  - t ~ k l ) / ~ , )  I~1 

+ ((1 - ~kt)132 - I~01 - (1 + t~kOE' ( t ) ) }  

+ t~(k3 lel Ix~l + k 4 ( ~  + 101) Ix~l I~1 

+ k2 101 lel I~1 + ka(13z + e ' ( t ) )  Ix~l) 

+ I~01 {((1 + # k O f l l  + (10l + 00))I~1 

+ ((1 +/~k~)/3z + Irtol + (1 + I~kOe'(t))}, 

(49) 
where kl = Id¢[, kz = Ic,,I Idol, k3 = ICml IC~[, and 
k4= IP¢bc]. It can be verified (Fu, 1992) that 
there exist/~2, Pl > 0 such that for all/z e [0,/~2], 
for all p e [0, pl], and for some ta -> 0 

f" -< - (~,a lel 2 + t~'~cl Ix~l 2) + ks/~ Ixcl 

+ (k6/~ ~3 I~1 = + kvp I~1 + k8p), (50) 

for some q~l, q¢a, ki  ~> 0, i = 5, 6, 7, 8, after 
t>-q when O(t) turns out to be uniformly 
bounded in t, i.e. there exists 0m~x > 0 such that 
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[0(t)l ~ 0m~x for all t • [0, T), but 

9 -< - (O~ [el 2 +/~Oc~ IX¢l[ 2 + al ItPl 2) + ks/~ [x~l 

+ { -- (O'2 11~)12 -- k9~12/3 - ~ )  1~] 2 

+ k,op [~[ + ksp}, (51) 

for some al, az, kg, k i n > 0  when [0(t)l grows 
gradually unbounded so that there exists Ot 
(-->30O) and tL (--0), to be determined later, such 
that 10(tc)[-> 0c. However ,  later we will show 
that the latter case will never occur. 

Now, an upper bound and a lower bound on V 
in equation (46) can be estimated as: 

P~--![el2+l'tP¢'2 ~ X¢[2 + ~ [~b[2~ V(e, t~, x¢) 

~P¢2 ~ 12 g2 -2<P~--A2[e[2+-~ ~'¢' + ~ -  I~12. (52) 

Let /~3=min(/~l,  #z), where /A 1 is given in 
Lemma A3 in the Appendix. Then, in the case 
where [O(t)l<-Om~x for all t • [ 0 ,  T), we have 
II~,ll~ ~ tl'6 Ile, ll~ + ~7, where &6 = ~ 6  Ic,,I, for all 
/~ e [0,/~3] as a result of Lemma A4. Thus, by 
adding al I~l ~ to the first bracket and Ol(0m,x + 
0o) 2 to the second bracket on the right hand side 
of equation (50), we readily arrive at the 
following expression: 

(Z ~ -- k l l  V + k12~l/2V 1/2 

+ (k6/A2/3 I~1 = + k7o I~1 + k13) 

<- - k , i  V + (g l (~)  IIV, II~ 
+ g2(~, p) II Ell& '2 + g3(~, p)), (53) 

for some ks>0 ,  i =  11, 12, 13, and for some 
positive functions K~(#), K2(/z, p), K3(IA , p) ,  
where above all K~(/z) is a class K function of/ t .  

On the other hand, in the case where 
10(t)l -> 0L -> 300 when t = tL, equation (51) can 
be expressed as: 

~" -~ - k l l  V "k kl21,tl/2v 1/2 

+ k,op I~1 + ksp}, (54) 

for all t • [tL, T). 
Now we are ready to state the robustness 

property of the previously proposed scheme 
against unmodelled dynamics and output 
disturbance. 

Theorem 2. (Robustness property.) Given the 
system considered in Theorem 1 but in the 
non-ideal case, satisfying Assumptions (A1) -  

(A6). Then, there exist /~*> 0 and p * >  0 such 
that, for all # e [0,/~*] and p e [0, p*], all signals 
inside the closed loop system remain uniformly 
bounded in t provided that At is sufficiently 
small. Furthermore, the output error e0 will 
converge to a residual set whose size can be 
written as an explicit class K function of /~, p, 
and e provided the control parameters fl~ and f12 
are chosen properly large. 

Proof of Theorem 2. Let us first assume that eo 
grows unbounded at some finite time t = T and, 
hence, ~o is bounded away from the interval 
[ - e ,  el. Under  this circumstance, the proof will 
proceed in two directions, namely, one is to 
assume O(t) is uniformly bounded,  i.e. [0(t)[-< 
0ma x for all t • [0, T), and the other is to assume 
that O(t) grow also unbounded so that 
[0(t)[ -> 0t  -- 300 at t = t L (<T) .  

In the first direction, the Lyapunov function V 
has to satisfy the dynamic constraint given by 
equation (53). Thus, using Bel lman-Gronwall  
lemma, V can be shown to satisfy the following 
algebraic constraints: 

v( t )  <_ liV, ll~ 
1 

-<~-~n (KI(/~) IIEII= + g2(u, p) IIEIIU 

+ K3(~, o)) + e'(t). (55) 

Since KI(/~) is a class K function of /~, there 
exists /~*, satisfying 0_</~*_</~3, such that 
k~lKl(l~ *) < 1 and, hence, 

V(t) <- IIEII~ 

(k~'K2 + V(kfilK~ + 4(1 - klllgl)(k~llg3 --~ ,E ') 
4(1 - k ~l~ K1) 2 

(56) 

so long as g • [0,/~*}. Whereas in the second 
direction where O(t) grows unbounded,  the 
dynamic constraint on V becomes equation (54). 
Now let p*---pa as defined before. Then, it can 
be verified that, if 0L is defined to be 

0L-- +°*'2  20o, 30o), (57, 
v 

then, for all/~ • [0,/a*] and p • [0, p*], equation 
(54) can be put into an equivalent form: 

(/<: - k l l  V + k12t~l12V 1/2 + k14, (58) 

for some k14>0 , which readily leads to the 
following result: 

V(t) <-- IIEII~ 

-< ]((kfilk12/~ 1/2 + ~/(kulka2)21~ + 4k~~lkls) 2. (59) 

From equations (56) and (59), it is clear that eo, 



920 LI-CHEN Fu 

in fact, can not escape in finite time t = T and, 
hence, it belongs to the extended L~ space. This 
again immediately implies that t~(.)e L2~ and 
~(-)eL~'~ from Lemma A1 and Lemma A2, 
respectively. In consequence, the expression of 
the overall system given by equations (44)-(45) 
is, then, valid for all t -> 0. 

Now, if one further evaluates the derivative of 
V when 1001 < ~, then it can be verified (Fu, 
1992) that, though k12, kl , ,  K2, and K 3 will have 
dependence on t and At, they are uniformly 
bounded provided all the signals e, 9, w, and x~ 
are uniformly bounded for all t-> 0. Therefore, 
using the argument in the proof of Theorem 1, it 
can be easily seen that for sufficiently small At all 
the aforementioned properties remain valid. 

To show the size of the residual set of eo is a 
class K function of/z,  p, and e, we differentiate 

e~ 
the signal ~- in the following as: 

eoeo = eo(cf,,Ame + kp(~r~ + f(eo)~ 

+ m ( e o )  -4- ~'~(,--I- 1 .~Oi ) ) ,  ( 6 0 )  

so that when I~ol > e, we have 

l d  
2 dt le°12 -< - leol((kpfl2 - IIc~nA,, II lel - kpe'(t))  

+ kp(fll  - Idpl) I~1) 

+ G leol ( G P  + Irl~l/~) + 2kpp~(l~l), 
(61) 

where we use the fact that eo sgn (~o) >-- leol-  2p 
in the above derivation. Suppose now the 
control parameters fl~ and 32 are chosen such 
that for all t >-- ti~, for some finite tr~ - O, 

fll -> max I~(t)l, 
,~,,, (62) 

1 
f12 : >  tm>at X -  IIc,~tmll le(t)l + 8At, 

t-t~.~ kp 

as required in Theorem 1, then after some 
re-assignment of notation, equation (61) can be 
expressed as: 

l d  
dt le°12 -< -/~3 leol + g4(N, p),  (63) 

where 

g 4 ( ~ ,  P) = kp ICm[ Ile, G (bpp "4" Ilrl,,G) 

+ 2kpp II ~,11~. (64) 

Obviously, K4(0, p) = O(p)  and K4(/z, 0) = 
O(/~). Finally, since I~ol > leol - P, whenever 
leol > P + e, we have 10ol >- e and, hence, 
equation (63) can be concluded. This implies 
that eo will eventually converge into a residual 
set whose size is a class K function of/u, p, and 
e. This completes the proof. Q.E.D.  

6. NUMERICAL SIMULATION EXAMPLES 
In this section, we will illustrate the 

effectiveness of the proposed new MRAC 
scheme by performing the following computer 
simulation example. 

Consider a plant described by 

po( ) = 2 
(s + 1)(s - 3) (1 

+ /.t API(S)) + /.t A J62(s), 

(65) 

where 
] 

aA(s)  -- 
s + 1 2 '  

A/52(s) = 2 
s + 1 0 '  

and the reference model is given by 

(66) 

1 ~ z x  
(67) m r s ) -  (s + 2)(s + 3)" 

When /~ = 0, it can be verified that the true 
parameter vector 0* = [0.5, -1 .4 ,  22.4, -29] r 
and 10"1 = 36.67. Therefore, a reasonable 
choice of 0o in equation (18) is 0o = 40. Let 
£ ( s ) =  (s +2.5)  so as to make lfl(s)f_.(s) SPR 
and let reference input r = 3 sin (2*0 in the task 
of tracking. The numerical values for the 
parameters in equations (18)-(20) are given by: 
Oo=3, F = 5 ,  At=0 .001 ,  and e = 0 .2 .  Let 
# = 0 . 0 1  and ~0 = 0.1* cos (t). First of all, the 
conventional M R A C  schemes (Narendra and 
Valavani, 1978; Narendra et al., 1980; Ioannou 
and Tsakalis, 1986) (ill = fiE = 0) are applied to 
this example and the resulting signal trajectories 
are shown in Fig. 2. Next, we apply the 
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I x104 
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50 5 1'0 15 20 25 30 35 
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0 0 5 10 15 20 25 30 

Filtered Regressor Norm I~1 

FIG. 2. Conventional scheme. 
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FIG. 3. r = 3 sin (2*t) ,  /~l = 40, /32 = 1. 

2 . . . . . . . . .  

1 . 5 1  
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0 1 2 3 4 5 6 7 8 9 10 

Time (sex) 
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FIG. 5. #mi.  = [0.1, - 2 ,  22, - 3 0 ]  r and 0, . .x  = [0.9, - 1 ,  23, - 
28] r, 0 = 0mi. and r = 3 sin ( 2 ° 0 .  

proposed scheme in different situations: (i) 
Suppose the knowledge about 0* is only the 
upper bound of its norm, i.e. 0o. Then, we 
choose f l1=40 and let f12= 1, following 
Remarks (3) and (4) after the proof of Theorem 
1 in Section 4. Figure 3 illustrates the resulting 
signal trajectories. (ii) Suppose the reference 
input is enriched so that r = 3 s i n ( 2 * t ) +  
2 sin (4*0. Then, fll can be greatly reduced so 
that fl~ = 2 but /32 remains the same, based on 
the result of Corollary 1. The resulting signal 

1.5 . . . . . . . . .  

O.5 

4) 
0 1 2 3 4 5 6 7 8 9 10 

Output Error #o Time (sec) 

1 

-100 
0 1 2 3 4 5 6 7 8 9 10 

Time (sec) Input Force up 

trajectories are provided in Fig. 4. (ii) Suppose 
the interval in which 0* lies is [0r.i., 0r.ax], 
where 0rain = [0.1, - 2 ,  22, -30]  r and 0max = 
[0.9, - 1 ,  23, -28]  r. Then, from the remark after 
Corollary 2, we let 0 = 0min and choose fll = 3, 
since 10max- 0mi, I = 2.58, but let f12 still remain 
the same. In Fig. 5, the resulting signal 
trajectories are provided. (iv) Finally, just to 
show the drastic improvement of both the 
transient behavior and the tracking performance 
of the closed loop system by adding small 

0 .- . . . .  - . . . . . . .  

-0,5 e° 
0 1 2 3 4 5 6 7 8 9 10 

Output Errs" to Time (sec) 

4O 

20 

-2 
0 1 2 3 4 5 6 7 8 9 10 

Input Force up Time (sec) 

2 . . . . . . .  

0. 

1 2 3 4 5 6 7 8 9 10 

Filtered Regressor Norm 1~[ Time (sec) 

FIG. 4. r = 3 sin (2*t) + 2 sin (4*0 ,  ~1 = 2, ~2 = 1. 

0.5 

0 
0 1 2 3 4 5 6 7 8 9 10 

Filtered Regressor Norm [~] Time (see) 

FIG. 6. r = 3 sin (2*t),  ~ 1  ~--- 0 ,  ~ 2  = 2. 
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FIG. 7. Comparison between the conventional scheme and 
the proposed scheme. 

quantity of Vp into up as given in (3.3), we let 
fll = 0 and f 1 2  = 2. The simulated signal trajec- 
tories are illustrated in Fig. 6, which seem to be 
much better behaved than those in Fig. 2. For 
interesting comparison, a close-up of the time 
evolutions of the input force up applied in the 
conventional scheme and that in the current 
scheme in situation (iv) in Fig. 7 suggests that 
the steady state Up of the proposed scheme has 
smaller magnitude and evolves smoother with 
time than that of Up in the conventional schemes. 

7. CONCLUSIONS 

The paper presented a new robust MRAC 
scheme for SISO plants with relative degree two, 
which incorporated the similar VSD concept in 
Fu (1991) and was based on the modified MRAC 
scheme proposed in Narendra and Valavani 
(1978) particularly for the case with relative 
degree two. No assumption of PE condition is 
needed here in order to ensure the global 
stability of the overall system, in a way similar to 
o- (Ioannou and Kokotovic, 1984b; Ioannou, 
1986; Ioannou and Tsakalis, 1986) and el- 
modification (Narendra and Annaswamy, 1987). 
Since the controller is a continuous one in 
nature, no Filippov's notion is used and hence, 
the input force is generally kept with a 
moderate level of magnitude and usually evolves 
with smoother time trajectory. The striking 
features of the proposed controller are the 
drastic improvement of the transient behavior 
and the tracking performance from the 
conventional schemes (Narendra and Valavani, 
1978; Narendra et al., 1980; Ioannou and 
Tsakalis, 1986) which are clearly demonstrated 
in the simulation example. 

In the proposed scheme, both parameter 
update process and the input interaction 
contributed to the stabilization of the overall 
system. Due to this sharing of load between two 

mechanisms in handling the parameter uncer- 
tainties, the magnitude of the resulting input 
force has been greatly reduced as opposed to 
those observed in Narendra and Valavani 
(1978), Narendra et aL (1980) or Fu (1991). 
Furthermore, if the reference input satisfies the 
PE condition or if the prior knowledge about the 
neighborhood of the system parameters is 
available, then the input magnitude can be 
reduced further or even the rate of convergence 
can be increased as well. In the presence of mild 
unmodelled dynamics and bounded output 
disturbance the proposed scheme was shown to 
be robust and the resulting tracking errors will 
fall into a residual set whose size has been 
related directly to the size of unmodelled 
dynamics and of output disturbances. 
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APPENDIX 

Lemmas and proofs 

Lemma A1. Consider the parameter update law given by 
equation (18). Then, there exist oq, o~2 > 0 such that 

11¢,11~ -< 06 [Igo, ll~ + a~2. (A.I) 

Proof of  Lemma A1. With loss of generality, we only need 

to consider the case where 101>20o. Therefore, equation 
(18) becomes 

0 = -F($o~ + %(1 + I~lz)0). (A.2) 

Define a Lyapunov function Vo = ½0rF-~O and, then, take 
its time derivative along the solution trajectories of (A.2) to 
obtain the following: 

d 
dt Vo = - %  1012 - oo 1012 I~l 2 - #-oOT~ 

2o0 I~ol 2 ( ~ I~olX 2 <--g-TV.+~Oo-Oo.tot ~ - ~ o )  

-< - 2°°g--~ V° +41~012o--~' (A.3) 

,~,~ere we use the fact that gll<-I'-l<:gEI for some 
gl, g2 >0- Thus, by Bellman-Gronwall lemma, the bound 
on 0 can be derived as: 

10l 2 -< ~ I1~0,11~ + e'(t), (A.4) 
'~o-ogl 

where e'(t) is due to the stable initial conditions. Let a~ = 

~o01 \~/(g2~ 1/2 a n d  fiE = mtax e'(t)+ 0 o. Then, it follows that 

Ile, ll®<- IlO, II~ + Oo<- oq ll~o, ll~ + a2 . (g.5) 

This completes the proof. Q.E.D. 

Lemma A2. Consider the problem described in Section 2 
and Section 3, satisfying Assumptions (A1)-(A6). Let the 
adaptive controller be designed according to Section 4. If 

L®~ and, hence ~(.) e L~. %(.) • L~ ,  then ~,(.) • z, ^ 2, 

Proof of Lemma A2. First of all, from the hypotheses and 
Lemma A1, we know that ~(.) 2, e L~.  To show that ~(.) and 
~(.) belong to the extended L® space, we assume the 
contrary, i.e. there exists T > 0  such that [ff'(t)l grow 
unbounded at t = T, and prove that such an assumption will 
lead to a contradiction. 

Let the compensator blocks F 1 and F 2 be realized by a 
(n D×(n  1) controllable pair (A, b), where A • R - - is Hurwitz 

and b • R  (n-l), so that ~ ( s ) =  ~ ( s ) =  ( s l -  A)-Ib. Thus we 
h a v e  

epl)= Av~O + b%, 
(A.6) 

9p(2) = Avp(2) + b(y v + ¢o), 

and, hence, ~i and ~2 will satisfy 

~, = A~I + bf-,-l(uv) + e'(t) 

= A~, + b(Or~ + L.-'(s)(vp)) + e'(t), (A.7) 

~2 = A~2 + bL-t(yv + ~o) + e'(t). 

It then follows from (A.7) that 

ll~2,11®<-Y2llYp, ll~+y3, for all t • [0, T], (A.8) 

for some positive constants )'2 and )% Furthermore, as a 
result from equations (19), (30)-(31), a bound on £-I (v , )  
can be estimated as: 

+ r, +/~,£-'(s)(N,I) 
= Y4 I1~,11= + 75 + fl~£-l(s)(l~l), 

for some y4, Ys>0. Denote f f = ( w ( o , . . . , w ( 2 n ) ) r • R  zn 
and ~=  L-a( i f )=  (~0) . . . . .  ~(z~)) r • R2~- Suppose for 
some j, l<-j<--2n, wj(t) grows unbounded at t=T .  Then, 
there exists t r ->0 such that wo)(t ) = sgn (wq)(tl)) Iwto(t)l for 
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all t ~- t: and, hence, 

l~q)(t)[ = I(e -m'~)wO)('r) dT 

--> ~ '  e - ° 0 - ' )  Iw0)(r)[ dz 

_ ~t/e-aO- r)Wuidl7 
dO 

= e-U~'-° [wf/)(r)[ d r  
J0 

- ] f ie  -``(' ~)wq)('r) d r  

~ tf e a(t--T) 
- ~o Iwu)(r)l d r  

>-- L-t(s)(Iw(j)l)(t ) - Y6 

for all t • [t:, T], (A.10) 

for some )'6 > 0. On the other  hand,  if wt/)(t) is bounded on 
[0, T], then (A.10) will be even more trivially satisfied. 
Therefore,  with the help of the facts that 

I )~ l -<~lw~)[  and ~ l~o) l -<(2n)U21~l ,  (A,11) 
J i 

we can readily deduce from (A.10) the following: 

£-~(s)( l~ ' l )  -< (2n) vz I~1 + )'7, (m.12) 

for some positive constant )'7. Combining (A.9) with (A.12), 
we thus have 

112 '(vp)l-< 94 )I$,11~ + 9~, (A.13) 

where 94 = )'4 + fll(2n) 1/2 and 95 = Y5 -~- )'7' Finally, by 
substitution of (A.13) into the estimate of the rate of change 
of ~t in (A.7), we will have 

I~l  <- (IIA + bCr(t)[[ + 94) It~,11~ 

+ (llbDr(t)[I + 94) 11~2~11~ 

+ (Ibdo(t)l + 94)II(L-t(yp + ¢0)),11~ 

+ {(Ibco(t)l + 9,)11 (£  ~(r)),ll~ + Ibl ?_~ + le'(t)l} 

-< o~3 II~,,lt~o + ~r~ IlYmll~ + o<5 

for all t ~ [0, T), (A.14) 

where 

o~ 3 = max (IIA + bCr(t)ll + 94), 
t~0  

m a x (  1) °:4 = (llbDr(t)ll + 9,)72 + (Ibdo(t)l + 94)a , (A.15) 

o:5 = max ((Ibco(t)l + 94) [£ l(r)l + ( l lbDr (t)ll + 94))'3 
t~0  

+(Ibdo(t)l + 94)(IL 1(¢o)1 + )'~) + le'(t)l + Ibl 95). 

Note that in the above derivations we have used the facts 
that 

I1~,11+ -< II(£-t(r)),ll® + I1~,11~ 
+ II(L-t(yp + ~o))Al~+ ll~2,ll~. (A.16) 

Apparently,  I~l(t)l can not grow unbounded at t = T and, 
(2) in hence, neither can Iv(p°(t)l due to (A.14). Obviously, vp 

(A.6) can not grow unbounded  either. Therefore,  the result 
of the iemma directly follows from the contradiction. 

Q.E.D.  

Lemma A3. Consider the same problem in Lemma A2 and 
let e0(. ) e L®,. Suppose the adjustable parameter  vector O(t) 
turns out to be uniformly bounded.  Then,  there exists #t  > 0 
such that for all /z • [0, #1], ~ will satisfy 

11 ~rl[~ --< (x611 eoAl® + or7 for all t-> 0, (A.17) 

for some re6, o 7 > 0 .  

Proof o f  Lemma A3. Lemma A2 reveals that  all signals 
belong to the extended L~ space and, hence,  equat ion (22) 
becomes valid for all t >-0 owing to the arguments  in the 
beginning of Theorem 1. Then,  it can be easily seen that  with 
the above fact (A.13) only needs to be modified slightly into 
the following: 

[ £ - I ( V p ) [ -  94 I1~,t1~ + % IA(~o)l, (m.18) 

which now remains valid for all t -  0. This, in turn, implies 
that (A.14) will be modified accordingly as: 

I~l l  <: 0(3 II@l,ll~ + oq IlYp, ll® 

+ a5 + &5 IA(0o)l 

for all t -> 0, (A. 19) 

for some &5. 
Furthermore,  since P,(s)(Up)=yp, from (A.6),  it is clear 

that 

~2 =/5 , (s ) (~ , )  + ( s l -  A) lb/~ '(~o) + e'(t). (A.20) 

Define ~o= ( s l -  A ) - l b £ - l ( ¢ o )  and recall that P,,(s) = P 
(s)(1 + #APt(s))  + #APz(s ). Then,  it can be derived that 

~3 =:  ~2 - uaP2(s ) (~ , )  - ~o 

= k(s )O + uab,(s) )  

x (~1) + e'(t). (A.21) 

By Assumption (A1) and (A3) , /~(s)  is m i n i m u m  phase with 

relative degree two. Now if we define z(t)  = ~ (~1) for 

some a o >  0 to be determined later and borrow the results 
from the proof of Lemma 3.6.2 in Bodson and Sastry (1989) 
then we can deduce that 

IlNul[~ -< Ilz, tt~ + IIE;IL + 2 II~l, ll~, (A.22) 

and from (A.19) we can further  conclude that  

1 
I1~1,11~--- "1 2 

× 

so long as ao is chosen such that 2 o<3 < 1. 
ao  

On the other  hand,  ~ ib(s) has a stable inverse from 
ao 

Assumption (A3) and, hence,  
a 2 ^ 

z = ~ P- I (s ) (~3  - e'(t)) 

- #A/31(s)(z), (A.24) 

which implies that there exists #o -> 0 such that  

IlzAl~ -< y8 ll~3,ll~ + (y9 + #yao), (A.25) 

for all # e [0, #o] and for some appropriate positive constants 
Ys -  Yl0- It can also be shown from (A.21) that  

11 ~3tl[~ <: l[ ~2t 11~ + # r l  I I I  ~l t l l® + ( z n  + ~713), (A.26) 

for another  set of appropriate positive constants V11 - Y~3. 
Combining (A.23), (A.25) and (A.26), we can attain the 
following 

~t,ll® -< 1 ()'s II ~ II- + #()'8Yl 0 II ~u II I1~ 

+ Ys(V12 + #)'13) + (5'9 + #Y12)), (A.27) 

where Y~4 = 1 - 2 o~3 > 0. Now, clearly, there exists #1 -</Zo 

such that,  for all/., e [0,/*1], (A.27) can be rewritten as: 

[iNI,[[®-< )'1511~2AI~ + )'16, (A.28) 

for some positive constants Y~5 and Y16. Finally, it follows 
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from (A.8) that  

II~,ll ~ Y2Y15 II(Yw -Ym),ll~ 

+ max (Y2Y15 IlYm, ll~ + (~/3Y15 "j" Y16)) t~O 

= Yt7 Ileo, ll® + Y~8, (A.29) 

for some )'17, YlS > 0 .  Hence,  using (A.8) and (A.29) in 
(A.16), we can conclude that  

I,~,ll® < (y2 + Y,7 + 1 )  Ileo, ll® 

+ max ((1+)'2)'[YmtJ'® + [£-Z( r+ ~0)]) 

+ (~q + ~'3 + Y~8) 

= 0~6 Ileotil~ + 0tT. (A.30) 

This concludes out  proof. 

Lemma A4. Consider the same problem in Lemma A2 but 
let eo grow unbounded at some finite time t - -  T < so. Then,  
[~(t)l will also become unbounded  at t = T. Fur thermore ,  if 
O(t) remain uniformly bounded  for all t e [0, T), then the 
result of l .emma A3 will hold for all t e [0, T). 

Proof of Lemma A4. The fact that e 0 grows unbounded  at 
t = T is equivalent to having yp grow unbounded  at t = T. 
Recall that 

1(i/ v~ 2) = ~ (Yp + ~o), (A.31) 

\ s " - U  

where .,~(s) is Hurwitz. We claim that  to prove the first part  
1 

of the lemma it suffices to show that  ~ ( y p )  grows 

unbounded at t = T for all a 0 > 0. The  reason of the claim is 
given as follows: Let/~,(s) =/~l(s)/k2(s ) where Al(s  ) = 0 has 
real roots but  A2(s ) = 0 only has complex roots. Moreover,  
let the degree of the polynomial A2(s ) be n 1. Then,  by 
applying the claim successively, it is clear that  the signal 

A~(s)(s + a~)", (y" + 

where x denotes the first e lement  of v~ 2), becomes 
unbounded at t = T. Therefore,  by use of the stable filter 
theory, it follows that x and, hence,  [v~2)J become unbounded  
at t = T as well. This, in turn,  says that  I~[ grows unbounded  
in finite time t = T and, thus, one can deduce from the proof  
of Lemma A2 that  [~J will also become unbounded  at that  
same finite time. Finally, the proof  of showing that  

1 
(s + ao) (yp) indeed grows unbounded  at t = T will be similar 

to that given by (A.10) in the proof of Lemma A2. This 
completes the first part  of the proof. 

To show the second part  of the lemma, recall in (A.14) 
that 

I~11 ~< oc3115,11® + t~4 IlYp, ll® + 0~5 

for all t e [0, T). (A.33) 

Consequently,  it can be deduced from the proof  of  Lemma 
A3 that its result will remain valid for all t ¢ [0, T). O .E .D.  
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